2017学年江苏省无锡市新区七年级(上)数学期中试卷带参考答案
- 格式:doc
- 大小:313.00 KB
- 文档页数:18
2017年七年级数学上期中试卷(无锡市锡北片含答案和解释) 2017-2018学年江苏省无锡市锡北片七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)�5的相反数是() A. B. C.�5 D.5 2.(3分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有() A.1个B.2个 C.3个 D.4个 3.(3分)下列各式最符合代数式书写规范的是() A.2 n B. C.3x�1个 D.a×3 4.(3分)下列代数式中,单项式共有() a,�2ab,,x+y,x2+y2,�1, A.2个 B.3个 C.4个 D.5个 5.(3分)下面的计算正确的是()A.6a�5a=1 B.a+2a2=3a3 C.�(a�b)=�a+b D.2(a+b)=2a+b(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()6.A.3(a�b)2 B.(3a�b)2 C.3a�b2 D.(a�3b)2 7.(3分)对有理数a、b,规定运算如下:a※b=a+ab,则�2※3的值为()A.�8 B.�6 C.�4 D.�2 8.(3分)甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程() A.98+x=x�3 B.98�x=x�3 C.(98�x)+3=x D.(98�x)+3=x�3 9.(3分)如图是计算机程序计算,若开始输入x=�,则最后输出的结果是() A.11 B.�11 C.12D.�12 10.(3分)某小朋友用手指按如图所示的规则练习数数,数到2017时对应的手指是()(各手指对应依次为大拇指、食指、中指、无名指、小拇指) A.大拇指 B.食指 C.中指 D.无名指二、填空题(本大题共8小题,每空2分,共24分) 11.(4分)�2的绝对值是,�3的倒数是. 12.(4分)比较大小(用“<”或“>”填空):��;�|�8| �(�3). 13.(4分)单项式�的系数是次数是. 14.(2分)已知关于x的方程ax+4=1�2x的解为x=3,则a= . 15.(4分)若单项式2x2m�3y与�8x3yn�1是同类项,则m= ;n= . 16.(2分)若x2�2x�1=2,则代数式2x2�4x�7的值为. 17.(2分)若关于x、y的多项式3x|m|y2+(m�2)x2y�4是四次三项式,则m的值为. 18.(2分)将正整数从1开始,按如图所表示的规律排列.规定图中第m行、第n列的位置记作(m,n),如正整数8的位置是(2,3),则正整数137的位置记作.三、解答题(本大题共9小题,共56分) 19.(9分)计算:(1)�10�(�16)+(�24)(2)( + �)×(�20 )(3)�14+(�2)2�6×(�) 20.(6分)化简下列各式:(1)2a2b�3ab�14a2b+4ab (2)5(x+y)�4(3x�2y)+3(2x�y) 21.(6分)解方程:(1)4�x=3(2�x)(2). 22.(5分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b�c 0,a+b 0,c�a 0.(2)化简:|b�c|+|a+b|�|c�a|. 23.(5分)已知:A=2a2+3ab�2a�1,B=�a2+ab+1 (1)当a=�1,b=2时,求A+2B的值;(2)若(1)中的代数式的值与a的取值无关,求b 的值. 24.(6分)问题背景:小红同学在学习过程中遇到这样一道计算题“计算4×3.142�4×3.14×3.28+3.282”,他觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师.崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!获取新知:请你和小红一起完成崔老师提供的问题:(1)填写下表: x=�1,y=1 x=1,y=0 x=3,y=2 x=1,y=1 x=5,y=3 A=2x�y �3 2 4 1 7 B=4x2�4xy+y2 9 4 (2)观察表格,你发现A与B有什么关系?解决问题:(3)请结合上述的有关信息,计算4×3.142�4×3.14×3.28+3.282. 25.(4分)定义一种新运算:观察下列各式:1⊙3=1×4+3=7 3⊙(�1)=3×4�1=115⊙4=5×4+4=24 4⊙(�3)=4×4�3=13 (1)请你想一想:a⊙b=;(2)若a≠b,那么a⊙b b⊙a(填入“=”或“≠”)(3)若a⊙(�2b)=4,则2a�b= ;请计算(a�b)⊙(2a+b)的值. 26.(7分)小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减产值 +10 �12 �4 +8 �1 +6 0 (1)根据记录的数据可知小明妈妈星期三生产玩具个;(2)根据记录的数据可知小明妈妈本周实际生产玩具个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣3元,那么小明妈妈这一周的工资总额是多少元?(4)若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由. 27.(8分)如图所示,在数轴上A点表示数a,B点表示数b,且a、b满足|2a+6|+|b�9|=0 (1)点A表示的数为,点B表示的数为;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在点A、点B之间的数轴上找一点C,使BC=2AC,则C点表示的数为;(3)在(2)的条件下,若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q运动时间为t秒.请用含t的代数式表示:点P到点A的距离PA= ,点Q到点B的距离QB= ;点P与点Q 之间的距离 PQ= .2017-2018学年江苏省无锡市锡北片七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)�5的相反数是() A. B. C.�5 D.5 【解答】解:�5的相反数是5.故选:D. 2.(3分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()A.1个 B.2个 C.3个 D.4个【解答】解:无理数有:1.010010001…,π,共2个.故选B. 3.(3分)下列各式最符合代数式书写规范的是() A.2 n B. C.3x�1个 D.a×3 【解答】解;A、应表示为 n,故A错误; B、两个字母相除表示为分式的形式,故B 正确; C、(3x�1)个,应加上括号,故C错误; D、把数写在字母的前面,故D错误,故选:B. 4.(3分)下列代数式中,单项式共有() a,�2ab,,x+y,x2+y2,�1, A.2个 B.3个 C.4个 D.5个【解答】解:a是单独的字母,是单项式;�2ab,,是数字与字母的积,是单项式;�1是数字,是单项式;故选C. 5.(3分)下面的计算正确的是() A.6a�5a=1 B.a+2a2=3a3 C.�(a�b)=�a+b D.2(a+b)=2a+b 【解答】解:A、6a�5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、�(a�b)=�a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C. 6.(3分)用代数式表示“a 的3倍与b的差的平方”,正确的是() A.3(a�b)2 B.(3a�b)2 C.3a�b2 D.(a�3b)2 【解答】解:∵a的3倍与b的差为3a�b,∴差的平方为(3a�b)2.故选B. 7.(3分)对有理数a、b,规定运算如下:a※b=a+ab,则�2※3的值为() A.�8 B.�6 C.�4 D.�2 【解答】解:∵a※b=a+ab,∴�2※3=(�2)+(�2)×3=�2�6=�8.故选A. 8.(3分)甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程() A.98+x=x�3 B.98�x=x�3 C.(98�x)+3=x D.(98�x)+3=x�3 【解答】解:设甲班原有人数是x人,(98�x)+3=x�3.故选:D. 9.(3分)如图是计算机程序计算,若开始输入x=�,则最后输出的结果是() A.11 B.�11 C.12 D.�12 【解答】解:由题意可得,当x=�时,(�4)x�(�1)=�×(�4)+1 =2+1 =3>�5,∴将x=3时,(�4)x�(�1)=(�4)×3+1 =�12+1 =�11<�5,故选B. 10.(3分)某小朋友用手指按如图所示的规则练习数数,数到2017时对应的手指是()(各手指对应依次为大拇指、食指、中指、无名指、小拇指) A.大拇指 B.食指 C.中指 D.无名指【解答】解:大拇指对应的数为8n+1,小拇指对应的数为8n+5,又因为2017÷8=252余1,故一直数到2017时,对应的指头是:大拇指,故选A.二、填空题(本大题共8小题,每空2分,共24分) 11.(4分)�2的绝对值是 2 ,�3的倒数是�.【解答】解:�2的绝对值是2,�3的倒数是�.故答案为:2;�. 12.(4分)比较大小(用“<”或“>”填空):�>�;�|�8| <�(�3).【解答】解:∵ = , = ,<,∴�>�,即�>�;∵�|�8|=�8<0,�(�3)=3>0,∴�8<3,即�|�8|<�(�3).故答案为:>,<. 13.(4分)单项式�的系数是�次数是 4 .【解答】解:单项式�的系数是�,次数4,故答案为:�,4. 14.(2分)已知关于x的方程ax+4=1�2x的解为x=3,则a= �3 .【解答】解:把x=3代入方程,得:3a+4=1�6,解得:a=�3.故答案是:�3. 15.(4分)若单项式2x2m�3y 与�8x3yn�1是同类项,则m= 3 ;n= 2 .【解答】解:由题意,得2m�3=3,n�1=1,解得m=3,n=2,故答案为:3,2. 16.(2分)若x2�2x�1=2,则代数式2x2�4x�7的值为�1 .【解答】解:∵x2�2x�1=2,∴x2�2x=3,∴代数式2x2�4x�7=2(x2�2x)�7=2×3�7=�1.故答案为:�1. 17.(2分)若关于x、y的多项式3x|m|y2+(m�2)x2y�4是四次三项式,则m的值为�2 .【解答】解:∵关于x、y的多项式3x|m|y2+(m�2)x2y�4是四次三项式,∴|m|+2=4,m�2≠0,解得:m=�2,故答案为:�2. 18.(2分)将正整数从1开始,按如图所表示的规律排列.规定图中第m行、第n列的位置记作(m,n),如正整数8的位置是(2,3),则正整数137的位置记作(12,8).【解答】解:∵122=144,这一行的数字共12个,且依次减少1,144�137=7,∴137 是第12行,第7+1=8个数字,也就是第8列,它的位置记作(12,8).故答案为:(12,8).三、解答题(本大题共9小题,共56分) 19.(9分)计算:(1)�10�(�16)+(�24)(2)( + �)×(�20 )(3)�14+(�2)2�6×(�)【解答】解:(1)原式=�10+16�24=�10�8=�18;(2)原式=�10�5+4=�11;(3)原式=�1+4�3+2=2. 20.(6分)化简下列各式:(1)2a2b�3ab�14a2b+4ab (2)5(x+y)�4(3x�2y)+3(2x�y)【解答】解:(1)原式=�12a2b+ab;(2)原式=5x+5y�12x+8y+6x�3y=�x+10y. 21.(6分)解方程:(1)4�x=3(2�x)(2).【解答】解:(1)去括号,得:4�x=6�3x,移项,得:�x+3x=6�4,合并同类项,得:2x=2,系数化为1,得:x=1;(2)去分母,得:3(x�1)�12=2(2x+1),去括号,得:3x�3�12=4x+2,移项,得:3x�4x=2+3+12,合并同类项,得:�x=17,系数化为1,得:x=�17. 22.(5分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b�c <0, a+b <0,c�a >0.(2)化简:|b�c|+|a+b|�|c�a|.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b�c<0,a+b<0,c�a>0;故答案为:<,<,>;(2)|b�c|+|a+b|�|c�a| =(c�b)+(�a�b)�(c�a)=c�b�a�b�c+a =�2b. 23.(5分)已知:A=2a2+3ab�2a�1,B=�a2+ab+1 (1)当a=�1,b=2时,求A+2B的值;(2)若(1)中的代数式的值与a的取值无关,求b的值.【解答】解:(1)A+2B=2a2+3ab�2a�1+2(�a2+ab+1) =2a2+3ab�2a�1�2a2+2ab+2 =5ab�2a+1 当a=�1,b=2时,原式=�10+2+1=�7(2)∵A+2B=(5b�2)a+1,代数式的值与a的取值无关,∴5b�2=0,∴b= . 24.(6分)问题背景:小红同学在学习过程中遇到这样一道计算题“计算4×3.142�4×3.14×3.28+3.282”,他觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师.崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!获取新知:请你和小红一起完成崔老师提供的问题:(1)填写下表: x=�1,y=1 x=1,y=0 x=3,y=2 x=1,y=1 x=5,y=3 A=2x�y �3 2 4 1 7B=4x2�4xy+y2 9 4 16 1 49 (2)观察表格,你发现A与B有什么关系?解决问题:(3)请结合上述的有关信息,计算4×3.142�4×3.14×3.28+3.282.【解答】解:(1)当x=3,y=2时,B=4x2�4xy+y2=4×32�4×3×2+22=16;当x=1,y=1时,B=4x2�4xy+y2=4×12�4×1×1+12=1;当x=5,y=3时,B=4x2�4xy+y2=4×52�4×5×3+32=49.故答案为16,1,49;(2)B=A2;(3)4×3.142�4×3.14×3.28+3.282=(2×3.14�3.28)2=9. 25.(4分)定义一种新运算:观察下列各式:1⊙3=1×4+3=7 3⊙(�1)=3×4�1=11 5⊙4=5×4+4=24 4⊙(�3)=4×4�3=13 (1)请你想一想:a⊙b=4a+b ;(2)若a≠b,那么a⊙b≠b⊙a (填入“=”或“≠”)(3)若a⊙(�2b)=4,则2a�b= 2 ;请计算(a�b)⊙(2a+b)的值.【解答】解:(1)由题目中的式子可得,a⊙b=4a+b,故答案为:4a+b;(2)∵a⊙b=4a+b,b⊙a=4b+a,∴(a⊙b)�(b⊙a) =(4a+b)�(4b+a) =4a+b�4b�a =4(a�b)+(b�a),∵a≠b,∴4(a�b)+(b�a)≠0,∴(a⊙b)≠(b⊙a),故答案为:≠;(3)a⊙(�2b)=4,a⊙(�2b)=4a+(�2b)=4a�2b,∴4=4a�2b,∴2a�b=2,故答案为:2;(a�b)⊙(2a+b) =4(a�b)+(2a+b) =4a�4b+2a+b =6a�3b =3(2a�b)=3×2=6. 26.(7分)小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减产值 +10 �12 �4 +8 �1 +6 0 (1)根据记录的数据可知小明妈妈星期三生产玩具16 个;(2)根据记录的数据可知小明妈妈本周实际生产玩具147 个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣3元,那么小明妈妈这一周的工资总额是多少元?(4)若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由.【解答】解:(1)20�4=16个;(2)∵(+10)+(�12)+(�4)+(+8)+(�1)+(+6)+0 =10�12�4+8�1+6 =7,∴140+7=147(个).故本周实际生产玩具147个;(3)147×5+(10+8+6)×3+(12+4+1)×(�3)=735+24×3+17×(�3) =735+72 �51 =756(元).故小明妈妈这一周的工资总额是756元;(4)147×5+7×3 =735+21 =756(元).故小明妈妈这一周的工资与按日计件的工资一样多.故答案为:16,147. 27.(8分)如图所示,在数轴上A点表示数a,B点表示数b,且a、b满足|2a+6|+|b�9|=0 (1)点A表示的数为�3 ,点B表示的数为9 ;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在点A、点B之间的数轴上找一点C,使BC=2AC,则C点表示的数为 1 ;(3)在(2)的条件下,若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q运动时间为t秒.请用含t的代数式表示:点P到点A的距离PA= ,点Q到点B的距离QB= 8�t(0≤t≤8);点P与点Q之间的距离 PQ= .【解答】解:(1)∵|2a+6|+|b�9|=0 ∴2a+6=0,b�9=0,解得a=�3,b=9,∴点A表示的数为�3,点B表示的数为9;(2)AB=9�(�3)=12,∵BC=2AC,∴BC=8,AC=4,∴OC=1,∴C点表示的数为1;(3)点P到点A的距离PA= ;点Q到点B的距离QB=8�t(0≤t≤8);当0≤t≤2时,点P与点Q之间的距离 PQ=t+4�3t=4�2t,当2<t≤4时,点P与点Q之间的距离 PQ=3t�t�4=2t�4,当4<t≤8时,点P与点Q之间的距离 PQ=8�t.即PQ= .故答案为�3,9;1;;8�t(0≤t≤8);.。
2017-2018学年江苏省无锡市滨湖区新吴区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列是无理数的是()A.2.626262…B.C.D.2.6262262226【分析】根据无理数的定义求解即可.【解答】解:2.626262…,,2.6262262226是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)在数+3、+(﹣2.1)、﹣、﹣(﹣π)、0、﹣|9|中,正数有()A.1个B.2个C.3个D.4个【分析】首先化简各数,再根据正数是大于0的数进行分析即可.【解答】解:+3、﹣(﹣π)是正数,共2个,故选:B.【点评】此题主要考查了正数,关键是掌握正数是大于0的数.3.(3分)我国最长的河流长江全长约为6300千米,用科学记数法表示为()A.63×102千米B.6.3×102千米C.6.3×103千米D.6.3×104千米【分析】科学记数法的一般形式为:a×10n,在本题中a应为6.3,10的指数为4﹣1=3.【解答】解:6300千米=6.3×103千米.故选:C.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.4.(3分)下列合并同类项中,正确的是()A.3x+3y=6xy B.2a2+3a3=5a3C.3mn﹣3nm=0D.7x﹣5x=2【分析】直接利用合并同类项法则判断得出即可.【解答】解;A、3x+3y无法计算,故此选项错误;B、2a2+3a3无法计算,故此选项错误;C、3mn﹣3nm=0,正确;D、7x﹣5x=2x,故此选项错误;故选:C.【点评】此题主要考查了合并同类项,正确把握合并同类项法则是解题关键.5.(3分)在代数式:,﹣abc,0,﹣5a,x﹣y,,中,单项式有()A.6个B.5个C.4个D.3个【分析】根据单项式的定义对各个选项判定即可.【解答】解:在这几个代数式中,单项式有,﹣abc,0,﹣5a,,共5个.故选:B.【点评】本题考查了单项式的知识,解答本题的关键是掌握单项式的概念:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.6.(3分)a、b是有理数,且|a|=﹣a,|b|=b,|a|>|b|,用数轴上的点来表示a、b,正确的是()A.B.C.D.【分析】根据绝对值的定义和数轴的定义解答此题即可.【解答】解:|a|=﹣a,|b|=b,|a|>|b|,∴a≤0,b≥0,|a|>|b|,故选:A.【点评】此题考查了数轴的知识,解答本题的关键是理解数轴上各点的大小关系,掌握原点左边的数小于0,原点右边的数大于0.7.(3分)定义一种新运算:a※b=,则2※(﹣1)※3的结果是()A.﹣6B.﹣3C.﹣2D.0【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:2※(﹣1)※3=3※3=0,故选:D.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.(3分)一家商店以每包a元的价格进了30包甲种茶叶,又以每包b元的价格买进60包乙种茶叶(a>b),如果以每包元的价格卖出这两种茶叶,则卖完后,这家商店()A.赚了B.赔了C.不赔不赚D.不能确定或赚【分析】根据题意知商店获得的利润为×(30+60)﹣30a﹣60b=15(a﹣b),由a>b知15(a﹣b)>0,可得答案.【解答】解:根据题意知这家商店获得的利润为×(30+60)﹣30a﹣60b=45a+45b﹣30a﹣60b=15a﹣15b=15(a﹣b),∵a>b,∴15(a﹣b)>0,∴该商家赚了,故选:A.【点评】本题主要考查列代数式的能力及整式的化简,理解题意列出商店获取利润的代数式是解题的关键.二、填空题(本大题共10小题,每空2分,共24分)9.(2分)﹣3的倒数是﹣.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣3的倒数是﹣.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.(2分)﹣的次数是5.【分析】直接利用单项式的次数确定方法分析得出答案.【解答】解:﹣的次数是:1+3+1=5.故答案为:5.【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.11.(4分)比较大小:①﹣<﹣,②﹣(﹣)>﹣|﹣|【分析】①直接比较两个负数的大小;②先化简再比较它们的大小.【解答】解:①因为|﹣|=,|﹣|=,又因为,所以﹣<﹣.②因为﹣(﹣)=,﹣|﹣|=﹣,又因为>﹣,所以﹣(﹣)>﹣|﹣|.故答案为:①<;②>.【点评】本题考查了有理数大小的比较.解决此类题目,先化简再比较.两个负数比较大小,先比较它们的绝对值,绝对值大的反而小.12.(2分)数轴上,若A,B表示互为相反数的两个点,A在B的左边,并且这两点的距离为8,则A点所表示的数是﹣4.【分析】根据互为相反数的两个数的绝对值相等求解即可.【解答】解:8÷2=4,∵A在B的左边,∴A点所表示的数是﹣4.故答案为:﹣4.【点评】本题考查了相反数的定义,数轴的知识,熟记互为相反数的两个数的绝对值相等是解题的关键.13.(2分)若单项式﹣3x m y3与单项式x4y n是同类项,则m﹣n=1.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:由题意,得m=4,n=3.m﹣n=4﹣3=1,故答案为:1.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.(2分)在3,﹣4,5,﹣6这四个数中,任取两个数相乘,所得的积最大的是24.【分析】两个数相乘,同号得正,异号得负,且正数大于一切负数,所以找积最大的应从同号的两个数中寻找即可.【解答】解:∵(﹣4)×(﹣6)=24>3×5.【点评】此题考查的知识点是有理数的乘法及有理数大小比较,关键要明确不为零的有理数相乘的法则:两数相乘,同号得正,异号得负,并把绝对值相乘.15.(2分)一个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2.【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可.【解答】解:设这个整式为M,则M=x2﹣1﹣(﹣3+x﹣2x2),=x2﹣1+3﹣x+2x2,=(1+2)x2﹣x+(﹣1+3),=3x2﹣x+2.故答案为:3x2﹣x+2.【点评】解决此类题目的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简.16.(2分)根据图中的程序,当输入x=﹣2时,输出的结果是﹣10.【分析】输入的程序是:x×3﹣(﹣2),若结果<(﹣5),直接输出,若结果>(﹣5),则继续输入.把x=﹣2代入计算即可.【解答】解:当输入﹣2时(﹣2)×3﹣(﹣2)=﹣6+2=﹣4>﹣5,再次输入程序;﹣4×3﹣(﹣2)=﹣12+2=﹣10<﹣5,直接输出﹣10.【点评】本题考查了有理数的混合运算,解决本题的关键是理解图中的程序.17.(2分)若3a2﹣a﹣2=0,则5+2a﹣6a2=1.【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.【点评】主要考查了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.18.(4分)对于这样的等式:若(x﹣1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,则(1)当x=0时,a5=﹣1;(2)32a0+16a1+8a2+4a3+2a4+a5=1.【分析】(1)把x=0代入(x﹣1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,即可求出答案;(2)把x=2代入(x﹣1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,即可求出答案.【解答】解:(1)∵(x﹣1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴当x=0时,(0﹣1)5=0+0+0+0+0+a5,即a5=﹣1,故答案为:﹣1;(2)∵(x﹣1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴当x=2时,(2﹣1)5=32a0+16a1+8a2+4a3+2a4+a5,即32a0+16a1+8a2+4a3+2a4+a5=1,故答案为:1.【点评】本题考查了求代数式的值,能取适当的数代入(x﹣1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5是解此题的关键.三、解答题(本大题共7小题,共52分)19.(4分)在数轴上表示下列各数,并把它们按照从小到大的顺序排列.﹣22,﹣|+2.5|,﹣(﹣1),0,﹣3.【分析】首先化简各数,再根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:﹣22=﹣4,﹣|+2.5|=﹣2.5,﹣(﹣1)=1,画数轴如下:∴﹣22<﹣3<﹣|+2.5|<0<﹣(﹣1).【点评】此题考查了有理数的大小比较、绝对值、有理数的平方运算及在数轴上表示数的方法,一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.20.(12分)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)﹣32×2﹣3×(﹣2)2(3)(﹣+)×(﹣30)(4)﹣13÷(﹣5)2×+|0.8﹣1|【分析】(1)根据有理数加减法可以解答本题;(2)根据幂的乘方、有理数的乘法和减法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据幂的乘方、有理数的乘除法和加法可以解答本题.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=(﹣20)+(﹣14)+18+(﹣13)=﹣29;(2)﹣32×2﹣3×(﹣2)2=﹣9×2﹣3×4=﹣18﹣12=﹣30;(3)(﹣+)×(﹣30)=(﹣27)+2+(﹣5)=﹣30;(4)﹣13÷(﹣5)2×+|0.8﹣1|=﹣1÷25×=﹣1×+0.2=﹣=.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.(6分)化简:(1)a2﹣3a+8﹣3a2+4a﹣6(2)2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)【分析】(1)直接合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)a2﹣3a+8﹣3a2+4a﹣6=﹣2a2+a+2;(2)2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)=6x2﹣4xy﹣8x2+4xy+4=﹣2x2+4.【点评】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.22.(7分)已知多项式(2x2+ax﹣y+6)﹣(bx2﹣2x+5y﹣1)(1)若多项式的值与字母x的取值无关,求a、b的值;(2)在(1)的条件下,先化简多项式2(a2﹣ab+b2)﹣(a2+ab+2b2),再求它的值.【分析】(1)先去括号,再合并同类项,得出a+2=0,2﹣b=0,求出即可;(2)先去括号,再合并同类项,最后代入求出即可.)【解答】解:(1)(2x2+ax﹣y+6)﹣(bx2﹣2x+5y﹣1)=2x2+ax﹣y+6﹣bx2+2x﹣5y+1=(2﹣b)x2+(a+2)x﹣6y+7,∵多项式的值与字母x的取值无关,∴a+2=0,2﹣b=0,∴a=﹣2;b=2;(2)2(a2﹣ab+b2)﹣(a2+ab+2b2)=2a2﹣2ab+2b2﹣a2﹣ab﹣2b2=a2﹣3ab,当a=﹣2,b=2时,原式=4+12=16.【点评】本题考查了整式的加减和求值,能正确根据合并同类项法则合并同类项是解此题的关键.23.(7分)某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空:①涨价后,每个台灯的销售价为40+a元;②涨价后,每个台灯的利润为10+a元;③涨价后,商场的台灯平均每月的销售量为600﹣10a台.(2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.【分析】(1)根据进价和售价以及每上涨1元时,其销售量就将减少10个之间的关系,列出代数式即可;(2)根据平均每月能售出600个和销售价每上涨1元时,其销售量就将减少10个之间的关系列出式子,再分两种情况讨论,求出每月的销售利润,再进行比较即可.【解答】解:(1)①涨价后,每个台灯的销售价为40+a(元);②涨价后,每个台灯的利润为40+a﹣30=10+a(元);③涨价后,商场的台灯平均每月的销售量为(600﹣10a)台;故答案为:40+a,10+a,600﹣10a.(2)甲与乙的说法均正确,理由如下:依题意可得该商场台灯的月销售利润为:(600﹣10a)(10+a);当a=40时,(600﹣10a)(10+a)=(600﹣10×40)(10+40)=10000(元);当a=10时,(600﹣10a)(10+a)=(600﹣10×10)(10+10)=10000(元);故经理甲与乙的说法均正确.【点评】此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的关系,列出代数式,求出代数式的解.24.(7分)在数轴上,已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数表示的点重合;(2)若﹣1表示的点与3表示的点重合,5表示的点与数表示的点重合;(3)若数轴上A、B两点之间的距离为c个单位长度,点A表示的有理数是a,并且A、B两点经折叠后重合,请写出此时折线与数轴的交点表示的有理数是多少?【分析】(1)根据对称的知识,若1表示的点与﹣1表示的点重合,则对称中心是原点,从而找到﹣2的对称点;(2)若数﹣1表示的点与数3表示的点重合,则对称中心是1表示的点,从而找到5的对称点;根据对应点连线被对称中心平分,先找到对称中心,再找到点表示的数;从而求解;(3)先得到A点与对称中心的距离,再进一步得到折线与数轴的交点表示的有理数.【解答】解:(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与2表示的点重合;(2)若﹣1表示的点与3表示的点重合,5表示的点与﹣3表示的点重合;(3)若数轴上A、B两点之间的距离为c个单位长度,点A表示的有理数是a,并且A、B两点经折叠后重合,此时折线与数轴的交点表示的有理数是a+c或a ﹣c.【点评】此题综合考查了数轴上的点和数之间的对应关系以及中心对称的性质.注意:数轴上的点和数之间的对应关系,即左减右加.25.(9分)观察点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;④1+3+5+7=42,⑤1+3+5+7+9=52.请猜想:1+3+5+7+9+…+19=102;(2)试用含有n的式子表示这一规律:1+3+5+7+9+…+(2n﹣1)=n2;(n为正整数)(3)请用上述规律计算:101+103+105+…+2015+2017.【分析】(1)根据图形中的数字的变化规律可以写出相应的答案;(2)根据图形中数字的变化规律,可以解答本题;(3)根据图形中的数字变化规律可以解答本题.【解答】解:(1)由图可得,④中填写的式子是:1+3+5+7=42,⑤中填写的式子是:1+3+5+7+9=52,1+3+5+7+9+…+19=102,故答案为:1+3+5+7=42,1+3+5+7+9=52,102;(2)由题意可得,1+3+5+7+9+…+(2n﹣1)=n2,故答案为:(2n﹣1);(3)∵1+3+5+7+9+…+2015+2017=10092,1+3+5+7+9+…+99=502,∴101+103+105+…+2015+2017=10092﹣502=(1009+50)(1009﹣50)=1059×959=1015581.【点评】本题考查有理数的加法、数字的变化类,解答本题的关键是明确题意,找出题目中数字的变化规律.。
2017-2018学年江苏省无锡市七年级(上)数学期中测试卷一、选择题(共8小题,每小题3分,满分24分)1.如图,数轴上的A、B两点分别表示有理数a、b,下列式子中不正确的是()A.a+b<0B.a﹣b<0C.(﹣a)+b>0D.|b|>|a|2.有理数a等于它的倒数,则a2018是()A.最小的正整数B.最小的非负数C.绝对值最小的整数D.最大的负数3.若ab≠0,则的值不可能是()A.0B.1C.2D.﹣24.若|x|=7,|y|=5,且x+y>0,那么x﹣y的值是()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣125.如下表,从左到右在每个小格子中都填入一个数,使得其中任意四个相邻格子中所填数之和都相等,则从左到右第2018个格子中的数为()3a2b c﹣1d﹣4…A.3B.2C.﹣1D.﹣46.已知m<0,﹣1<n<0,则m,mn,mn2由小到大排列的顺序是()A.m,mn,mn2B.mn,mn2,m C.mn2,mn,m D.m,mn2,mn 7.某服装厂生产某种定型冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价一成本),10月份将每件冬装的出厂价调低10%(每件冬装的成本不变),销售件数比9月份增加80%,那么该厂10月份销售这种冬装的利润总额比9月份的利润总额增长()A.2%B.8%C.40.5%D.62%8.某文化商场同时卖出两台电子琴,每台均卖960元.以成本计算,第一台盈利20%,另一台亏本20%.则本次出售中,商场()A.不赚不赔B.赚160元C.赚80元D.赔80元二、填空题(共6小题,每小题3分,满分18分)9.在数轴上,若A点表示数x,点B表示数﹣5,A、B两点之间的距离为7,则x=.第1页(共9页)。
2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.比2℃低8℃的温度是()A. −8℃B. 8℃C. 6℃D. −6℃2.下列计算正确的是()A. 23=6B. −42=−16C. −8−8=0D. −5−2=−33.下列运算,结果正确的是()A. 2ab−2ba=0B. 2a2+3a2=6a2C. 3xy−4xy=−1D. 2x3+3x3=5x64.在下面各数中有理数的个数有()-3.14,227,0.1010010001,+1.99,-π3.A. 1个B. 2个C. 3个D. 4个5.某品牌电脑原价为m元,先降价n元,又降低20%后的售价为()A. 0.8(m+n)元B. 0.8(m−n)元C. 0.2(m+n)元D. 0.2(m−n)元6.下列各数:-6.1,-|+12|,-(-1),-22,(-2)3,-[-(-3)]中,负数的个数有()A. 3B. 4C. 5D. 67.下列说法错误的是()A. πx5的系数是15B. 3x−13是多项式C. −25m的次数是1D. −x2y−35xy3是四次二项式8.已知a,b两数在数轴上的位置如图所示,则化简代数式|a+b|-|a-1|+|b+2|的结果是()A. 1B. 2a−3C. 2b+3D. −19.已知m2+2mn=13,3mn+2n2=21,则2m2+13mn+6n2-44的值为()A. 45B. 5C. 66D. 7710.a是不为2的有理数,我们把22−a称为a的“哈利数”.如:3的“哈利数”是22−3=-2,-2的“哈利数”是22−(−2)=12,已知a1=3,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,…,依此类推,则a2018=()A. 3B. −2C. 12D. 43二、填空题(本大题共8小题,共24.0分)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为______.12.-3的绝对值是______.13.若关于x的方程2x-k+4=0的解是x=3,那么k的值是______.14.比较大小:-56______-78(填“>”或“<”)15.已知4x2m y m+n与3x6y2是同类项,则m-n=______.16.已知方程(m-3)x|m-2|+4=2m是关于x的一元一次方程,则m=______.17.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,请问:a,b,c三数之和是______.18.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为15,则满足条件的x的值分别有______.三、计算题(本大题共3小题,共18.0分)19.计算或化简:(1)-8-(-15)+(-9)-(-12)(2)(-112)+1.25+(-8.5)+10.75(3)4×(-25)+(-2)2×5-4÷(-512);(4)[-22-(79-1112+16)×36]÷5(5)2ab-3a-13+2a-2ab+1(6)5(3a2b-ab2)-4(-ab2+3a2b)20.解方程:(1)3x-4(x+1)=1(2)x−32-2x+13=1.21.先化简再求值:3x2y−[3xy2−2(xy−32x2y)+xy]+3xy2,其中x=3,y=-13.四、解答题(本大题共4小题,共32.0分)22.-4,|-2|,-2,-(-3.5),0,-112(1)在如图所示的数轴上表示出以上各数;(2)比较以上各数的大小,用“<”号连接起来;23.某商场将进货价为40元的台灯以50元的销售价售出,平均每月能售出800个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空:①涨价后,每个台灯的销售价为______元;②涨价后,商场的台灯平均每月的销售量为______台;③涨价后,商场每月销售台灯所获得总利润为______元.(2)如果商场要想销售总利润平均每月达到20000元,商场经理甲说“在原售价每台50元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台50元的基础上再上涨30元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.24.(1)在下列横线上用含有a,b的代数式表示相应图形的面积.①______②______③______④______(2)请在图④画出拼图并通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表达:______.(3)利用(2)的结论计算10.232+20.46×9.77+9.772的值.25.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)答案和解析1.【答案】D【解析】解:2-8=-6(℃),故选:D.根据有理数的减法,即可解答.本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.2.【答案】B【解析】解:A、23=8≠6,错误;B、-42=-16,正确;C、-8-8=-16≠0,错误;D、-5-2=-7≠-3,错误;故选:B.根据有理数的加法、减法、乘方法则分别计算出结果,再进行比较.本题主要考查学生的运算能力,掌握运算法则是关键.3.【答案】A【解析】解:A、2ab-2ba=0,故本选项正确;B、2a2+3a2=5a2≠6a2,故本选项错误;C、3xy-4xy=-xy≠-1,故本选项错误;D、2x3+3x3=5x3≠5x6,故本选项错误.故选:A.根据合并同类项的法则对各选项进行逐一分析即可.本题考查的是合并同类项,熟知合并同类项是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变是解答此题的关键.4.【答案】D【解析】解:-3.14,,0.1010010001,+1.99,-中有理数为-3.14,,0.1010010001,+1.99共4个,故选:D.根据整数和分数统称为有理数直接找到有理数的个数即可.本题是对有理数概念的考查,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.【答案】B【解析】解:电脑原价为m元,先降价n元后的价格是m-n元,则又降低20%后的售价是:(m-n)(1-20%)=0.8(m-n).故选:B.首先求得原价为m元,先降价n元后的价格,然后降低20%后的售价就是m-n 元的1-20%倍.本题考查了列代数式,正确理解降低的百分率是关键.6.【答案】C【解析】解:由-6.1为负数,-|+|为负数,-(-1)=1不为负数,-22=-4为负数,(-2)3=-8为负数,-[-(-3)]=-3为负数,∴-6.1,-|+|,-22,(-2)3,-[-(-3)]共5个负数,故选:C.大于0的是正数,小于0的是负数.此题除理解负数的概念外,还要理解平方、立方、绝对值等知识点.7.【答案】A【解析】解:A、的系数是π,故原题说法错误;B、是多项式,故原题说法正确;C、-25m 的次数是1;故原题说法正确;D、-x2y-35xy3是四次二项式,故原题说法正确;故选:A.根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,几个单项式的和叫做多项式;多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a 项式进行分析即可.此题主要考查了单项式和多项式,关键是掌握单项式和多项式的相关定义.8.【答案】C【解析】解:根据数轴上点的位置得:b<-1<0<1<a<2,∴a+b>0,a-1>0,b+2>0,则原式=a+b-a+1+b+2=2b+3,故选:C.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.9.【答案】A【解析】解:已知等式变形得:2m2+4mn=26,9mn+6n2=63,两式相加得:2m2+13mn+6n2=89,则原式=89-44=45.故选:A.已知第一个等式两边乘以2,第二个等式两边乘以3,两式相加即可得到结果.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10.【答案】B【解析】解:∵a1=3,∴a2==-2,a3=,a4=,a5=,∴该数列每4个数为一周期循环,∵2018÷4=504…2,∴a2018=a2=-2,故选:B.分别求出数列的前5个数得出该数列每4个数为一周期循环,据此可得答案.本题主要考查数字的变换规律,根据题意得出该数列每4个数为一周期循环是关键.11.【答案】6.75×104【解析】解:67500=6.75×104,故答案为:6.75×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】3【解析】解:-3的绝对值是3.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.13.【答案】10【解析】解:把x=3代入方程得:6-k+4=0,解得:k=10,故答案为:10把x=3代入方程计算即可求出k的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【答案】>【解析】解:∵<,∴->-;故答案为:>.根据两负数比较大小的法则进行比较即可.本题考查的是有理数的大小比较,熟知两个负数,绝对值大的其值反而小是解答此题的关键.15.【答案】4【解析】解:∵4x2m y m+n与3x6y2是同类项,∴2m=6,m+n=2.第一个式子减去第二个式子得:m-n=4.本题考查同类项的定义(所含字母相同,相同字母的指数相同)可得方程:2m=6,m+n=2,解方程即可求得m,n的值,再代入m-n求解即可.本题考查的知识点为:同类项中相同字母的指数是相同的.需注意观察,能不用计算出具体的值的尽量不去计算.16.【答案】1【解析】解:∵方程(m-3)x|m-2|+4=2m是关于x的一元一次方程,∴m-3≠0,|m-2|=1,解得:m=1,故答案为:1.根据一元一次方程的定义得出m-3≠0,|m-2|=1,求出即可.本题考查了对一元一次方程的定义的应用,能理解一元一次方程的定义是解此题的关键.17.【答案】0【解析】解:根据题意得:a=1,b=-1,c=0,则a+b+c=1-1+0=0.故答案为:0求出最小的正整数,最大的负整数,绝对值最小的有理数确定出a,b,c,即可求出a+b+c的值.此题考查了有理数的加法,求出a,b,c的值是解本题的关键.18.【答案】7,3,1【解析】解:若2x+1=15,即2x=14,解得:x=7,若2x+1=7,即2x=6,解得:x=3,若2x+1=3,即x=1,则满足条件的x的值有7,3,1,故答案为:7,3,1.由题中的程序框图确定出满足题意x的值即可.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)原式=-8+15-9+12=-17+27=10;(2)原式=-1.5+1.25-8.5+10.75=-10+12=2;(3)原式=-85+4×5-4×(-125)=-85+20+485=405+20=8+20=28;(4)原式=(-4-28+33-6)÷5=(-5)÷5=-1;(5)原式=(2-2)ab+(-3+2)a+(1-13)=-a+23;(6)原式=15a2b-5ab2+4ab2-12a2b=3a2b-ab2.【解析】(1)减法转化为加法,再根据加减运算法则计算可得;(2)根据加法的交换律和结合律及其运算法则计算可得;(3)先计算乘除运算和乘方运算,再计算加减可得;(4)根据有理数的混合运算顺序和运算法则计算可得;(5)根据合并同类项的法则计算可得;(6)先去括号,再合并同类项即可得.本题主要考查有理数的混合运算与整式的加减运算,关键在于通过正确的去括号和合并同类项对整式进行化简,并熟练掌握有理数的混合运算顺序与运算法则.20.【答案】解:(1)去括号得:3x-4x-4=1,移项合并得:-x=5,解得:x=-5;(2)去分母得:3x-9-4x-2=6,移项合并得:-x=17,解得:x=-17.【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.【答案】解:原式=3x2y-3xy2+2(xy-32x2y)-xy+3xy2=3x2y-3xy2+2xy-3x2y-xy+3xy2=xy,当x=3,y=-13时,原式=xy=3×(-13)=-1.【解析】先将原式去括号、合并同类项化简,再将x和y的值代入计算可得.本题主要考查整式的加减-化简求值,解题的关键是掌握去括号和合并同类项的运算法则.22.【答案】解:(1)各点在数轴上的位置如图所示:(2)根据数轴上左边的数小于右边的数可知:-4<-2<-112<0<|-2|<-(-3.5).【解析】在数轴上表示各数,最后根据数轴上左边的数小于右边的数.本题主要考查的是比较有理数的大小、数轴的认识,明确数轴上左边的数小于右边的数是解题的关键.23.【答案】(50+a)(800-10a)(10+a)(800-10a)【解析】解:(1)试用含a的代数式填空:①涨价后,每个台灯的销售价为(50+a)元;②涨价后,商场的台灯平均每月的销售量为(800-10a)台;③涨价后,商场每月销售台灯所获得总利润为(10+a)(800-10a)元.故答案是:(50+a);(800-10a);(10+a)(800-10a);(2)当x=40时,(10+a)(800-10a)=50×400=20000当x=30时,(10+a)(800-10a)=40×500=20000,∴甲、乙经理说法都正确.(1)根据进价和售价以及每上涨1元时,其销售量就将减少10个之间的关系,列出代数式即可;(2)根据平均每月能售出800个和销售价每上涨1元时,其销售量就将减少10个之间的关系列出式子,再分两种情况讨论,求出每月的销售利润,再进行比较即可.此题考查了一元二次方程的应用,解决问题的关键是读懂题意,找到所求的量的关系,列出方程并解答.24.【答案】a22ab b2(a+b)2a2+2ab+b2=(a+b)2【解析】解:(1)a2、2ab、b2、(a+b)2;(2)a2+2ab+b2=(a+b)2;(3)10.232+20.46×9.77+9.772=(19+1)2=400.故答案为:a2、2ab、b2、(a+b)2.(2)a2+2ab+b2=(a+b)2;(1)根据正方形、长方形面积公式即可解答;(2)前三个图形的面积之和等于第四个正方形的面积;(3)借助于完全平方公式解答即可.本题主要考查了完全平方公式及其应用,难易程度适中,注意掌握几种特殊几何图形的面积表达式.25.【答案】t36-t【解析】解:(1)PA=t,PC=36-t;(2)当16≤t≤24时 PQ=t-3(t-16)=-2t+48,当24<t≤28时 PQ=3(t-16)-t=2t-48,当28<t≤30时 PQ=72-3(t-16)-t=120-4t,当30<t≤36时 PQ=t-[72-3(t-16)]=4t-120.(1)根据两点间的距离,可得P到点A和点C的距离;(2)根据两点间的距离,要对t分类讨论,t不同范围,可得不同PQ.本题考查了数轴,对t分类讨论是解题关键.。
人教版数学七年级上册期中考试试题(含答案)一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.由美国主题景点协会(TEA)和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆,请将7550000用科学记数法表示为()A.755×104B.75.5×105C.7.55×106D.0.755×107 2.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣223.比﹣4.5大的负整数有()A.3个B.4个C.5个D.无数个4.已知x=﹣2是方程x+4a=10的解,则a的值是()A.3B.C.2D.﹣35.下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣26.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.x=y C.2﹣x=2﹣y D.x+7=y﹣7 7.小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过1000元时,所购买的商品按原价打8折后,再减少100元”.若某商品的原价为x元(x>1000),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣100B.80%(x﹣100)C.80%x﹣100D.20%x﹣100 8.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()①a<0<b②|a|<|b|③ab>0 ④b﹣a>a+bA.①②B.①④C.②③D.③④二、填空题(本题共24分,每小题3分)9.单项式﹣的系数是,次数是.10.用四舍五入法,将4.7893取近似数并精确到十分位,得到的数为.11.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花费元.(用含a,b的代数式表示)12.已知a,b满足|a﹣2|+(b+3)2=0,那么a=,b=.13.若一个多项式与m﹣2n的和等于2m,则这个多项式是.14.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问:共有多少人?这个物品的价格是多少?若设共有x人,则根据题意,可列方程为:.15.如图所示的框图表示解方程3﹣5x=4﹣2x的流程,其中“系数化为1”这一步骤的依据是.16.按下面的程序计算,若开始输入x的值为正整数,最后输出的结果为656,则满足条件的x的不同值是.三、解答题(本题共52分,17-20每题3分;20-22题每题4分,23-26每题5分,27-28每题6分)17.计算:(﹣)×(﹣8)+(﹣6)2.18.计算:﹣14+(﹣2)÷(﹣)﹣|﹣9|.19.计算4a﹣2b+3(3b﹣2a).20.化简:5x2y﹣2xy﹣4(x2y﹣xy)21.解方程:7+2x=12﹣2x.22.解方程:x﹣3=﹣x﹣4.23.先化简,再求值:,其中x=﹣3,y=.24.先化简,再求值:已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y 的值.25.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程﹣=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得×6﹣×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥上述小明的解题过程从第步开始出现错误,错误的原因是.请帮小明改正错误,写出完整的解题过程.26.对于任意有理数a,b,定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙3的值;(2)对于任意有理数m,n,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m⊕n=(用含m,n的式子表示).27.小兵喜欢研究数学问题,在计算整式的加减(﹣4x2﹣7+5x)+(2x﹣3+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x﹣3+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x﹣3,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(﹣4x2﹣7+5x)+(2x﹣3+3x2)=﹣x2+7x﹣10若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小兵的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A﹣B,并写出A﹣B值.28.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N 之间的距离,即MN=|m﹣n|,如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)BD=;(2)数轴上表示数x和数﹣3两点之间的距离可表示为.(3)直接写出方程|x﹣3|+|x+1|=6的解是.(4)小明发现代数式|x+1|+|x﹣1|+|x﹣3|引有最小值,最小值是,此时x 的值是.2018-2019学年北京市朝阳区垂杨柳片区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.由美国主题景点协会(TEA)和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆,请将7550000用科学记数法表示为()A.755×104B.75.5×105C.7.55×106D.0.755×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7550000用科学记数法表示为:7.55×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣22【分析】根据相反数、绝对值和乘方的定义逐一计算可得.【解答】解:A.﹣(﹣2)=2,是正数;B.|﹣2|=2,是正数;C.(﹣2)2=4,是正数;D.﹣22=﹣4,是负数;故选:D.【点评】本题解题的关键是掌握有理数的乘方的定义与相反数、绝对值的定义.3.比﹣4.5大的负整数有()A.3个B.4个C.5个D.无数个【分析】根据题意:设大于﹣4.5的负整数为x,则取值范围为﹣4.5<x<0.根据此范围易求解.【解答】解:符合此两条件:(1)x是负整数,(2)﹣4.5<x<0的数只有四个﹣4,﹣3,﹣2,﹣1.故大于﹣4.5的负整数有﹣4,﹣3,﹣2,﹣1.故选:B.【点评】本题考查了比较有理数的大小,比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.4.已知x=﹣2是方程x+4a=10的解,则a的值是()A.3B.C.2D.﹣3【分析】把x=﹣2代入方程,即可求出答案.【解答】解:把x=﹣2代入方程x+4a=10得:﹣2+4a=10,解得:a=3,故选:A.【点评】本题考查了一元一次方程的解和解一元一次方程,能得出关于a的方程是解此题的关键.5.下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣2【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=2x2,不符合题意;B、原式=﹣5a2,不符合题意;C、原式=3a﹣3,不符合题意;D、原式=﹣2x﹣2,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.x=y C.2﹣x=2﹣y D.x+7=y﹣7【分析】根据等式的性质逐个判断即可.【解答】解:A、∵x=y,∴x﹣y=0,而x+y不一定等于0,如2=2,2+2=4,故本选项不符合题意;B、∵x=y,∴x=y,不一定x=y,故本选项不符合题意;C、∵x=y,∴﹣x=﹣y,∴2﹣x=2﹣y,故本选项符合题意;D、∵x=y,∴x+7=y+7,x+7和y﹣7不一定相等,故本选项不符合题意;故选:C.【点评】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.7.小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过1000元时,所购买的商品按原价打8折后,再减少100元”.若某商品的原价为x元(x>1000),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣100B.80%(x﹣100)C.80%x﹣100D.20%x﹣100【分析】根据题意,可以用代数式表示出购买该商品实际付款的金额.【解答】解:由题意可得,购买该商品实际付款的金额是:(80%x﹣100)元,故选:A.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.8.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()①a<0<b②|a|<|b|③ab>0 ④b﹣a>a+bA.①②B.①④C.②③D.③④【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.【解答】解:根据图示,可得a<0<b,而且|a|>|b|,故①正确,②错误;∵a<0<b,∴ab<0,故③错误;∵a<0<b,而且|a|>|b|,∴a+b<0,b﹣a>0,∴b﹣a>a+b,故④正确.综上所述,说法正确的①④.故选:B.【点评】此题主要考查了数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握,解答此题的关键是判断出:a<0<b,而且|a|>|b|.二、填空题(本题共24分,每小题3分)9.单项式﹣的系数是﹣,次数是3.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣的系数是﹣,次数是2+1=3.故答案为:﹣,3.【点评】本题考查单项式的知识,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.10.用四舍五入法,将4.7893取近似数并精确到十分位,得到的数为 4.8.【分析】把百分位上的数字8进行四舍五入即可.【解答】解:4.7893取近似数并精确到十分位,得到的数为4.8.故答案为4.8.【点评】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.11.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花费(4a+10b)元.(用含a,b的代数式表示)【分析】根据单价×数量=总费用进行解答.【解答】解:依题意得:4a+10b;故答案是:(4a+10b).【点评】本题考查列代数式.解题的关键是读懂题意,找到题目相关条件间的数量关系.12.已知a,b满足|a﹣2|+(b+3)2=0,那么a=2,b=﹣3.【分析】直接利用绝对值的性质以及偶次方的性质进而得出a,b的值.【解答】解:∵|a﹣2|+(b+3)2=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,故答案为:2,﹣3.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.13.若一个多项式与m﹣2n的和等于2m,则这个多项式是m+2n.【分析】根据题意可以得到所求的多项式,本题得以解决.【解答】解:2m﹣(m﹣2n)=2m﹣m+2n=m+2n,故答案为:m+2n.【点评】本题考查整式的加减,解题的关键是明确整式加减的计算方法.14.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问:共有多少人?这个物品的价格是多少?若设共有x人,则根据题意,可列方程为:=.【分析】根据“(物品价格+多余的3元)÷每人出钱数=(物品价格﹣少的钱数)÷每人出钱数”可列方程.【解答】解:设这个物品的价格是x元,则可列方程为:=,故答案是:=.【点评】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.15.如图所示的框图表示解方程3﹣5x=4﹣2x的流程,其中“系数化为1”这一步骤的依据是等式的性质.【分析】方程移项合并,利用等式的性质将系数化为1即可.【解答】解:“系数化为1”这一步骤的依据是等式的性质,故答案为:等式的性质【点评】此题考查了解一元一次方程,熟练掌握等式的性质是解本题的关键.16.按下面的程序计算,若开始输入x的值为正整数,最后输出的结果为656,则满足条件的x的不同值是5、26、131.【分析】根据输出的结果是656列出一元一次方程,然后依次进行计算,直至x 不是整数即可.【解答】解:∵最后输出的数为656,∴5x+1=656,得:x=131>0,∴5x+1=131,得:x=26>0,∴5x+1=26,得:x=5>0,∴5x+1=5,得:x=0.8>0(不符合题意),故x的值可取131,26,5.故答案为:5、26、131.【点评】本题考查了代数式求值,解一元一次方程,难点在于最后输出656的相应的x值不一定是第一次输入的x的值.三、解答题(本题共52分,17-20每题3分;20-22题每题4分,23-26每题5分,27-28每题6分)17.计算:(﹣)×(﹣8)+(﹣6)2.【分析】先算乘方,再算乘法,最后算加法即可.【解答】解:(﹣)×(﹣8)+(﹣6)2=4+36=40.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.18.计算:﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】先算乘方与绝对值,再算除法,最后算加减即可.【解答】解:﹣14+(﹣2)÷(﹣)﹣|﹣9|=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.计算4a﹣2b+3(3b﹣2a).【分析】先去括号,然后合并同类项求解.【解答】解:4a﹣2b+3(3b﹣2a)=4a﹣2b+9b﹣6a=﹣2a+7b.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.20.化简:5x2y﹣2xy﹣4(x2y﹣xy)【分析】先去括号,然后合并同类项即可.【解答】解:原式=5x2y﹣2xy﹣4x2y+2xy=x2y.【点评】本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.21.解方程:7+2x=12﹣2x.【分析】根据等式的基本性质依次移项、合并同类项、系数化为1可得.【解答】解:移项,得:2x+2x=12﹣7,合并同类项,得:4x=5,系数化为1,得:x=.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22.解方程:x﹣3=﹣x﹣4.【分析】方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去分母得:2x﹣6=﹣x﹣8,移项合并得:3x=﹣2,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将x系数化为1,求出解.23.先化简,再求值:,其中x=﹣3,y=.【分析】直接去括号进而合并同类项,再把已知代入求出答案.【解答】解:原式=7x2﹣3xy﹣6x2+2xy=x2﹣xy.当x=﹣3,y=时,原式==10.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.24.先化简,再求值:已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y 的值.【分析】原式先去括号,再合并同类项化简,继而由x2﹣2y﹣5=0知x2﹣2y=5,代入原式=2(x2﹣2y)计算可得.【解答】解:原式=3x2﹣6xy﹣x2+6xy﹣4y=2x2﹣4y,∵x2﹣2y﹣5=0,∴x2﹣2y=5,则原式=2(x2﹣2y)=2×5=10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.25.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程﹣=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得×6﹣×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥上述小明的解题过程从第①步开始出现错误,错误的原因是利用等式的性质漏乘.请帮小明改正错误,写出完整的解题过程.【分析】检查小明同学的解题过程,找出出错的步骤,以及错误的原因,写出正确的解题过程即可.【解答】解:第①步开始出现错误,错误的原因是利用等式的性质漏乘;故答案为:①;利用等式的性质漏乘;正确的解题过程为:解:方程两边同时乘以6,得:×6﹣×6=6,去分母,得:2(2﹣3x)﹣3(x﹣5)=6,去括号,得:4﹣6x﹣3x+15=6,移项,得:﹣6x﹣3x=6﹣4﹣15,合并同类项,得:﹣9x=﹣13,系数化1,得:x=.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.26.对于任意有理数a,b,定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙3的值;(2)对于任意有理数m,n,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m⊕n=3m+2+n(用含m,n的式子表示).【分析】(1)根据a⊙b=a(a+b)﹣1,可以求得题目中所求式子的值;(2)根据题意只要写出一个符合要求的式子即可,这是一道开放性题目,答案不唯一.【解答】解:(1)∵a⊙b=a(a+b)﹣1,∴(﹣2)⊙3=(﹣2)×[(﹣2)+3]﹣1=(﹣2)×﹣1=(﹣3)﹣1=﹣4;(2)∵5⊕3=20,∴m⊕n=3m+2+n,故答案为:3m+2+n.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.27.小兵喜欢研究数学问题,在计算整式的加减(﹣4x2﹣7+5x)+(2x﹣3+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x﹣3+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x﹣3,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(﹣4x2﹣7+5x)+(2x﹣3+3x2)=﹣x2+7x﹣10若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小兵的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A﹣B,并写出A﹣B值.【分析】先对整式A,B关于字母x进行降幂排列,再写出其各项系数,列出竖式计算A﹣B即可.【解答】解:A=2x4﹣2x3y﹣4x2y2﹣5xy3,B=3x3y+2x2y2﹣4xy3﹣y4,A的各项系数为:2+2﹣4﹣5+0,B的各项系数为:0+3+2﹣4﹣1,列竖式计算如下:,所以,A﹣B=2x4﹣x3y﹣6x2y2﹣xy3+y4.【点评】本题考查了整式的加减,多项式的排列,掌握合并同类项的法则是解题的关键.28.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N 之间的距离,即MN=|m﹣n|,如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)BD=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|.(3)直接写出方程|x﹣3|+|x+1|=6的解是﹣2或4.(4)小明发现代数式|x+1|+|x﹣1|+|x﹣3|引有最小值,最小值是4,此时x的值是1.【分析】(1)根据两点间的距离公式解答;(2)根据两点间的距离公式解答;(3)分x<﹣1,﹣1≤x≤3,x>3三种情况去掉绝对值,解之即可得出结论;(4)|x+1|+|x﹣1|+|x﹣3|可看作是数轴上表示x的点,到表示3、﹣1、1点的距离之和.【解答】解:(1)BD=|﹣2﹣3|=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|;(3)当x<﹣1时,有﹣x+3﹣x﹣1=6,解得:x=﹣2;当﹣1≤x≤3时,有﹣x+3+x+1=4≠6,舍去;当x>3时,有x﹣3+x+1=6,解得:x=4.(4)当x=1时,|x+1|+|x﹣1|+|x﹣3|有最小值,此最小值是4.故答案为:5,|x+3|,﹣2或4.4,1.【点评】此题主要考查了绝对值,实数与数轴,解题的关键是了解两点间的距离公式和两点间距离的几何意义.人教版数学七年级上册期中考试试题(含答案)一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.由美国主题景点协会(TEA)和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆,请将7550000用科学记数法表示为()A.755×104B.75.5×105C.7.55×106D.0.755×107 2.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣223.比﹣4.5大的负整数有()A.3个B.4个C.5个D.无数个4.已知x=﹣2是方程x+4a=10的解,则a的值是()A.3B.C.2D.﹣35.下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣26.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.x=y C.2﹣x=2﹣y D.x+7=y﹣77.小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过1000元时,所购买的商品按原价打8折后,再减少100元”.若某商品的原价为x元(x>1000),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣100B.80%(x﹣100)C.80%x﹣100D.20%x﹣100 8.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()①a<0<b②|a|<|b|③ab>0 ④b﹣a>a+bA.①②B.①④C.②③D.③④二、填空题(本题共24分,每小题3分)9.单项式﹣的系数是,次数是.10.用四舍五入法,将4.7893取近似数并精确到十分位,得到的数为.11.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花费元.(用含a,b的代数式表示)12.已知a,b满足|a﹣2|+(b+3)2=0,那么a=,b=.13.若一个多项式与m﹣2n的和等于2m,则这个多项式是.14.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问:共有多少人?这个物品的价格是多少?若设共有x人,则根据题意,可列方程为:.15.如图所示的框图表示解方程3﹣5x=4﹣2x的流程,其中“系数化为1”这一步骤的依据是.16.按下面的程序计算,若开始输入x的值为正整数,最后输出的结果为656,则满足条件的x的不同值是.三、解答题(本题共52分,17-20每题3分;20-22题每题4分,23-26每题5分,27-28每题6分)17.计算:(﹣)×(﹣8)+(﹣6)2.18.计算:﹣14+(﹣2)÷(﹣)﹣|﹣9|.19.计算4a﹣2b+3(3b﹣2a).20.化简:5x2y﹣2xy﹣4(x2y﹣xy)21.解方程:7+2x=12﹣2x.22.解方程:x﹣3=﹣x﹣4.23.先化简,再求值:,其中x=﹣3,y=.24.先化简,再求值:已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y 的值.25.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程﹣=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得×6﹣×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥上述小明的解题过程从第步开始出现错误,错误的原因是.请帮小明改正错误,写出完整的解题过程.26.对于任意有理数a,b,定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙3的值;(2)对于任意有理数m,n,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m⊕n=(用含m,n的式子表示).27.小兵喜欢研究数学问题,在计算整式的加减(﹣4x2﹣7+5x)+(2x﹣3+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x﹣3+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x﹣3,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(﹣4x2﹣7+5x)+(2x﹣3+3x2)=﹣x2+7x﹣10若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小兵的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A﹣B,并写出A﹣B值.28.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N 之间的距离,即MN=|m﹣n|,如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)BD=;(2)数轴上表示数x和数﹣3两点之间的距离可表示为.(3)直接写出方程|x﹣3|+|x+1|=6的解是.(4)小明发现代数式|x+1|+|x﹣1|+|x﹣3|引有最小值,最小值是,此时x 的值是.2018-2019学年北京市朝阳区垂杨柳片区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.由美国主题景点协会(TEA)和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆,请将7550000用科学记数法表示为()A.755×104B.75.5×105C.7.55×106D.0.755×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7550000用科学记数法表示为:7.55×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣22【分析】根据相反数、绝对值和乘方的定义逐一计算可得.【解答】解:A.﹣(﹣2)=2,是正数;B.|﹣2|=2,是正数;C.(﹣2)2=4,是正数;D.﹣22=﹣4,是负数;故选:D.【点评】本题解题的关键是掌握有理数的乘方的定义与相反数、绝对值的定义.3.比﹣4.5大的负整数有()A.3个B.4个C.5个D.无数个【分析】根据题意:设大于﹣4.5的负整数为x,则取值范围为﹣4.5<x<0.根据此范围易求解.【解答】解:符合此两条件:(1)x是负整数,(2)﹣4.5<x<0的数只有四个﹣4,﹣3,﹣2,﹣1.故大于﹣4.5的负整数有﹣4,﹣3,﹣2,﹣1.故选:B.【点评】本题考查了比较有理数的大小,比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.4.已知x=﹣2是方程x+4a=10的解,则a的值是()A.3B.C.2D.﹣3【分析】把x=﹣2代入方程,即可求出答案.【解答】解:把x=﹣2代入方程x+4a=10得:﹣2+4a=10,解得:a=3,故选:A.【点评】本题考查了一元一次方程的解和解一元一次方程,能得出关于a的方程是解此题的关键.5.下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣2【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=2x2,不符合题意;B、原式=﹣5a2,不符合题意;C、原式=3a﹣3,不符合题意;D、原式=﹣2x﹣2,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.x=y C.2﹣x=2﹣y D.x+7=y﹣7【分析】根据等式的性质逐个判断即可.【解答】解:A、∵x=y,∴x﹣y=0,而x+y不一定等于0,如2=2,2+2=4,故本选项不符合题意;B、∵x=y,∴x=y,不一定x=y,故本选项不符合题意;C、∵x=y,∴﹣x=﹣y,∴2﹣x=2﹣y,故本选项符合题意;D、∵x=y,∴x+7=y+7,x+7和y﹣7不一定相等,故本选项不符合题意;故选:C.【点评】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.7.小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过1000元时,所购买的商品按原价打8折后,再减少100元”.若某商品的原价为x元(x>1000),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣100B.80%(x﹣100)C.80%x﹣100D.20%x﹣100【分析】根据题意,可以用代数式表示出购买该商品实际付款的金额.【解答】解:由题意可得,购买该商品实际付款的金额是:(80%x﹣100)元,故选:A.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.8.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()①a<0<b②|a|<|b|③ab>0 ④b﹣a>a+bA.①②B.①④C.②③D.③④【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.。
2017-2018学年江苏省无锡市锡北片七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣5的相反数是()A.B.C.﹣5D.5【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣5的相反数是5.故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()A.1个B.2个C.3个D.4个【分析】根据无理数的三种形式找出无理数的个数.【解答】解:无理数有:1.010010001…,π,共2个.故选:B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.(3分)下列各式最符合代数式书写规范的是()A.2nB.C.3x﹣1个D.a×3【分析】根据代数式的书写要求判断各项.【解答】解;A、应表示为n,故A错误;B、两个字母相除表示为分式的形式,故B正确;C、(3x﹣1)个,应加上括号,故C错误;D、把数写在字母的前面,故D错误,故选:B.【点评】本题考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.4.(3分)下列代数式中,单项式共有()a,﹣2ab,,x+y,x2+y2,﹣1,A.2个B.3个C.4个D.5个【分析】根据单项式系数的定义:数字与字母的积,或单独的数字与字母都是单项式进行选择即可.【解答】解:a是单独的字母,是单项式;﹣2ab,,是数字与字母的积,是单项式;﹣1是数字,是单项式;故选:C.【点评】本题考查了单项式的概念,是基础知识比较简单.5.(3分)下面的计算正确的是()A.6a﹣5a=1B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b 【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【解答】解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣(a﹣b)=﹣a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.【点评】此题主要考查了合并同类项,去括号,关键是注意去括号时注意符号的变化,注意乘法分配律的应用,不要漏乘.6.(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2【分析】因为a的3倍为3a,与b的差是3a﹣b,所以再把它们的差平方即可.【解答】解:∵a的3倍与b的差为3a﹣b,∴差的平方为(3a﹣b)2.故选:B.【点评】本题考查列代数式,找到所求式子的等量关系是解决问题的关键.本题的易错点是得到被减式.列代数式的关键是正确理解题中给出的文字语言关键词,比如题干中的“倍”、“平方的差”,尤其要弄清“平方的差”和“差的平方”的区别.7.(3分)对有理数a、b,规定运算如下:a※b=a+ab,则﹣2※3的值为()A.﹣8B.﹣6C.﹣4D.﹣2【分析】根据题意得出有理数混合运算的式子,根据有理数混合运算的法则进行计算即可.【解答】解:∵a※b=a+ab,∴﹣2※3=(﹣2)+(﹣2)×3=﹣2﹣6=﹣8.故选:A.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的顺序是解答此题的关键.8.(3分)甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程()A.98+x=x﹣3B.98﹣x=x﹣3C.(98﹣x)+3=x D.(98﹣x)+3=x﹣3【分析】设甲班原有人数是x人,根据甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等可列出方程.【解答】解:设甲班原有人数是x人,(98﹣x)+3=x﹣3.故选:D.【点评】本题考查由实际问题抽象出一元一次方程,关键是设出原有人数,根据调配后人数相等作为等量关系列方程.9.(3分)如图是计算机程序计算,若开始输入x=﹣,则最后输出的结果是()A.11B.﹣11C.12D.﹣12【分析】根据题意和题目中的程序可以计算出正确的结果,本题得以解决.【解答】解:由题意可得,当x=﹣时,(﹣4)x﹣(﹣1)=﹣×(﹣4)+1=2+1=3>﹣5,∴将x=3时,(﹣4)x﹣(﹣1)=(﹣4)×3+1=﹣12+1=﹣11<﹣5,故选:B.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.10.(3分)某小朋友用手指按如图所示的规则练习数数,数到2017时对应的手指是()(各手指对应依次为大拇指、食指、中指、无名指、小拇指)A.大拇指B.食指C.中指D.无名指【分析】大拇指对应的数为8n+1,小拇指对应的数为8n+5,2017÷8=252余1,由此能求出结果.【解答】解:大拇指对应的数为8n+1,小拇指对应的数为8n+5,又因为2017÷8=252余1,故一直数到2017时,对应的指头是:大拇指,故选:A.【点评】本题考查规律型:数字问题,解题时要认真观察,是常考题型.二、填空题(本大题共8小题,每空2分,共24分)11.(4分)﹣2的绝对值是2,﹣3的倒数是﹣.【分析】利用绝对值以及倒数的定义判断即可得到结果.【解答】解:﹣2的绝对值是2,﹣3的倒数是﹣.故答案为:2;﹣.【点评】此题考查了绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.12.(4分)比较大小(用“<”或“>”填空):﹣>﹣;﹣|﹣8|<﹣(﹣3).【分析】先通分,再根据负数比较大小的法则进行比较即可.【解答】解:∵=,=,<,∴﹣>﹣,即﹣>﹣;∵﹣|﹣8|=﹣8<0,﹣(﹣3)=3>0,∴﹣8<3,即﹣|﹣8|<﹣(﹣3).故答案为:>,<.【点评】本题考查的是有理数的大小比较,熟知正数都大于0;负数都小于0;正数大于一切负数是解答此题的关键.13.(4分)单项式﹣的系数是﹣次数是4.【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【解答】解:单项式﹣的系数是﹣,次数4,故答案为:﹣,4.【点评】本题考查了单项式.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.(2分)已知关于x的方程ax+4=1﹣2x的解为x=3,则a=﹣3.【分析】把x=﹣2代入方程,即可得到一个关于a的方程,解方程即可求解.【解答】解:把x=3代入方程,得:3a+4=1﹣6,解得:a=﹣3.故答案是:﹣3.【点评】本题考查了一元一次方程的解,解题关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后解答.15.(4分)若单项式2x2m﹣3y与﹣8x3y n﹣1是同类项,则m=3;n=2.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得2m﹣3=3,n﹣1=1,解得m=3,n=2,故答案为:3,2.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.16.(2分)若x2﹣2x﹣1=2,则代数式2x2﹣4x﹣7的值为﹣1.【分析】直接将已知变形,进而代入原式求出答案.【解答】解:∵x2﹣2x﹣1=2,∴x2﹣2x=3,∴代数式2x2﹣4x﹣7=2(x2﹣2x)﹣7=2×3﹣7=﹣1.故答案为:﹣1.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.17.(2分)若关于x、y的多项式3x|m|y2+(m﹣2)x2y﹣4是四次三项式,则m 的值为﹣2.【分析】直接利用绝对值的性质以及多项式的次数与系数确定方法分析得出答案.【解答】解:∵关于x、y的多项式3x|m|y2+(m﹣2)x2y﹣4是四次三项式,∴|m|+2=4,m﹣2≠0,解得:m=﹣2,故答案为:﹣2.【点评】此题主要考查了多项式以及绝对值,正确把握相关定义是解题关键.18.(2分)将正整数从1开始,按如图所表示的规律排列.规定图中第m行、第n列的位置记作(m,n),如正整数8的位置是(2,3),则正整数137的位置记作(12,8).【分析】由题意可知:第一行从1开始,每隔一个数都恰好是奇数的平方,如1,9,25,…,且每到奇数平方后整个数列都是往右再往下进行数字的排序,第一列从1开始,偶数行的第一个数字都是偶数的平方,且每到偶数平方后整个数列都是往下再往右进行数字的排序;根据数的排列特征,可以从行和列两个角度分析.【解答】解:∵122=144,这一行的数字共12个,且依次减少1,144﹣137=7,∴137是第12行,第7+1=8个数字,也就是第8列,它的位置记作(12,8).故答案为:(12,8).【点评】此题考查数字的变化规律,找出数字在表中的排列规律,得出计算的方法,解决问题.三、解答题(本大题共9小题,共56分)19.(9分)计算:(1)﹣10﹣(﹣16)+(﹣24)(2)(+﹣)×(﹣20)(3)﹣14+(﹣2)2﹣6×(﹣)【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣10+16﹣24=﹣10﹣8=﹣18;(2)原式=﹣10﹣5+4=﹣11;(3)原式=﹣1+4﹣3+2=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(6分)化简下列各式:(1)2a2b﹣3ab﹣14a2b+4ab(2)5(x+y)﹣4(3x﹣2y)+3(2x﹣y)【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣12a2b+ab;(2)原式=5x+5y﹣12x+8y+6x﹣3y=﹣x+10y.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(6分)解方程:(1)4﹣x=3(2﹣x)(2).【分析】(1)根据等式的基本性质依次去括号、移项、合并同类项、系数化为1可得;(2)根据等式的基本性质依次去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)去括号,得:4﹣x=6﹣3x,移项,得:﹣x+3x=6﹣4,合并同类项,得:2x=2,系数化为1,得:x=1;(2)去分母,得:3(x﹣1)﹣12=2(2x+1),去括号,得:3x﹣3﹣12=4x+2,移项,得:3x﹣4x=2+3+12,合并同类项,得:﹣x=17,系数化为1,得:x=﹣17.【点评】本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.22.(5分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c 的正负情况是解题的关键.23.(5分)已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+1(1)当a=﹣1,b=2时,求A+2B的值;(2)若(1)中的代数式的值与a的取值无关,求b的值.【分析】(1)先去括号、合并同类项化简,再代入计算即可;(2)根据代数式的值与a的取值无关,列出方程即可解决问题;【解答】解:(1)A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+ab+1)=2a2+3ab﹣2a﹣1﹣2a2+2ab+2=5ab﹣2a+1当a=﹣1,b=2时,原式=﹣10+2+1=﹣7(2)∵A+2B=(5b﹣2)a+1,代数式的值与a的取值无关,∴5b﹣2=0,∴b=.【点评】本题考查的加减混合运算,代数式求值,解题的关键是掌握去括号法则、合并同类项法在等知识,属于中考常考题型.24.(6分)问题背景:小红同学在学习过程中遇到这样一道计算题“计算4×3.142﹣4×3.14×3.28+3.282”,他觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师.崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!获取新知:请你和小红一起完成崔老师提供的问题:(1)填写下表:x=﹣1,y=1x=1,y=0x=3,y=2x=1,y=1x=5,y=3 A=2x﹣y﹣32417B=4x2﹣4xy+y29416149(2)观察表格,你发现A与B有什么关系?解决问题:(3)请结合上述的有关信息,计算4×3.142﹣4×3.14×3.28+3.282.【分析】(1)把x与y的各组值分别代入B=4x2﹣4xy+y2进行计算即可;(2)观察没组对应数据得到B=A2;(3)根据(2)的结论得到4×3.142﹣4×3.14×3.28+3.282=(2×3.14﹣3.28)2,然后计算括号内的乘法和减法运算,再进行乘方运算.【解答】解:(1)当x=3,y=2时,B=4x2﹣4xy+y2=4×32﹣4×3×2+22=16;当x=1,y=1时,B=4x2﹣4xy+y2=4×12﹣4×1×1+12=1;当x=5,y=3时,B=4x2﹣4xy+y2=4×52﹣4×5×3+32=49.故答案为16,1,49;(2)B=A2;(3)4×3.142﹣4×3.14×3.28+3.282=(2×3.14﹣3.28)2=9.【点评】本题考查了代数式求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.25.(4分)定义一种新运算:观察下列各式:1⊙3=1×4+3=73⊙(﹣1)=3×4﹣1=115⊙4=5×4+4=244⊙(﹣3)=4×4﹣3=13(1)请你想一想:a⊙b=4a+b;(2)若a≠b,那么a⊙b≠b⊙a(填入“=”或“≠”)(3)若a⊙(﹣2b)=4,则2a﹣b=2;请计算(a﹣b)⊙(2a+b)的值.【分析】(1)根据题目中的式子可以猜出a⊙b的结果;(2)根据(1)中的结果和a≠b,可以得到a⊙b和b⊙a的关系;(3)根据(1)中的结果可以得到2a﹣b的值以及计算出(a﹣b)⊙(2a+b)的值,【解答】解:(1)由题目中的式子可得,a⊙b=4a+b,故答案为:4a+b;(2)∵a⊙b=4a+b,b⊙a=4b+a,∴(a⊙b)﹣(b⊙a)=(4a+b)﹣(4b+a)=4a+b﹣4b﹣a=4(a﹣b)+(b﹣a),∵a≠b,∴4(a﹣b)+(b﹣a)≠0,∴(a⊙b)≠(b⊙a),故答案为:≠;(3)a⊙(﹣2b)=4,a⊙(﹣2b)=4a+(﹣2b)=4a﹣2b,∴4=4a﹣2b,∴2a﹣b=2,故答案为:2;(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b=6a﹣3b=3(2a﹣b)=3×2=6.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.26.(7分)小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减产值+10﹣12﹣4+8﹣1+60(1)根据记录的数据可知小明妈妈星期三生产玩具16个;(2)根据记录的数据可知小明妈妈本周实际生产玩具147个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣3元,那么小明妈妈这一周的工资总额是多少元?(4)若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由.【分析】(1)根据记录可知,小明妈妈星期三生产玩具20﹣4=16个;(2)先把增减的量都相加,然后根据有理数的加法运算法则进行计算,再加上计划生产量即可;(3)先计算每天的工资,再相加即可求解;(4)先计算超额完成几个玩具,然后再求算工资.【解答】解:(1)20﹣4=16个;(2)∵(+10)+(﹣12)+(﹣4)+(+8)+(﹣1)+(+6)+0=10﹣12﹣4+8﹣1+6=7,∴140+7=147(个).故本周实际生产玩具147个;(3)147×5+(10+8+6)×3+(12+4+1)×(﹣3)=735+24×3+17×(﹣3)=735+72﹣51=756(元).故小明妈妈这一周的工资总额是756元;(4)147×5+7×3=735+21=756(元).故小明妈妈这一周的工资与按日计件的工资一样多.故答案为:16,147.【点评】本题考查了正数与负数,有理数加减混合运算,读懂表格数据,根据题意准确列式是解题的关键.27.(8分)如图所示,在数轴上A点表示数a,B点表示数b,且a、b满足|2a+6|+|b ﹣9|=0(1)点A表示的数为﹣3,点B表示的数为9;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在点A、点B之间的数轴上找一点C,使BC=2AC,则C点表示的数为1;(3)在(2)的条件下,若一动点P从点A出发,以3个单位长度/秒速度由A 向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q运动时间为t秒.请用含t的代数式表示:点P到点A的距离PA=,点Q到点B的距离QB=8﹣t(0≤t≤8);点P与点Q之间的距离PQ=.【分析】(1)利用非负数和的性质得到2a+6=0,b﹣9=0,然后解方程求出a、b,从而得到点A和点B表示的数;(2)利用AB=12,BC=2AC得到BC=8,AC=4,则OC=1,从而得到C点表示的数;(3)由于点P4秒运动到B点,而Q点8秒运动到B点,所以分0≤t≤4和4<t≤8计算点P到点A的距离PA;易得点Q到点B的距离QB=8﹣t(0≤t≤8);分P点在Q点左侧、P点运动到Q点右侧和P点运动到B点进行计算.【解答】解:(1)∵|2a+6|+|b﹣9|=0∴2a+6=0,b﹣9=0,解得a=﹣3,b=9,∴点A表示的数为﹣3,点B表示的数为9;(2)AB=9﹣(﹣3)=12,∵BC=2AC,∴BC=8,AC=4,∴OC=1,∴C点表示的数为1;(3)点P到点A的距离PA=;点Q到点B的距离QB=8﹣t(0≤t≤8);当0≤t≤2时,点P与点Q之间的距离PQ=t+4﹣3t=4﹣2t,当2<t≤4时,点P与点Q之间的距离PQ=3t﹣t﹣4=2t﹣4,当4<t≤8时,点P与点Q之间的距离PQ=8﹣t.即PQ=.故答案为﹣3,9;1;;8﹣t(0≤t≤8);.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)一般来说,当数轴方向朝右时,右边的数总比左边的数大.数轴上两点间的距离可用右边的点表示的数减去左边的点表示的数.。
江苏省无锡市锡东片2017-2018学年七年级数学上学期期中试题一.精心选一选(本大题共30分,每小题3分) 1.的相反数是( ) A .B .﹣C .2D .﹣22.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是( ) A .24.70千克B .25.30千克C .24.80千克D .25.51千克 3.实数0、、π中,无理数有( ) A .1个B .2个C .3个D .4个4.下列单项式中,与b a 2是同类项的是( ) A .22b aB .2abC .ab 3D .22ba5.一个两位数,个位上的数字是a ,十位上的数字是b ,用代数式表示这个两位数是( ) A .abB .baC .10a+bD .10b+a6.下列说法不正确的是( ) A .0既不是正数,也不是负数 B .绝对值最小的数是0C .绝对值等于自身的数只有0和1D .平方等于自身的数只有0和17.如果单项式3a n b 2c 是5次单项式,那么n=( ) A .2B .3C .4D .58.在下列式子ab ,,ab 2+b+1,,x 2+x 3﹣6中,多项式有( ) A .2个B .3个C .4个D .5个9.一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( ) A .甲或乙或丙B .乙C .丙D .乙或丙10.如图所示的运算程序中,若开始输入的x 值为15,则第1次输出的结果为18,第2次输出的结果为9,…,第2017次输出的结果为( )A .3B .4C .6D .9二.细心填一填(本大题共16分,每小题2分) 11.﹣7的倒数是 .12.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是 . 13.化简:﹣2a ﹣(﹣2a ﹣1)的结果是 .14.若3a 3b m与6a n b 5的差是单项式,则这个单项式是 . 15.若|x|=5,|y|=12,且x >y ,则x+y 的值为 . 16.若a 2﹣3b=5,则6b ﹣2a 2+2017= .17.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费 元. 18.如图,若|a+1|=|b+1|,|1﹣c|=|1﹣d|,则a+b+c+d= .三.静心解一解(本大题共64分)19.(本题满分5分)在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.﹣,0,﹣2.5,﹣3,1.考试号 .……………………………………………………20.(本题满分12分,每小题3分)计算:(1)13+(﹣5)﹣(﹣21)﹣19 (2)1 36(8)8÷-⨯(3)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2] (4)()×(﹣48)21.(本题满分6分,每小题3分)化简:(1)﹣5m+4m﹣2n+6n+3m (2)(a2﹣6a﹣7)﹣3(a2﹣3a+4)22. 化简并求值(本题满分12分,每题各6分)(1)5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=﹣,b=.(2)已知|x+1|+(y﹣2)2=0,求(2x2y﹣2xy2)﹣[(3x2y2+3x2y)+(3x2y2﹣3xy2)]的值.23.(本题满分6分)某食品厂计划平均每天生产200袋食品,但是由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超过计划量记为正):星期一星期二星期三星期四星期五星期六星期日+5 ﹣1 ﹣7 +11 ﹣9 +5 +6 (1)根据记录的数据可知该厂星期二生产食品多少袋?(2)根据记录的数据可知产量最多的一天比产量最少的一天多生产食品多少袋?(3)根据记录的数据可知该厂本周实际共生产食品多少袋?24(本题满分7分).小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?25.(本题满分8分)点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时出发,相向而行.M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数是;(2)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值.26.(本题满分8分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为.2017-2018学年七年级(上)期中试卷一、选择题(3分一题) 1.B2.C3.A4.D5.D6.C7.A8.B9.B10.A二、填空题(2分一题) 11、17-12、71.610⨯ 13、114、353a b - 15、-7或-17 16、200717、39.518、0三、解答题19、图略……3’113 2.50122-<-<-<<……5’20、(1)原式=13-5+21-19 1’(2)原式=13688-÷⨯ 1’=34-242’=113688-⨯⨯2’=103’=916-3’ (3)原式=111(7)23--⨯⨯- 1’(4)原式=11631348484848127424-⨯+⨯-⨯+⨯ 1’=716-+ 2’ =-44+56-36+26 2’=163’ =23’21、(1)原式=2m+4n 3’(注:只合并对2m 或4n 可得2分)(2)原式=22673912a a a a ---+- 2’=22319a a -+-3’22、(1)原式=22221553a b ab ab a b --- 2’=22126a b ab -3’ 当11,23a b =-=时 原式=22111112()6()()2323⨯-⨯-⨯-⨯4’ =436’(2)由题意得:1,2x y =-=2’ 原式=22226x y x y xy --+ 4’ =-306’23、(1)200-1=199(袋)答:星期二生产199袋.2’(2)11-(-9)=20(袋)答:最多比最少的一天多生产20袋.4’(3)5-1-7+11-9+5+6+200X7=1410(袋)答:本厂实际生产1410袋6’(注:三个小题都未作答的扣1分) 24、(1)图略……3’(2)2-(-1)=3km5’答:小彬家与学校之间的距离是3km. (3)2+1.5+4.5+1=9km6’900025036÷=min7’答:小明跑步共用了36分钟. 25、(1)4、-4(每空两分)4’(2)相遇前:(2010)(23)2s -÷+= 6’相遇后:(2010)(23)6s +÷+=8’答:当t=2或6秒时相距10个单位长度. 26、(1)(21)(1)(21)21,,,134526n n n n n n n +++++(每空两分,共8分)。
2015-2016学年江苏省无锡市新区七年级(上)期中数学试卷一、选择题(本大题共8小题,每题2分,共16分,请把正确答案的编号填在括号内.)1.(2分)(2015秋•无锡期中)室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃2.(2分)(2010•苏州)据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.(2分)(2015秋•无锡期中)下列等式一定成立的是()A.3x+3y=6xy B.16y2﹣7y2=9 C.﹣(x﹣6)=﹣x+6 D.3(x﹣1)=3x﹣14.(2分)(2015秋•无锡期中)下列各组中的两个项不属于同类项的是()A.3x2y和﹣2x2y B.﹣xy和2yx C.23和32D.a2b和ab25.(2分)(2015秋•无锡期中)下列说法中正确的个数是()(1)a和0都是单项式(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3(3)单项式﹣πbc4的系数是﹣(4)x2+2xy﹣y2可读作x2、2xy、﹣y2的和.A.1个B.2个C.3个D.4个6.(2分)(2015秋•鄂城区期末)设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2 B.﹣2 C.2或﹣2 D.以上都不对7.(2分)(2014•南昌)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b8.(2分)(2015•张家界)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2015,则m的值是()A.46 B.45 C.44 D.43二、填空题(本大题共9小题,每空2分,共26分,请把结果直接填在题中的横线上.)9.(4分)(2015秋•无锡期中)﹣2的相反数是______;倒数是______;绝对值是______.10.(4分)(2015秋•无锡期中)平方得25的数为______,______的立方等于﹣27.11.(2分)(2012秋•大石桥市期末)绝对值大于3小于6的所有整数是______.12.(2分)(2015秋•无锡期中)若3a m+2b4与﹣a5b n﹣1的和仍是一个单项式,则m+n=______.13.(2分)(2015秋•无锡期中)点A表示数轴上的一个点,将点A向右移动8个单位,再向左移动5个单位,终点恰好是原点,则点A表示的数是______.14.(4分)(2015秋•无锡期中)如图所示是计算机程序计算,(1)若开始输入x=﹣1,则最后输出y=______;(2)若输出y的值为22,则输入的值x=______.15.(2分)(2015秋•无锡期中)已知多项式(4x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1),若多项式的值与字母x的取值无关,则a b=______.16.(4分)(2015秋•无锡期中)观察下列单项式:﹣a,2a2,﹣3a3,4a4,﹣5a5,…可以得到第2015个单项式是______;第n个单项式是______.17.(2分)(2015秋•无锡期中)定义一种对正整数n的“F”运算:①当n为奇数时,结果是3n+5;②n 为偶数时,结果是(其中k是使为奇数的正整数),并且运算重复进行.例如取n=26,则有如图的结果,那么当n=2015,求第2015次“F”运算的结果是______.三、解答题(本大题共9小题,共58分.解答需写出必要的文字说明或演算步骤.)18.(4分)(2015秋•无锡期中)把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,,﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.19.(4分)(2015秋•无锡期中)在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣3|,﹣(﹣2),﹣(﹣1)3,﹣22.20.(12分)(2015秋•无锡期中)计算(1)(﹣30)﹣(﹣28)+(﹣70)﹣88(2)(3)(4)﹣14﹣(1﹣0.5)×.21.(8分)(2015秋•无锡期中)化简:(1)3b+5a+2a﹣4b;(2)(a2+2ab+b2)﹣(a2﹣2ab+b2).22.(6分)(2015秋•满城县期末)化简求值;5a2﹣[3a﹣2(2a﹣1)+4a2],其中a=﹣.23.(6分)(2015秋•无锡期中)已知A=x﹣2y,B=﹣x﹣4y+1(1)求2(A+B)﹣(2A﹣B)的值;(结果用x、y表示)(2)当|x+|与y2互为相反数时,求(1)中代数式的值.24.(5分)(2015秋•江阴市期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c______0,a+b______0,c﹣a______0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.25.(5分)(2016•繁昌县一模)定义一种新运算:观察下列式:1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13 (1)请你想一想:a⊙b=______;(2)若a≠b,那么a⊙b______b⊙a(填入“=”或“≠”)(3)若a⊙(﹣2b)=4,请计算(a﹣b)⊙(2a+b)的值.26.(8分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车______辆,乙仓库调往A县农用车______辆.(用含x的代数式表示)(共2分)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(共3分)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?(共2分)2015-2016学年江苏省无锡市新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每题2分,共16分,请把正确答案的编号填在括号内.)1.(2分)(2015秋•无锡期中)室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃【分析】求室内温度比室外温度高多少度,就是用室内温度减去室外温度,列出算式.【解答】解:用室内温度减去室外温度,即10﹣(﹣3)=10+3=13.故选D.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.2.(2分)(2010•苏州)据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)(2015秋•无锡期中)下列等式一定成立的是()A.3x+3y=6xy B.16y2﹣7y2=9 C.﹣(x﹣6)=﹣x+6 D.3(x﹣1)=3x﹣1【分析】根据合并同类项法则判断A、B;根据去括号法则判断C、D.【解答】解:A、不是同类项,不能合并,故错误;B、16y2﹣7y2=9y2,故错误;C、﹣(x﹣6)=﹣x+6,故正确;D、3(x﹣1)=3x﹣3,故错误.故选C.【点评】此题根据合并同类项法则和去括号法则求解.4.(2分)(2015秋•无锡期中)下列各组中的两个项不属于同类项的是()A.3x2y和﹣2x2y B.﹣xy和2yx C.23和32D.a2b和ab2【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:A、字母相同且相同字母的指数也相同,故A正确;B、字母相同且相同字母的指数也相同,故B正确;C、所有的常数项都是同类项,故C正确;D、相同字母的指数不同,故D错误;故选:D.【点评】本题考查了同类项,同类项是字母项且相同字母的指数也相同.5.(2分)(2015秋•无锡期中)下列说法中正确的个数是()(1)a和0都是单项式(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3(3)单项式﹣πbc4的系数是﹣(4)x2+2xy﹣y2可读作x2、2xy、﹣y2的和.A.1个B.2个C.3个D.4个【分析】根据单项式多项式的定义,结合各项进行判断即可.【解答】解:(1)a和0都是单项式,正确;(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是4,故本项错误;(3)单项式﹣πbc4的系数是﹣π,故本项错误;(4)x2+2xy﹣y2可读作x2、2xy、﹣y2的和,正确;综上可得正确的有2个.故选B.【点评】本题考查了单项式及多项式的知识,解答本题的关键是掌握单项式及多项式的定义.6.(2分)(2015秋•鄂城区期末)设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2 B.﹣2 C.2或﹣2 D.以上都不对【分析】由a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,可分别得出a、b、c的值,代入计算可得结果.【解答】解:由a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,可得a=1,b=﹣1,c=0,所以a﹣b+c=1﹣(﹣1)+0=1+1+0=2,故选:A.【点评】本题主要考查有理数的概念的理解,能正确判断有关有理数的概念是解题的关键.7.(2分)(2014•南昌)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选B【点评】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.8.(2分)(2015•张家界)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2015,则m的值是()A.46 B.45 C.44 D.43【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2015的是从3开始的第1007个数,然后确定出1007所在的范围即可得解.【解答】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=2015,n=1007,∴奇数2015是从3开始的第1007个奇数,∵=989,=1034,∴第1007个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选B.【点评】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.二、填空题(本大题共9小题,每空2分,共26分,请把结果直接填在题中的横线上.)9.(4分)(2015秋•无锡期中)﹣2的相反数是2;倒数是﹣;绝对值是2.【分析】利用倒数,相反数及绝对值的定义求解即可.【解答】解:﹣2的相反数是2;倒数是﹣;绝对值是2.故答案为:2,﹣,2【点评】本题主要考查了倒数,相反数及绝对值,解题的关键是熟记它们的定义.10.(4分)(2015秋•无锡期中)平方得25的数为±5,﹣3的立方等于﹣27.【分析】根据平方根、立方根的定义进行分析解答即可.【解答】解:∵(±5)2=25,(﹣3)3=﹣27,∴平方等于25的数为±5,立方根等于﹣27的数为﹣3.故答案是±5,﹣3.【点评】本题主要考查立方根、平方根的定义,绝对值的定义,关键在于熟练掌握运用相关的性质定理,认真的进行计算.11.(2分)(2012秋•大石桥市期末)绝对值大于3小于6的所有整数是±4,±5.【分析】大于3小于6的整数绝对值是4或5,因为互为相反数的两个数的绝对值相等,所以绝对值大于3且小于6的所有整数有±4,±5.【解答】解:绝对值大于3小于6的所有整数是±4,±5.故答案为:±4,±5.【点评】考查了绝对值,解题关键是掌握互为相反数的两个数的绝对值相等.12.(2分)(2015秋•无锡期中)若3a m+2b4与﹣a5b n﹣1的和仍是一个单项式,则m+n=8.【分析】两者可以合并说明两式为同类项,根据同类项的字母相同及相同字母的指数相同可得出m和n 的值.【解答】解:由题意得,两者可以合并说明两式为同类项,可得m+2=5,n﹣1=4,解得:m=3,n=5,m+n=8.故填:8.【点评】本题考查同类项的知识,难度不大,掌握同类项的字母相同及相同字母的指数相同是关键.13.(2分)(2015秋•无锡期中)点A表示数轴上的一个点,将点A向右移动8个单位,再向左移动5个单位,终点恰好是原点,则点A表示的数是﹣3.【分析】设点A表示的数是x,根据向右移动为“+”、向左移动为“﹣”列出方程,解方程即可得出答案.【解答】解:设点A表示的数是x.依题意,有x+8﹣5=0,解得x=﹣3.故答案:﹣3.【点评】本题考查了数轴和有理数的表示方法,注意:数轴上的点向右移动表示为加,向左移动表示为减.14.(4分)(2015秋•无锡期中)如图所示是计算机程序计算,(1)若开始输入x=﹣1,则最后输出y=﹣2;(2)若输出y的值为22,则输入的值x=±3.【分析】(1)根据程序框图列出关系式,将x=﹣1代入求出结果即可;(2)将y=22代入关系式中计算,即可求出x的值.【解答】解:根据题意列得:y=3x2﹣5,(1)将x=﹣1代入得:y=35=﹣2;(2)将y=22代入得:22=3x2﹣5,即x2=9,解得:x=±3.故答案为:(1)﹣2;(2)±3【点评】此题考查了代数式求值,以及平方根的定义,列出关系式是解本题的关键.15.(2分)(2015秋•无锡期中)已知多项式(4x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1),若多项式的值与字母x的取值无关,则a b=9.【分析】原式去括号合并后,根据结果与字母x取值无关求出a与b的值,即可确定出原式的值.【解答】解:原式=4x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(4﹣2b)x2+(a+3)x﹣6y+7,由多项式的值与字母x的取值无关,得到4﹣2b=0,a+3=0,解得:a=﹣3,b=2,则a b=(﹣3)2=9,故答案为:9【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.16.(4分)(2015秋•无锡期中)观察下列单项式:﹣a,2a2,﹣3a3,4a4,﹣5a5,…可以得到第2015个单项式是﹣2015a2015;第n个单项式是(﹣1)n na n.【分析】单项式的系数是正负间隔出现,系数的绝对值等于该项字母的次数,由此规律即可解答.【解答】解:第2015个单项式为:﹣2015a2015,第n个单项式为(﹣1)n na n故答案为:﹣2015a2015,(﹣1)n na n.【点评】本题考查数字的变化规律;分别得到系数,系数的绝对值,字母及字母指数的变化规律是解决本题的关键.17.(2分)(2015秋•无锡期中)定义一种对正整数n的“F”运算:①当n为奇数时,结果是3n+5;②n 为偶数时,结果是(其中k是使为奇数的正整数),并且运算重复进行.例如取n=26,则有如图的结果,那么当n=2015,求第2015次“F”运算的结果是20.【分析】根据运算规则进行重复计算,从中发现循环的规律,得到答案.【解答】解:根据题意,得当n=2015时,第1次的计算结果是3n+5=6050;第2次的计算结果是=3025;第3次的计算结果是3025×3+5=9080;第4次是计算结果是=1135;第5次的计算结果是1135×3+5=3410;第6次的计算结果是=1705,第7次的计算结果是1705×3+5=5120,第8次的计算结果是=5,第9次的计算结果是5×3+5=20,第10次的计算结果是=5,开始循环.故第2015次的计算结果是20.故答案为:20.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律即可求出结果.三、解答题(本大题共9小题,共58分.解答需写出必要的文字说明或演算步骤.)18.(4分)(2015秋•无锡期中)把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,,﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.【分析】(1)根据正数的定义选出即可;(2)根据负数的意义选出即可;(3)根据整数的定义选出即可;(4)根据无理数的定义选出即可.【解答】解:(1)正数集合:{8,,…};(2)负数集合:{﹣2.5,﹣2,﹣0.5252252225…(每两个5之间依次增加1个2)…};(3)整数集合:{0,8,﹣2,…};(4)无理数集合:{,﹣0.5252252225…(每两个5之间依次增加1个2),…}.【点评】本题考查了对正数,负数,整数,无理数的定义的应用,主要考查学生的理解能力和辨析能力.19.(4分)(2015秋•无锡期中)在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣3|,﹣(﹣2),﹣(﹣1)3,﹣22.【分析】原式各项计算得到结果,即可做出比较.【解答】解:﹣|﹣3|=﹣3,﹣(﹣2)=2,﹣(﹣1)3=1,﹣22=﹣4,在数轴上把各数表示出来为:则﹣22<﹣|﹣3|<﹣(﹣1)3<﹣(﹣2).【点评】此题考查了有理数的大小比较,以及数轴,将各数正确的表示在数轴上是解本题的关键.20.(12分)(2015秋•无锡期中)计算(1)(﹣30)﹣(﹣28)+(﹣70)﹣88(2)(3)(4)﹣14﹣(1﹣0.5)×.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣30+28﹣70﹣88=﹣100﹣60=﹣160;(2)原式=2﹣27×=2﹣45=﹣43;(3)原式=﹣14+9+54=49;(4)原式=﹣1﹣××(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.(8分)(2015秋•无锡期中)化简:(1)3b+5a+2a﹣4b;(2)(a2+2ab+b2)﹣(a2﹣2ab+b2).【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)3b+5a+2a﹣4b=7a﹣b;(2)(a2+2ab+b2)﹣(a2﹣2ab+b2)=a2+2ab+b2﹣a2+2ab﹣b2=4ab.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.(6分)(2015秋•满城县期末)化简求值;5a2﹣[3a﹣2(2a﹣1)+4a2],其中a=﹣.【分析】原式去括号合并得到最简结果,将a的值代入计算即可求出值.【解答】解:原式=5a2﹣3a+4a﹣2﹣4a2=a2+a﹣2,当a=﹣时,原式=﹣﹣2=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(6分)(2015秋•无锡期中)已知A=x﹣2y,B=﹣x﹣4y+1(1)求2(A+B)﹣(2A﹣B)的值;(结果用x、y表示)(2)当|x+|与y2互为相反数时,求(1)中代数式的值.【分析】(1)先化简,把B的值代入,即可求出答案;(2)根据相反数求出x、y的值,再代入求出即可.【解答】解:(1)∵A=x﹣2y,B=﹣x﹣4y+1,∴2(A+B)﹣(2A﹣B)=2A+2B﹣2A+B=3B=3(﹣x﹣4y+1)=﹣3x﹣12y+3;(2)∵|x+|与y2互为相反数,∴|x+|+y2=0,∴x+=0,y2=0,∴x=﹣,y=0,∴2(A+B)﹣(2A﹣B)=﹣3×(﹣)﹣12×0+3=4.【点评】本题考查了整式的加减,求代数式的值,相反数,绝对值和偶次方的非负性的应用,能正确利用知识点进行化简和计算是解此题的关键,难度适中.24.(5分)(2015秋•江阴市期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c的正负情况是解题的关键.25.(5分)(2016•繁昌县一模)定义一种新运算:观察下列式:1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13 (1)请你想一想:a⊙b=4a+b;(2)若a≠b,那么a⊙b≠b⊙a(填入“=”或“≠”)(3)若a⊙(﹣2b)=4,请计算(a﹣b)⊙(2a+b)的值.【分析】(1)根据提供的信息,⊙的运算法则是⊙前面的数乘以4再加上运算符号后面的数,然后写出即可;(2)根据运算规则把a⊙b和b⊙a分别进行计算并相减得到a、b的差,然后即可比较大小;(3)先根据运算规则与已知条件求出a、b的关系,然后再根据运算规则计算(a﹣b)⊙(2a+b)并把a、b的关系代入整理后的算式计算即可求解.【解答】解:(1)∵1⊙3=1×4+3=7,3⊙(﹣1)=3×4﹣1=11,5⊙4=5×4+4=24,4⊙(﹣3)=4×4﹣3=13,∴a⊙b=4a+b;(2)a⊙b=4a+b,b⊙a=4b+a,(4a+b)﹣(4b+a)=3a﹣3b=3(a﹣b),∵a≠b,∴3(a﹣b)≠0,即(4a+b)﹣(4b+a)≠0,∴a⊙b≠b⊙a;(3)∵a⊙(﹣2b)=4a﹣2b=4,∴2a﹣b=2,(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b,=3(2a﹣b)=3×2=6.故答案为:(1)4a+b,(2)≠,(3)6.【点评】本题是对数字变化问题的考查,认真观察所给式子,发现并应用规律(4乘以第一个数再加上第二个数)做题是正确解答本题的关键.26.(8分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x辆,乙仓库调往A县农用车10﹣x辆.(用含x的代数式表示)(共2分)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(共3分)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?(共2分)【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x.(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.。
2016-2017学年江苏省无锡市女子一中七年级(上)期中数学试卷一、精心选一选(本题共8小题,每小题3分,共24分)1.﹣的相反数是()A.B.﹣ C.﹣2 D.22.下列式子,符合代数式书写格式的是()A.a÷3 B.2x C.a×3 D.3.下列各数:(﹣3)2,0,﹣(﹣)2,,(﹣1)2009,﹣22,﹣(﹣8),﹣|﹣|中,负数有()A.2个B.3个C.4个D.5个4.代数式:2x2、﹣3、x﹣2y、t、、m3+2m2﹣m,其中单项式的个数是()A.4个B.3个C.2个D.1个5.下列说法正确的是()A.平方等于本身的数是0和±1B.﹣a一定是负数C.绝对值等于它本身的数是0、1D.倒数等它本身的数是±16.某商店出售剃须刀和刀片,在新年之际举行促销活动,每把剃须刀可盈利30元,但每个刀片亏本0.5元,在这次促销活动中,该商店售出的刀片数是剃须刀数的2倍,两种商品共获利5800元,设售出的剃须刀为x 把,则可列得的一元一次方程为()A.0.5×2x+30x=5800 B.0.5x+2×30x=5800C.﹣0.5×2x+30x=5800 D.0.5×2x﹣30x=58007.某商品价格a元,降低10%后,又降低了10%,销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.a元B.1.08a元C.0.972a元D.0.96a元8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A .1种B .2种C .3种D .4种二、细心填一填(本大题共12小题,每空2分,共28分)9.有关资料表明:被称为“地球之肺”的森林正以每年约15 680 000公顷的速度从地球上消失,每年的消失量用科学记数法表示应是 .10.数轴上离表示﹣2的点的距离等于3个单位长度的点表的示数是 .11.比较大小:;﹣|﹣2| ﹣(﹣2)(填“>”、“<”或“=”).12.多项式﹣x 2+x ﹣23中,最高次项为 ,常数项为 .13.一个两位数,十位上的数字是a ,个位上的数字比十位上的数字的2倍大3,则这个两位数是 .14.若|m|=3,|n|=2,且<0,则m+n 的值是 .15.已知代数式a 3﹣a 的值是﹣2,则代数式2a 3﹣2a ﹣5的值为 .16.对有理数a 、b ,规定运算如下:a※b=+,则﹣2.5※2= .17.实数a ,b ,c 在数轴上的对应点的位置如图所示,化简|b ﹣c|+|c ﹣a|﹣|b|的结果是 .18.有一个整式减去(xy ﹣4yz+3zx )的题目,小林误看成加法,得到的答案是2yz ﹣3zx+2xy ,那么原题正确的答案是 .19.若关于x 的多项式(x 2﹣3x+1)(kx+2)展开合并同类项后,不含二次项,则k 的值为 .20.定义一种新运算:a※b=,则当x=3时,2※x﹣4※x 的结果为 .三、静心解一解21.画出数轴,并在数轴上表示下列各数,再用“<”号把各数连接起来: +2,﹣(+4),+(﹣1),|﹣3.5|,﹣2.5. 22.计算:(1)﹣4﹣28﹣(﹣19)+(﹣24)(2)(3)(4)﹣12008﹣(﹣2)3﹣2×(﹣3)+|2﹣5| 23.计算:(1)(3x+5x3﹣2x2)﹣(5x3﹣3x);(2)7x+2(x2﹣2)﹣4(x2﹣x+3).24.已知A=x2y﹣7xy2+2,B=﹣2x2y+4xy2﹣1,(1)求2A+B;(2)当x与y满足|x+1|+(y﹣)2=0时,请你求出(1)中的代数式的值.25.国庆前夕,我国首个空间实验室“天宫一号”顺利升空,同学们倍受鼓舞,开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用a、b的代数式表示该截面的面积S;(2)当a=2cm,b=3cm时,求这个截面的面积.26.某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套.如果每套比原销售价降低10元销售,则每天可多销售100套.该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论(每套西服的利润=每套西服的销售价﹣每套西服的进价).(1)按原销售价销售,每天可获利润元.(2)若每套降低10元销售,每天可获利润元.(3)如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套.按这种方式:①若每套降低10x元,则每套的销售价格为元;(用代数式表示)②若每套降低10x元,则每天可销售套西服.(用代数式表示)③若每套降低10x元,则每天共可以获利润元.(用代数式表示)27.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如表:(1)当n个最小的连续正偶数相加时,它们的和S与n之间的关系,用公式表示为.(2)并按此规律计算:①2+4+6+…+300的值;②162+164+166+…+400的值.28.阅读理解:如图,A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C 是[A,B]的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是[A,B]的好点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是[A,B]的好点,但点D是[B,A]的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是[M,N]的好点;(2)现有一只电子蚂蚁P从点N出发,以每秒2个单位的速度沿数轴向左运动,运动时间为t.当t为何值时,P、M、N中恰有一个点为其余两点的好点?2016-2017学年江苏省无锡市女子一中七年级(上)期中数学试卷参考答案与试题解析一、精心选一选(本题共8小题,每小题3分,共24分)1.﹣的相反数是()A.B.﹣ C.﹣2 D.2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列式子,符合代数式书写格式的是()A.a÷3 B.2x C.a×3 D.【考点】代数式.【分析】利用代数式书写格式判定即可【解答】解:A、a÷3应写为,B、2a应写为a,C、a×3应写为3a,D、正确,故选:D.【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式.3.下列各数:(﹣3)2,0,﹣(﹣)2,,(﹣1)2009,﹣22,﹣(﹣8),﹣|﹣|中,负数有()A.2个B.3个C.4个D.5个【考点】正数和负数.【分析】负数是小于零的数,由此进行判断即可.【解答】解:(﹣3)2=9,﹣(﹣)2=﹣,(﹣1)2009=﹣1,﹣22=﹣4,﹣(﹣8)=8,﹣|﹣|=,则所给数据中负数有:﹣(﹣)2、(﹣1)2009、﹣22、﹣|﹣|,共4个.故选C.【点评】本题考查了正数和负数的知识,解答本题的关键是掌握负数的定义.4.代数式:2x2、﹣3、x﹣2y、t、、m3+2m2﹣m,其中单项式的个数是()A.4个B.3个C.2个D.1个【考点】单项式.【分析】单项式就是数与字母的乘积,单独的数或字母是单项式,根据定义即可判断.【解答】解:只有2x2、﹣3、t、是单项式,一共有4个.故选:A.【点评】本题考查了单项式的定义,正确理解定义是关键.5.下列说法正确的是()A.平方等于本身的数是0和±1B.﹣a一定是负数C.绝对值等于它本身的数是0、1D.倒数等它本身的数是±1【考点】有理数的乘方;相反数;绝对值;倒数.【分析】根据平方、倒数以及绝对值的性质即可判断.【解答】解:A、平方等于本身的数是0和1,(﹣1)2=1,不是本身,故选项错误;B、当a=0时,﹣a=0不是负数,故选项错误;C、绝对值等于它本身的数是非负数,故选项错误;D、正确.故选D.【点评】本题考查了平方、倒数以及绝对值的性质,都是需要熟记的内容.6.某商店出售剃须刀和刀片,在新年之际举行促销活动,每把剃须刀可盈利30元,但每个刀片亏本0.5元,在这次促销活动中,该商店售出的刀片数是剃须刀数的2倍,两种商品共获利5800元,设售出的剃须刀为x 把,则可列得的一元一次方程为()A.0.5×2x+30x=5800 B.0.5x+2×30x=5800C.﹣0.5×2x+30x=5800 D.0.5×2x﹣30x=5800【考点】由实际问题抽象出一元一次方程.【分析】利用售出的剃须刀的总盈利+售出的刀片的总盈利=两种商品共获利5800元,得出方程即可.【解答】解:设售出的剃须刀为x把,由题意得﹣0.5×2x+30x=5800.故选:C.【点评】此题考查由实际问题抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.7.某商品价格a元,降低10%后,又降低了10%,销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.a元B.1.08a元C.0.972a元D.0.96a元【考点】列代数式.【专题】增长率问题.【分析】提价后这种商品的价格=原价×(1﹣降低的百分比)(1﹣百分比)×(1+增长的百分比),把相关数值代入求值即可.【解答】解:第一次降价后的价格为a×(1﹣10%)=0.9a元,第二次降价后的价格为0.9a×(1﹣10%)=0.81a元,∴提价20%的价格为0.81a×(1+20%)=0.972a元,故选C.【点评】考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【考点】代数式求值.【专题】图表型;规律型.【分析】根据运算程序列出方程,然后求解即可.【解答】解:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5,5n+1=5,解得n=(不符合),所以,满足条件的n的不同值有3个【点评】本题考查了代数式求值,读懂图表信息并理解运算程序是解题的关键.二、细心填一填(本大题共12小题,每空2分,共28分)9.有关资料表明:被称为“地球之肺”的森林正以每年约15 680 000公顷的速度从地球上消失,每年的消失量用科学记数法表示应是 1.568×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将15 680 000用科学记数法表示为:1.568×107.故答案为:1.568×107.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.10.数轴上离表示﹣2的点的距离等于3个单位长度的点表的示数是﹣5或1 .【考点】有理数的减法;数轴.【分析】此题可借助数轴用数形结合的方法求解.【解答】解:数轴上离表示﹣2的点的距离等于3个单位长度的点表示的数是﹣2+3=1;或﹣2﹣3=﹣5.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.11.比较大小:>;﹣|﹣2| < ﹣(﹣2)(填“>”、“<”或“=”).【考点】有理数大小比较.【分析】根据两个负数比较大小,其绝对值大的反而小即可比较﹣和﹣,先化简符号,再根据正数都大于负数比较即可.【解答】解:∵|﹣|=,|﹣|=,∴﹣>﹣,∵﹣|﹣2|=﹣2,﹣(﹣2)=2, ∴﹣|﹣2|<﹣(﹣2), 故答案为:>,<.【点评】本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.12.多项式﹣x 2+x ﹣23中,最高次项为 ﹣x 2,常数项为 ﹣23. 【考点】多项式.【分析】多项式的次数是多项式中最高次项的次数,每一个单项式都是它的项,每一项的数字因数是该项的系数.【解答】解:多项式﹣x 2+x ﹣23中,最高次项为﹣x 2,常数项为﹣23. 故答案为:﹣x 2,﹣23.【点评】本题考查了多项式的项,次数和各项的系数,是基础知识要熟练掌握.13.一个两位数,十位上的数字是a ,个位上的数字比十位上的数字的2倍大3,则这个两位数是 12a+3 . 【考点】列代数式.【分析】两位数=十位数字×10+个位数字.【解答】解:十位数字为a,个位上的数字比十位上的数字的2倍大3,∴十位数字为2a+3,∴两位数为:1a+2a+3=12a+3,故答案为:12a+3.【点评】考查了列代数式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.14.若|m|=3,|n|=2,且<0,则m+n的值是﹣1或1 .【考点】绝对值.【分析】根据绝对值的性质,再根据题意可知mn有一个小于0,分别求出m与n的值,再代入m+n,即可得出结果.【解答】解:∵|m|=3,|n|=2,∴m=±3,n=±2,又∵<0,∴当m=3时,n=﹣2,m+n=1,当m=﹣3时,n=2,m+n=﹣1,故答案为:﹣1或1.【点评】本题主要考查了绝对值的性质,绝对值具有非负性,绝对值是正数的数有两个,且互为相反数,比较简单.15.已知代数式a3﹣a的值是﹣2,则代数式2a3﹣2a﹣5的值为﹣9 .【考点】代数式求值.【专题】整体思想.【分析】把a3﹣a看作一个整体并代入代数式进行计算即可得解.【解答】解:由题意得,a3﹣a=﹣2,∴2a3﹣2a﹣5=2(a3﹣a)﹣5=2×(﹣2)﹣5=﹣4﹣5=﹣9.故答案为:﹣9.【点评】本题考查了代数式求值,是基础题,整体思想的利用是解题的关键.16.对有理数a、b,规定运算如下:a※b=+,则﹣2.5※2=.【考点】代数式求值;有理数的混合运算.【专题】新定义.【分析】根据运算规律先把﹣2.5※2化为﹣+的形式,然后再通分即可.【解答】解:∵a※b=+,∴﹣2.5※2=﹣+=﹣+=.故答案为.【点评】本题考查了代数式求值以及有理数的混合运算,解题的关键是熟练运用新定义,此题比较简单,易于掌握.17.实数a,b,c在数轴上的对应点的位置如图所示,化简|b﹣c|+|c﹣a|﹣|b|的结果是2c﹣a .【考点】整式的加减;绝对值;实数与数轴.【专题】计算题.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据题意得:a<b<0<c,∴b﹣c<0,c﹣a>0,则原式=c﹣b+c﹣a+b=2c﹣a.故答案为:2c﹣a.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.18.有一个整式减去(xy﹣4yz+3zx)的题目,小林误看成加法,得到的答案是2yz﹣3zx+2xy,那么原题正确的答案是10yz﹣9zx .【考点】整式的加减.【专题】计算题.【分析】根据题意列出正确的算式,计算即可得到结果.【解答】解:根据题意得:(2yz﹣3zx+2xy)﹣2(xy﹣4yz+3zx)=2yz﹣3zx+2xy﹣2xy+8yz﹣6zx=10yz﹣9zx.故答案为:10yz﹣9zx【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.(2016秋•崇安区校级期中)若关于x的多项式(x2﹣3x+1)(kx+2)展开合并同类项后,不含二次项,则k的值为.【考点】多项式乘多项式;合并同类项.【分析】根据多项式乘以多项式法则展开后,根据x2项的系数相等0可得出k的值.【解答】解:(x2﹣3x+1)(kx+2)=kx3+(2﹣3k)x2+(k﹣6)x+2∵不含二次项,∴2﹣3k=0∴k=,故答案为:.【点评】本题考查了多项式乘以多项式的法则的应用,关键是理解不含二次项则二次项系数为0.20.定义一种新运算:a※b=,则当x=3时,2※x﹣4※x的结果为8 .【考点】整式的加减—化简求值.【专题】计算题;新定义.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:当x=3时,原式=2※3﹣4※3=9﹣(4﹣3)=9﹣1=8,故答案为:8【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.三、静心解一解21.画出数轴,并在数轴上表示下列各数,再用“<”号把各数连接起来:+2,﹣(+4),+(﹣1),|﹣3.5|,﹣2.5.【考点】有理数大小比较;数轴.【分析】分别在数轴上表示出各数所在位置,再根据当数轴方向朝右时,右边的数总比左边的数大用“<”号把这些数连接起来即可.【解答】解:如图所示:用“<”号把各数连接起来为:﹣(+4)<﹣2.5<+(﹣1)<+2<|﹣3.5|.【点评】此题主要考查了数轴,以及有理数的比较大小,关键是掌握当数轴方向朝右时,右边的数总比左边的数大.22.计算:(1)﹣4﹣28﹣(﹣19)+(﹣24)(2)(3)(4)﹣12008﹣(﹣2)3﹣2×(﹣3)+|2﹣5|【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式从左到右依次计算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣4﹣28+19﹣24=﹣56+19=﹣37;(2)原式=﹣2××(﹣)×4=16;(3)原式=﹣45﹣35+70=﹣10;(4)原式=﹣1﹣(﹣8)﹣(﹣6)+3=﹣1+8+6+3=16.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.计算:(1)(3x+5x3﹣2x2)﹣(5x3﹣3x);(2)7x+2(x2﹣2)﹣4(x2﹣x+3).【考点】整式的加减;合并同类项;去括号与添括号.【分析】(1)根据整式加减运算顺序和计算法则计算即可;(2)先去括号,再合并同类项即可.【解答】解:(1)原式=3x+5x3﹣2x2﹣5x3+3x,=﹣2x2+6x;(2)原式=7x+2x2﹣4﹣2x2+4x﹣12=11x﹣16.【点评】以上两个题目都是考查了整式的加减运算,在运算时注意:(1)几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.(2)整式的加减实质上就是合并同类项.24.已知A=x2y﹣7xy2+2,B=﹣2x2y+4xy2﹣1,(1)求2A+B;(2)当x与y满足|x+1|+(y﹣)2=0时,请你求出(1)中的代数式的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】(1)将A与B代入2A+B中计算即可得到结果;(2)利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:(1)原式=2(x2y﹣7xy2+2)+(﹣2x2y+4xy2﹣1)=2x2y﹣14xy2+4﹣2x2y+4xy2﹣1=﹣10xy2+3;(2)由题意得:x=﹣1,y=,当x=﹣1,y=时,原式=﹣10×(﹣1)×()2+3=5.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.25.国庆前夕,我国首个空间实验室“天宫一号”顺利升空,同学们倍受鼓舞,开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用a、b的代数式表示该截面的面积S;(2)当a=2cm,b=3cm时,求这个截面的面积.【考点】列代数式;代数式求值.【分析】(1)利用三角形的面积公式、梯形的面积公式、矩形的面积公式分别表示出各部分的面积,然后求和;(2)把a、b的值代入代数式求值即可.【解答】解:(1)S=2ab+2a2(2)当a=2cm,b=3cm时,S=2×2×3+2×22=20cm2【点评】本题考查了列代数式以及代数式求值,正确理解三角形的面积公式、梯形的面积公式、矩形的面积公式是关键.26.某商场购进一批西服,进价为每套250元,原定每套以290元的价格销售,这样每天可销售200套.如果每套比原销售价降低10元销售,则每天可多销售100套.该商场为了确定销售价格,作了如下测算,请你参加测算,并由此归纳得出结论(每套西服的利润=每套西服的销售价﹣每套西服的进价).(1)按原销售价销售,每天可获利润8000 元.(2)若每套降低10元销售,每天可获利润9000 元.(3)如果每套销售价降低10元,每天就多销售100套,每套销售价降低20元,每天就多销售200套.按这种方式:①若每套降低10x元,则每套的销售价格为290﹣10x 元;(用代数式表示)②若每套降低10x元,则每天可销售200+100x 套西服.(用代数式表示)③若每套降低10x元,则每天共可以获利润(40﹣10x)(200+100x)元.(用代数式表示)【考点】列代数式.【专题】销售问题.【分析】(1)根据利润=每件的获利×件数,利用(290﹣250)×200算出即可;(2)根据利润=每件的获利×件数,利用(280﹣250)×(200+100)算出即可;(3)①根据每套降低10x元,每套的销售价格为:(290﹣10x)元,②每套降低10x元,每天可销售(200+)套西服求出即可.③依据利润=每件的获利×件数,即可解决问题.【解答】解:根据题意得:依据利润=每件的获利×件数,(1)(290﹣250)×200=8000(元),(2)(280﹣250)×(200+100)=9000(元),(3)①∵每套降低10x元,∴每套的销售价格为:(290﹣10x)元,②∵每套降低10x元,∴每天可销售(200+100x)套西服.③∵每套降低10x元,∴每套的利润为:(290﹣10x﹣250)=(40﹣10x)元,每天可销售(200+100x)套西服.(40﹣10x)(200+100x),每天共可以获利润为:(40﹣10x)(200+100x),故答案为:(1)8000,(2)9000;(3)①290﹣10x,②200+100x,③(40﹣10x)(200+100x).【点评】此题主要考查了列代数式,正确表示出每件商品的利润和销量是解题关键.27.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如表:(1)当n个最小的连续正偶数相加时,它们的和S与n之间的关系,用公式表示为S=n(n+1).(2)并按此规律计算:①2+4+6+…+300的值;②162+164+166+…+400的值.【考点】规律型:数字的变化类.【分析】(1)设第n个最小的连续正偶数相加的和为S n,根据给定的部分S n与n之间的关系可找出变化规律“S n=n(n+1)”,此题得解;(2)①代入n=150,求出S的值即可;②分别代入n=80和200求出S的值,二者做差即可得出结论.【解答】解:(1)设第n个最小的连续正偶数相加的和为S n,观察,发现:S1=2=1×2,S2=2+4=2×3,S3=2+4+6=3×4,S4=2+4+6+8=4×5,S5=2+4+6+8+10=5×6,…,∴S n=2+4+…+2n=n(n+1).故答案为:S=n(n+1).(2)①当n=150时,2+4+6+…+300=150×(150+1)=22650.②当n=80时,2+4+6+…+160=80×(80+1)=6480;当n=200时,2+4+6+…+400=200×(200+1)=40200.∴162+164+166+…+400=40200﹣6480=33720.【点评】本题考查了规律型中数字的变化类,根据给定的等式找出变化规律“S n=n(n+1)”是解题的关键.28.阅读理解:如图,A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C 是[A,B]的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1,那么点C是[A,B]的好点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是[A,B]的好点,但点D是[B,A]的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数2或10 所表示的点是[M,N]的好点;(2)现有一只电子蚂蚁P从点N出发,以每秒2个单位的速度沿数轴向左运动,运动时间为t.当t为何值时,P、M、N中恰有一个点为其余两点的好点?【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】(1)设所求数为x,根据好点的定义列出方程x﹣(﹣2)=2(4﹣x)或x﹣(﹣2)=2(x﹣4),解方程即可;(2)根据好点的定义可知分两种情况:①P为【A,B】的好点;②P为【N,P】的好点.设点P表示的数为y,根据好点的定义列出方程,进而得出t的值.【解答】解:(1)设所求数为x,当好点在A、B的中间时,则:x﹣(﹣2)=2(4﹣x),解得x=2,当好点在B的右侧时,则:x﹣(﹣2)=2(x﹣4),解得x=10综上所述,数2或10所表示的点是[M,N]的好点.故答案为:2或10;(2)设点P表示的数为4﹣2t,①当P为【M,N】的好点时.PM=2PN,即6﹣2t=2×2t,t=1,②当P为【N,M】的好点时.PN=2PM,若P在M、N中间,则有2t=2(6﹣2t),t=2;若P在M点左侧,则2t=2(2t﹣6),t=6.③当M为【N,P】的好点时.MN=2PM.若P在M、N中点时,有6=2×2t,t=,若P在M点左侧时,有:6=2(2t﹣6),t=.④当M为【P,N】的好点时.MP=2MN,即2t﹣6=12,t=9,综上可知,当t=1,2,6,,,9时,P、M、N中恰有一个点为其余两点的好点.【点评】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解好点的定义,找出合适的等量关系列出方程,再求解.。
2017-2018学年江苏省无锡市锡北片七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣5的相反数是()A.B.C.﹣5 D.52.(3分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()A.1个B.2个 C.3个 D.4个3.(3分)下列各式最符合代数式书写规范的是()A.2n B.C.3﹣1个D.a×34.(3分)下列代数式中,单项式共有()a,﹣2ab,,+y,2+y2,﹣1,A.2个B.3个 C.4个 D.5个5.(3分)下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b6.(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2 B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)27.(3分)对有理数a、b,规定运算如下:a※b=a+ab,则﹣2※3的值为()A.﹣8 B.﹣6 C.﹣4 D.﹣28.(3分)甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是人,可列出方程()A.98+=﹣3 B.98﹣=﹣3 C.(98﹣)+3= D.(98﹣)+3=﹣39.(3分)如图是计算机程序计算,若开始输入=﹣,则最后输出的结果是()A.11 B.﹣11 C.12 D.﹣1210.(3分)某小朋友用手指按如图所示的规则练习数数,数到2017时对应的手指是()(各手指对应依次为大拇指、食指、中指、无名指、小拇指)A.大拇指 B.食指C.中指D.无名指二、填空题(本大题共8小题,每空2分,共24分)11.(4分)﹣2的绝对值是,﹣3的倒数是.12.(4分)比较大小(用“<”或“>”填空):﹣﹣;﹣|﹣8| ﹣(﹣3).13.(4分)单项式﹣的系数是次数是.14.(2分)已知关于的方程a+4=1﹣2的解为=3,则a= .15.(4分)若单项式22m﹣3y与﹣83y n﹣1是同类项,则m= ;n= .16.(2分)若2﹣2﹣1=2,则代数式22﹣4﹣7的值为.17.(2分)若关于、y的多项式3|m|y2+(m﹣2)2y﹣4是四次三项式,则m的值为.18.(2分)将正整数从1开始,按如图所表示的规律排列.规定图中第m行、第n列的位置记作(m,n),如正整数8的位置是(2,3),则正整数137的位置记作.三、解答题(本大题共9小题,共56分)19.(9分)计算:(1)﹣10﹣(﹣16)+(﹣24)(2)(+﹣)×(﹣20 )(3)﹣14+(﹣2)2﹣6×(﹣)20.(6分)化简下列各式:(1)2a2b﹣3ab﹣14a2b+4ab(2)5(+y)﹣4(3﹣2y)+3(2﹣y)21.(6分)解方程:(1)4﹣=3(2﹣)(2).22.(5分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c 0,a+b 0,c﹣a 0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.23.(5分)已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+1(1)当a=﹣1,b=2时,求A+2B的值;(2)若(1)中的代数式的值与a的取值无关,求b的值.24.(6分)问题背景:小红同学在学习过程中遇到这样一道计算题“计算4×3.142﹣4×3.14×3.28+3.282”,他觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师.崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!获取新知:请你和小红一起完成崔老师提供的问题:(1)填写下表:解决问题:(3)请结合上述的有关信息,计算4×3.142﹣4×3.14×3.28+3.282.25.(4分)定义一种新运算:观察下列各式:1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13(1)请你想一想:a⊙b= ;(2)若a≠b,那么a⊙b b⊙a(填入“=”或“≠”)(3)若a⊙(﹣2b)=4,则2a﹣b= ;请计算(a﹣b)⊙(2a+b)的值.26.(7分)小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产情况(超产记为正、减产记为负):)根据记录的数据可知小明妈妈星期三生产玩具个;(2)根据记录的数据可知小明妈妈本周实际生产玩具个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣3元,那么小明妈妈这一周的工资总额是多少元?(4)若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由.27.(8分)如图所示,在数轴上A点表示数a,B点表示数b,且a、b满足|2a+6|+|b﹣9|=0(1)点A表示的数为,点B表示的数为;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在点A、点B之间的数轴上找一点C,使BC=2AC,则C点表示的数为;(3)在(2)的条件下,若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B 点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q运动时间为t秒.请用含t的代数式表示:点P到点A的距离PA= ,点Q到点B的距离QB= ;点P与点Q之间的距离PQ= .2017-2018学年江苏省无锡市锡北片七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣5的相反数是()A.B.C.﹣5 D.5【解答】解:﹣5的相反数是5.故选:D.2.(3分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()A.1个B.2个 C.3个 D.4个【解答】解:无理数有:1.010010001…,π,共2个.故选B.3.(3分)下列各式最符合代数式书写规范的是()A.2n B.C.3﹣1个D.a×3【解答】解;A、应表示为n,故A错误;B、两个字母相除表示为分式的形式,故B正确;C、(3﹣1)个,应加上括号,故C错误;D、把数写在字母的前面,故D错误,故选:B.4.(3分)下列代数式中,单项式共有()a,﹣2ab,,+y,2+y2,﹣1,A.2个B.3个 C.4个 D.5个【解答】解:a是单独的字母,是单项式;﹣2ab,,是数字与字母的积,是单项式;﹣1是数字,是单项式;故选C.5.(3分)下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b【解答】解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣(a﹣b)=﹣a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.6.(3分)用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2 B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2【解答】解:∵a的3倍与b的差为3a﹣b,∴差的平方为(3a﹣b)2.故选B.7.(3分)对有理数a、b,规定运算如下:a※b=a+ab,则﹣2※3的值为()A.﹣8 B.﹣6 C.﹣4 D.﹣2【解答】解:∵a※b=a+ab,∴﹣2※3=(﹣2)+(﹣2)×3=﹣2﹣6=﹣8.故选A.8.(3分)甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是人,可列出方程()A.98+=﹣3 B.98﹣=﹣3 C.(98﹣)+3= D.(98﹣)+3=﹣3【解答】解:设甲班原有人数是人,(98﹣)+3=﹣3.故选:D.9.(3分)如图是计算机程序计算,若开始输入=﹣,则最后输出的结果是()A.11 B.﹣11 C.12 D.﹣12【解答】解:由题意可得,当=﹣时,(﹣4)﹣(﹣1)=﹣×(﹣4)+1=2+1=3>﹣5,∴将=3时,(﹣4)﹣(﹣1)=(﹣4)×3+1=﹣12+1=﹣11<﹣5,故选B.10.(3分)某小朋友用手指按如图所示的规则练习数数,数到2017时对应的手指是()(各手指对应依次为大拇指、食指、中指、无名指、小拇指)A.大拇指 B.食指C.中指D.无名指【解答】解:大拇指对应的数为8n+1,小拇指对应的数为8n+5,又因为2017÷8=252余1,故一直数到2017时,对应的指头是:大拇指,故选A.二、填空题(本大题共8小题,每空2分,共24分)11.(4分)﹣2的绝对值是 2 ,﹣3的倒数是﹣.【解答】解:﹣2的绝对值是2,﹣3的倒数是﹣.故答案为:2;﹣.12.(4分)比较大小(用“<”或“>”填空):﹣>﹣;﹣|﹣8| <﹣(﹣3).=,<,【解答】解:∵=,∴﹣>﹣,即﹣>﹣;∵﹣|﹣8|=﹣8<0,﹣(﹣3)=3>0,∴﹣8<3,即﹣|﹣8|<﹣(﹣3).故答案为:>,<.13.(4分)单项式﹣的系数是﹣次数是 4 .【解答】解:单项式﹣的系数是﹣,次数4,故答案为:﹣,4.14.(2分)已知关于的方程a+4=1﹣2的解为=3,则a= ﹣3 .【解答】解:把=3代入方程,得:3a+4=1﹣6,解得:a=﹣3.故答案是:﹣3.15.(4分)若单项式22m﹣3y与﹣83y n﹣1是同类项,则m= 3 ;n= 2 .【解答】解:由题意,得2m﹣3=3,n﹣1=1,解得m=3,n=2,故答案为:3,2.16.(2分)若2﹣2﹣1=2,则代数式22﹣4﹣7的值为﹣1 .【解答】解:∵2﹣2﹣1=2,∴2﹣2=3,∴代数式22﹣4﹣7=2(2﹣2)﹣7=2×3﹣7=﹣1.故答案为:﹣1.17.(2分)若关于、y的多项式3|m|y2+(m﹣2)2y﹣4是四次三项式,则m的值为﹣2 .【解答】解:∵关于、y的多项式3|m|y2+(m﹣2)2y﹣4是四次三项式,∴|m|+2=4,m﹣2≠0,解得:m=﹣2,故答案为:﹣2.18.(2分)将正整数从1开始,按如图所表示的规律排列.规定图中第m行、第n列的位置记作(m,n),如正整数8的位置是(2,3),则正整数137的位置记作(12,8).【解答】解:∵122=144,这一行的数字共12个,且依次减少1,144﹣137=7,∴137是第12行,第7+1=8个数字,也就是第8列,它的位置记作(12,8).故答案为:(12,8).三、解答题(本大题共9小题,共56分)19.(9分)计算:(1)﹣10﹣(﹣16)+(﹣24)(2)(+﹣)×(﹣20 )(3)﹣14+(﹣2)2﹣6×(﹣)【解答】解:(1)原式=﹣10+16﹣24=﹣10﹣8=﹣18;(2)原式=﹣10﹣5+4=﹣11;(3)原式=﹣1+4﹣3+2=2.20.(6分)化简下列各式:(1)2a2b﹣3ab﹣14a2b+4ab(2)5(+y)﹣4(3﹣2y)+3(2﹣y)【解答】解:(1)原式=﹣12a2b+ab;(2)原式=5+5y﹣12+8y+6﹣3y=﹣+10y.21.(6分)解方程:(1)4﹣=3(2﹣)(2).【解答】解:(1)去括号,得:4﹣=6﹣3,移项,得:﹣+3=6﹣4,合并同类项,得:2=2,系数化为1,得:=1;(2)去分母,得:3(﹣1)﹣12=2(2+1),去括号,得:3﹣3﹣12=4+2,移项,得:3﹣4=2+3+12,合并同类项,得:﹣=17,系数化为1,得:=﹣17.22.(5分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c <0,a+b <0,c﹣a >0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.23.(5分)已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+1(1)当a=﹣1,b=2时,求A+2B的值;(2)若(1)中的代数式的值与a的取值无关,求b的值.【解答】解:(1)A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+ab+1)=2a2+3ab﹣2a﹣1﹣2a2+2ab+2=5ab﹣2a+1当a=﹣1,b=2时,原式=﹣10+2+1=﹣7(2)∵A+2B=(5b﹣2)a+1,代数式的值与a的取值无关,∴5b﹣2=0,∴b=.24.(6分)问题背景:小红同学在学习过程中遇到这样一道计算题“计算4×3.142﹣4×3.14×3.28+3.282”,他觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师.崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!获取新知:请你和小红一起完成崔老师提供的问题:(1)填写下表:解决问题:(3)请结合上述的有关信息,计算4×3.142﹣4×3.14×3.28+3.282.【解答】解:(1)当=3,y=2时,B=42﹣4y+y2=4×32﹣4×3×2+22=16;当=1,y=1时,B=42﹣4y+y2=4×12﹣4×1×1+12=1;当=5,y=3时,B=42﹣4y+y2=4×52﹣4×5×3+32=49.故答案为16,1,49;(2)B=A2;(3)4×3.142﹣4×3.14×3.28+3.282=(2×3.14﹣3.28)2=9.25.(4分)定义一种新运算:观察下列各式:1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13(1)请你想一想:a⊙b= 4a+b ;(2)若a≠b,那么a⊙b ≠b⊙a(填入“=”或“≠”)(3)若a⊙(﹣2b)=4,则2a﹣b= 2 ;请计算(a﹣b)⊙(2a+b)的值.【解答】解:(1)由题目中的式子可得,a⊙b=4a+b,故答案为:4a+b;(2)∵a⊙b=4a+b,b⊙a=4b+a,∴(a⊙b)﹣(b⊙a)=(4a+b)﹣(4b+a)=4a+b﹣4b﹣a=4(a﹣b)+(b﹣a),∵a≠b,∴4(a﹣b)+(b﹣a)≠0,∴(a⊙b)≠(b⊙a),故答案为:≠;(3)a⊙(﹣2b)=4,a⊙(﹣2b)=4a+(﹣2b)=4a﹣2b,∴4=4a﹣2b,∴2a﹣b=2,故答案为:2;(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b=6a﹣3b=3(2a﹣b)=3×2=6.26.(7分)小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产情况(超产记为正、减产记为负):)根据记录的数据可知小明妈妈星期三生产玩具16 个;(2)根据记录的数据可知小明妈妈本周实际生产玩具147 个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣3元,那么小明妈妈这一周的工资总额是多少元?(4)若将上面第(3)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由.【解答】解:(1)20﹣4=16个;(2)∵(+10)+(﹣12)+(﹣4)+(+8)+(﹣1)+(+6)+0=10﹣12﹣4+8﹣1+6=7,∴140+7=147(个).故本周实际生产玩具147个;(3)147×5+(10+8+6)×3+(12+4+1)×(﹣3)=735+24×3+17×(﹣3)=735+72﹣51=756(元).故小明妈妈这一周的工资总额是756元;(4)147×5+7×3=735+21=756(元).故小明妈妈这一周的工资与按日计件的工资一样多.故答案为:16,147.27.(8分)如图所示,在数轴上A点表示数a,B点表示数b,且a、b满足|2a+6|+|b﹣9|=0(1)点A表示的数为﹣3 ,点B表示的数为9 ;(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在点A、点B之间的数轴上找一点C,使BC=2AC,则C点表示的数为 1 ;(3)在(2)的条件下,若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B 点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q运动时间为t秒.请用含t的代数式表示:点P到点A的距离PA= ,点Q到点B的距离QB= 8﹣t(0≤t≤8);点P与点Q之间的距离PQ= .【解答】解:(1)∵|2a+6|+|b﹣9|=0∴2a+6=0,b﹣9=0,解得a=﹣3,b=9,∴点A表示的数为﹣3,点B表示的数为9;(2)AB=9﹣(﹣3)=12,∵BC=2AC,∴BC=8,AC=4,∴OC=1,∴C点表示的数为1;(3)点P到点A的距离PA=;点Q到点B的距离QB=8﹣t(0≤t≤8);当0≤t≤2时,点P与点Q之间的距离PQ=t+4﹣3t=4﹣2t,当2<t≤4时,点P与点Q之间的距离PQ=3t﹣t﹣4=2t﹣4,当4<t≤8时,点P与点Q之间的距离PQ=8﹣t.即PQ=.故答案为﹣3,9;1;;8﹣t(0≤t≤8);.。
A .B .C .D . 七年级第一学期数学期中考试卷 2016.11说明:本试卷满分110分,考试时间:100分钟一、选择题 (本大题共10小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填在答题卡上.)1.-3的相反数是( ) A .-3 B .-13 C .13 D .32. 中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为…………………………………… ( )A .6.75×104吨B .6.75×103吨C .0.675×105吨D .67.5×103吨3、把(+5)-(+3)-(-1)+(-5)写成省略括号的和的形式是( ) A .-5-3+1-5 B .5-3-1-5 C .5+3+1-5 D .5-3+1-54.在下列数:+3、+(-2.1)、-12、-π、0、-9-、中,正数有 …… ( ) A .1个 B .2个 C .3个D .4个 5. 下列合并同类项中,正确的是…………………………………………………… ( )A .xy y x 633=+B .332532a a a =+C .033=-nm mnD .257=-x x6.下列说法正确的是………………………………………………………………………( )A .单项式2342x y 的次数是9;B . 1a x x++不是多项式; C .322223x x y y -+是三次三项式; D .单项式232r π的系数是32; 7.a 、b 是有理数,且||a =-a ,||b =b ,||a >||b ,用数轴上的点来表示a 、b ,正确的是 ( )8.马小虎做了6道题: ①(-1)2015=-2015; ②-2+1=-3; ③-2×32=-36; ④12÷12-⎛⎫ ⎪⎝⎭=-1;⑤12÷(2-3)=12÷2-12÷3=2;⑥-3÷12×2=-3÷1=-3. 其中他做对的题目有( )A .0道B .1道C .2道D .3道9.某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米 ,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x 小时,则可列方程得 ( )A.⎪⎭⎫ ⎝⎛-=6145x x B.⎪⎭⎫ ⎝⎛+=6145x x C.x x 4615=⎪⎭⎫ ⎝⎛- D.x x 4615=⎪⎭⎫ ⎝⎛+ 10下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位,对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前200位的所有数字之和是 ( )A .994B .995C .998D .999二、填空题:(本大题共10小题,每空2分,共26分.请将答案填在答题卡上)11. -3的倒数 , 3232ab c -的系数是 . 12.比较大小:① 25- 35-, ②)43(-- 54-- 13. 某冬天中午的温度是5 C ︒,下午上升到7℃,由于冷空气南下,到夜间又下降了9C ︒,则这天夜间的温度是________C ︒.14.在式子x +y ,0,-a ,-3x 2y ,13x +,1x中,单项式的个数为______________。
2016﹣2017学年七年级(上)期中数学试卷(考试时间100分钟,试卷总分110分)一、选择题:(本大题共10小题,每题3分,共30分,每小题只有一个正确答案,把正确答案的序号填在下表内)1.﹣3的绝对值是-------------------------------------------------------------------------------------( )A .﹣3B .31 C .﹣31D .3 2.下列计算正确的是---------------------------------------------------------------------------------( )A .7a +a =7a 2B .5y ﹣3y =2C .3x 2y ﹣2yx 2=x 2y D .3a +2b =5ab3.无锡地铁1号线的开通,方便了市民的出行.从2014年7月1日到7月31日的1个月里,累计客运量约达3040000人次,将3040000用科学记数法表示为----------------------( )A .3.04×105B .3.04×106C .30.4×105D .0.304×1074.在﹣121,1.2,﹣2,0,﹣(﹣2),(﹣1)3中,负数的个数有-----------------( )A .2个B .3个C .4个D .5个5.一只蚂蚁从数轴表示数﹣2的点A 出发,向右直爬5个单位到达点B ,则点B 所表示的数为----------------------------------------------------------------------------------------------------------------------( ) A .5 B .3 C .﹣3 D .﹣16.下列计算错误的是---------------------------------------------------------------------------------( ) A .0﹣(﹣5)=5 B .(﹣3)﹣(﹣5)=2C .32×(﹣49)=﹣23D .(﹣36)÷(﹣9)=﹣47.下列说法正确的是---------------------------------------------------------------------------------( )A .a 2是单项式B .﹣32a 2b 3c 是五次单项式C .ab 2﹣2a +3是四次三项式 D .2πr 的系数是2π,次数是1次8.我市某楼盘进行促销活动,决定将原价为a 元/平方米的商品房价降价10%销售,降价后的销售价为------------------------------------------------------------------------------------------------( ) A .a ﹣10% B .a •10% C .(1﹣10%)a D .(1+10%)a9.若|m ﹣3|+(n +2)2=0,则m +2n 的值为----------------------------------------------------( ) A .﹣1 B .1 C .4 D .710.某旅游团一行40人到一旅馆住宿,旅馆的客房有三人间、二人间、单人间三种,三人间每天178元/间,二人间每天128元/间,单人间每天98元/间.要把这40人安排好住宿,每天最少的住宿费用是-----------------------------------------------------------------------------------( )A .2392元B .2394元C .2388元D .2412元 二、填空题:(本大题共8小题,共10个空格,每空2分,共20分)11.﹣5的相反数是 ,﹣32的倒数是 .12.比较大小:﹣32 ﹣23(填“<”或“>”).13.某种零件,标明要求是φ20±0. 2 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm ,该零件 (填“合格”或“不合格”). 14.当n = 时,4x 4y 3与﹣9x 2n y 3是同类项.15.绝对值不大于2的整数有 .17.已知|x |=3,y =6,且xy <0,则x ﹣y 的值是 .18.如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为2的顶点上时,那么他应走2个边长, 即从2→3→4为第一次“移位”,这时他到达编号为4的顶点;然后 从4→3为第二次“移位”.若小宇从编号为3的顶点开始,第2017次 “移位”后,则他所处顶点的编号是 .三、解答题:(本大题共7小题,共60分.解答时应写出演算过程或文字说明) 19.(本题共4分)将下列各数在数轴上表示出来,并将他们用“>”连接起来—21, 52.-, 0 ,22)(- ,)(2﹢-20.计算:(本题每小题4分,共16分) (1)(+3)+(﹣5)﹣4﹣(﹣2) (2)12−7×(−4)+8÷(−2) (3)(83+61﹣43)×(﹣24) (4)()32131612124÷-⎪⎭⎫ ⎝⎛-⨯-+-21.化简:(本题每小题4分,共8分)(1)3a 2b +2ab 2+5﹣3a 2b ﹣5ab 2﹣2 (2)(3x 2﹣y 2)﹣3(﹣y 2+4x 2)22.(本题共6分)先化简,再求值:5a 2﹣[3a ﹣2(2a ﹣1)+4a 2],其中a =﹣21.23.(本题共6分)为了创建“全国文明城市”,我校志愿者小组成员从学校出发,在学校门口东西方向的道路上进行义务保洁.规定向东行为正,向西行为负,已知某志愿者一个下午的七次行走记录如下表所示(单位:千米):(1)该志愿者保洁结束时是否回到出发地点?如果没有,那么距离出发点多少千米?(2)在第次保洁时离出发地点最远;(3)若每千米平均用时15分钟,则该志愿者完成这次保洁任务一共用时多少小时?24.(本题共6分)同学们都知道:|5﹣(﹣3)|表示5与﹣3之差的绝对值,实际上也可理解为5与﹣3两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣3两点之间的距离是,(2)数轴上表示x与﹣2的两点之间的距离可以表示为(用含x的代数式表示).(3)如果|x+2|=5,则x= .(4)同理|x+99|+|x﹣1|表示数轴上有理数x所对应的点到﹣99和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+99|+|x﹣1|=100,则这样的整数共有个.25.(本题共6分)某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20立方米时,按3元/立方米计费;月用水量超过20立方米时,其中的20立方米仍按3元/立方米收费,超过部分按3.5元/立方米计费.设每户家庭月用水量为x立方米.(1)当x不超过20时,应收水费为(用x的代数式表示);当x超过20时,应收水费为(用x的代数式表示);(2)小明家第二季度用水情况为:四月份用水15立方米,五月份用水22立方米,六月份用水25立方米,请帮小明计算一下他家这个季度应交多少元水费?26.(本题共8分)某农户承包果树若干亩,今年投资13800元,收获水果总产量为18000千克.此水果在市场上每千克售a 元,在果园直接销售每千克售b 元(b <a ).该农户将水果拉到市场出售平均每天出售1000千克.(1)若这批水果全部在市场上销售,则需要 天; (2)用代数式分别表示两种方式出售水果的收入;(3) 水果在市场上销售时需2人帮忙,每人每天付工资150元,每天还需缴纳市场管理费100元.两种出售水果方式都在相同的时间内售完全部水果.当a =4.5元,b =4元时,请你计算两种销售方式的利润,并确定哪种出售方式较好.(利润=收入﹣支出)2016﹣2017学年七年级(上)数学期中测试答案一、选择题:二、填空题:11、5,﹣2312、> 13、合格 14、2 15、±2,±1,0;0 16、﹣3 17、﹣9 18、1三、解答题:19、 图略 ------------------------------------------------2分(-2)2>|-2.5|>0>-21>-(+2) ----------------4分 20、(1)原式=3-5-4+2 ------------------------2分 =-2 ------------------------------4分 (2)原式=12-(-28)+(4) ------2分=12+28-4 ------------------3分(3)原式=)(﹣)﹣(﹣)+(﹣244324612483⨯⨯⨯ -----------2分 =-9+(-4)-(-18) -------------------------------3分 =5 ------------------------- --------------------------4分(4)原式=-1+4×(-61)-61----------------------------------------2分=-1-32-61-----------------3分=-611------------4分21、(1)原式=(3-3)a 2b +(2-5)ab 2+(5-2)----2分 =-3ab 2+3 ---------------------------------4分 (2)原式=3x 2-y 2+3y 2-12x 2 ----------2分=-9x 2+2y 2 -------------------4分22、原式=5a 2-[3a -4a -2+4a 2]----------------2分=5a 2-3a +4a +2-4a 2 -----------------3分 =a 2+a +2 -------------------------------4分 当a =-21时,原式=47--------------------6分 23、(1)1-1.1+2+0.7-1+1.2-3=-0.2 -------------------------1分 答:没有回到出发点,距离出发点0.2千米 ------2分 (2)六 ----------------------------------------------------------4分(3)1+1.1+2+0.7+1+1.2+3=10千米 ----------------------------5分 10×15=150分钟=2.5小时答:一共用时2.5小时 ----------------------------------6分 24、(1)8 (2)|x +2| (3)-7、3 (4)101 (每空2分,第(3)题少一个答案扣1分) 25、(1)3x 、3.5x -10 ------------2分(每空1分) (2)15×3+3.5×22-10+3.5×25-10 -----------4分=189.5元 ------------------5分答:应交水费189.5元 ---------------------------6分 26、(1)18 ----------------------------------1分 (2)市场上销售:18000a -----------------------2分 果园直接销售:18000b ---------------------3分(3)市场上销售获利:18000×4.5-(2×150+100)×18-13800=60000元 ---------------------------------------------5分果园直接销售获利:18000×4-13800=58200元 ------------------------------------------7分因为60000>58200。
江苏省无锡市锡东片2017-2018学年七年级数学上学期期中试题一.精心选一选(本大题共30分,每小题3分) 1.的相反数是( ) A .B .﹣C .2D .﹣22.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是( ) A .24.70千克B .25.30千克C .24.80千克D .25.51千克 3.实数0、、π中,无理数有( ) A .1个B .2个C .3个D .4个4.下列单项式中,与b a 2是同类项的是( ) A .22b aB .2abC .ab 3D .22ba5.一个两位数,个位上的数字是a ,十位上的数字是b ,用代数式表示这个两位数是( ) A .abB .baC .10a+bD .10b+a6.下列说法不正确的是( ) A .0既不是正数,也不是负数 B .绝对值最小的数是0C .绝对值等于自身的数只有0和1D .平方等于自身的数只有0和17.如果单项式3a n b 2c 是5次单项式,那么n=( ) A .2B .3C .4D .58.在下列式子ab ,,ab 2+b+1,,x 2+x 3﹣6中,多项式有( ) A .2个B .3个C .4个D .5个9.一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( ) A .甲或乙或丙B .乙C .丙D .乙或丙10.如图所示的运算程序中,若开始输入的x 值为15,则第1次输出的结果为18,第2次输出的结果为9,…,第2017次输出的结果为( )A .3B .4C .6D .9二.细心填一填(本大题共16分,每小题2分) 11.﹣7的倒数是 .12.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是 . 13.化简:﹣2a ﹣(﹣2a ﹣1)的结果是 .14.若3a 3b m与6a n b 5的差是单项式,则这个单项式是 . 15.若|x|=5,|y|=12,且x >y ,则x+y 的值为 . 16.若a 2﹣3b=5,则6b ﹣2a 2+2017= .17.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费 元. 18.如图,若|a+1|=|b+1|,|1﹣c|=|1﹣d|,则a+b+c+d= .三.静心解一解(本大题共64分)19.(本题满分5分)在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.﹣,0,﹣2.5,﹣3,1.考试号 .……………………………………………………20.(本题满分12分,每小题3分)计算:(1)13+(﹣5)﹣(﹣21)﹣19 (2)1 36(8)8÷-⨯(3)﹣14﹣(1﹣0.5)××[2﹣(﹣3)2] (4)()×(﹣48)21.(本题满分6分,每小题3分)化简:(1)﹣5m+4m﹣2n+6n+3m (2)(a2﹣6a﹣7)﹣3(a2﹣3a+4)22. 化简并求值(本题满分12分,每题各6分)(1)5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=﹣,b=.(2)已知|x+1|+(y﹣2)2=0,求(2x2y﹣2xy2)﹣[(3x2y2+3x2y)+(3x2y2﹣3xy2)]的值.23.(本题满分6分)某食品厂计划平均每天生产200袋食品,但是由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超过计划量记为正):(1)根据记录的数据可知该厂星期二生产食品多少袋?(2)根据记录的数据可知产量最多的一天比产量最少的一天多生产食品多少袋?(3)根据记录的数据可知该厂本周实际共生产食品多少袋?24(本题满分7分).小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?25.(本题满分8分)点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时出发,相向而行.M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数是;(2)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值.26.(本题满分8分)【阅读理解】我们知道,1+2+3+…+n=,那么12+22+32+…+n2结果等于多少呢?在图1所示三角形数阵中,第1行圆圈中的数为1,即12,第2行两个圆圈中数的和为2+2,即22,…;第n行n个圆圈中数的和为,即n2,这样,该三角形数阵中共有个圆圈,所有圆圈中数的和为12+22+32+…+n2.【规律探究】将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为,由此可得,这三个三角形数阵所有圆圈中数的总和为:3(12+22+32+…+n2)= ,因此,12+22+32+…+n2= .【解决问题】根据以上发现,计算:的结果为.2017-2018学年七年级(上)期中试卷一、选择题(3分一题) 1.B2.C3.A4.D5.D6.C7.A8.B9.B10.A二、填空题(2分一题) 11、17-12、71.610⨯ 13、114、353a b - 15、-7或-17 16、200717、39.518、0三、解答题19、图略……3’113 2.50122-<-<-<<……5’20、(1)原式=13-5+21-19 1’(2)原式=13688-÷⨯ 1’=34-242’=113688-⨯⨯2’=103’=916-3’ (3)原式=111(7)23--⨯⨯- 1’(4)原式=11631348484848127424-⨯+⨯-⨯+⨯ 1’=716-+ 2’ =-44+56-36+26 2’=163’ =23’21、(1)原式=2m+4n 3’(注:只合并对2m 或4n 可得2分)(2)原式=22673912a a a a ---+- 2’=22319a a -+-3’22、(1)原式=22221553a b ab ab a b --- 2’=22126a b ab -3’ 当11,23a b =-=时 原式=22111112()6()()2323⨯-⨯-⨯-⨯4’ =436’(2)由题意得:1,2x y =-=2’ 原式=22226x y x y xy --+ 4’ =-306’23、(1)200-1=199(袋)答:星期二生产199袋.2’(2)11-(-9)=20(袋)答:最多比最少的一天多生产20袋.4’(3)5-1-7+11-9+5+6+200X7=1410(袋)答:本厂实际生产1410袋6’(注:三个小题都未作答的扣1分) 24、(1)图略……3’(2)2-(-1)=3km5’答:小彬家与学校之间的距离是3km. (3)2+1.5+4.5+1=9km6’900025036÷=min7’答:小明跑步共用了36分钟. 25、(1)4、-4(每空两分)4’(2)相遇前:(2010)(23)2s -÷+= 6’相遇后:(2010)(23)6s +÷+=8’答:当t=2或6秒时相距10个单位长度. 26、(1)(21)(1)(21)21,,,134526n n n n n n n +++++(每空两分,共8分)。
2016-2017学年江苏省无锡市新区七年级(上)期中数学试卷一、细心选一选:要求细心(本大题共8小题,每题2分,共16题)1.(2分)2的相反数是()A.2 B.﹣2 C.D.2.(2分)下列各个运算中,结果为负数的是()A.|﹣2|B.﹣(﹣2)C.(﹣2)2D.﹣223.(2分)据统计,2015年上半年某港口共实现货运吞吐量92590 000吨,比去年同期增长24.5%.将92590 000这个数用科学记数法可表示为()A.92.59×106B.9.259×107C.9259×104D.9.259×1064.(2分)比a的大5的数是()A.a+5 B.a C.+5 D.(a+5)5.(2分)下列合并同类项中,正确的是()A.3x+3y=6xy B.2a2+3a3=5a3C.3mn﹣3nm=0 D.7x﹣5x=26.(2分)下列说法中,正确的个数有()个.①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数.④倒数等于本身的数有1,﹣1.A.1 B.2 C.3 D.47.(2分)国庆期间,某商店推出全店打8折的优惠活动,持贵宾卡的客户还可在8折的基础上再打9折.某人持贵宾卡买了一件商品共花了a元,则该商品的标价是()A.a元B.a元C.a元D.a元8.(2分)如图,小惠设计了一个电脑程序,已知x、y为两个不相等的有理数,当输出的值M=24时,所输入的x、y中较大的数为()A.48 B.24 C.12 D.6二.细心填一填:要求细心(每空2分,共24分)9.(4分)﹣3的倒数等于;绝对值不大于3的整数是.10.(4分)比较大小,用“<”“>”或“=”连接:(1)﹣|﹣| ﹣(﹣);(2)﹣3.14﹣|﹣π| 11.(2分)数轴上,到表示﹣5的点距离为2的点表示的数为.12.(2分)多项式3x2y﹣7x4y2﹣xy3+27最高次项的系数是.13.(2分)若代数式﹣2a3b m与3a n+1b4是同类项,则m+n=.14.(2分)如图所示,阴影部分的面积为.15.(2分)若3a2﹣a﹣2=0,则5+2a﹣6a2=.16.(2分)对正有理数a、b规定运算★如下:a★b=,则﹣2★﹣4=.17.(2分)若|a|=8,|b|=5,且a+b>0,那么a﹣b=.18.(2分)如图,在各个手指间标记字母A,B,C,D.请按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,….当字母C第2015次出现时,数到的数恰好是.二.用心做一做:并写出运算过程(本大题共8小题,共计60分)19.(12分)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)﹣12+|2﹣3|﹣2×(﹣1)2015(3)(﹣+﹣)÷(﹣)(4)[1﹣(1﹣0.5×)]×|3﹣(﹣3)2|20.(6分)化简:(1)3x2+2x﹣5x2+3x(2)先化简,再求值:(﹣4a2+2a﹣8)﹣(a﹣2),其中a=﹣.21.(6分)已知a、b互为倒数,x、y互为相反数,m是平方后得4的数.求代数式(ab)2015﹣﹣m2的值.22.(6分)小黄做一道题“已知两个多项式A,B,计算A﹣B”.小黄误将A﹣B 看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请你帮助小黄求出A﹣B的正确答案.23.(6分)已知有理数a,b在数轴上的位置如图:(1)在数轴上标出﹣a,﹣b的位置,并将a,b,﹣a,﹣b用“<”连接;(2)化简|a+b|﹣|a﹣b|﹣|a|.24.(8分)观察下列等式:,,,将以上三个等式两边分别相加得:=1﹣=1﹣=.(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①+…+=;②…+=;(3)探究并计算:…+.25.(7分)某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.元旦打折方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款元.(用含x的代数式表示)若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若x等于30,通过计算说明此时按哪种方案更合算.(3)当x=30,你能给出一种更为省钱的购买方案吗?26.(9分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2016-2017学年江苏省无锡市新区七年级(上)期中数学试卷参考答案与试题解析一、细心选一选:要求细心(本大题共8小题,每题2分,共16题)1.(2分)2的相反数是()A.2 B.﹣2 C.D.【解答】解:2的相反数为:﹣2.故选:B.2.(2分)下列各个运算中,结果为负数的是()A.|﹣2|B.﹣(﹣2)C.(﹣2)2D.﹣22【解答】解:A、|﹣2|=2,不是负数;B、﹣(﹣2)=2,不是负数;C、(﹣2)2=4,不是负数;D、﹣22=﹣4,是负数.故选:D.3.(2分)据统计,2015年上半年某港口共实现货运吞吐量92590 000吨,比去年同期增长24.5%.将92590 000这个数用科学记数法可表示为()A.92.59×106B.9.259×107C.9259×104D.9.259×106【解答】解:92 590 000=9.259×107.故选:B.4.(2分)比a的大5的数是()A.a+5 B.a C.+5 D.(a+5)【解答】解:比a的大5的数是代数式表示为:a+5,故选:A.5.(2分)下列合并同类项中,正确的是()A.3x+3y=6xy B.2a2+3a3=5a3C.3mn﹣3nm=0 D.7x﹣5x=2【解答】解;A、3x+3y无法计算,故此选项错误;B、2a2+3a3无法计算,故此选项错误;C、3mn﹣3nm=0,正确;D、7x﹣5x=2x,故此选项错误;故选:C.6.(2分)下列说法中,正确的个数有()个.①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数.④倒数等于本身的数有1,﹣1.A.1 B.2 C.3 D.4【解答】解:①有理数包括整数和分数,正确;②一个代数式不是单项式就是多项式,错误,还有可能是分式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数,错误;④倒数等于本身的数有1,﹣1,正确.故选:B.7.(2分)国庆期间,某商店推出全店打8折的优惠活动,持贵宾卡的客户还可在8折的基础上再打9折.某人持贵宾卡买了一件商品共花了a元,则该商品的标价是()A.a元B.a元C.a元D.a元【解答】解:设标价为x,第一次打八折后价格为x元,第二次打9折后为×x=a,解得:x=a.故选:D.8.(2分)如图,小惠设计了一个电脑程序,已知x、y为两个不相等的有理数,当输出的值M=24时,所输入的x、y中较大的数为()A.48 B.24 C.12 D.6【解答】解:①x>y时,根据题意得:M=a+x+y=2x=24,解得:x=12,②x<y时,a=y﹣x,M=y﹣x+x+y=2y=24,解得:y=12,综合①②,符合条件是数是12;故选:C.二.细心填一填:要求细心(每空2分,共24分)9.(4分)﹣3的倒数等于﹣;绝对值不大于3的整数是0,﹣1,﹣2,﹣3,1,2,3.【解答】解:﹣3的倒数等于﹣;绝对值不大于3的整数是0,﹣1,﹣2,﹣3,1,2,3.故答案为:﹣;0,﹣1,﹣2,﹣3,1,2,3.10.(4分)比较大小,用“<”“>”或“=”连接:(1)﹣|﹣| <﹣(﹣);(2)﹣3.14>﹣|﹣π|【解答】解:(1)∵﹣|﹣|=﹣<0,﹣(﹣)=>0,∴﹣|﹣|<﹣(﹣);(2)∵﹣|﹣π|=﹣π,|﹣3.14|=3.14,|﹣π|=π,且3.14<π,∴﹣3.14>﹣|﹣π|,故答案为:(1)<;(2)>.11.(2分)数轴上,到表示﹣5的点距离为2的点表示的数为﹣7或﹣3.【解答】解:则到表示﹣5的点距离为2的点表示的数为:﹣7或﹣3.故答案是:﹣7或﹣3.12.(2分)多项式3x2y﹣7x4y2﹣xy3+27最高次项的系数是﹣7.【解答】解:多项式3x2y﹣7x4y2﹣xy3+27最高次项的系数是﹣7,故答案为:﹣7.13.(2分)若代数式﹣2a3b m与3a n+1b4是同类项,则m+n=6.【解答】解:根据题意得:n+1=3,m=4,则n=2,则m+n=6.故答案是:6.14.(2分)如图所示,阴影部分的面积为mn﹣(不化简也算对).【解答】解:阴影部分的面积=正方形的面积﹣2个半圆形的面积=mn﹣,故答案为:mn﹣15.(2分)若3a2﹣a﹣2=0,则5+2a﹣6a2=1.【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2,∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1.故答案为:1.16.(2分)对正有理数a、b规定运算★如下:a★b=,则﹣2★﹣4=4.【解答】解:根据题中的新定义得:﹣2★﹣4==4.故答案为:4.17.(2分)若|a|=8,|b|=5,且a+b>0,那么a﹣b=3或13.【解答】解:∵|a|=8,|b|=5,∴a=±8,b=±5;∵a+b>0,∴a=8,b=±5.当a=8,b=5时,a﹣b=3;当a=8,b=﹣5时,a﹣b=13;故a﹣b的值为3或13.18.(2分)如图,在各个手指间标记字母A,B,C,D.请按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,….当字母C第2015次出现时,数到的数恰好是6045.【解答】解:∵字母A→B→C→D→C→B每6个一循环,在这一个循环里面,C 出现2次,2015÷2=1007…1,∴C第2015次出现时,数到的数恰好是1007×6+3=6045.故答案为:6045.二.用心做一做:并写出运算过程(本大题共8小题,共计60分)19.(12分)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)﹣12+|2﹣3|﹣2×(﹣1)2015(3)(﹣+﹣)÷(﹣)(4)[1﹣(1﹣0.5×)]×|3﹣(﹣3)2|【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣34+18﹣13=﹣16﹣13=﹣29(2)﹣12+|2﹣3|﹣2×(﹣1)2015=﹣1+1﹣2×(﹣1)=0+2=2(3)(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣24)=(﹣)×(﹣24)+×(﹣24)﹣×(﹣24)=18﹣20+14=12(4)[1﹣(1﹣0.5×)]×|3﹣(﹣3)2|=[1﹣(1﹣)]×|3﹣9|=[1﹣]×6=×6=120.(6分)化简:(1)3x2+2x﹣5x2+3x(2)先化简,再求值:(﹣4a2+2a﹣8)﹣(a﹣2),其中a=﹣.【解答】解:(1)原式=(3x2﹣5x2)+(2x+3x)=﹣2x2+5x;(2)原式=﹣a2+a﹣2﹣a+2=﹣a2,当a=﹣时,原式=﹣.21.(6分)已知a、b互为倒数,x、y互为相反数,m是平方后得4的数.求代数式(ab)2015﹣﹣m2的值.【解答】解:∵a、b互为倒数,x、y互为相反数,m是平方后得4的数,∴ab=1,x+y=0,m=±2,当m=2时,原式=12015﹣﹣22=﹣3;当m=﹣2时,原式=12015﹣﹣(﹣2)2=﹣3.综上所述,(ab)2015﹣﹣m2的值为﹣322.(6分)小黄做一道题“已知两个多项式A,B,计算A﹣B”.小黄误将A﹣B 看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请你帮助小黄求出A﹣B的正确答案.【解答】解:∵A+B=9x2﹣2x+7,B=x2+3x﹣2,∴A=9x2﹣2x+7﹣(x2+3x﹣2)=9x2﹣2x+7﹣x2﹣3x+2=8x2﹣5x+9,∴A﹣B=8x2﹣5x+9﹣(x2+3x﹣2)=8x2﹣5x+9﹣x2﹣3x+2=7x2﹣8x+11.23.(6分)已知有理数a,b在数轴上的位置如图:(1)在数轴上标出﹣a,﹣b的位置,并将a,b,﹣a,﹣b用“<”连接;(2)化简|a+b|﹣|a﹣b|﹣|a|.【解答】解:(1)如图所示:用“<”连接为:b<﹣a<a<﹣b;(2)由题意可判断a+b<0,a﹣b>0,a>0,则原式=﹣(a+b)﹣(a﹣b)﹣a=﹣3a.24.(8分)观察下列等式:,,,将以上三个等式两边分别相加得:=1﹣=1﹣=.(1)猜想并写出:=﹣.(2)直接写出下列各式的计算结果:①+…+=;②…+=;(3)探究并计算:…+.【解答】解:(1)∵,,,∴=﹣.故答案为:﹣;(2)①∵由(1)知,=﹣,∴+…+=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为:;②…+=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为:;(3)∵=•,=•,∴原式=(++…+)=(1﹣+﹣+…+﹣)=(1﹣)=×=.25.(7分)某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.元旦打折方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款200x+16000元.(用含x的代数式表示)若该客户按方案二购买,需付款180x+18000元.(用含x的代数式表示)(2)若x等于30,通过计算说明此时按哪种方案更合算.(3)当x=30,你能给出一种更为省钱的购买方案吗?【解答】解:(1)方案一:20×1000+(x﹣20)×200=200x+16000方案二:1000×20×0.9+0.9×200x=180x+18000(2)方案一:200x+16000=200×30+16000=22000(元)方案二:180x+18000=180×30+18000=23400(元),而22000<23400∴按方案一购买较合算.(3)解:先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带,此时共花费:20×1000+10×200×0.9=21800元,∵21800<22000,∴先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带最便宜故答案为:(1)200x+16000,180x+18000;26.(9分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0.(1)a=﹣2,b=1,c=7;(2)若将数轴折叠,使得A点与C点重合,则点B与数4表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=3t+3,AC=5t+9,BC=2t+6.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。