当前位置:文档之家› 概率论与数理统计期末考试之置信区间与拒绝域含答案

概率论与数理统计期末考试之置信区间与拒绝域含答案

概率论与数理统计期末考试之置信区间与拒绝域含答案
概率论与数理统计期末考试之置信区间与拒绝域含答案

概率论与数理统计期末考试之置信区间与拒绝

域含答案

概率论与数理统计期末

置信区间问题

八(1)、从某同类零中抽取9,测得其长度为(

单位:mm ):

6.0

5.7

5.8

6.5

7.0

6.3

5.6

6.1

5.0

设零长度X服从正态分布N

(μ,1)。求μ的置信度为0.95的置信区间。

解:由于零的长度服从正态分布,所以

所以的置信区间为

经计算

的置信度为0.95的置信区间为

即(5.347,6.653)

八(2)、某车间生产滚珠,其直径X

~N

(,0.05),从某天的产品里随机抽出9个量得直径如下(单位:毫米):

14.6

15.1

14.9

14.8

15.2

15.1

14.8

15.0

14.7

若已知该天产品直径的方差不变,试找出平均直径的置信度为0.95的置信区间。

解:由于滚珠的直径X服从正态分布,所以

所以的置信区间为:

经计算

的置信度为0.95的置信区间为

即(14.765,15.057)

八(3)、工厂生产一种零,其口径X(单位:毫米)服从正态分布,现从某日生产的零中随机抽出9个,分别测得其口径如下:

14.6

14.7

15.1

14.9

14.8

15.0

15.1

15.2

14.7

已知零口径X的标准差,求的置信度为0.95的置信区间。

解:由于零的口径服从正态分布,所以

所以的置信区间为:

经计算

的置信度为0.95的置信区间为

即(14.802,14.998)

八(4)、随机抽取某种炮弹9发做实验,测得炮口速度的样本标准差S=3(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的方差的置信度为0.95的置信区间。

因为炮口速度服从正态分布,所以

的置信区间为:

八(5)、设某校女生的身高服从正态分布,今从该校某班中随机抽取9名女生,测得数据经计算如下:。求该校女生身高方差的置信度为0.95的置信区间。

解:因为学生身高服从正态分布,所以

的置信区间为:

的置信度0.95的置信区间为

八(6)、一批螺丝钉中,随机抽取9个,测得数据经计算如下:。设螺丝钉的长度服从正态分布,试求该批螺丝钉长度方差的置信度为0.95的置信区间。

解:因为螺丝钉的长度服从正态分布,所以

的置信区间为:

的置信度0.95的置信区间为

八(7)、从水平锻造机的一大批产品随机地抽取20,测得其尺寸

的平均值,样本方差。假定该产品的尺寸X服从正态分布,其中与均未知。求的置信度为0.95的置信区间。

解:由于该产品的尺寸服从正态分布,所以

的置信区间为:

八(8)、已知某批铜丝的抗拉强度X服从正态分布。从中随机抽取9根,经计算得其标准差为8.069。求的置信度为0.95的置信区间。

()

解:由于抗拉强度服从正态分布所以,

的置信区间为:

的置信度为0.95的置信区间为

,即

八(9)、设总体X

~,从中抽取容量为16的一个样本,样本方差,试求总体方差的置信度为0.95的置信区间。

解:由于

X~,所以

的置信区间为:

的置信度0.95的置信区间为

,即

八(10)、某岩石密度的测量误差X服从正态分布,取样本观测值16个,得样本方差,试求的置信度为95%的置信区间。

解:由于

X

~

,所以

的置信区间为:

的置信度0.95的置信区间为:

拒绝域问题

九(1)、某厂生产铜丝,生产一向稳定,现从其产品中随机抽取10段检查其折断力,测得。假定铜丝的折断力服从正态分布,问在显著水平下,是否可以相信该厂生产的铜丝折断力的方差为16?

解:待检验的假设是

选择统计量

在成立时

取拒绝域w

={}

由样本数据知

接受,即可相信这批铜丝折断力的方差为16。

九(2)、已知某炼铁厂在生产正常的情况下,铁水含碳量X 服从正态分布,其方差为0.03。在某段时间抽测了10炉铁水,测得铁水含碳量的样本方差为0.0375。试问在显著水平下,这段时间生产的铁水含碳量方差与正常情况下的方差有无显著差异?

解:待检验的假设是

在成立时

取拒绝域w

={}

由样本数据知

接受,即可相信这批铁水的含碳量与正常情况下的方差无显著差异。

九(3)、某厂加工一种零,已知在正常的情况其长度服从正态分布,现从一批产品中抽测20个样本,测得样本标准差

S=1.2。问在显著水平下,该批产品的标准差是否有显著差异?

解:待检验的假设是

选择统计量

在成立时

取拒绝域w

={}

由样本数据知

拒绝,即认为这批产品的标准差有显著差异。

九(4)、已知某炼铁厂在生产正常的情况下,铁水含碳量X 服从正态分布。现抽测了9炉铁水,算得铁水含碳量的平均值,若总体方差没有显著差异,即,问在显著性水平下,总体均值有无显著差异?

解:待检验的假设是

在成立时

取拒绝域w={}

由样本数据知

拒绝,即认为总体均值有显著差异。

九(5)、已知某味精厂袋装味精的重量X

~,其中=15,,技术革新后,改用新机器包装。抽查9个样品,测定重量为(单位:克)

14.7

15.1

14.8

15.0

15.3

14.9

15.2

14.6

15.1

已知方差不变。问在显著性水平下,新机器包装的平均重量是否仍为15?

解:待检验的假设是

选择统计量

在成立时

取拒绝域w={}

经计算

接受,即可以认为袋装的平均重量仍为15克。

九(6)、某手表厂生产的男表表壳在正常情况下,其直径(单位:mm)服从正态分布N(20,1)。在某天的生产过程中,随机抽查4只表壳,测得直径分别为:

19.5

19.8

20.0

20.5.

问在显著性水平下,这天生产的表壳的均值是否正常?

解:

待检验的假设为

选择统计量

当成立时,

U~

取拒绝域w={}

经计算

接受,即认为表壳的均值正常。

九(7)、某切割机在正常工作时,切割得每段金属棒长服从正态分布,且其平均长度为10.5cm,标准差为0.15cm。今从一批

产品中随机抽取16段进行测量,计算平均长度为=10.48cm。假设方差不变,问在显著性水平下,该切割机工作是否正常?

解:

待检验的假设为

选择统计量

当成立时,

U~

取拒绝域w={}

由已知

接受,即认为切割机工作正常。

九(8)、某厂生产某种零,在正常生产的条下,这种零的周长服从正态分布,均值为0.13厘米。如果从某日生产的这种零中任取9测量后得=0.146厘米,S

=0.016厘米。问该日生产的零的平均轴长是否与往日一样?

()

解:

待检验的假设为

选择统计量

当成立时,

T~t(8)

取拒绝域w={}

由已知

拒绝,即认为该生产的零的平均轴长与往日有显著差异。

九、某灯泡厂生产的灯泡平均寿命是1120小时,现从一批新生产的灯泡中抽取9个样本,测得其平均寿命为1070小时,样本标准差小时。问在显著性水平下,检测灯泡的平均寿命有无显著变化?

解:

待检验的假设为

选择统计量

当成立时,

T~t(8)

取拒绝域w={}

由已知

接受,即认为检测灯泡的平均寿命无显著变化。

九、正常人的脉搏平均为72次/分,今对某种疾病患者9人,测得其脉搏为(次/分):

68

65

77

70

64

69

72

62

71

设患者的脉搏次数X服从正态分布,经计算得其标准差为4.583。试在显著水平=0.05下,检测患者的脉搏与正常人的脉搏有无显著差异?

解:

待检验的假设为

选择统计量

当成立时,

T

~

取拒绝域w={}

经计算

接受,检测者的脉搏与正常的脉搏无显著差异。

概率论与数理统计期末考试之置信区间与拒绝域

概率论与数理统计期末 置信区间问题 八(1)、从某同类零件中抽取9件,测得其长度为( 单位:mm ): 设零件长度X 服从正态分布N (μ,1)。求μ的置信度为的置信区间。 0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知: 解:由于零件的长度服从正态分布,所以~(0,1) x U N = 0.025{||}0.95P U u <= 所以μ的置信区间为 0.025 0.025 (x u x u -+ 经计算 9 19 1 6i i x x == =∑ μ的置信度为的置信区间为 11 33(6 1.96,6 1.96)-?+? 即, 八(2)、某车间生产滚珠,其直径X ~N (μ, ,从某天的产品里随机抽出9个量得直径如下(单位:毫米 ): 若已知该天产品直径的方差不变,试找出平均直径μ的置信度为的置信区间。 0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知: 解:由于滚珠的直径X 服从正态分布,所以~(0,1) x U N = 0.025{||}0.95P U u <= 所以μ的置信区间为: 0.0250.025 (x u x u -+ 经计算 9 19 1 14.911i i x x == =∑ μ的置信度为的置信区间为 (14.911 1.96 1.96-+ 即, 八(3)、工厂生产一种零件,其口径X (单位:毫米)服从正态分布2 (,)N μσ,现从某日生产的零件中随机抽出9个,分别测得其口径如下:

已知零件口径X 的标准差0.15σ=,求μ的置信度为的置信区间。 0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知: 解:由于零件的口径服从正态分布, 所以~(0,1)x U N = 0.025{||}0.95P U u <= 所以μ 的置信区间为:0.025 0.025 (x u x u -+ 经计算 9 19 1 14.9i i x x == =∑ μ 的置信度为的置信区间为 0.150.15 33(14.9 1.96,14.9 1.96)-?+? 即 , 八(4)、随机抽取某种炮弹9发做实验,测得炮口速度的样本标准差S =3(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的方差2 σ的置信度为的置信区间。 22220.0250.9750.0250.975((8)17.535, (8) 2.18(9)19.02, (9) 2.7)χχχχ====已知:; 因为炮口速度服从正态分布,所以 2 22 (1)~(1)n S W n χσ-= - 220.0250.975{(8)(8)}0.95P W χχ≤≤= 2 σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ??-- ? ?--?? 2σ的置信度的置信区间为 8989,17.535 2.180???? ??? 即()4.106,33.028 八(5)、设某校女生的身高服从正态分布,今从该校某班中随机抽取9名女生,测得数据经计算如下: 162.67, 4.20x cm s cm ==。求该校女生身高方差2σ的置信度为的置信区间。 22220.0250.9750.0250.975((8)17.535, (8) 2.18(9)19.02, (9) 2.7)χχχχ====已知:; 解:因为学生身高服从正态分布,所以2 22 (1)~(1)n S W n χσ-= - 220.0250.975{(8)(8)}0.95P W χχ≤≤= 2 σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ??-- ? ?--?? 2 σ的置信度的置信区间为 228 4.28 4.2,17.535 2.180???? ??? 即 ()8.048,64.734

Excel求置信区间的方法

应用Excel求置信区间 一、总体均值的区间估计 (一)总体方差未知 例:为研究某种汽车轮胎的磨损情况,随机选取16只轮胎,每只轮胎行驶到磨坏为止。记录所行驶的里程(以公里计)如下: 假设汽车轮胎的行驶里程服从正态分布,均值、方差未知。试求总体均值μ的置信度为的置信区间。 步骤:

1.在单元格A1中输入“样本数据”,在单元格B4中输入“指标名称”,在单元格C4中输入“指标数值”,并在单元格A2:A17中输入样本数据。 2.在单元格B5中输入“样本容量”,在单元格C5中输入“16”。 3.计算样本平均行驶里程。在单元格B6中输入“样本均值”,在单元格C6中输入公式:“=AVERAGE(A2,A17)”,回车后得到的结果为。

4.计算样本标准差。在单元格B7中输入“样本标准差”,在单元格C7中输入公式:“=STDEV(A2,A17)”,回车后得到的结果为。 5.计算抽样平均误差。在单元格B8中输入“抽样平均误差”,在单元格C8中输入公式:“=C7/SQRT(C5)” ,回车后得到的结果为。 6.在单元格B9中输入“置信度”,在单元格C9中输入“”。 7.在单元格B10中输入“自由度”,在单元格C10中输入“15”。 8.在单元格B11中输入“t分布的双侧分位数”,在单元格C11中输入公式:“ =TINV(1-C9,C10)”,回车后得到α=的t分布的双侧分位数t=。 9.计算允许误差。在单元格B12中输入“允许误差”,在单元格C12中输入公式:“=C11*C8”,回车后得到的结果为。

10.计算置信区间下限。在单元格B13中输入“置信下限”,在单元格C13中输入置信区间下限公式:“=C6-C12”,回车后得到的结果为。 11.计算置信区间上限。在单元格B14中输入“置信上限”,在单元格C14中输入置信区间上限公式:“=C6+C12”,回车后得到的结果为。 (二)总体方差已知 仍以上例为例,假设汽车轮胎的行驶里程服从正态总体,方差为10002,试求总体均值μ的置信度为的置信区间。

一元线性回归模型的置信区间与预测

§2.5 一元线性回归模型的置信区间与预测 多元线性回归模型的置信区间问题包括参数估计量的置信区间和被解释变量预测值的置信区间两个方面,在数理统计学中属于区间估计问题。所谓区间估计是研究用未知参数的点估计值(从一组样本观测值算得的)作为近似值的精确程度和误差范围,是一个必须回答的重要问题。 一、参数估计量的置信区间 在前面的课程中,我们已经知道,线性回归模型的参数估计量^ β是随机变量 i y 的函数,即:i i y k ∑=1?β,所以它也是随机变量。在多次重复抽样中,每次 的样本观测值不可能完全相同,所以得到的点估计值也不可能相同。现在我们用参数估计量的一个点估计值近似代表参数值,那么,二者的接近程度如何?以多大的概率达到该接近程度?这就要构造参数的一个区间,以点估计值为中心的一个区间(称为置信区间),该区间以一定的概率(称为置信水平)包含该参数。 即回答1β以何种置信水平位于() a a +-1 1?,?ββ之中,以及如何求得a 。 在变量的显著性检验中已经知道 ) 1(~^ ^ ---= k n t s t i i i βββ (2.5.1) 这就是说,如果给定置信水平α-1,从t 分布表中查得自由度为(n-k-1)的临界值 2 αt ,那么t 值处在() 22,ααt t -的概率是α-1。表示为 α αα-=<<-1)(2 2 t t t P 即 α ββαβα-=<-< -1)(2 ^ 2 ^ t s t P i i i

α ββββαβα-=?+<

置信区间与置信水平样本量的关系

置信区间与置信水平、样本量的关系 置信区间与置信水平、样本量的关系(2008-10-28 08:39:39)标签:置信区间与置信水平教育分类:数学相关 置信水平Confidence level 置信水平是指总体参数值落在样本统计值某一区内的概率;而置信区间是指在某一置信水平下,样本统计值与总体参数值间误差范围。置信区间越大,置信水平越高。 一、置信区间的概念 置信区间又称估计区间,是用来估计参数的取值范围的。常见的52%-64%,或8-12,就是置信区间(估计区间)。置信区间是按下列三步计算出来的: 第一步:求一个样本的均值 第二步:计算出抽样误差。 人们经过实践,通常认为调查: 100个样本的抽样误差为±10% 500个样本的抽样误差为±5% 1,200个样本时的抽样误差为±3% 第三步:用第一步求出的“样本均值”加、减第二步计算的“抽样误差”,得出置信区间的两个端点。 举例说明: 美国Gallup(盖洛普)公司就消费者对美国产品质量的看法,对美国、德国和日本三国共计3,500名消费者(每个国家约1,200名)分别进行了调查,调查结果:有55%的美国人认为美国产品质量好,而只有26%的德国人和17%的日本人持同样看法。抽样误差为±3%,置信水平为95%。则这三个国家消费者的置信区间分别为: 国别样本均值抽样误差置信区间 美国55% ±3% 52%-58% 德国26% ±3%23%-29% 日本17% ±3%14%-20% 二、关于置信区间的宽窄 窄的置信区间比宽的置信区间能提供更多的有关总体参数的信息。 假设全班考试的平均分数为65分,则 置信区间间隔宽窄度表达的意思 0-100分100 宽等于什么也没告诉你 30-80分50 较窄你能估出大概的平均分了(55分) 60-70分10 窄你几乎能判定全班的平均分了(65分)

EXCEL显著性水平置信度置信区间

帮我通俗的解释下显著性水平和置信水平 这两个概念通俗的理解是咋样的啊,显著水平的0.05和0.01是什么意思,越高越好还是越低越好?除了0.05和0.01外还有别的值么?置信度和置信区间又是什么意思?置信度越高越好么? 回答:首先,置信水平和置信度应该是一样的,就是变量落在置信区间的可能性,“置信水平”就是相信变量在设定的置信区间的程度,是个0~1的数,用1-α表示。置信区间,就是变量的一个范围,变量落在这个范围的可能性是就是1-α。 显著性水平就是变量落在置信区间以外的可能性,“显著”就是与设想的置信区间不一样,用α表示。 显然,显著性水平与置信水平的和为1。 显著性水平为0.05时,α=0.05,1-α=0.95 如果置信区间为(-1,1),即代表变量x在(-1,1)之间的可能性为0.95。0.05和0.01是比较常用的,但换个数也是可以的,计算方法还是不变。 总之,置信度越高,显著性水平越低,代表假设的可靠性越高,越好。 置信度计算 现认为置信度在此算法中应该是用户指定一个即可。“In general,due to the weak (logarithmic)dependence on T,small settings for T(i.e.,less than 0.1)do not have a large effect on the overall window size”。 没找到较好的计算过程,先贴一段吧。 置信度: 置信度,是指特定个体对待特定命题真实性相信的程度,也就是概率是对个人信念合理性的量度。 对概率的置信度解释表明,事件本身并没有什么概率,事件之所以指派有概率只是指派概率的人头脑中所具有的信念证据。置信水平是指总体参数值落在样本统计值某一区内的概率;而置信区间是指在某一置信水平下,样本统计值与总体参数值间误差范围。置信区间越大,置信水平越高。 置信度,也称为可靠度,或置信水平、置信系数,即在抽样对总体参数作出估计时,由于样本的随机性,其结论总是不确定的。因此,采用一种概率的陈述方法,也就是数理统计中的区间估计法,即估计值与总体参数在一定允许的误差范围以内,其相应的概率有多大,这个相应的概率称作置信度。 一般情况下,置信度是表明抽样指标和总体指标的误差不超过一定范围的概率保证度,用F(t)来表示,在大样本(n>30)条件下,置信度F(t)是概率度t函数,概率度越大,置信度越越大。假设我们指出测量结果的准确性有95%的可靠性,这个95%就称为置信度(P),又称为置信水平,它是指人们对测量结果判断的可信程度。 置信水平(Confidence level),是描述GIS中线元素与面元素的位置不确定性的重要指标之一。置信水平表示区间估计的把握程度,置信区间的跨度是置信水平的正函数,即要求的把握程度越大,势必得到一个较宽的置信区间,这就相应降低了估计的准确程度.

置信区间与置信水平

“置信区间与置信水平、样本量的关系 置信水平Confidence level 置信水平是指总体参数值落在样本统计值某一区内的概率;而置信区间是指在某一置信水平下,样本统计值与总体参数值间误差范围。置信区间越大,置信水平越高。 一、置信区间的概念 置信区间又称估计区间,是用来估计参数的取值范围的。常见的52%-64%,或8-12,就是置信区间(估计区间)。置信区间是按下列三步计算出来的: 第一步:求一个样本的均值 第二步:计算出抽样误差。 人们经过实践,通常认为调查: 100个样本的抽样误差为±10% 500个样本的抽样误差为±5% 1,200个样本时的抽样误差为±3% 第三步:用第一步求出的“样本均值”加、减第二步计算的“抽样误差”,得出置信区间的两个端点。 举例说明: 美国Gallup(盖洛普)公司就消费者对美国产品质量的看法,对美国、德国和日本三国共计3,500名消费者(每个国家约1,200名)分别进行了调查,调查结果:有55%的美国人认为美国产品质量好,而只有26%的德国人和17%的日本人持同样看法。抽样误差为±3%,置信水平为95%。则这三个国家消费者的置信区间分别为: 国别样本均值抽样误差置信区间 美国55% ±3% 52%-58% 德国26% ±3% 23%-29% 日本17% ±3% 14%-20% 二、关于置信区间的宽窄 窄的置信区间比宽的置信区间能提供更多的有关总体参数的信息。 假设全班考试的平均分数为65分,则 置信区间间隔宽窄度表达的意思 0-100分 100 宽等于什么也没告诉你 30-80分50 较窄你能估出大概的平均分了(55分) 60-70分10 窄你几乎能判定全班的平均分了(65分) 三、样本量对置信区间的影响 影响:在置信水平固定的情况下,样本量越多,置信区间越窄。 下面是经过实践计算的样本量与置信区间关系的变化表(假设置信水平相同): 样本量置信区间间隔宽窄度 100 50%—70% 20 宽 800 56.2%-63.2% 7 较窄 1,600 57.5%—63% 5.5 较窄 3,200 58.5%—62% 3.5 更窄 由上表得出: 1、在置信水平相同的情况下,样本量越多,置信区间越窄。

置信区间的解释及求取

置信区间的解释及求取-学习了解 95%置信区间(Confidence Interval,CI):当给出某个估计值的95%置信区间为【a,b】时,可以理解为我们有95%的信心(Confidence)可以说样本的平均值介于a到b之间,而发生错误的概率为5%。 有时也会说90%,99%的置信区间,具体含义可参考95%置信区间。 置信区间具体计算方式为: (1) 知道样本均值(M)和标准差(ST)时: 置信区间下限:a=M - n*ST; 置信区间上限:a=M + n*ST; 当求取90% 置信区间时n=1.645 当求取95% 置信区间时n=1.96 当求取99% 置信区间时n=2.576 (2) 通过利用蒙特卡洛(Monte Carlo)方法获得估计值分布时: 先对所有估计值样本进行排序,置信区间下限:a为排序后第lower%百分位值; 置信区间上限:b为排序后第upper%百分位值. 当求取90% 置信区间时 lower=5 upper=95; 当求取95% 置信区间时lower=2.5 upper=97.5 当求取99% 置信区间时lower=0.5 upper=99.5 当样本足够大时,(1)和(2)获取的结果基本相等。 参考资料:http://140.116.72.80/~smallko/ns2/confidence_interval.htm Confidence Limits: The range of confidence interval 附MATLAB 求取置信区间源码: %%% 置信区间的定义90%,95%,99%-------Liumin 2010.04.28 clear clc sampledata=randn(10000,1); a=0.01; %0.01 对应99%置信区间,0.05 对应95%置信区间,0.1 对应90%置信区间 if a==0.01 n=2.576; % 2.576 对应99%置信区间,1.96 对应95%置信区间,1.645 对应90%置信区间 elseif a==0.05 n=1.96; elseif a==0.1 n=1.645; end %计算对应百分位值 meana=mean(sampledata); stda=std(sampledata); sorta=sort(sampledata); %对数据从小到大排序 leng=size(sampledata,1); CIa(1:2,1)=[sorta(leng*a/2);sorta(leng*(1-a/2))]; %利用公式计算置信区间 CIf(1:2,1)=[meana-n*stda;meana+n*stda];

北邮概率论与数理统计置信区间与假设检验83

§8.3 置信区间与假设检验 假设检验和区间估计这两个统计推断问题看似完全不同,然而实际上两者之间有着非常密切的联系. 置信区间与假设检验之间具有对偶性.这种对偶性使我们“逆转”检验得到置信区间,反之也可以由置信区间获得检验.先看下面例子. 8.3.1 由假设检验得到置信区间 我们先看下面例子,通过这个例子我总结出如何“逆转”检验得到置信区间。 设样本),,(1n X X X =来自总体),(2 σμN .考虑双边假设检验问题: 00:μμ=H 对 01:μμ≠H , 我们知道,该检验问题的水平为α的检验的拒绝域为 , )}1(|:|{2/10-≥-=-n t n s x x W αμ, 从而接受域为)}1(|:|{2/10-< -=-n t n s x x W αμ, 因此有 ))1()1((2/102/10-+<<----n t n s x n t n s x P ααμμ αμαμ-=-+ ≥--=-1))1(|(|12/100n t n s x x P 注意以上的结果是在0μμ=时,即x ~)n /,(N 20σμ时得到的.而实际上把0μ换成任意的 μ时, 由于x ~)n /,(N 2σμ,因而有 αμααμ-1))1()1((2/12/1=-+<<----n t n s x n t n s x P , 从而得到参数μ的置信水平为α-1的置信区间: )()1(),1(2/12/1-+----n t n s x n t n s x αα. 下面考察如何由单边检验得到单侧置信限,如果考虑单边假设检验问题: 00:μμ≤H 对 01:μμ>H , 该假设检验问题的水平为α的检验的拒绝域为 )}1(:{10-+ ≥=-n t n s x x W αμ, 因此接受域为

概率统计之置信区间

概率统计之置信区间 一、首先,置信区间到底是什么?置信度又是什么? .置信区间就是随机变量落在某一表范围内的概率有多大,而置信度就是给说这个概率的的一个数。其实可以这么说,就是我现在我求一个随机变量,在某一个范围内的概率是0.95,那么这个范围就是置信区间,概率0.95是置信度?不是要是1-0.95 才是,哈哈。我想办法画个图给大家看看。嘻嘻 如此图非影印部分,就是1-α,我们要求的就是随机变量落在这 个概率内的一个范围就是置信区间啦。 再插入几张图片还有几个如T 分布和F 分布,百度不好找图片我 就不找了,F 分布图像有点像卡方的,而T 的有点像正态分布的。大家意会就行了。 正态分布区间是),(,,T X X X ),,(2 2 -12 2 22 22 -12 2 2 ????-????-f f F t t u u N ) (),,(,基本就只用到这四个进行估算了,下面解释下,如何导出而不是死记这些公式。 1:确立μ的置信区间,而确立他有两种情况,第一就是2 σ未知,一种是2 σ可知。 当2 σ可知时,我们可以由N(0,1)∽n σ/μ -— X ,这个上面,我们只有μ不知道。那么知道是用这个后下一步做什么? 1 ) X -(X S α 1}n S μn S { α;1}n S/μ -{n σ/μ-),1(X ∽σ1,/X N(0,1) T S σt t t σα 1}n σ μn σ{ α;1}n σ/μ -{2 n 1 i i 2 2α2α2 α2α 222 22α2α2 α2α -= -=-≤≤-=-=≤≤ =--= -=-≤≤-=-=≤≤ =∑=----n u X u X P u X u P X n S n n u X u X P u X u P — — — — 注:化简后,得后就得到服从标准正态分布,最而上面说了)(而代替,可用分布可以不要用到分布,因为分布了,为何要用用不可知时,那我们就得当化简后得 那么再下一个

计算可信区间

循证医学中常用可信区间的研究 作者:刘关键洪旗四川大学华西医院临床流行病学教研室成都610041 Study of statistical measures in evidence-based medicine LIU Guan-jian, HONG Qi.( Department of Clinical Epidemiology, The West China Hospital of Sichuan University, Chengdu, 610041 China) ABSTRACTS: In this paper, we introduce meaning and purpose of confidence interval (CI) in Evidence-Based Medicine, For example, RRR、ARR、NNT. It's referance for user and doer of EBM in China. Key words: Confidence interval;evidence-based medicine 在循证医学的研究或应用中,经常使用可信区间(confidence interval,CI)对某事件的总体进行推断。可信区间是按一定的概率去估计总体参数(均数或率)所在的范围,它是按预先给定的概率(1-a,常取95%或99%)确定未知参数值的可能范围,这个范围被称为所估计参数值的可信区间或置信区间。如95%可信区间,就是从被估计的总体中随机抽取含量为n 的样本,由每一个样本计算一个可信区间,理论上其中有95%的可能性(概率)将包含被估计的参数。故任何一个样本所得95%可信区间用于估计总体参数时,被估计的参数不在该区间内的可能性(概率)仅有5%。可信区间是以上、下可信限为界的一个开区间(不包含界值在内)。可信限(confidence limit,CL)或置信限只是可信区间的上、下界值。可信区间的用途主要有两个: (1)估计总体参数,在临床科研工作,许多指标都是从样本资料获取,若要得到某个指标的总体值(参数)时,常用可信区间来估计。如率的可信区间是用于估计总体率、均数的可信区间用于估计总体均数。 (2)假设检验,可信区间也可用于假设检验,95%的可信区间与a为的假设检验等价。若某研究的样本RR或OR的95%可信区间不包含1,即上下限均大于1或上下限均小于1时,有统计学意义(P<);若它的RR或OR值95%可信区间包含1时,没有统计学意义(P> )。再如某研究两疗效差值的95%可信区间不包含0,即上下限均大于0或上下限均小于0时,有统计学意义(P<);两疗效差值的95%可信区间包含0时,两疗效无差别(P>)。 各种指标的可信区间计算,最常采用正态近似法,其中标准误的计算是其关键。标准误是由于抽样所致的样本与总体间的误差,用以衡量样本指标估计总体参数的可靠性,标准误越大,用样本估计总体的误差也就越大,反之就越小。在数值资料(计量资料)中,标准误的大小与个体变异(s)成正比,与样本含量(n)的平方根成反比。在分类资料(计数资料)中,标准误主要受样本含量(n)和某事件发生率(p)大小的影响,样本含量愈大,抽样误差愈小;某事件发生率愈接近于,其抽样误差愈小,某事件发生率离愈远(即发生率愈接近于0或1),抽样误差愈大。 可信区间的范围愈窄,样本估计总体的可靠性愈好;可信区间的范围愈宽,样本估计总体的可靠性愈差。 1.率的可信区间 总体率的可信区间可用于估计总体率、样本率与总体率比较,两样本率比较。计算总体率的可信区间时要考虑样本率(p)的大小。 (1)正态近似法当n足够大,如n>100,且样本率p与1- p均不太小,且np与n(1-p)均大于5时,可用下式求总体率的1-a可信区间率的标准误:SE=p(1-p)/n 率的可信区间:p±uaSE = (p-uaSE ,p+uaSE) 式中ua以a查u值表,若计算95%的可信区间,这时=,a=。例如:采用某治疗措施治

概率论置信区间

4. 技术人员对奶粉装袋过程进行了质量检验。每袋的平均重量标准为克、标准差为克。监控这一过程的技术人者每天随机地抽取36袋,并对每袋重量进行测量。现考虑这36袋奶粉所组成样本的平均重量。 (1) 描述的抽样分布,并给出 和的值,以及概率分布的形状; 服从正太分布,其均值10.1 406,6 μσ== = = 1.68。平均重量概率分布形状为高斯分布。 400.8406 (x 400.8)(x )( 3.089)(3)1.683 P Z -≤=≤ =Φ-≈Φ-= 1(3)0.0013-Φ= (3) 假设某一天技术人员观察到,这是否意味着装袋过程出现问题了呢,为什么? 不能,因为当均值为400.8出现时,属于小概率事件,可是实际情况上小概率事件可能会发生。 5. 某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时): 3.3 3.1 6.2 5.8 2.3 4.1 5.4 4.5 3.2 4.4 2.0 5.4 2.6 6.4 1.8 3.5 5.7 2.3 2.1 1.9 1.2 5.1 4.3 4.2 3.6 0.8 1.5 4.7 1.4 1.2 2.9 3.5 2.4 0.5 3.6 2.5 求该校大学生平均上网时间的置信区间,置信水平分别为90%、95%和99%。 (数据见练习1数据.xls-练习1.5) 答:使用Excel 自带的软件可以分别得到下面的表: 当置信水平为90%时, 列1 平均 3.316667 标准误差 0.268225 中位数 3.25 众数 5.4 标准差 1.609348 方差 2.59 峰度 -0.8877 偏度 0.211009 区域 5.9 最小值 0.5 最大值 6.4 求和 119.4 406=μ1.10=σx x x μx σx x 8.400=x

利用EXCEL求置信区间

利用EXCEL求置信区间 一、总体均值的区间估计 (一)总体方差未知 例1 为研究某种汽车轮胎的磨损情况,随机选取16只轮胎,每只轮胎行驶到磨坏为止。记录所行驶的里程(以公里计)如下: 4125040187431754101039265418724265441287 3897040200425504109540680435003977540400 假设汽车轮胎的行驶里程服从正态分布,均值、方差未知。试求总体均值 的置信度为0.95的置信区间。 解 1.在单元格A1中输入“样本数据”,在单元格B4中输入“指标名称”,在单元格C4中输入“指标数值”,并在单元格A2:A17中输入样本数据。 2.在单元格B5中输入“样本容量”,在单元格C5中输入“16”。 3.计算样本平均行驶里程。在单元格B6中输入“样本均值”,在单元格C6中输入公式: “ ”,回车后得到的结果为41116.875。 4.计算样本标准差(标准偏差)。在单元格B7中输入“样本标准差”,在单元格C7中输入公式: “STDEV(A2:A17),回车后得到的结果为1346.842771。 5.计算抽样平均误差。在单元格B8中输入“抽样平均误差”,在单元格C8中输入公式: “ ” ,回车后得到的结果为336.7106928。 6.在单元格B9中输入“置信度”,在单元格C9中输入“0.95”。 7.在单元格B10中输入“自由度”,在单元格C10中输入“15”。 8.在单元格B11中输入“ 分布的双侧分位数”,在单元格C11中输入公式: “ ”,回车后得到

的 分布的双侧分位数 。 9.计算允许误差。在单元格B12中输入“允许误差”,在单元格C12中输入公式: “ ”,回车后得到的结果为717.6822943。 10.计算置信区间下限。在单元格B13中输入“置信下限”,在单元格C13中输入置信区间下限公式:“ ”,回车后得到的结果为40399.19271。 11.计算置信区间上限。在单元格B14中输入“置信上限”,在单元格C14中输入置信区间上限公式:“ ”,回车后得到的结果为41834.55729。 结果如下图所示: (二)总体方差已知

概率论与数理统计期末考试之置信区间与拒绝域含答案

概率论与数理统计期末考试之置信区间与拒绝 域含答案 概率论与数理统计期末 置信区间问题 八(1)、从某同类零中抽取9,测得其长度为( 单位:mm ): 6.0 5.7 5.8 6.5 7.0 6.3 5.6 6.1 5.0 设零长度X服从正态分布N (μ,1)。求μ的置信度为0.95的置信区间。 解:由于零的长度服从正态分布,所以 所以的置信区间为 经计算

的置信度为0.95的置信区间为 即(5.347,6.653) 八(2)、某车间生产滚珠,其直径X ~N (,0.05),从某天的产品里随机抽出9个量得直径如下(单位:毫米): 14.6 15.1 14.9 14.8 15.2 15.1 14.8 15.0 14.7 若已知该天产品直径的方差不变,试找出平均直径的置信度为0.95的置信区间。 解:由于滚珠的直径X服从正态分布,所以 所以的置信区间为: 经计算 的置信度为0.95的置信区间为 即(14.765,15.057)

八(3)、工厂生产一种零,其口径X(单位:毫米)服从正态分布,现从某日生产的零中随机抽出9个,分别测得其口径如下: 14.6 14.7 15.1 14.9 14.8 15.0 15.1 15.2 14.7 已知零口径X的标准差,求的置信度为0.95的置信区间。 解:由于零的口径服从正态分布,所以 所以的置信区间为: 经计算 的置信度为0.95的置信区间为 即(14.802,14.998) 八(4)、随机抽取某种炮弹9发做实验,测得炮口速度的样本标准差S=3(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的方差的置信度为0.95的置信区间。 因为炮口速度服从正态分布,所以 的置信区间为:

相关主题
文本预览
相关文档 最新文档