当前位置:文档之家› 果蔬采摘机械人的研究进展

果蔬采摘机械人的研究进展

果蔬采摘机械人的研究进展
果蔬采摘机械人的研究进展

编号(学号):

课程论文(设计)

( 2014 届本科)

题目:果蔬机器人的研究进展

学院:工程学院

专业:农业机械化及其自动化

姓名:樊本汀

指导教师:宁晓峰

完成日期: 2014 年 3 月 12 日

目录

摘要............................................. XL Abstract.......................................... XL 前言. (1)

1 果蔬采摘机器人的研究现状 (1)

1.1 国外研究现状 (1)

1. 1. 1 西红柿采摘机器人 (2)

1. 1. 2 草莓采摘机器人 (3)

1.1.3黄瓜采摘机器人 (4)

1.1.4 多功能葡萄采摘机器人 (4)

1.1.5甘蓝采摘机器人 (5)

1.1.6 蘑菇采摘机器人 (5)

1.1.7甜瓜收获机器人 (6)

1.1.8 柑橘采摘机器人 (6)

1.1.9苹果采摘机器人 (6)

1.1.10茄子采摘机器人 (7)

1.2 国内研究进展 (7)

1.3果蔬收获机器人的应用现状 (9)

2 果蔬收获机器人作业环境和工作对象的特殊性 (10)

3. 采摘机器人存在的问题及对策 (10)

3.1 存在的问题 (11)

3.1.1 果实的识别率、定位精度低 (11)

3.1. 2 采摘环境的非结构化给采摘带来困难 (11)

3.1.3 果实的损伤率较大 (11)

3. 1. 4 果实平均采摘周期较长、效率低 (12)

3. 1. 5 采摘机器人的制造成本高、应用推广难 (12)

3. 2 解决对策 (12)

4 果蔬收获机器人关键技术和技术难点 (13)

4.1 机械本体的优化设计 (13)

4.2 自动化识别和定位 (13)

4.3 路径规划和运动控制技术 (13)

5.结论 (14)

参考文献 (14)

摘要

综述了果蔬采摘机器人的国内外研究现状,介绍了目前大部分典型的果蔬采摘机器人的研究成果。通过分析大部分采摘机器人的工作情况、功能、存在问题,应用状况,指出了目前采摘机器人的应用与研究过程中的主要难点与制约因素,提出了研究开发的方向与关键技术。

关键词:果蔬收获;机器人;研究现状;关键技术

Abstract

The characters and actuality of the fruit-vegetable picking robots at home and abroad are introduced in this article, as well as some representative outcomes of research. Picking efficiency and manufacture cost are restrictions for picking robot. Through analyzing the working condition function and problems of most of picking robot, the present difficulties and restricted factors of picking robot in its research and application were point out and the research direction and key technology in future were provided.

Keyword:Fruit and vegetable picking; Robot; Research progress; Key technology

前言

果蔬采摘作业是果蔬生产中最耗时、最费力的一个环节。果蔬收获期间需投入的劳

力约占整个种植过程的50%-70%。随着社会经济的发展和人口的老龄化,很多国家农业

劳动力严重短缺,导致果蔬生产劳动力成本增加。为降低成本,提高劳动效率,果实采摘

的自动化成为亟待解决的问题。收获作业自动化和机器人的研究开始于20世纪60年

代的美国,采用的收获方式主要是机械震摇式和气动震摇式,其缺点是果实易损,效率不高,特别是无法进行选择性的收获。20世纪80年代中期以来,随着电子技术和计算机技术的发展,特别是工业机器人技术、计算机图像处理技术和人工智能技术的日益成熟,

以日本为代表的发达国家,包括荷兰、美国、法国、英国、以色列、西班牙等国家,在

收获采摘机器人的研究上做了大量的工作。

果蔬收获机器人是一类针对水果和蔬菜,可以通过编程来完成这些作物的采摘、转运、打包等相关作业任务的具有感知能力的自动化机械收获系统,是集机械、电子、信息、智能技术、计算机科学、农业和生物等学科于一体的交叉边缘性科学,需要涉及机

械结构、视觉图像处理、机器人运动学动力学、传感器技术、控制技术以及计算信息

处理等多方面的学科领域知识。

研究和开发果蔬收获的智能机器人技术对于解放劳动力、提高劳动生产效率、降低

生产成本、保证新鲜果蔬品质,以及满足作物生长的实时性要求等方面都有着重要的意义。本文详细介绍了国内外果蔬收获机器人的研究现状,并指出了目前还存在的问题。

1 果蔬采摘机器人的研究现状

1.1 国外研究现状

美国学者Schertz和Brown于1968年首次提出应用机器人技术进行果蔬收获的,但

当时开发的收获机器人样机只能算是半自动化的收获机械。随着计算机图像处理技术、工业机器人技术以及人工智能控制等技术的发展和日趋成熟,日本、美国、荷兰、法国、英国、意大利、以色列、西班牙等国家在采摘机器人的研究上做了大量研究工作,并且

试验成功了多种具有人工智能的采摘机器人。但是由于采摘对象的复杂性和采摘环境

的特殊性,目前市场上仍没有商品化的采摘机器人。

1. 1. 1 西红柿采摘机器人

西红柿每棵可长4-6个果实,而每个果实并不是同时成熟的,成熟的果实为红色,而不成熟的果实为绿色,因此通过彩色摄像机作为视觉传感器寻找和识别果实,同时利用终端握持器中的吸引器,把果实吸住,再用机械手的腕关节把果实拧下。目前已研制了用于收获樱桃西红柿的机器人。

1993年,日本近藤(KONTO)等研制的西红柿采摘机器人,由机械手、末端执行器、视觉传感器、移动机构组成(图2)。该采摘机器人采用了7个自由度机械手。用彩色摄像机作为视觉传感器,寻找和识别成熟果实,并采用双目视觉方法对果实进行定位,利用机械手的腕关节把果实拧下。移动系统采用4轮机构,可在垄间自动行走。该番茄采摘机器人采摘速度大约是15 s/个,成功率在70%左右。主要存在的问题是当成熟番茄的位置处于叶茎相对茂密的地方时,机械手无法避开叶茎障碍物完成采摘。

在 2004年 2月10 日美国加利福尼亚州图莱里开幕的世界农业博览会上,美国加利福尼亚西红柿机械公司展出两台全自动西红柿采摘机,如图 3所示。如果西红柿单位面积产量有保证的话,这种长12.5米、宽4.3米的西红柿采摘机每分钟可采摘 1 吨多西红柿,1小时可采摘70 吨西红柿。这种西红柿采摘机首先将西红柿连枝带叶割倒后卷入分选仓,仓内能识别红色的光谱分选设备挑选出红色的西红柿,并将其通过输送带送入随行卡车的货舱内,然后将为成熟的西红柿连同枝叶一道粉碎,喷撒在田里作肥料。

图1 日本的西红柿采摘机器人

图2 美国的西红柿采摘机器人

1. 1. 2 草莓采摘机器人

日本近藤等人研制出一种气吸式草莓采摘机器人(见图3)。实验证明利用真空设备可以有效地补偿摄像机检测果实的位置误差,并且最大程度减少了跟果实娇嫩表皮的接触。该机器人对成熟果实的采摘成功率达到100%。但是问题是一些未成熟的果实也会随着目标果实被吸起,因此需要在控制真空吸力的强度等方面进行改进。日本国家农业机构研究所和SI Seiko公司于2009年联合研制出了能够自动识别并采摘成熟草莓果实的机器人样机。目前国内外草莓采摘机器人研究中尚存在以下问题:①普遍采用多目机器视觉系统,结构复杂,成本较高。②整体机构庞大,工作过程中占用较多行走空间,影响种植密度。③面向我国国内草莓生长环境特点的采摘机器人研究较少,尚无样机问世。

图3 日本的草莓采摘机器人

1.1.3黄瓜采摘机器人

日本的近藤直等研制的黄瓜采摘机器人,采用三菱MITSUBISHIRV-E2型六自由度

工业机器人,利用CCD摄像机,根据黄瓜比其叶茎对红外光的反射率高的原理来识别黄

瓜叶茎(图4)。黄瓜、果梗的连接与番茄不同,采用剪断方法,先把黄瓜抓住,用接近觉传感器找出柄,然后剪断,采摘速度为16 s/个。由于黄瓜是长条形,受到茎叶的影响更大,所以采摘的成功率较低,大约60%。同样,需要改进该机器人机器手的结构、采摘工作方式和避障规划功能,以提高采摘成功率,提高采摘速度。1996年,荷兰农业环境工程研究所(IMAG)研制出一种多功能黄瓜收获机器人(图5)。该研究在荷兰2 h㎡的温室里进行,黄瓜为高拉线缠绕方式吊挂生长。该机器人利用近红外视觉系统辨识黄瓜果实,并探测其位置。机械手只收获成熟黄瓜。末端执行器由手爪和切割器构成。机械手有7个自由度,采用三菱(Mitsubishi) RV-E2六自由度机械手。该机器人视觉系统的黄瓜检测效率大于95%,采摘成功率约80%,采摘速度约为54 s/个,在实验用温室中作业效果良好。但由于采收时间过长,不能满足商用要求。

图4 日本的黄瓜采摘机器人图5 荷兰的黄瓜采摘机器人

1.1.4 多功能葡萄采摘机器人

日本冈山大学研制的葡萄采摘机器人(见图6)采用5自由度的极坐标机械手。视觉传感器一般采用彩色摄像机。该机器人的特点是,为了提高使用效率,开发了多种末端

执行器,除了能完成采摘作业,更换其他的末端执行器还可以完成喷雾、套袋和修剪枝

叶等作业。

1.1.5甘蓝采摘机器人

日本国立农业研究中心的Murakami等研制了甘蓝采摘机器人,由极坐标机械手、4个手指的末端执行器、履带式行走装置和CCD机器视觉系统组成,整个系统采用液压驱动(图7)。系统利用人工神经网络(NN算法)提取果实的二值图像,采用模板匹配的方法识别合格的甘蓝。试验表明,采摘的成功率为43%,工作速度为55 s/个。影响成功率的主要原因是光照条件的不稳定、超声波测距传感器的误差、叶子的遮挡以及机械故障等。

1.1.6 蘑菇采摘机器人

英国Silsoe研究院研制了蘑菇采摘机器人(图8)。它可以自动测量蘑菇的位置、大小,并且选择性地采摘和修剪。它的机械手包括2个气动移动关节和1个步进电机驱动的旋转关节;末端执行器是带有软衬垫的吸引器;视觉传感器采用TV摄像头,安装在顶部用来确定蘑菇的位置和大小。采摘成功率在75%左右,采摘速度为6.7个/s,生长倾斜是采摘失败的主要原因。

图6 日本的多功能葡萄采摘机器人图7 日本的甘蓝采摘机器人

图8 英国的蘑菇采摘机器人

1.1.7甜瓜收获机器人

以色列和美国联合研制了一台甜瓜采摘机器人。该机器人主体架设在以拖拉机牵引为动力的移动平台上,采用黑白图像处理的方法进行甜瓜的识别和定位,并根据甜瓜的特殊性来增加识别的成功率。试验表明,该机器人可以完成85%以上的田间甜瓜的识别和采摘工作。

1.1.8 柑橘采摘机器人

西班牙工业自动化研究所基于人机协作思想研制出一种柑橘采摘机器人,该机器人主体装在拖拉机上,由机械手、彩色视觉系统和超声传感定位器组成。它能通过柑橘的颜色、大小和形状来判断柑橘是否达到采摘标准,还可以按色泽、大小进行分级装箱。该机器人采摘速度为1 s /个,比人工提高效率6倍多。这个机器人的特点在于:采摘机器人寻找、定位待摘果实以及机器人导航任务由人来完成,机器人的运动轨迹规划、关节控制和末端执行器控制等任务由机器人的控制系统完成。这样不仅提高了采摘机器人的采摘效率和成功率,还能大幅度降低系统成本,有利于尽早实现采摘机器人的产业化。

1.1.9苹果采摘机器人

韩国庆北大学研制了苹果采摘机器人,具有4个自由度,包括3个旋转关节和1个移动关节。采用三指夹持器作为末端执行器,内有压力传感器避免损伤苹果。利用CCD

摄像机和光电传感器识别果实,从树冠外部识别苹果的识别率达85%,速度达5个/s。该机器人无法绕过障碍物摘取苹果;对于叶茎完全遮盖的苹果,也没有给出识别和采摘的解决方法。

1.1.10茄子采摘机器人

日本国立蔬菜茶叶研究所与岐阜大学联合研制了茄子采摘机器人。机器人由CCD 机器视觉系统、5自由度工业机械手、末端执行器以及行走装置组成,作业对象是温室中按照V形生长方式种植的Senryo-2号茄子。该机器人的末端执行器设计复杂,包括4个手指、2个吸嘴、2个诱导杆、气动剪子和光电传感器(图9)。在实验室中进行了试验,采摘成功率为62.5%,工作速度为64.1 s/个。影响成功率的主要原因是机器视觉系统对采摘位置的判断不正确;同时,视觉系统占用了72%的工作时间(46.1 s),也是影响整个机器人采摘效率的主要因素。

图9 日本的茄子采摘机器人

1.2 国内研究进展

我国对采摘机器人的研究始于20世纪90年代中期,虽然与发达国家还有很大的差距,但是在不少院校和研究学者的努力下也取得了一些进展。

东北林业大学的陆怀民研制了林木球果采摘机器人,主要由5个自由度机械手、行走机构、液压驱动系统和单片机控制系统组成(图10)。采摘时,机器人停在距离母树3-5 m处,然后单片机控制系统控制机械手大、小臂同时柔性升起达到一定高度,采摘爪张开并摆动,对准要采集的树枝,大小臂同时运动,使采摘爪沿着树枝生长方向趋近1.5-2 m,然后采摘爪的梳齿夹拢果枝,大小臂带动采集爪按原路向后返回,梳下枝上的球果,完成一次采摘。这种机器人的效率是500 kg/d,是人工的30-50倍。而且,采摘时对母

树的破坏较小,采净率高。

图10 林木球果采摘机器人原理图

上海交通大学的曹其新等运用彩色图像处理技术和神经网络理论,开发了草莓拣选机器人,采用气动驱动器将草莓推到不同的等级方向。

中国农业大学的汤修映等人研制了一个6自由度黄瓜采摘机器人,该机器人基于RGB三基色模型的G分量来进行图像分割,在特征提取后确定黄瓜的采摘点。同时提出了新的适合自动化采摘的斜栅网架式黄瓜栽培模式。孙明等为苹果采摘机器人开发了一套果实识别视觉系统,并研究成功了一种使二值图像的像素分割正确率大于80%的彩色图像处理技术。中国农业大学张铁中等人在草莓、黄瓜、西红柿、茄子等果蔬果实采摘机器人方茵做了较深入地研究,并研制出了试验样机;在草莓果实目标识别、果实重心提取、果柄位置确定、采摘机器人及手爪等方茵的研究取得了一定成果,初步建立了草毒采摘机器人实验系统,采用双目视觉等图像处理技术实现了草毒的识别和定位对草毒果实的互相重叠或遮挡等情况进行了研究并取得了一些研究成果.

周云山等研究了蘑菇采摘机器人。该系统主要由蘑菇传送带、摄像机、采摘机器手、三自由度气动伺服机构、机器手抓取控制系统和计算机等组成。计算机视觉系统为蘑菇采摘机器提供分类所需的尺寸、面积信息,并且引导机器手准确抵达待采摘蘑菇的中心位置,防止对不准, 以致影响吸盘的密封,造成抓取失败或损伤蘑菇的现象。

浙江大学提出了基于彩色信息和红外热成像技术的树上水果识别方法。并且对7自由度番茄收获机械手进行了机构分析与优化。

南京农业大学的姬长英等人在番茄采摘中运用了双目立体视觉技术对红色番茄进行定位。

江苏大学刘继展等人研制了一种以番茄为采摘目标的基于多传感器信息融合技术和开放式控制的智能型采摘机器人.该机器人完成一次采摘动作需3 s,除了应用于番茄

采摘以外,对形状大小相近的柑橘、苹果等也具有一定的通用性.东北林业大学王丽丽等人提出了基于TRIZ理论的蓝毒采摘机器人设计方法。江苏大学蔡健荣等人提出了基于光谱图像技术结合SAM算法识别自然场景下的成熟柑橘,在光照角度、光照强度等不同条件下,柑橘的识别准确度达到96%。

1.3果蔬收获机器人的应用现状

法国是研究果蔬采摘机器人较早的国家之一,但由于技术.市场和价格等因素的影响,甜橙、苹果采摘机器人已经停产,采摘机器人的研究工作基本陷于停顿。美国在自动化收获机器人的研究方面没

有一个很清晰的战略,研究工作也基本处于停顿状态。日本近年来开展了大量的收获机器人研究项目,进展很快,但还未能真正实现商业化。荷兰收获机器人的研究工作走在很多国家的前面,但研究的果蔬种类并不多。表1为部分国家果蔬收获机器人的研究进展统计。

国别商业化阶段样机阶段研究阶段

日本甘蓝、葡萄、

番茄、

黄瓜、樱桃西

红柿甘蓝、番茄、茄子、

西瓜、甜橙、草莓

荷兰萝卜、蘑菇番茄、芦笋黄瓜、葡萄法国葡萄、橄榄、

苹果、甜橙

英国蘑菇定期收获水果

的攀沿机器人美国椰菜、甜橙、

柑桔

表1-部分国家果蔬收获机器人研究进展统计

2 果蔬收获机器人作业环境和工作对象的特殊性

工业领域是机器人技术的传统应用领域.由于在工业生产中,机器人的工作位置和

障碍往往都能够事先预知,因此机器人的性能能得到很好的体现。和工业机器人相比,

果蔬收获机器人有很多独特的特点,主要表现在:

(1)作业环境的非结构性收获机器人的工作环境往往是非结构性的、未知的

和不确定的.例如,机器人所处的地势可能崎岖不平,天气条件(如光照)也可能随时改变。即使在温室环境中,也必须考虑温度、湿度、天气以及其它环境参数的影响。在这种复

杂多变的环境条件中,机器人必须具有智能化的传感、规划和控制能力,要有很强的自

适应能力。

(2)作业对象的个体差异和随机分布性果蔬收获机器人的首要任务是识别和定

位水果,而果实有的可能单个生长,有的则是一簇一簇的,形状、尺寸、颜色、成熟度也

都不一样,而且果实总是随机分布在田地、藤蔓或树枝上,有的可能被茎杆和叶子遮挡,

还要遇到不同的自然条件,如刮风可能导致果实摇动而不断改变其位置,并且果树和藤

蔓的形状大小也往往不一样,从而使得机器人检测和接近果实变得异常困难。

(3)作业对象的柔软、易损性水果等作物一般都比较娇嫩、柔软,收获时很容

易遭受机械损伤,因此必须小心处理.这需要从机器人结构、传感器、控制系统等方面

加以协调和控制。

(4)收获机器人成本方面的特殊性农业机器人要想成功地应用,其成本必须低于

同样结构的工业机器人,因为农业的利润往往很小,设备也只能季节性地使用。此外,农

民一般不具备太多的专业知识.因此,收获机器人必须结构简单、操作性好、可靠性高,

并且价格合理。

3. 采摘机器人存在的问题及对策

由于果蔬收获机器人作业环境和工作对象的特殊性,尽管很多发达国家对采摘机

器人进行了大量的研究工作并且取得了一定成果,但是目前仍存在一些问题需要改进,

存在一些难题需要攻破。

3.1 存在的问题

法国是研究果蔬采摘机器人较早的国家之一,但由于技术、市场和价格等因素的影响,甜橙、苹果采摘机器人已停产,采摘机器人的研究工作基本陷于停顿。美国在自动化收获机器人的研究方面没有一个清晰的战略,研究工作也基本停了下来。日本近年来开展了大量的收获机器人研究项目,进展很快,但还未能真正实现商业化。荷兰收获机器人的研究工作走在很多国家的前面,但研究的果蔬种类并不多。我国的研究则处在逐渐上升的阶段,但大部分研究都是针对采摘机器人的某一个部分进行的,如视觉、机械手、末端执行器等。

3.1.1 果实的识别率、定位精度低

果蔬采摘机器人的首要任务是识别和定位水果。然而果实的形状、尺寸、颜色、成熟度、表皮外伤程度差异性大,而且果实总是随机分布生长,这给果实的识别带来很大的困难。目前识别果实的方法主要有灰度阈值、颜色识别法和区域识别法等。前两种方法都要基于果实的光谱反射特性,因此还极易受到自然光照的影响。而区域定位方式,则要求目标具有完整的边界条件,但是由于果实往往被枝干和叶子遮挡,很难真正区别出完整的轮廓。

3.1. 2 采摘环境的非结构化给采摘带来困难

大部分果实都是在自然环境中生长,因此果实的采摘将受到自然环境改变的影响。如刮风导致果实摇动而不断改变位置,采摘果实被树叶树枝等掩盖,这就要求采摘机器人不仅能将这样的果实识别出来,还需要有成功的避障规划和灵巧的机械手结构。

3.1.3 果实的损伤率较大

果实是很娇嫩的,在采摘过程中必须保证以不损伤果实为前提,目前人们在末端执行器上安装传感器以感知抓取的力度,但是在实际操作中仍然未能避免对果实造成抓取伤痕。另一种方法是切断果柄,这种办法的问题是切刀极易磨损,另外就是当果柄过短时无法应用。

3. 1. 4 果实平均采摘周期较长、效率低

研究采摘机器人的目的之一就是为了提高采摘的效率,但是目前的采摘机器人效率

还不够高。比如采摘1个甘蓝需要55 s,采摘一根黄瓜需要10~16 s,采摘一个茄子需

要64. 1 s,采摘一个甜瓜需要15 s。

3. 1. 5 采摘机器人的制造成本高、应用推广难

果蔬采摘机器人的采摘对象具有多样性,工作时间具有季节性,设备利用率低,操作

对象大部分为农民,这就要求其要具有良好的通用性、可编程性、高可靠性和操作简单性。另外采摘机器人的使用和维护都需要相当高的技术水平和费用。只有当其使用成

本低于人工收获成本时,采摘机器人才会真正被普及。因此,成本问题将成为制约采摘

机器人市场化的瓶颈问题。

3. 2 解决对策

每一个事物的发展都是一个遇到问题解决问题的过程。为了很好的解决以上问题,

解除限制采摘机器人发展的因素,可以从以下几个方面加强探索与研究:

(1)研究出一种高可靠性、高精度的视觉系统技术,可以使所有成熟果实都能够识

别出来并能精确地对其定位。这就需要在三维立体视觉技术、视觉传感器技术、图像

获取和处理等方面进行更深入的研究。

(2)可以研究适合采摘机器人工作的果蔬栽培模式,通过降低作物生长环境的非结

构化和复杂性,便于采摘机器人的视觉定位和移动。

(3)机械结构直接决定机器人运动的灵活性、平稳性和控制的复杂性。采摘机器人

结构必须更加紧凑和简化,优化机器人结构。提高机械手和末端执行器的柔性和灵巧性,成功避障,提高采摘的成功率,降低果实的损伤率。

(4)提高图像处理速度,优化软件算法,缩短机器视觉部分在整个采摘过程中所占用

的时间,以提高采摘效率。

(5)采用开放式的控制系统,提高采摘机器人的通用性。只要改变机器人的机械本体和末端执行器,用一套控制系统就能完成不同果蔬的采摘,从而提高控制系统的利用率、降低成本。

4 果蔬收获机器人关键技术和技术难点

收获机器人是一类工作于非结构环境中的典型的复杂光机电一体化产品,涉及多门

学科的知识.一个智能型的收获机器人必须具备下述特征:

1)必须能准确地识别和定位成熟的果实,并引导末端执行器灵活准确地接近目标水果。

2)为了能在垄沟或其它野外环境中行走,机器人必须紧凑,转弯灵活。

3)每个果实的采摘周期不能太长。

4)成本应比较低.下面是收获机器人设计中的一些必须考虑的关键技术。

4.1 机械本体的优化设计

机械结构直接决定机器人运动的灵活性和控制的复杂性。机器人必须紧凑,行走、

转弯灵活,同时还要保证机器人运动平稳和灵活避障。设计末端执行器时,要求准确快

速切除果实并确保不损伤果实。同时,还必须进行机构的运动学和动力学分析,运用优

化的观点来设计机器人结构。

4.2 自动化识别和定位

由于环境的复杂性,在果蔬收获机器人中,果实的自动化识别还没能满意地解决,最

大的困难在于光照条件的不确定性和水果的部分或全部遮挡问题.因此,还需在传感器

信息融合技术、图像获取和图像处理的算法等方面进行更深入的研究。

4.3 路径规划和运动控制技术

和一般工业机器人不同之处在于,收获机器人需要在运动过程中,不断探测和判断

目标水果,并根据要求采摘水果。收获机器人在运动过程中,其数据处理量相当大,对控

制系统的实时性要求高。同时,由于作物果实是随机分布的,为了灵活地接近果实,收获

机器人往往存在冗余自由度,这对机器人的轨迹规划、运动控制等方面都提出了更复杂、更严格的要求。

5.结论

果蔬收获是一个季节性强的劳动密集型工作,由于劳动力的高龄化和人力资源越来

越缺乏,采用机器人进行果蔬的自动化收获变得越来越迫切。但由于收获机器人的工作

环境往往是非结构性的、未知的和不确定的,因此给机器人的实际应用带来了很大的困难。要成功地实现机器人的智能化收获,必须要在机器人的本体设计、果实的自动化识

别和定位、机器人运动规划和控制技术等方面进行深入的研究。

参考文献

[1]Edan Y, Games E Systems engineering of agricultural . robot design [J]. IEEE Transactions on Systems M an and Cybernetics 1994, 24( 8): 1259一1265

[2]汤修映,张铁中.果蔬收获机器人研究综述[J].机器人,2005, 27(1): 90 -95.

[3]周天娟,张铁中.果蔬采摘机器人技术研究进展及分析[D ].北京:中国农业大学, 2006.

[4]赵金英.基于三维机器视觉的西红柿采摘机器人技术研究[D].北京:中国农业大学,2006.

[5] 姜丽萍,陈树人.果实采摘机器人研究综述[J].农业装备技术,2006, 32(1):8-10.

[6] 刘西宁,朱海涛,巴合提.牧神 LG-1型多功能果园作业机的研制[J].新疆农机化,2009,(1) :42-44.

[7]赵匀,武传宇,胡旭东,等.农业机器人的研究进展及存在的问题[J].农业工程学报,2003,19(1):20 -24.

[8] 方建军.移动式采摘机器人研究现状与进展[J].农业工程学报,2004,20(2):273-278.

[9] 刘淑珍,张玉宝.杨梅采摘机械手研究展望[J].农机化研究,2009,(12):225-226.

[10]张洁,李艳文.果蔬采摘机器人的研究现状、问题及对策[J].机械设计,2010,27(6):6-8

工业机器人发展现状及趋势

工业机器人发展现状及趋势 1国内工业机器人的发展现状 1.1发展概述 我国的工业机器人研究开始于20世纪80年代中期.在国家的支持下,通过“七五”、“八五”科技攻关.已经基本实现了实验、引进到自主开发的转变。促进了我国制造业、勘探等行业的发展。但随着我国门户的逐渐开放.国内的工业机器人产业面临着越来越大的竞争与冲击。虽然我国机器人的需求量逐年增加,但目前生产的机器人还很难达到所要求的质量.很多机器人的关键部件还需要进口。所以目前来说。我国还处在一个机器人消费型的同家。 现在,我国从事机器人研发的单位有200多家,专业从事机器人产业开发的企业有50家以上。在众多专家的建议和规划下,“七五”期间由机电部主持,中央各部委、中科院及地方科研院所和大学参加,国家投入相当资金,进行了工业机器人基础技术、基础元器件、工业机器人整机及应用工程的开发研究。“九五”期间,在国家“863”高技术计划项目的支持下,沈阳新松机器人自动化股份有限公司、哈尔滨博实自动化设备有限责任公司、上海机电一体化工程公司、北京机械工业自动化所、四川绵阳思维焊接自动化设备有限公司等确立为智能机器人主题产业基地。此外,还有上海富安工厂自动化公司、哈尔滨焊接研究所、国家机械局机械研究院及北京机电研究所、首钢莫托曼公司、安川北科公司、奇瑞汽车股份有限公司等都以其研发生产的特色机器人或应用工程项目而活跃在当今我国工业机器人市场上。 1.2机器人分类 随着科学技术的不断进步,我国工业机器人已经走上了自主研发阶段,这样标志着我国工业自动化走向了新的里程碑按照工业机器人的关键技术发展过程其可分为三代:第一代是示教再现机器人,主要由机器人本体、运动控制器和示教盒组成,操作过程比较简单。第一代机器人使用示教盒在线示教编程,并保存示教信息。当机器人自动运行时,由运动控制器解析并执行存储的示教程序,使机器人实现预定动作。这类机器人通常采用点到点运动,连续轨迹再现的控制方法,可以完成直线和圆弧的连续轨迹运动,然而复杂曲线的运动则由多段圆弧和直线组合而成。由于操作的容易性、可视性强,所以在当前工业中应用最多。

果蔬采摘机器人的研究_陈磊

果蔬采摘机器人的研究 陈磊,陈帝伊,马孝义 (西北农林科技大学水利与建筑工程学院,陕西杨凌712100) 摘要:果蔬采摘机器人是实现农业自动化的一项重要技术。为了掌握果蔬采摘机器人的最新研究动态,将其尽早应用到生产实际,根据近年来国内外最新的研究资料,简要阐述了果蔬采摘机器人的特点和国内外的研究进展,结合当前在此领域的一些研究实例进行比较分析;从采摘机器人的移动机构、机械手、识别和定位系统、末端执行器4部分介绍了其结构组成与设计技术,并在此基础上重点分析了果蔬采摘机器人研究中存在的问题,提出了未来研究开发的技术关键与方向。 关键词:果蔬采摘;机器人;机械手;控制系统 中图分类号:S24;S225.93文献标识码:A文章编号:1003-188X(2011)01-0224-04 0引言 随着电子计算机和自动控制技术的迅速发展、农业高新科技的应用和推广,农业机器人已逐步进入到农业生产领域中,并将促进现代农业向着装备机械化、生产智能化的方向发展。果蔬采摘是农业生产中季节性强、劳动强度大、作业要求高的一个重要环节,研究和开发果蔬采摘的智能机器人技术对于解放劳动力、提高劳动生产效率、降低生产成本、保证新鲜果蔬品质,以及满足作物生长的实时性要求等方面都有着重要的意义。 1果树采摘机器人的特点 工业领域是机器人技术的传统应用领域,目前已经得到了相当成熟的应用;而采摘机器人工作在高度非结构化的复杂环境下,作业对象是有生命力的新鲜水果或蔬菜。 同工业机器人相比,采摘机器人具有以下的特点[1]:①作业对象娇嫩、形状复杂且个体状况之间的差异性大,需要从机器人结构、传感器、控制系统等方面加以协调和控制;②采摘对象具有随机分布性,大多被树叶、树枝等掩盖,增大了机器人视觉定位难度,使得采摘速度和成功率降低,同时对机械手的 收稿日期:2010-03-31 基金项目:国家自然科学基金项目(50879072);国家级大学生创新实验项目(2009-2011) 作者简介:陈磊(1988-),男,陕西商洛人,在读本科生,(E-mail)chenlei055@nwsuaf.edu.cn。 通讯作者:陈帝伊(1982-),男,河北遵化人,讲师,博士研究生,(E -mail)diyichen@nwsuaf.edu.cn。避障提出了更高的要求;③采摘机器人工作在非结构化的环境下,环境条件随着季节、天气的变化而发生变化,环境信息完全是未知的、开放的,要求机器人在视觉、知识推理和判断等方面有相当高的智能;④采摘对象是有生命的、脆弱的生物体,要求在采摘过程中对果实无任何损伤,从而需要机器人的末端执行器具有柔顺性和灵巧性;⑤高智能导致高成本,农民或农业经营者无法接受,并且采摘机器人的使用具有短时间、季节性、利用率不高的缺点,是限制采摘机器人推广使用的重要因素;⑥果蔬采摘机器人的操作者是农民,不是具有机电知识的工程师,因此要求果蔬采摘机器人必须具有高可靠性和操作简单、界面友好的特点。 2国内外采摘机器人的研究进展 果蔬采摘机器人的研究开始于20世纪60年代的美国(1968年)[2],采用的收获方式主要是机械震摇式和气动震摇式。其缺点是果实易损、效率不高,特别是无法进行选择性的收获,在采摘柔软、新鲜的果蔬方面还存在很大的局限性。但在此后,随着电子技术和计算机技术的发展,特别是工业机器人技术、计算机图像处理技术和人工智能技术的日益成熟,采摘机器人的研究和开发技术得到了快速的发展。目前,日本、荷兰、法国、英国、意大利、美国、以色列、西班牙等国都展开了果蔬收获机器人方面的研究工作,涉及到的研究对象主要有甜橙、苹果、西红柿、樱桃西红柿、芦笋、黄瓜、甜瓜、葡萄、甘蓝、菊花、草莓、蘑菇等,但这些收获机器人目前都还没能真正实现商业化[3]。 我国在农业机器人领域的研究相对开始较晚,但

国内外机器人发展现状及发展动向

国外机器人发展现状及发展动向 一、全球机器人行业现状 (一)全球机器人行业现状 1、行业发展:增长态势延续 (1)预计2017年全球工业机器人销售量25万台 从2008年第四季度起,全球金融风暴导致工业机器人的销量急剧下滑。2010年全球工业机器人市场逐渐由2009年的谷底恢复。 2011年是全球工业机器人市场自1961年以来的行业顶峰,全年销售达16.6万台。2012年全球工业机器人销量为15.9万台,略有回落,主要原因是电气电子工业领域的销量有所下滑,但汽车工业机器人销量延续增长态势。 随着全球制造业产能自动化水平提升,特别是中国制造业升级,我们估计到2017年全球工业机器人销量达到25万台,年复合增长率9.5%. (2)预计到2017年全球工业机器人市场容量2700亿 2012年全球机器人本体市场容量为530亿元,本体加集成市场容量按本体大约三倍算,估计1600亿元。 估计2013年至2017年,包含本体和集成在的全球工业机器人市场,年复合增长率约为11%。预计2017年全球工业机器人市场容量将达到2700亿元。 (3)预计到2017年全球服务机器人市场容量接近500亿 根据IFR数据,2012年全球个人(或家庭)用服务机器人市场容量为73亿元,公共服务机器人市场容量为208亿元。目前看公共服务机器人产业化走在前面,市场容量更大。 预计2013-2017年个人(或家庭)用服务机器人市场容量增长率为7%,公共服务机器人市场容量年均复合增长率为17%。到2017年,全球服务机器人市场容量将接近500亿元。如果智能家居算是广义的服务机器人,服务机器人市场容量会大很多。 2、全球机器人行业布局:日欧产业优势明显,中国市场潜力巨大 (1)工业机器人市场销量与存量 全球工业机器人本体市场以中欧美日为主。日、美、德、韩、中五国存量占全球比例达71.24%,销量达69.92%。 截至2012年底,全球机器人累计销量达到247万台。机器人平均使用寿命为12年,最长15年。估计现在全球机器人存量在120万台-150万台之间。 分区域看,亚洲/澳洲增幅达到9%。亚洲增幅主要由中国需求拉动,因为中国2012年工业机器人销量增幅达到30%。 分生产地和消费地看,日本是唯一的工业机器人净出口国,拥有全球最大的机器人产能,占据全球机器人产量的66%。机器人消费地最大的区域是除日本以外的亚洲地区,占比约34%,而且是以中国市场为主。 (2)全球工业机器人与机床行业销量的对比 工业机器人销量占机床销量比反映各国机器人使用情况。这个比例的上升在一定程度上代表着这个国家机器人普及水平的提升。我们给出美日德中四国的机器人销量占机床销量比,从这个数据和历年的变化趋势看各国机器人行业的发展状况。 美日德三国的机器人销量占机床销量比稳定在一定区间(15%-25%),表明这

果实采摘机器人有关论文-刘今朝

果实采摘机器人有关论文-刘今朝

果实采摘机器人有关论文 机化141 刘今朝 摘要:果园收获作业机械化、自动化是广大果农关注的热点问题。进行果树采摘机器人研究,不仅对于适应市场需求、降低劳动强度、提高经济效率有着一定的现实意义,而且对于跟踪世界农业新技术、促进我国农业科技进步,加速农业现代化进程有着重大的意义。 关键词:果树采摘机器人现状,发展,常见问题等。 机器人技术是一门新兴的多学科交叉的综合性高新技术,涉及机构学、机械设计学、自动控制、传感技术、计算机、人工智能、仿生学等多个学科领域。机器人作为高自动化、智能化的机电一体化设备,通过计算机编程能够自动完成目标操作或移动作业,具有较高的可靠性、灵活性。因此,机器人技术已成为当今应用广泛、发展迅速和最引人注目的高新技术之一。 随着科学技术的发展和社会的进步,机器人技术已经广泛应用于工业、农业、国防、科技等各个领域。在农业生产中,由于易对植被造成损害、易污染环境等原因,传统的机械通常存在着许多的缺点。为了解决这个问题,国内、外都在进行农业机器人的研究,对农业机器人的需求极其迫切。就我国而言,机械化、自动化程度比较落后。农业机器人的问世,有望改变传统的劳动方式,改善农民的生活劳动状态。因此,世界各国对农业机器人非常重视,投入了大量的资金和人力进行研究开发。农业机器人在农业领域得到很大进展,其功能已经非常完备。农业机器人正在或已经替代人的繁重体力劳动,可以连

续不间断地工作,极大地提高了劳动生产率,是农业智能化不可缺少的重要环节。 采摘机器人是21世纪精确农业的重要装备之一,是未来智能农业机械的发展方向。采摘机器人是针对水果和蔬菜,可以通过编程来完成这些作物的采摘、转运、打包等相关作业任务的具有感知能力的自动化机械收获系统,是集机械、电子、信息、智能技术、计算机科学、农业和生物等学科于一体的交叉边缘性科学,需要涉及机械结构、视觉图像处理、机器人运动学动力学、传感器技术、控制技术以及计算信息处理等多方面的学科领域知识。 果实采摘机器人特点: (1) 作业对象的非结构性和不确定性; (2) 作业对象的娇嫩性和复杂性; (3) 良好的通用性和可编程性; (4) 操作对象和价格的特殊性。 果树采摘机器人操作者是农民,不是具有机电知识的工程师,因此要求果树采摘机器人必须具有高可靠性和操作简单的特点;另外,农业生产以个体经营为主,如果价格太高,就很难普及。 国外研究进展 ①日本的西红柿采摘机器人 日本的果蔬采摘机器人研究始于1980年,他们利用红色的番茄与背景(绿色)的差别,采用机器视觉对果实进行判别,研制了番茄采摘机器人。该机器人有5个自由度,对果实实行三维定位。由于不是

服务机器人行业现状及发展趋势分析

报告编号:1657362

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称: 报告编号:1657362←咨询时,请说明此编号。 优惠价:¥8280 元可开具增值税专用发票 网上阅读: 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 根据国际机器人联合会的定义,服务机器人是一种半自主或全自主工作的机器人,它能帮助人类完成除生产制造加工过程以外的设备。服务机器人包括专用服务机器人和家用服务机器人。其中专用服务机器人是指在特殊环境下作业的机器人,如核电站事故检测与处理机器人、极地科考机器人、反恐防暴机器人、军用机器人、救援机器人等;家用服务机器人是指服务于人的机器人,如助老助残机器人、康复机器人、清洁机器人、护理机器人、医疗机器人、教育娱乐机器人等。 目前,世界上至少有48个国家在发展机器人,其中25个涉足服务型机器人开发。在服务机器人领域,发展处于前列的国家主要是日本、韩国、美国和德国。清洁是服务机器人应用最广泛的领域之一,主要应用有家用吸尘器、公共建筑地板清洗机和大型建筑物的擦窗机器人和外墙清洗机器人等。2012年全球家务机器人销量达到196万台,同比增长15%,预计到2015年全球家务机器人销量将达到300万台。 我国在服务机器人领域的研发与日本、美国等国家相比起步较晚,但在国家863计划的支持下,我国在服务机器人研究和产品研发方面已开展了大量工作并取得一定的成果。我国服务机器人产业发展较好的地区主要集中在北京、上海、深圳、浙江、沈阳、哈尔滨、广州、江苏、西安等地。 2012年4月,中国科技部正式印发了《服务机器人科技发展“十三五”专项规划》,提出“十三五”服务机器人重点专项安排公共安全机器人、仿生机器人平台、医疗康复机器人和模块化核心部件等4个方面任务。 据中国产业调研网发布的2015-2020年中国服务机器人行业现状研究分析及市场前景预测报告显示,纵观国内外服务机器人的发展,可以发现服务机器人在我国具有广阔的市场空间。随着城市化进程加速、人口老龄化和人口素质的提高,服务机器人的商业

水果采摘装置设计

水果采摘装置设计 0文献综述 0.1水果采摘实现机械化的必然趋势 在水果的生产作业中,收获采摘是整个生产中最耗时最费力的一个环节。 水果收获期间需投入的劳力约占整个种植过程的50%~70%采摘作业质量的好 坏直接影响到水果的储存、加工和销售,从而最终影响市场价格和经济效益。水果收获具有很强的时效性,属于典型的劳动密集型的工作。但是由于采摘作业环境和操作的复杂性,水果采摘的自动化程度仍然很低,目前国内水果的采摘作业基本上还是手工完成。在很多国家随着人口的老龄化和农业劳动力的减少,劳动力不仅成本高,而且还越来越不容易得到,而人工收获水果所需的成本在水果的整个生产成本中所占的比例竟高达33%~50%高枝水果的采摘还带 有一定的危险性。因此实现水果收获的的机械化变得越来越迫切,发展机械化的收获技术,研究开发水果采摘机器人具有重要的意义。 研究和开发果蔬收获的智能机器人技术对于解放劳动力、提高劳动生产效率、降低生产成本、保证新鲜果蔬品质,以及满足作物生长的实时性要求等方面都有着重要的意义。采摘机器人是未来智能农业机械化的发展方向,具有广阔的应用前景。2004年11月1日颁布施行的《中华人民共和国农业机械化促进法》还明确规定国家采取措施鼓励,扶持农业机械化的发展,机械采摘取代手工作业是必然的发展趋势。 0.2国外水果机械化采摘装置研究进展及现状 水果的机械化收获技术已有40余年的研究历史。收获作业的自动化和机器人的研究始于20世纪60年代的美国,1968年美国学者Schertz和Brown首次提出应用机器人技术进行果蔬的收获,当时开发的收获机器人样机几乎都需要有人的参与,因此只能算是半自动化的收获机械。采用的收获方式主要是机械震摇式和气动震摇式,其缺点是果实易损,效率不高,特别是无法进行选择性的收获。 从20世纪80年代中期开始,随着电子技术和计算机技术的发展,特别是工业机器人技术、计算机图像处理技术和人工智能技术的日益成熟,以日本为代表的西方发达国家,包括美国、英国、法国、荷兰、以色列、西班牙等国家,都在水果采摘机

现阶段国内外机器人产业发展现状分析

机器人与智能装备产业是高度集成微电子、通信、计算机、人工智能、控制和图像处理等学科最新科研和产业成果的前沿高新技术产业,是拟建的江苏省(常州)工业技术研究院的服务的产业核心和研发的产业立足点。直接影响生活最优化和智能化的机器人技术是机器人与智能装备产业的技术核心,推进着未来机器人与智能装备领域的科技创新力和产业竞争力。 机器人技术是一种是以自动化技术和计算机技术为主体、有机融合各种现代信息技术的系统集成和应用。经过半个多世纪的发展,机器人技术在工业生产领域得到了广泛的应用,极大地提升了生产品质并成功解放了劳动力资源。作为高技术领域中重要的前沿技术之一,机器人技术具有前瞻性、先导性的特点,对学术研究、产业升级、培养创新意识、保障国家安全、引领未来经济社会的发展有着十分重要的作用。 目前,相关领域的技术突破,从根本上为提升机器人技术的学术研究提供了必要的支持,为机器人的应用范围拓宽了道路,已涵盖国防、航空航天、工业生产、服务、老人康复、教育甚至普通家庭生活,一场新的机器人技术研究高潮和发展契机业已到来。 机器人技术毫无疑问是未来的战略性高技术,充满机遇和挑战。 目前,国际上机器人市场大概有80亿至100亿,其中工业机器人占的比重最大。2025年,整个机器人市场将达到500亿,服务机器人从原来的300多万台增加到1200多万台,特种机器人(如:排爆机器人、医疗机器人等)的呼声也越来越高。另外,微软等IT企业,丰田、奔驰等汽车公司,甚至还有家具、卫生洁具企业都纷纷参与机器人的研制。 美国和日本多年来引领国际机器人的发展方向,代表着国际上机器人领域的最高科技水平。目前,日本除了比较关注特种机器人和服务机器人以外,还注重中间件的研制。然而,近年来日本基本上在做模仿性的工作,突破性技术比较少。而美国在机器人领域的技术开发方面,一直保持着世界领先地位。再有,美国主要做高附加值的产业,比如军用机器人,目前世界销售的9000台军用机器人之中,有60%来自美国。比如:美国最近研制成功的BigDog 军用机器人,能负重100公斤,行进速度跟人相当,每小时达到五公里,还能适应各种地形,即使是在侧面受到冲击时也能保持很好的系统稳定性。 在各种机器人中,工业机器人应用较早,发展最为成熟。同时,技术的不断进步一直在牵引着机器人学科的发展,使机器人的应用领域从工业机器人扩展到特种机器人和服务机器人等。机器人技术也正越来越深刻地影响着我们的生活。机器人不但将在工厂、实验室与人一起工作,还将在车站、机场、码头、交通路口为人们指引路径、回答问题、帮助行人。机器人还将步入千家万户,为老人端茶送水,护理伤病人等等。未来机器人将会越来越广泛地进入人类社会,人类对机器人的依赖会如同现时对待计算机一样,即使是短时间的离开都可能会造成很大不便。 机器人化是先进制造领域的重要标志和关键技术,针对先进制造业生产效率提高的诸多瓶颈问题,尤其是在汽车产业中,机器人得到了广泛的应用。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。目前汽车制造业是所有行业中人均拥有机器人密度最高的

机器人的定义、分类及发展概况---副本---副本

第一章绪论 1.1 机器人的定义、分类及发展概况 1.1.1 机器人的定义 机器人问世已有几十年,但没有一个统一的意见。原因之一是机器人还在发展,另一原因主要是因为机器人涉及到了人的概念,成为一个难以回答的哲学问题。也许正是由于机器人定义的模糊,才给了人们充分的想象和创造空间。 美国机器人协会( RIA) :一种用于移动各种材料、零件、工具或专用装置的,通过程序动作来执行各种任务,并具有编程能力的多功能操作机 ( Manipulator )。 美国家标准局:一种能够进行编程并在自动控制下完成某些操作和移动作业任务或动作的机械装置。 1987 年国际标准化组织(ISO) 对工业机器人的定义:“工业机器人是一种具有自动控制的操作和移动功能,能完成各种作业的可编程操作机。 日本工业标准局:一种机械装置,在自动控制下,能够完成某些操作或者动作功能。

英国:貌似人的自动机,具有智力的和顺从于人的但不具有人格的机 KB 器。 中国:我国科学家对机器人的定义是:“机器人是一种自动化的机器,这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”。 尽管各国定义不同,但基本上指明了作为“机器人”所具有的二个共同 点: 八、、? 是一种自动机械装置,可以在无人参与下,自动完成多种操作或动作功能,即具有通用性。 可以再编程,程序流程可变,即具有柔性(适应性)。 机器人集中了机械工程、材料科学、电子技术、计算机技术、自动控制理论及人工智能等多学科的最新研究成果,代表了机电一体化的最高成就,是当代科学技术发展最活跃的领域之一。 1.1.2 机器人的发展历史 1920年,捷克作家卡雷尔卡佩克发表了科幻剧本《罗萨姆的万能机器

国内外机器人发展的现状及发展动向

国内外机器人发展的现状及发展动向 机器人技术毫无疑问是未来的战略性高技术,充满机遇和挑战。目前,国际上机器人市场大概有80亿至100亿,其中工业机器人占的比重最大。2025年,整个机器人市场将达到500亿,服务机器人从原来的300多万台增加到1200多万台,特种机器人(如:排爆机器人、医疗机器人等)的呼声也越来越高。另外,微软等IT企业,丰田、奔驰等汽车公司,甚至还有家具、卫生洁具企业都纷纷参与机器人的研制。 美国和日本多年来引领国际机器人的发展方向,代表着国际上机器人领域的最高科技水平。目前,日本除了比较关注特种机器人和服务机器人以外,还注重中间件的研制。然而,近年来日本基本上在做模仿性的工作,突破性技术比较少。而美国在机器人领域的技术开发方面,一直保持着世界领先地位。再有,美国主要做高附加值的产业,比如军用机器人,目前世界销售的9000台军用机器人之中,有60%来自美国。比如:美国最近研制成功的Big Dog军用机器人,能负重100公斤,行进速度跟人相当,每小时达到五公里,还能适应各种地形,即使是在侧面受到冲击时也能保持很好的系统稳定性。 在各种机器人中,工业机器人应用较早,发展最为成熟。同时,技术的不断进步一直在牵引着机器人学科的发展,使机器人的应用领域从工业机器人扩展到特种机器人和服务机器人等。机器人技术也正越来越深刻地影响着我们的生活。机器人不但将在工厂、实验室与人一起工作,还将在车站、机场、码头、交通路口为人们指引路径、回答问题、帮助行人。机器人还将步入千家万户,为老人端茶送水,护理伤病人等等。未来机器人将会越来越广泛地进入人类社会,人类对机器人的依赖会如同现时对待计算机一样,即使是短时间的离开都可能会造成很大不便。 机器人化是先进制造领域的重要标志和关键技术,针对先进制造业生产效率提高的诸多瓶颈问题,尤其是在汽车产业中,机器人得到了广泛的应用。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。目前汽车制

果蔬采摘机器人研究进展

果蔬采摘机器人研究进展 刘长林,张铁中,杨丽 (中国农业大学,北京100083) 摘要 综述了果蔬采摘机器人的国内外研究现状,介绍了目前大部分典型的果蔬采摘机器人的研究成果。通过分析大部分采摘机器人的工作情况、功能、存在问题,指出了目前采摘机器人的应用与研究过程中的主要难点与制约因素,提出了研究开发的方向与关键技术。关键词 果蔬采摘;机器人;研究进展;关键技术中图分类号 S225 文献标识码 A 文章编号 0517-6611(2008)13-05394-04R esearch P rogress on Picking R obot for F ruits and V egetables LIU Ch ang 2lin et al (Chinese Agricultural University ,Beijing 100083) Abstract T he current situation of research on fruit and vegetable picking rob ot at h om e and broad was summ arized ,the particularly focus were on the re 2search results of m ost ty pical picking rob ots ,including rob ot principle and structure.T hrough analyzing the w orking condition ,function and problems of m ost of picking rob ot ,the present difficulties and restricted factors of picking rob ot in its research and application were point out and the research direction and key techn ology in future were provided.K ey w ords Fruit and vegetable picking ;R ob ot ;Research progress ;K ey techn ology 果蔬采摘作业是果蔬生产中最耗时、最费力的一个环节。果蔬收获期间需投入的劳力约占整个种植过程的50%~70%。随着社会经济的发展和人口的老龄化,很多国家农业劳动力严重短缺,导致果蔬生产劳动力成本增加。为降低成本,提高劳动效率,果实采摘的自动化成为亟待解决的问题。收获作业自动化和机器人的研究开始于20世纪60年代的美国,采用的收获方式主要是机械震摇式和气动震摇式,其缺点是果实易损,效率不高,特别是无法进行选择性的收获[1]。20世纪80年代中期以来,随着电子技术和计算机技术的发展,特别是工业机器人技术、计算机图像处理技术和 人工智能技术的日益成熟,以日本为代表的发达国家,包括荷兰、美国、法国、英国、以色列、西班牙等国家,在收获采摘机器人的研究上做了大量的工作。 1 国外研究进展 1.1  西红柿采摘机器人 日本近藤(K ONT O )等研制的番茄 采摘机器人,由机械手、末端执行器、视觉传感器、移动机构组成(图1)。该采摘机器人采用了7个自由度机械手。用彩色摄像机作为视觉传感器,寻找和识别成熟果实,并采用双目视觉方法对果实进行定位,利用机械手的腕关节把果实拧下。移动系统采用4轮机构,可在垄间自动行走。该番茄采 图1 日本的番茄采摘机器人 Fig.1 T om ato picking 2robot m ade in Jap an 摘机器人采摘速度大约是15s/个,成功率在70%左右。主要存在的问题是当成熟番茄的位置处于叶茎相对茂密的地方时,机械手无法避开叶茎障碍物完成采摘[2-3]。 在2004年2月10日美国加利福尼亚州图莱里开幕的世界农业博览会上,美国加利福尼亚西红柿机械公司展出2台全自动西红柿采摘机(图2)。如果西红柿单位面积产量有保证的话,那么这种长12.5m 、宽4.3m 的西红柿采摘机每分钟可采摘1t 多西红柿,1h 可采摘70t 西红柿。这种西红柿采摘机首先将西红柿连枝带叶割倒后卷入分选仓,仓内能识别红色的光谱分选设备挑选出红色的西红柿,并将其通过输送 基金项目 国家自然科学基金资助项目(60375036)。作者简介 刘长林(1979-),男,吉林榆树人,博士研究生,研究方向:农 业机器人和生物生产自动化。 收稿日期 2008203228 图2 美国的番茄采摘机器人 Fig.2 T om ato picking 2robot m ade in Am erica 带送入随行卡车的货舱内,然后将未成熟的西红柿连同枝叶 安徽农业科学,Journal of Anhui Agri.S ci.2008,36(13):5394-5397 责任编辑 刘月娟 责任校对 马君叶

国内外机器人发展现状及发展动向

国内外机器人发展现状及发展动向 一、全球机器人行业现状 (一)全球机器人行业现状 1、行业发展:增长态势延续 (1)预计2017年全球工业机器人销售量25万台 从2008年第四季度起,全球金融风暴导致工业机器人的销量急剧下滑。2010年全球工业机器人市场逐渐由2009年的谷底恢复。 2011年是全球工业机器人市场自1961年以来的行业顶峰,全年销售达16.6万台。2012年全球工业机器人销量为15.9万台,略有回落,主要原因是电气电子工业领域的销量有所下滑,但汽车工业机器人销量延续增长态势。 随着全球制造业产能自动化水平提升,特别是中国制造业升级,我们估计到2017年全球工业机器人销量达到25万台,年复合增长率9.5%. (2)预计到2017年全球工业机器人市场容量2700亿 2012年全球机器人本体市场容量为530亿元,本体加集成市场容量按本体大约三倍算,估计1600亿元。 估计2013年至2017年,包含本体和集成在内的全球工业机器人市场,年复合增长率约为11%。预计2017年全球工业机器人市场容量将达到2700亿元。 (3)预计到2017年全球服务机器人市场容量接近500亿 根据IFR数据,2012年全球个人(或家庭)用服务机器人市场容量为73亿元,公共服务机器人市场容量为208亿元。目前看公共服务机器人产业化走在前面,市场容量更大。 预计2013-2017年个人(或家庭)用服务机器人市场容量增长率为7%,公共服务机器人市场容量年均复合增长率为17%。到2017年,全球服务机器人市场容量将接近500亿元。如果智能家居算是广义的服务机器人,服务机器人市场容量会大很多。 2、全球机器人行业布局:日欧产业优势明显,中国市场潜力巨大 (1)工业机器人市场销量与存量 全球工业机器人本体市场以中欧美日为主。日、美、德、韩、中五国存量占全球比例达71.24%,销量达69.92%。 截至2012年底,全球机器人累计销量达到247万台。机器人平均使用寿命为12年,最长15年。估计现在全球机器人存量在120万台-150万台之间。 分区域看,亚洲/澳洲增幅达到9%。亚洲增幅主要由中国需求拉动,因为中国2012年工业机器人销量增幅达到30%。 分生产地和消费地看,日本是唯一的工业机器人净出口国,拥有全球最大的机器人产能,占据全球机器人产量的66%。机器人消费地最大的区域是除日本以外的亚洲地区,占比约34%,而且是以中国市场为主。 (2)全球工业机器人与机床行业销量的对比 工业机器人销量占机床销量比反映各国机器人使用情况。这个比例的上升在一定程度上代表着这个国家机器人普及水平的提升。我们给出美日德中四国的机器人销量占机床销量比,从这个数据和历年的变化趋势看各国机器人行业的发展状况。 美日德三国的机器人销量占机床销量比稳定在一定区间内(15%-25%),表明

机器人发展概况

目录 (一)、机器人运动系统的组成、基本结构 (1) 1、驱动系统 (2) 2、感受系统 (2) 3、机器人——环境交互系统 (3) 4、人机交互系统 (3) 5、控制系统 (3) 6、机械传动结构 (3) (二)、国内外机器人厂家的对比 (4) 1、技术差距 (4) 2、品牌厂家 (5) 3、产品系列 (5) 4、产品价格及成本 (8) (三)机器人控制的智能化、网络化发展 (9) 1、国产机器人的发展状况 (9) 2、应用市场和产品类型的变化 (10) 3、高端智能化机器人将成重点 (11)

智能机器人运动控制系统的综述及发展摘要:本文简述了机器人控制系统,讨论了该系统的分类。综述了机器人控制系统最新的研究内容和成果,调研了机器人控制系统的市场应用。发现,机器人在工业、国防、科研、教育以及人们的日常生活等诸多领域都已广泛应用,并向着标准化、模块化、智能化不展。 关键词:机器人控制系统研究市场 (一)、机器人运动系统的组成、基本结构如图1和图2所示,机器人由机械部分、传感部分、控制部分三大部分组成。这三大部分可以分成驱动系统、机械结构系统、感受系统、机器人—环境交互系统六个子系统。

图1 机器人的基本结构示意图 图2 机器人基本组成示意图 1、驱动系统 要使机器人运作起来,各需各个关节即每个运动自由度安置传动装置。这就是驱动系统。驱动系统可以是液压传动、气压传动、电动传动、或者把它们结合起来应用综合系统,可以是直接驱动或者通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接传动。 2、感受系统 它由内部传感器模块和外部传感器模块组成,获取内部和外部环境状态中有意义的信息。智能化传感器的使用提高了机器人的机动性、适应性和智能化水准。人类的感受系统对感知外部世界信息是极其灵巧

果树采摘机器人发展概况及特点

果树采摘机器人发展概况及特点 机器人技术的发展是一个国家高科技水平和工业自动化程度的重要标志和体现f3l。机器人集成了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科的发展成果,代表高技术的发展前沿,是当前科技研究的热点方向14J。21世纪是农业机械化向智能化方向发展的重要历史时期。我国是一个农业大国,要实现农业现代化,农业装备的机械化、智能化是发展的必然趋势。随着计算机和自动控制技术的迅速发展,机器人已逐步进入农、lp生产领域。目前,国内浆果采摘作业基本上都是靠人工完成的,采摘效率低,费用占成本的比例约为50%.70%。采摘机器人作为农业机器人的重要类型,其作用在于能够降低工人劳动强度和尘产费用、提高劳动生产率和产品质量、保证果实适时采收,冈而具有很大的发展潜力lM。1.2.1国外研究成果及现状自从20世纪60年代(1968年)美国人Schertz 和Brown提出,}J机器人采摘果实之后,对采摘机器人的研究便受到广泛重视。随蓿科学技术的发展,农业机器人在国外迅速发展起来。最早的机械采摘方法是机械振摇式和7 e动振摇式两种方法,但这两种方法不仅容易损伤果实,采摘效率也不高,同时容易摘到未成熟果实I61。1983年,第一台采摘机器人在美固诞生,在以后20多年的时M晕,同、韩及欧美国家相继研究了采摘番茄、黄瓜、苹果、蘑菇、柑橘、番茄和甜瓜等的智能机器人。l、日本的番茄采摘机器人:日本的果蔬采摘机器人研究始于1 984年,他们利用红色的番茄与背景(绿色)的差别,采用机器视觉对果实进行判别,研制了番茄采摘机器人。该机器人有5个自由度,对果实实行三维定位。由于不是全自由度的机械手,操作空间受到了限制,而且孥硬的机械手爪容易损伤果实。日本冈山大学的Kondo等人研制的番茄采摘机器人,山机械手、末端执行器、行走装置、视觉系统和控制部分组成,如图1-1所示。·—●T—争Sl7777一图1.1番茄采摘机器人结构简图S1一前后延伸棱柱关节;S2一上下延伸棱柱关节:3、4、5、6、7一旋转关节该机器人采用由彩色摄像头和图像处理卡组成的视觉系统来寻找和识别成熟果实。考虑到番茄的果实经常被叶茎遮挡,为了能灵活避开障碍物,采用具有冗余度的7自由度机械手。为了不损伤果实,其末端执行器配带2个带有橡胶的手指和1个气动吸嘴,把果实吸住抓紧后,利用机械手的腕关节把果实拧下。行走机构有4个车轮,能在!tl问自动行走,利用机器人上的光传感器和设置在地头土埂的反射板,可检测是否到达土埂,到达后自动停止,转向后再继续前进。该番茄采摘机器人从识别到采摘完成的速度大约是15s/个,成功率在70%左右。有些成熟番茄未被采摘的主要原因是其位置处于叶茎相对茂密的地方,机器手无法避开叶茎障碍物。因此需要在机器手的结构、采摘工作方式和避障规划方面加以改进,以提高采摘速度和采摘成功率,降低机器人自动化收获的成本,才可能达到实用化17,81。2、荷兰的黄瓜采摘机器人:1996年,荷兰农业环境工程研究所(1MAG)研制出一种多功能黄瓜收获机器人。该机器人利用近红外视觉系统辨识黄瓜果实,并探测它的位置;末端执行器由手爪和切割器构成,用来完成采摘作业。机械手安装在行走车上,机械手的操作和采摘系统初步定位通过移动行走车来实现,机械手只收获成熟黄瓜,不损伤其他未成熟的黄瓜。该机械手有7个自山度,采用三菱公司(Mitsubishi)RV.E2的6自由度机械手,另外在底座增加了一个线性滑动自由度。收获后黄瓜的运输由一个装有可卸集装箱的自动行走的运输车来完成。整个系统无人工干预就能在温室工作,工作速度为54s/根,采摘率为80%。试验结果表明:该机器人在实验室中的采摘效果良好,但由于制造成本和适应性的制约,还不能满足商用的要求l引。3、韩国的苹果收获机器人:韩国庆北大学的科研人员研制出节果采摘机器人,它具有4个自由度,包括3个旋转关节和1个移动关节。采用三指夹持器作为末端执行器,其手心装有压力传感器,可以起到避免苹果损伤的作用。它利用CCD摄像机和光电传感器识别果实,从树冠外部识别苹果的识别率达85%,速度达5个/s。该机器人末端执行器下方安装有果实收集袋,缩短了从采摘到放置的时问,提高了采摘速度。该机器人无法绕过障碍物摘取苹果;对于叶茎完全遮盖的苹果,也没有给出识别和采摘的解决方法【lol。4、英国的蘑菇采摘机器人:英国Silsoe研究院研制了蘑菇采摘机器人,它可以自动测量蘑菇的位置、大小,并选择性地采摘和修剪。它的机械手包括2个气动移动关节和1个步进电机驱动的旋转关节;末端执行器是带有软衬挚的吸引器;视觉传感器采用TV摄像头,安装在顶部用来确定蘑菇的位置和大小。采摘成功率在7s%左右,采摘速度为6.7s/个,生长倾斜是采摘失败的主要原因。如何根据图像信息调整机器手姿态动作来提高成功率和采用多个未端执行器提高生产率是亟待解决的问趔¨1。5、西班牙的柑橘采摘机器人:西班爿:科技人员发明的这种柑橘采摘机器人主体装在拖拉机上,由摘果手、彩色视觉系统和超声传感定位器3部分组成。它能依据柑桔的颜色、大小、形状束判断柑桔是否成熟?决定是否采摘。采下的桔子还可按色泽、大小分级装箱。这种采桔机器人采摘速度为1个/s,比人工提高效率6倍多‘121。6、以色列和美国联合研制的甜瓜收获机器人:以色列和美国科技人员联合开发研制了一台甜瓜采摘机器人。该机器人丰体架设在以拖拉机牵引为动力的移动平台上,采用黑白图像处理的方法进行甜瓜的识别和定位,并根据甜瓜的特殊性来增加识别的成功率。在两个季节和两个品种的}H问试验证明,甜瓜采摘机器人可以完成85%以上的}H问甜瓜的识别和采摘.1=作‘"1。表1.1给出了国外部分国家果蔬收获机器人同期研究进展统计。1.2.2国内研究成果及现状国内在农业机器人方面的研究始于20世纪90年代中期,与发达国家相比,虽然起步较晚,但不少大专院校、研究所都在迸行采摘机器人和智能农业机械方面的研究,已有很多研究成果披露,简介如下:l、林木球果采摘机器人:东北林业大学的陆怀民研制了林木球果采摘机器人,主要由5自由度机械手、行走机构、液压驱动系统和单片机控制系统组成,如图1.2所示。采摘时,机器人停在距离母树3.5m处,操纵机械手回转马达对准母树。然后,单片机控制系统控制机械手大、小臂同时柔性升起达到~定高度,采摘爪张开并摆动,对准要采集的树枝,大小臂同时运动,使采摘爪沿着树枝生长方向趋近I 5-2m,然后采摘爪的梳齿夹拢果技,大小臂带动采集爪按原路向后返回,梳下枝上的球果-完成一次采摘。这种机器人效率是500k∥天,是人工的30一50倍。而且,采摘时对母树的破坏较小,采净率矧川。2、蘑菇采摘机器人:吉林工qk大学的周云山等人研究了蘑菇_={壬摘机器人。该系统主要由蘑菇传送带、摄像机、采摘机器手、二自由度气动伺服机构、机器手抓取控制系统和计算机等组成。汁算机视觉系统为蘑菇采摘机器提供分类所需的尺寸、面积信息,并且引导机器手准确抵达待采摘蘑菇的中心位置,防止因对不准造成抓取失败或损伤蘑菇il”。3、草莓采摘机器人:中国农业大学的张铁中等人针对我国常见的温室罩垄作栽培的草莓设计了3 种采摘机器人。分别采用桥架式、4自由度』毛门式和3自由度直角坐标形式的机械手进行跨行收获,通过彩色CCD传感系统获取彩色图像,经过图像处理进行目标草莓的识别和定位,进而控制末端执行器进行收获。同时,对草莓的生物特性、成熟度、多个草莓遮挡等实际问题进行了研究,为草莓采摘提供设计依据和理论基础{161。4、番茄采摘机器人:南京农业大学的张瑞合、姬长英等人在番茄采摘中运用双目立体视觉技术对红色番茄进行定位,将图像进行灰度变换,而后对图像的二维直方图进彳亍腐蚀、膨胀以去除小团块,提取背景区边缘,然后用拟合曲线实现彩色图像的分割,将番茄从背景中分离出来。对目标进行标定后,用面积匹配实现共轭图像中目标的配准。运用体视成像原理,从两幅二维图像中恢复目标的三维坐标。通过分析实验数据得出的结论为.当目标与摄像机的距离为300mm-400mm 时,深度误差可控制在3%4%t”I。5、黄瓜采摘机器人:中国农业大学汤修映等人研制了6自由度黄瓜采摘机器人,采用基于RGB三基色模型的G分量来进行图像分割,在特征提取后确定出黄瓜果实的采摘点,未端执行器的活动刃口平移接近固定刃口,通过简单的开合动作剪切掉黄瓜。同时,提出了新的适合机器人自动化采摘的斜栅网架式黄瓜栽培模式。6、节果采摘机器人:中国农业大学的孙明等人为苹果采摘机器人开发了一套果实识别机器视觉系统,并成功研究了一种使二值图像的像素分割J下确率大于80%的彩色图像处王甲技术。通过对果实、叶、茎等的色泽信号浓度频率谱图的分析,求}l{闽值,然后运用此值对彩色图像进行二值化处理l。引。1.2.3果树采摘机器人的特点1、采摘对象的非结构性和不确定性果实的生长是随着时fHJ和空问而变化的。生长的环境是变化的,直接受土地、季节和天气等自然条件的影响。这就要求果树采摘机器人不但要具有与生物体柔性相对应的处理功能,而且还要能够顺应多变的自然环境,在视觉、知识推理和判断等方面具有很高的智能性。2、采摘对象的娇嫩性和复杂性果实具有软弱易伤的特性,必须细心轻柔地对待和处理;并且其形状复杂,生长发育程度不一,导致相互差异很大。果蔬采摘机器人一般是采摘、移动协调进行,行走轨迹不是连接出发点和终点的最短距离,而是具有狭窄的范围、较长的距离以及遍及整个果园表面等特点。3、具备良好的通用性和可编程性因为果树采摘机器人的操作对象具有多样性和可变性,这就要求采摘机器人具有良好的通用性和可编程性。只要改变部分软、硬件,就能进行多种作业。4、操作对象的特殊性和价格的实惠性农民是果树采摘机器人的主要操作者,他们不具有相关的机电理论知识,因此要求果树采摘机器人必须具有高可靠性和操作简单的特点;另外,农业生产以个体经营为主,如果价格太高,就很难普及。

农业生产机械化论文-果蔬采摘机器人国内外研究现状

《农业生产机械化》课程论文论文题目:果蔬采摘机器人国内外研究现状 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日

果蔬采摘机器人国内外研究现状 摘要 本文描述了什么是果蔬机器人,果蔬采摘机器人的作用以及国内外果蔬采摘机器人的研究现状并对其作以评价。 关键词:果蔬采摘机器人国内外研究现状 Fruit and vegetable picking robot research status at home and abroad Abstract In this paper, What fruit and vegetable is robot are described in this paper, the effect of harvesting robot, and the research status of fruit and vegetable picki ng robot at home and abroad and its evaluati on. Keywords: fruit and vegetable pick ing robot research status at home and abroad 农业是国民经济的基础,这是不以人们意志为转移的客观经济规律。农业生产力发展的水平和农业劳动生产率的高低,决定了农业为其他部门提供剩余产品和劳动力的数量,进而制约着这些部门的发展规模和速度。只有农业发展了 , 国民经济其他部门才能得以进一步的发展。⑴农业机械化是农业现代化的中心环节,它凝聚着现代科学技术的最新成果,并配合农业生物等农业技术,成为发挥增产作用的基本手段和提高劳动生产率、减轻繁重体力劳动的必要条件和根本途径,从而带来生产力

相关主题
文本预览
相关文档 最新文档