当前位置:文档之家› 水果采摘装置设计教学内容

水果采摘装置设计教学内容

水果采摘装置设计教学内容
水果采摘装置设计教学内容

水果采摘装置设计

0文献综述

0.1水果采摘实现机械化的必然趋势

在水果的生产作业中,收获采摘是整个生产中最耗时最费力的一个环节。水果收获期间需投入的劳力约占整个种植过程的50%~70%。采摘作业质量的好坏直接影响到水果的储存、加工和销售,从而最终影响市场价格和经济效益。水果收获具有很强的时效性,属于典型的劳动密集型的工作。但是由于采摘作业环境和操作的复杂性,水果采摘的自动化程度仍然很低,目前国内水果的采摘作业基本上还是手工完成。在很多国家随着人口的老龄化和农业劳动力的减少,劳动力不仅成本高,而且还越来越不容易得到,而人工收获水果所需的成本在水果的整个生产成本中所占的比例竟高达33%~50%。高枝水果的采摘还带有一定的危险性。因此实现水果收获的的机械化变得越来越迫切,发展机械化的收获技术,研究开发水果采摘机器人具有重要的意义。

研究和开发果蔬收获的智能机器人技术对于解放劳动力、提高劳动生产效率、降低生产成本、保证新鲜果蔬品质,以及满足作物生长的实时性要求等方面都有着重要的意义。采摘机器人是未来智能农业机械化的发展方向,具有广阔的应用前景。2004年11月1日颁布施行的《中华人民共和国农业机械化促进法》还明确规定国家采取措施鼓励,扶持农业机械化的发展,机械采摘取代手工作业是必然的发展趋势。

0.2国外水果机械化采摘装置研究进展及现状

水果的机械化收获技术已有40余年的研究历史。收获作业的自动化和机器人的研究始于20世纪60年代的美国,1968年美国学者Schertz和Brown 首次提出应用机器人技术进行果蔬的收获,当时开发的收获机器人样机几乎都需要有人的参与,因此只能算是半自动化的收获机械。采用的收获方式主要是机械震摇式和气动震摇式,其缺点是果实易损,效率不高,特别是无法进行选择性的收获。

从20世纪80年代中期开始,随着电子技术和计算机技术的发展,特别是工业机器人技术、计算机图像处理技术和人工智能技术的日益成熟,以日本为代表的西方发达国家,包括美国、英国、法国、荷兰、以色列、西班牙等国家,都在水果采摘机器人方面做了大量的研究工作,涉及到的研究对象主要包

括甜橙、苹果、樱桃、甜瓜、葡萄、草莓等,试验成功了多种具有人工智能的收获采摘机器人。应用机器人技术进行水果的自动化收获得到了快速的发展。

法国是研究果蔬采摘机器人较早的国家之一,但由于技术、市场和价格等因素的影响,甜橙和苹果采摘机器人已经停产,采摘机器人的研究工作基本陷于停顿。美国在自动化收获机器人的研究方面没有一个很清晰的战略,研究工作也基本处于停顿状态。日本近年来开展了大量的收获机器人研究项目,进展很快,但还未能真正实现商业化。荷兰收获机器人的研究工作走在很多国家的前面,但研究的果蔬种类并不多。

0.3我国水果机械化采摘装置研究进展

我国的国家专利中有上百种的水果采摘器,包括机械式、电动式、气动式的果品采摘器,其中有的实现单方向的水果采摘,有的可改变方向能实现全方位的水果采摘。不过目前市场上商品化的采摘器品种还比较单一,且价格昂贵操作不便。

我国在农业机器人领域的研究始于20世纪90年代中期,相对于发达国家起步较晚,果蔬采摘机器人的研究还处于起步阶段。目前我国不少院校、研究所都在进行采摘机器人和智能农业机械相关的研究。东北林业大学的陆怀民研制了林木球果采摘机器人,它主要由5个自由度机械手、行走机构、液压驱动系统和单片机控制系统组成。郭峰等运用彩色图像处理技术和神经网络理论,开发了草莓拣选机器人,采用气动驱动器将草莓推到不同的等级方向。浙江大学的应义斌等人完成了水果自动分级机器人的研究开发。

0.4水果机械化采摘装置发展方向

虽然水果的机械化作业最早可以追溯到上个世纪60年代,但由于简单的机械收获易造成果蔬损伤,因此在收获柔软新鲜的果蔬方面还存在很大的局限性而且果蔬收获往往需要有选择性地进行,此外市场对果蔬的新鲜度也有很高的要求,这就要求果蔬的收获要有很高的时效性。因此,在果蔬收获中采用机器人作业,实现果蔬收获的自动化和智能化,是解决上述问题的最好方式。

采摘水果的机器人有他自身的特点:它们一般是在室外工作,作业环境较差,但是在精度上却没有工业机器人那样要求高。果蔬采摘机器人操作者是知识水平较低的普通农民,不是具有机电知识的专门的技术人员。因此要求果蔬采摘机器人操作技术不能太复杂,必须具有很高可靠性和操作简单的特点。另外,水果的生产业以个体经营为主,考虑到经济效益,采摘器的价格不能太高,否则会就很难普及。

采摘机器人作为农业机器人的重要应用具有很大的发展潜力。日后的水果采摘机器人的研究工作必须朝以下方向发展:①能够准确地识别和定位成熟果实,并且能引导末端执行器准确的接近目标;②研制灵巧的、不伤果实的采摘机器人末端执行器;③采摘机器人的行走机构必须适应田间的复杂环境;④视觉系统要迅速识别定位果实,控制系统和机械手臂系统必须做到迅速摘取;⑤增强机器人系统的通用性。相信在不久的将来,在不断克服种种技术的阻碍后,水果采摘机器人会得到广泛地应用,水果的采摘将实现机械化。

1引言

1.1水果采摘装置的研制背景

我国是农业大国,果树业是农业的重要组成部分,果树产值在我国农业(种植)中仅次于粮、菜居第三位。据农业部统计,2003年全国果树总面积943.67公顷,总产量7551.5万吨,皆居世界第一,且人均占有量48kg以上。柑桔1345万吨(占世界柑桔总产量的l3%,居世界第三位,近20年来产量增长了8.43倍,是全球柑桔产量增长幅度最大的主产国)。苹果2110万吨(占世界总产量的25.2%)。梨979.8万吨。

我国山区丘陵地区面积广阔且大部分种植果树,仅西部地区果园面积就达286万公顷,占全国31%,果品总产量为1837万吨。以山城重庆柑橘种植为例,2004年柑桔种植面积就已经达到18.23万公顷,总产量突破100万吨,而重庆农业综合机械化水平为仅12.23%。

近年来,为转移农村劳动力,统筹城乡经济协调发展,促进农民增收,山区丘陵地区普遍把劳务输出作为发展地方经济、增加农民收入的一项重要举措。伴随着劳务进城的加快,大量壮劳动力外出务工,留在家的主要是老、弱、病、残、妇女和儿童。水果的采摘期短,短期内劳动强度大,外出的壮劳动力不可能及时回来。高枝水果的采摘对人员的体力有较高要求,一般直接参与采摘作业的应是青壮年,手工采摘高枝水果还不能由一人完成。水果的采摘期短,短期内劳动强度大,这种矛盾更突显了山区丘陵果业采摘的难度大的问题。

目前山地丘陵的水果采摘主要是使用采果剪手工采摘,手工采摘仅限于地域距地面低于两米的灌木类果树,劳动强度大,且效率低下。对于高于两米的乔木类的果树或比较高的枝条上的水果,采摘员要站在短梯或高凳上,将采摘的水果放入果篮或果筐中。国家标准GB3608-93《高处作业分级》明确规定:"凡在坠落高度基准面2m以上(含2m)有可能坠落的高处进行的作业称为高

处作业。"高枝水果有的已经远远高于2m,已经属于高出作业范畴。国家规定高处作业使用高凳和梯子时,单梯只许上1人操作,支设角度以60度到70度为宜,梯子下脚要采取防滑措施,支设人字梯时,两梯夹角应保持40度,同时两梯要牢固,移动梯子时梯子上不准站人。使用高凳时,单凳只准站一个人,双凳支开后,两凳间距不得超过3m。如使用较高的梯子和高凳时,还应根据需要采取相应的安全措施。在没有可靠的防护设施时,高处作业必须系安全带,否则不准在高处作业。同时安全带的质量必须达到以使用安全要求,并要做到高挂低用。但是实际上果农进行高枝的水果采摘时并没有按照国家规定,也未采取任何安全防护措施。摘果时常因上梯或上树精神紧张而感到非常劳累不便,也常听到有人不慎从树上或梯子上掉下来的消息,这种状况很随机不可预测。高处作业的大部分是青壮年,一般都是家庭的主要劳力。如果发生严重的跟骨关节内骨折,即使进行手术治疗,也无法保证患者将来不出现创伤性关节炎及跟骨负重时疼痛,其劳动能力将严重受限,甚至影响日常生活。由此可见完全依靠人力的采摘方式采摘速度慢、效率低、劳动强度大,高枝水果采摘还具有一定的危险性。

此外,传统的作业还存在以下弊端:一是采摘过程中作业者的人身安全问题,即手工采摘时手臂易被树枝划伤或擦破,高处作业时,还可能会摔伤。二是对果树的损伤,即对树的枝叶芽的破坏。三是对水果质量的影响,单手采摘时容易出现脱蒂,易出现抽心果,还有就是高枝水果容易掉在地上造成内外伤,影响果品的外观,不利于保鲜储藏,从而最终造成降低经济收入。目前,我国各地方政府为增强地方经济,正相继开发大量的旅游投资项目,纷纷举办各种赏果采摘节,如苹果节、桃子节等,吸引了大量游客到果园采摘旅游,享受采摘水果,品尝新鲜水果的乐趣。如果能提供一种轻巧灵便的果实摘采器,不但能让游客充分体验采摘的乐趣,而且还保障了游客的安全,保护了果农的果树不受损坏。另外,果农可以少打矮壮素等农药,生产出更多的无公害果子,减少成本投入和对环境对水果的污染,游客可以品尝到更新鲜卫生的水果。

中华人民共和国第十届全国人民代表大会常务委员会第十次会议于2004年6月25日通过,2004年11月1日颁布施行的《中华人民共和国农业机械化促进法》是为了鼓励、扶持农民和农业生产经营组织使用先进适用的农业机械,促进农业机械化,建设现代农业而制定。2009年中央一号文件明确指出要加快研发适合丘陵山区使用的轻便农业机械,中国农业机械化事业呈现可持续发展态势。近年来,国家对农机化关键技术和装备研制开发的扶持力度很

大,"十五"期间中央财政直接投入的农机化科技攻关资金为2800万元,"十一五"时期会超过1.4亿元。

农业的根本出路在于机械化,是党和国家各级政府,农机科研、生产、推广部门始终坚持的方向。机械化水平是衡量农村农业发展水平的重要标志,是确保提高农村生产力,促进更多的劳动力转移,彻底改变传统的小农经济耕作方式的前提和依据。机械手臂是目前在机械人技术领域中得到最广泛实际应用的自动化机械装置,在工业制造、医学治疗、娱乐服务、军事以及太空探索等领域都能见到它的身影,农业方面的应用尚属空缺。

《中华人民共和国农业机械化促进法》还规定国家采取措施,鼓励和支持农业机械生产者增加新产品、新技术、新工艺的研究开发投入,并对农业机械的科研开发和制造实施税收优惠政策。国家支持有关的科研机构和院校加强农业机械化科学技术研究,根据不同的农业生产条件和农民需求,研究开发先进适用的农业机械,支持农业机械科研、教学与生产、推广相结合,促进农业机械与农业生产技术的发展要求相适应。随着我国制造业的高速发展和农业机械化普及程度的大幅提高,机械采摘取代手工作业是必然的发展趋势。现阶段的机械手存在两种极端:一是含有自主行动功能的技术含量极高的类型,价格昂贵不适合丘陵地带小型果园;一是基本属于纯机械式的,采摘器过于简单,不利于提高生产效率,减轻操作者的劳动强度。目前急需一种介于两者之间的,便于操作,价格低廉,效率较高的机械手臂。

水果采摘装置可有效的解决劳动力分配,提高采摘效率,提高操作安全性,提高机械化水平,便于果树管理,具有良好的市场前景。在《中华人民共和国农业机械化促进法》规定的国家政策鼓励下,农业将进一步的朝着机械化方向发展。随着我国制造业的高速发展和农业机械化普及程度的大幅提高,机械采摘取代手工作业是必然的发展趋势。

1.2本设计的特点和目标

本课题将进行基于伸缩式机械手臂的水果采摘装置的设计,构型简单,操作方便。采用伸缩式机械手臂,手臂长度可调,适合多种高枝水果,且便于携带,不使用时可缩短至最短的长度放置节约空间。采摘器采用电动机带动到刀片转动的方式切割果梗,操作时只需轻轻地握住手柄就能调整采摘器的方向,适合各种位置的高枝水果,节省劳动力,提高效率。采摘下的水果能顺利进入的接收装置,再顺着传递装置,安全的到达地面。手持固定部分还可增加整个装置的稳定性,降低采摘员在长时间的操作过程中手腕疲劳程度。使用基

于伸缩式机械手臂的水果采摘装置可实现各种高度各种方向高枝水果的安全采摘,方便快捷,简单实用。

采用采摘器还可以方便平时蔬果,清除坏果、次果,便于果树管理。大多数果树开的花都远远多于最后结成的果实。在气候适宜开花多的年份,如果一株成年苹果树有5%的花、桃树有15%~20%的花结的果实能达到成熟,就可以获得丰收。开花结果过多,会导致养分供不应求,不仅影响果实的正常发育,形成许多小果、次果、还会削弱树势,易受冻害和感染病害,并使翌年减产造成小年。因此,除了由于果树本身的调节能力,使发育不良的花和幼果自然脱落外,还需平时人工摘除多余的花和果,才能满足生产上的要求,俗话说:"看树定产,分枝负担,均匀留果",只有科学合理地疏果,才能减少养分消耗,提高坐果率和水果的品质。疏除方法一般用人工,也可用适当浓度的化学药剂喷洒果树,采用化学疏除,采用人工疏除时利用基于伸缩式机械手臂的水果采摘装置能方便的进行蔬果,在平时也能方便及时的清除果树上任何部位的病果、次果,不会对好的临位水果造成物理伤害,不会出现摘除次果时砸坏或砸掉好果的现象。

基于伸缩式机械手臂的水果采摘装置有很强的兼容性。它可改造成修枝剪,目前果树的修剪必须采用专业工具完成,不仅使用不方便,还增加购买工具的开支。该采摘装置只需要把电动机换为位功率更大的,圆形锯盘换更大的,就可以进行果树的修枝。采摘器装置还可该为农药喷头,喷头可在机械手臂的控制下,实现方向的转变,可全方位的对果树喷洒农药。

1.3本设计的内容和技术参数

设计内容:

(1)伸缩式机械手臂:手臂简单自如地转向和收缩;

(2)采摘器:实现各个方向水果准确安全的采摘;

(3)接收装置:实现解决果实从高处落下收集到指定的位置;

(4)传送装置:果实从高处安全顺利的传送至地面;

(5)手持固定部分:增加整个装置的稳定性,降低采摘员手腕疲劳程度。

技术参数:

(1)果树高度约3m,

(2)采摘水果是球形的,直径是3cm≤D≤10cm。

2基于伸缩式机械手臂的水果采摘装置的总体设计

基于伸缩式机械手臂的水果采摘器是一种实用新型的设计,是一种解决人们采摘高处水果难而创新设计的工具,因其用途的特殊性,其总体设计因追寻以下两大原则:(1)可操作性原则:果蔬采摘机器人操作者是知识水平较低的普通农民,不是具有机电知识的专门的技术人员,因此要求果蔬采摘机器人操作技术不能太复杂,必须具有很高可靠性和操作简单的特点。(2)经济性原则:在可操作性原则的基础上,应最大限度的控制成本。水果的生产业以个体经营为主,考虑到经济效益,采摘器的价格不能太高,否则会就很难普及。

2.1总体思路

基于伸缩式机械手臂水果采摘装置,其特征是它结构简单,重量轻便,操作方便,可适用于多方位的多种高枝球形水果的采摘。它由伸缩式机械手臂,采摘器(包括旋转机构,采摘机构),接收装置,传送装置,手持固定部分组成。

伸缩式机械手臂的主体部分由两根套在一起的同心不锈钢外管和内管组成,由箍环连接,可实现手臂自由的伸缩和紧固。手臂上还装有控制手柄,电源控制开关,手臂下端和手持固定部分连接。

采摘器是由旋转机构和采摘机构组成。旋转机构机构一端由闸绳,控制手柄与伸缩手臂活动链接,另一端由旋转盘与采摘机构的电动机固定连接,而旋转盘的另一端由旋转轴与采摘器头活动链接,旋转机构的设计原理和工作原理都类似于自行车的手闸系统。采摘机构由采摘头,电动机,圆形锯盘组成。采摘头一端与机械手臂相连,另一端与旋转盘活动链接,圆形锯盘固定连接在电动机转轴上。

接收装置由类似篮球篮网的结构构成,位于圆形锯盘下方,安全接受采摘下的水果并输入输送装置。

水果的输送装置由伸展收缩的组织组成,上宽下窄,整个传送装置管道每隔一段设有搭扣与伸缩式机械手臂连接,保证果实从高处安全顺利的传送至地面。

手持固定部分由小肘固定套,万向稳定连杆组成,小肘固定套上有绷带和搭扣。万向稳定连杆为特殊材料制成,可向任意方向弯曲。小肘固定套可通过绷带与金属环的拉扣固定在胳膊的小肘部分,小肘固定套通过铆钉或者其他的方式与万向稳定连杆连接,万向稳定连杆另一端通过螺丝结构与伸缩手臂下端连接,

下图为基于伸缩式机械手臂水果采摘装置的结构示意图,其中1-圆形锯盘、2-电动机、3-旋转盘、4-钢丝定位线固定头、5-钢丝定位线、6-闸绳固定节、7-旋转轴、8-闸绳固定节、9-采摘头、10-活动结、11-闸绳固定节、12-内管、13-箍环、14-外管、15-闸绳、16-闸绳固定节、17-复位弹簧、18-控制手柄、19-手柄、20-万向稳定连杆、21-小肘固定套、22-绷带、23-穿绷带的环、24-传递装置、25-接收装置。

图2.1基于伸缩式机械手臂水果采摘装置的结构示意图

Fig.2.1mechanicalarmbasedontelescopicstructureoffruitpickingdev icediagram2.2工作原理

采摘水果前,操作人员可以先按需要将伸缩手臂上的箍环13打开,并握住内管12的前端将其从外管14中抽出,等到伸缩式机械手臂的总长度,加上采摘人员的身高接近需要采摘的水果的高度时再拧紧箍环13。然后把小肘固定套21上的绷带22穿过穿绷带的金属环23,使小肘固定套21固定在胳膊的小肘部分。接着一手握住手柄19,一手握住手臂,移动机械手臂靠近需要采摘的水果时,目测水果的方向,缓缓的捏紧控制手柄18使得圆形锯盘1在旋转盘3的带动下旋转到与水果的果蒂相垂直。另一手按下电源开关,电动机2就会带动圆形锯盘1高速转动,切断果蒂。所采摘的水果掉进圆形口的接收装置25,再顺着传递装24置,安全的到达地面。完成整个水果采摘过程,松开控制手柄18,在复位弹簧17的作用下,旋转机构回到最初的位置。基于伸缩式机械手臂水果采摘装置操作简单,采摘水果速度快,采摘水果完好,保质保量。

3采摘器的设计

3.1采摘器常见种类

综合目前所有国内的关于高枝水果的采摘器的专利,我国对水果采摘装置的研究一直在不断的努力中,也取得一定的成果。要实现剪切果实的功能,可以有多种功能原理实现,按水果从果蒂分离的方式可分为吸附式、抓拉式、剪切式等。按其采摘器的驱动力方式可将其分为机械式、电动式、气压式等。

对于水果的采摘方式,多数的采摘机器人采用用刀剪断果茎或直接用手爪拧断果茎。采摘机器人在设计末端执行器(采摘器)之前,首先需要考虑采摘对象的生物特性、机械特性和理化特性,现阶段的都是专用的采摘末端执行器。为了避免碰伤果实,大多数的采摘机器人都在接触果实的手指内侧部位采用尼龙或橡胶材料。手指的数量和形状的设计与所要采摘的果实有密切的关

系。一般来说,手指的数量越多,采摘的效果就越好,但控制也就越变得更复杂。所以在设计的时候要综合考虑手指的数量、控制的难度及抓取的成功率。目前研制成功多种无手指夹持的采摘机器人。荷兰的农业环境工程研究所发明了一种叫电极切割法的方式,它代替了刀剪断的方法,它是采用特殊电极来产生高温,可防止植物的感染田。日本的三重大学开发了在采摘水果时不需要直接接触到水果的本体,而只需要抓住果茎的软质水果的采摘机器人。这种机器人对于采摘果茎长度较长的的果实时效果是比较好。还有一种采摘机器人采用果梗激光切断装置,其由激光发生控制单元和果梗聚焦切断单元组成。激光发生控制单元由小型高功率光纤耦合半导体激光器、可变电阻、稳压电源、电磁阀组成,果梗聚焦切断单元由直流伺服电机、聚焦透镜、减速器、联接与支承部件组成,由聚焦透镜实现激光束的聚焦,通过直流伺服电机带动聚焦透镜的转动,以实现对果梗的定位和切断。该装置能够方便地切断果梗,并大大的降低了装置的复杂性和对夹紧力控制精度的要求。

3.2采摘器的选择

采摘器的不同种类均有其自身的优点与缺点。吸附式虽然定位要求低、动作灵敏但是需配备真空形成装置,且对果实及枝条的伤害较大。抓拉式的结构简单、操作方便,但同样对果实及枝条伤害极大。剪切式结构简单,操作方便,对果实及枝条的伤害极小,但定位要求高。由此可见,为能顺利的操作简单的采摘水果选剪切式功能原理最为合适。机械式的虽然结构简单,但是操作并不省力,采摘效率不高。电动式采摘省力,采摘速度快,但生产成本较高。气压式整体轻便,不污染环境,能源丰富但是结构复杂,气压技术复杂。由此可见,为能简单操作方便快捷的采摘水果选电动式最为合适。

综合以上所述,采摘器选用电动的剪切式,结构简单,操作方便,对果实及枝条的伤害极小,且能减轻力气,可调节方向的设计可以很好的满足定位要求,对于各个方向的水果都能实现可靠安全的采摘。

3.3采摘器的设计

采摘器包括旋转机构和采摘机构组成。采摘机构由采摘头,电动机,圆形锯盘组成。采摘头一端与机械手臂相连,另一端与旋转盘活动链接,电动机与旋转机构的旋转盘固定连接,圆形锯盘固定连接在电动机的转轴上。

旋转机构机构一端由闸绳,控制手柄与伸缩手臂活动链接,另一端由旋转盘与采摘机构的电动机固定连接,而旋转盘的另一端由旋转轴与采摘器头活动链接。旋转机构的设计及工作原理类似于自行车的手闸系统。拉索可用自行

车刹车钢丝绳做成。旋转机构可调节圆形锯盘的方向,可采摘不同方向的水果,采摘准确方便,圆形锯盘由电动机带动,采摘果实速度快,采摘果实完好。

3.3.1尺寸计算

一、电动机的选用

电动机用于带动圆形锯盘切割果梗,果梗不算太硬,要求的功率不是很大,但当锯片靠近时水果的果梗是,水果会有远离刀片方向的运动,为了顺利切下水果就需要电动机具有很高的转速。为了达到节能安全,使用方便,该电动机选用直流电动机。直流电动机具有调速性能好和启动转矩大的优点。所谓"调速性能"是指电动机在一定负载的条件下,根据需要,人为地改变电动机的转速。直流电动机可以在重负载条件下,实现均匀、平滑的无级调速,而且调速范围较宽。起动力矩大,可以均匀而经济地实现转速调节。

根据经验采摘水果,如苹果、桃、梨、柑橘等,电动机的功率5W左右,转速在5000r/min以上就能达到使用要求。综上该采摘器选用的电动机是深圳市金顺来特科技有限公司生产制造的RS-380PH3270(*1)型号的12V直流电动机。实物图如下:

图3.1电动机实物图

Fig.3.1MotorrealfigureRS-380PH3270(*1)型号的12V直流电动机的具体参数外形尺寸如下图所示:

图3.2RS-380PH3270(*1)型号直流电动机的参数

Fig.3.2RS-380PH3270(*1)modelfordcparametersRS-380PH3270(*1)型号的12V直流电动机的质量为155克,空载时的转速为16400r/min,额定负载时的转速为14110r/min,转矩为13.0mN.m,功率为19.2W。电动机满足使用要求

二、圆形锯盘的选用

圆形锯盘用于切割果梗,选用高速钢锯片,该类锯片可用于切割木料,塑料等等。锯片外径为50mm,锯片内孔直径为5mm,厚度为0.8mm。

锯片的实物图如下图所示:

图3.3锯片实物图

Fig.3.3sawbladerealfigure

锯片可焊接在电动机转轴上,电动机接通电源转动时,带动圆形锯盘转动实现切割。

3.3.2采摘器的强度校核计算

图3.4采摘器示意图

Fig.3.4Pickingimplementschemes

据图3-6所示,为了初步确定采摘头的截面尺寸,须作以下几点假设:

(l)采摘头简化为圆柱形悬臂梁;

(2)整个采摘头的受力集中在采摘头的右端;

(3)采摘水果时的扭矩太小忽略不计(电动机的扭矩为13.0mN.m);

(4)所有内外载荷均通过截面的形心(忽略局部扭转产生的影响)。

因此采摘头的受力可以简化为图3-7的悬臂梁模型:

图3.5悬臂梁模型

Fig.3.5cantileverbeammodel

图中,F为采摘头的总重量和切割水果的力之和,由于切割水果是转矩不大,计算时可忽略。根据采摘器的结构及使用条件合理取值:F=10N,

L=10cm=0.1m。

则:

图3.6弯矩图

Fig.3.6Bendingmomentfigure

考虑到采摘器在采摘水果的实际过程中,并不是处于理想状态,所受的力产生的最大弯矩,可在理想状态的最大静弯矩前乘一动载系数k,由于采摘器采摘时的工作环境状况较好,取k=2~3,此动载系数考虑了实际操作中遇到的最大障碍时的载荷增值。如果再考虑采摘头在动载作用下将产生疲劳,对疲劳的影响可用疲劳系数来表示,此值取1.4,故动载下的最大弯矩为:抗弯截面系数

,此处材料为工程塑料抗弯强度强度为。

结论:采摘头材料及尺寸结构满足强度要求。

3.4软件建模

3.4.1绘图软件介绍

为直观反映采摘器的旋转机构和采摘机构的构造,需要绘制出采摘器的实体模型图。这里采用了比较流行的Pro/Engineer软件。Pro/Engineer是美国PTC公司研制的一套由设计至生产的机械自动化软件,是新一代产品造型系统,是一个参数化、基于特征的实体造型系统,并且具有单一数据库功能。Pro/Engineer是一种采用参数化设计的、基于特征的实体模型化系统,工程设计人员采用具有智能特性的基于特征的功能去生成模型,如腔、壳、倒角及圆角、可以随意勾画草图,轻易改变模型。这一功能特性给工程设计者提供了在设计上从未有过的简易和灵活。Pro/Engineer是目前计算机辅助设计中最为专业的软件之一。

3.4.2绘图方法

该采摘器的结构较简单,Pro/Engineer绘制实体模型图时,选择好基准,合理控制尺寸,采用旋转、拉伸、扫描,倒圆角等常规方法,即可完成。

3.4.3采摘器效果图展示

图3.7采摘器效果图

Fig.3.7pickingdeviceeffectfigure4机械手臂的设计

4.1机械手臂的种类

机械手臂虽然有很各种各样的结构形态,但是它们有一个共同的特点,就是能够在接受到指令时,精确地定位到三维空间或者二维空间上的某一点来进行作业,完成指定动作。目前在工业制造、医学治疗、娱乐服务、军事以及太空探索等领域都能见到机械手臂的身影。

图4.1机械手臂

Fig.4.1mechanicalarm

机械手臂根据结构形式的不同分为多关节机械手臂,直角坐标系机械手臂,球坐标系机械手臂,极坐标机械手臂,柱坐标机械手臂等。水平多关节机械手臂一般有三个主自由度,Z1转动,Z2转动,Z移动。通过在执行终端加装X转动,Y转动可以到达空间内的任何坐标点。直角坐标系的机械手臂有三个主自由度,X移动,Y移动,Z移动组成,通过在执行终端加装X转动,Y转动,Z转动可以到达空间内的任何坐标点。下图为常见的六自由度机械手臂,它有X移动,Y移动,Z移动,X转动,Y转动,Z转动六个自由度组成。

图4.2机械手臂

Fig.4.2mechanicalarm

对于工业应用来说,有时并不需要机械手臂具有完整的六个自由度,而只需其中的一个或几个自由度。直角坐标系机械手臂可以由单轴机械手臂组合而成。在产业机器人中,单轴机械手臂作为一个组件在工业中应用广泛。单轴机械手臂看似简单,只在单一方向往复运动,但在实际应用上功能各异,种类繁多。单轴机械手臂的驱动方式有:滚珠螺杆、时规皮带、齿轮齿条、液压缸、气缸等。

下图为银光机械(VinkoMachine)生产的单轴机械手臂。单轴机械手臂的组件化大大降低了工业设计的成本,因专业制造商拥有良好的质量保证和批量生产的优势,使用组件比自行设计机械手臂更具优势。常见的直交机械手组合有悬臂式,龙门式,直立式,横立式等样式。

图4.3VNKOBS-75单轴机械手

Fig.4.3VNKOBS-75uniaxialmanipulator

图4.4VNKO多轴组合机械手

Fig.4.4VNKOmulti-axiscombinationmanipulator

韩国开发的苹果采摘机器人使用极坐标机械手,丝杠关节可以上下移动,旋转关节可以左右移动,从而使作业空间范围达到3mt。20世纪80年代中期日本京都大学NoboruKawamura等人研制出5自由度关节型的机械尹I 珥。但是试验表明,这种机械手的工作空间并没有包括所有果实的任何位置,且它的末端执行器的可操作度比较低。到了20世纪90年代,日本岗山大学的NaoshiKondo等人通过深入研究番茄的生理、物理特性,分析机械手的工作性能,在NoboruKawamura等人基础上,研制出了7个自由度的机械手臂。机械手的自由度数是衡量机器人性能的重要指标之一。它直接决定了机器人的运动灵活性和控制的复杂性。荷兰农业环境工程研究所采用机械手的三维CAD模型很好的解决了机械手与茎杆的碰撞问题。美国佛罗里达大学开发了一种由两个转动副和一个滑动副构成的球形坐标机器人,这种机器人的摄像系统装在操作手的末端,水果的图像位于滑动轴的中心,从而只要滑动轴稍微张开一定的角度就可以很轻易的采摘到水果。

4.2机械手臂的选择

本文设计的机械手臂是用于水果的采摘,考虑到生产实际的需要,为了便于其在果树间的运动,采用最简单的单轴伸缩式机械手臂,即为两根套在一起的同心不锈钢外管和内管,两根管由箍环连接。工作时可根据水果的不同高度任意调节,增强实用性。平时不用时可伸缩至最短的长度放置,节约空间。

4.3机械手臂的设计

伸缩式机械手臂的主体部分由两根套在一起的同心不锈钢外管和内管组成,其中外管的内径等于或略小于内管外径。箍环安装在外管的前端口上,其能够将外管和内管相互固定在一起,可实现手臂自由的伸缩和紧固。伸缩式机械手臂的整个结构就同市面上销售的伸缩式拖把杆或挂衣杆结构。

采摘水果前,操作人员可以先按需要将箍环打开,并握住内管的前端将其从外管中抽出,等到伸缩式机械手臂的总长度,加上采摘人员的身高接近需要采摘的水果的高度时再拧紧箍环。

4.3.1尺寸计算

采摘水果的果树的高约为三米,内外管长度为内管为一米,外管为一米五,加上采摘人员的身高(保守估计一米,高度不够时还可伸长手臂),最长的总长度至少可到三米五。

外管的外径选用为25mm,厚度为1mm,内管能满足套住外管,外管的内径等于或略小于内管外径。内管的外径选用直径为23mm,厚度为1mm。

4.3.2材料选择

伸缩式机械手臂在工作过程中,主要为手持控制,所以它的设计必须遵循轻量化的原则。所谓轻量化,就是在满足其性能的前提下,尽量减轻自身的重量。箍环的材料为塑料,内外管的材料为304不锈钢,表面处理为不锈钢拉丝色。

内外管的实物图如下:

图4.5内外管实物图

Fig.4.5internalandexternaltuberealfigure4.3.3强度校核

伸缩式机械手臂的结构示意图如下图所示:

图4.6伸缩手臂示意图

Fig.4.6telescopicarmschemes

据图4.6所示,为了进一步确定伸缩式机械手臂的选用是否符合实际操作,须作以下几点假设:

(l)机械手臂为细长杆件,校核其稳定性,因为细长杆件常出现形式失效,并非强度不够,而是稳定性不够;

(2)机械手臂的受力集中在细管的正上方,整个结构简化为一端固定一端自由的细长杆,以内管尺寸计算;

(3)采摘水果时的扭矩弯矩太小均忽略不计;

(4)所有内外载荷均通过截面的形心(忽略局部扭转产生的影响)。

因此机械手臂的受力可以简化为图4.7的细长压杆模型。

图4.7压杆模型

Fig.4.7levermodel

图中F为伸缩式机械手臂上所有部件的总重量和切割水果的所受力之和,其余的转矩、扭矩、外力计算时均忽略不计。根据采摘装置在采摘水果的实际过程中,并不是处于假定的理想状态,所受的力可在理想状态的情况下乘一校核系数k,由于采摘器采摘时的工作环境状况较好,取值为k=2,最后根据采摘器的使用条件合理的取值为=40N,压杆最长是稳定性最差,计算时取伸缩臂最长时的长度L=2.5m。

伸缩式机械手臂的材料为304不锈钢(0Cr18Ni9不锈钢),304不锈钢的抗拉强度≥520MPa,,条件屈服强度≥205MPa,伸长率(%)≥40,弹性模量E为186~206GPa,比例极限=280MPa,规定的稳定安全因数为=8~10。

只有当压杆的柔度大于或等于极限值时,欧拉公式校核压杆稳定性才满足使用条件

伸缩式机械手臂简化为一端固定一端自由的压杆则,截面为圆环形(取内管的值)则截面的惯性半径

柔度为

因为,所以欧拉公式适用于校核伸缩式机械手臂的稳定性。

伸缩式机械手臂的截面惯性矩为:

计算出伸缩式机械手臂的临界压力为:

伸缩式机械手臂的工作安全因数为

所以满足稳定要求。

结论:伸缩式机械手臂材料及尺寸结构满足强度要求和稳定性要求。

4.4软件建模

4.4.1绘图方法

该伸缩式机械手臂结构较简单,Pro/Engineer绘制实体模型图时,选择好基准,合理控制尺寸,采用旋转、拉伸、扫描等常规方法,即可完成。

4.4.2机械手臂效果图展示

图4.8机械手臂效果图

Fig.4.8mechanicalarmrendering5接收传送装置的设计

水果被采摘器顺利的采摘,不能让其自己掉在地上,造成损伤,为保证能顺利无伤害的的到达地面,必须设计接受传送装置。

5.1设计原则

接收装置由类似篮球篮网的结构构成,保证能够安全的接住采摘下的水果并输入输送装置。

水果的输送装置可由伸展收缩的组织组成,上宽下窄,这样既有利于与接收装置连接,又有利于果品在输送装置内下落时有明显的缓冲力作用,可保证果品的无伤害输送。整个蔬果管道每隔一段可设有搭扣与伸缩式机械手臂连接,不但可防止被树枝挂住,保证水果的顺利输送,还可以减少阻力,避免传送带对视觉的影响。

5.2材料选择

接收装置的环为椭圆形由钢丝制成,输送装置有软质布料制成,类似于高楼救生员救生时使用的柔性滑道。

5.3尺寸设计

因为所采摘的水果为采直径是3cm≤D≤10cm的球形水果,水果被采摘时有一定的惯性力使得水果会有水平方向的的运动,则接收装置的直径要选用的大一点直径设为20cm。传递装置的直径为保证水果顺利传输,上宽下窄即可。

5.4接收传送装置效果图

图5.1接受传送装置效果图

Fig.5.1acceptconveyorsrendering6手持固定部分的设计

基于伸缩式机械手臂是用于手持,伸缩式机械手臂的长度较长为了增加整个装置的稳定性,减少采摘员在长时间的操作过程中手腕疲劳的作用,所以特别设计手持固定部分。当此采摘器安装在别的地方时可拆掉手持固定部分。

6.1手持固定部分的组成

手持固定部分由小肘固定套,万向稳定连杆。小肘固定套的材料采用足球护膝的材料,其上有绷带和搭扣。万向稳定连杆为特殊材料材料制成,可向任意方向弯曲。

小肘固定套实物图如下图所示:

图6.1小肘固定套实物图

Fig.6.1smallcubitsfixedsetofrealfigure6.2手持固定部分的工作原理小肘固定套可通过绷带与金属环的拉扣固定在胳膊的小肘部分,小肘固定套通过铆钉或者其他的方式与万向稳定连杆连接,万向稳定连杆另一端通过螺丝结构与伸缩手臂下端连接。通过小肘固定套可以达到在长时间的操作过程中以减少手腕疲劳的作用,万向稳定杆由特殊材料制成,它可以向任何方向弯曲,而且变形的同时具有一定的支持力。

6.3手持固定部分效果图

图6.2手持固定部分效果图

Fig.6.2handheldfixedpartrendering7整体三维模型

为了能清楚直观的看明白基于伸缩式机械手臂的水果采摘装置的模型,下图为拆除接受传递装置的整体模型。

图7.1整体三维模型

Fig.7.1whole3dmodel8总结

基于伸缩式机械手臂的水果采摘装置,是介于含有自主行动功能的技术含量极高且价格昂贵的机器人类型和基本属于纯机械式的过于简单的采摘器两者之间的一种采摘装置。它构型简单,操作方便,价格低廉,效率较高。采用伸缩式机械手臂,手臂长度可调,适合多种高枝水果,且便于携带,采摘器采用电动机带动到刀片转动的方式切割果梗,采摘水果速度快,节省劳动力,且采摘器的方向可调节,适合各种位置的高枝水果,采摘水果完好,保质保量,是一种值得推广的实用新型的设计。

通过这段时间的设计,我的感受很深。尤其是在最初的设计阶段,由于自己理论知识不够系统和丰富,加之缺乏设计思路,使得进展比较缓慢。幸运的是之后,在老师的悉心指导下,我逐渐的学会了独立的查阅资料,以及如何将大量的杂乱的资料系统化,并将其掌握。这一过程中得到的锻炼是自己在本次设计中得到的最大收获之一。并且在这一过程中,我发现了许多以前没有注

意的问题,有些想法,方法最初看起来是可行的,但认真思考后就会发现存在很多不足之处。如此反复思考,校对才完成了本次设计任务。

本设计中有些结论的得出,本应该进行细致的计算和分析,但限于篇幅和时间,不能一一详尽。由于自己现有的能力水平有限,设计中难免有疏忽与错误等不足之处,望广大老师同学给予批评指正。

参考文献

[1]杨敏丽.中国农业机械化与提高农业国际竞争力研究[D].北京:中国农业大学,2003.

[2]耿端阳,张铁中,罗辉等.我国农业机械发展趋势分析[J].农业机械学报,2004,35(4):208~210.

[3]姜丽萍,陈树人.果实采摘机器人的研究综述[J].农业装备技术,2006,32(1):8~10.

[4]徐丽明,张铁中.果蔬果实收获机器人的研究现状及关键问题和对策[J].农业工程学报,2004,20(5):38~42.

[5]汤修映,张铁中.果蔬收获机器人研究综述[J].机器人ROBOT,2005,27(1):90~96.

[6]陈飞,蔡健荣.柑橘收获机器人技术研究进展[J].农机化研究,2008,1(07):232~235.

[7]陆怀民.林木球果采摘机器人设计与试验[J].农业机械学报,2001,32(6):52~58.

[8]金旭星.果实采摘机械手的创新设计[J].农机化研究,2009,

1(07):139~141.

[9]詹友刚.Pro/ENGINEER中文野火版3.0高级应用教程[M].北京:机械工业出版社,2006.10.

[10]李峰斌.机械式果品采摘器

.中国ZL200620024572.4,2007.07.04.

[11]李龙飞.苹果采摘器

.中国ZL200620082029.X,2007.05.16.

[12]孙维连,魏凤兰.工程材料[M].北京:中国农业大学出版社,2007.06.

[13]章建成.全方位采果器

.中国ZL200520014146.8,2006.10.25.

[14]李东峰.多功能果实采摘器

.中国ZL03235643.9,2004.03.03.

[15]刘鸿文.材料力学[M].北京:高等教育出版社,1991.05.

[16]HollingumJ.Robotinagriculture[J].IndustrialRobot,1999,26(6)

:438–44.

[17]WhittakerAD,MilesGE.,MitchellOR,etal.Fruitlocationinapar2ti allyoccludedimage[J].AmericanSocietyofAgriculturalEngineers,1987,30( 3):591–596.

致谢

时间过得真快,转眼就已经到了五月中旬,奋战了几个月的毕业设计终

于接近尾声了。案边摆满几本厚厚的参考书,电脑里存着各种学习资料,还有

自己奋战了几个月的设计成果,见证了我的大学最后时光没有虚度。

本文的研究工作是在导师的精心指导和全力支持下完成的。每当在研究

过程中遇到困难,迷茫徘徊时,他总以严谨的治学态度和广博的知识予以启

迪,并给我莫大的鼓励和信心,使我能不断前行,论文的完成凝结着老师的心血。

我要感谢学校,图书馆和数字化图书馆里提供了丰富的资料,为我们撰

写论文提供了基础;同时向我所引用资料的作者们致敬,感谢你们对学术的贡

献以及对我的帮助。再次,还要感谢我的同学们为我的设计提供宝贵的意见,

在完成论文的过程中通过相互交流,互通有无,使我能够又快又好的完成论

文。

我还要深深地感谢我的家人和挚友,他们在生活中默默的奉献,在精神上全力的支持,让我能够全身心地投入学习,研究和论文撰写工作中。

本次毕业设计本人是在大学内,第一次全面和系统的设计,由于条件和本人能力的限制,难免有许多错误和疏漏,希望老师能够指正,以此来促进自己的不断学习。我相信这次毕业设计中,在老师的指导下,我获得了最大的学习机会,使自己获得更多以前没有的知识,不断地丰富自己的知识体系。

最后再一次衷心祝福我的家人,老师,朋友们身体健康,工作顺利,生活幸福!

特别声明:

1:资料来源于互联网,版权归属原作者

2:资料内容属于网络意见,与本账号立场无关

3:如有侵权,请告知,立即删除。

【CN110063136A】水果采摘机果柄切割装置的设计方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910369070.7 (22)申请日 2019.05.05 (71)申请人 安徽工程大学 地址 241000 安徽省芜湖市鸠江区北京中 路8号 (72)发明人 高洪 孙孟洋 王亚军 贡军  段陈义 王永强 方啸宇 代贡献  叶凯强  (74)专利代理机构 芜湖安汇知识产权代理有限 公司 34107 代理人 朱顺利 (51)Int.Cl. A01D 46/24(2006.01) G06F 17/50(2006.01) (54)发明名称水果采摘机果柄切割装置的设计方法(57)摘要本发明公开了一种水果采摘机果柄切割装置的设计方法,包括步骤:S1、提供固定盘、由多个切割刀片组成的刀片组及相对于固定盘可旋转且用于控制切割刀片进行旋转的旋转盘;处于打开状态的刀片组的中心处形成有让水果通过的第一避让孔;S2、根据固定盘的第二避让孔的直径和旋转盘的定位孔的直径,确定刀片本体的刀口的弦长;S3、根据固定盘的第二避让孔的直径,确定切割刀片的第一销轴的轴心与第二销轴的轴心之间的距离;S4、根据固定盘的第二避让孔的直径和切割刀片的第一销轴的轴心与第二销轴的轴心之间的距离,确定旋转盘的转角。采用该方法设计的水果采摘机果柄切割装置可以使果柄很好的定位被切断,减少采摘时对水果造 成的损伤。权利要求书2页 说明书10页 附图6页CN 110063136 A 2019.07.30 C N 110063136 A

权 利 要 求 书1/2页CN 110063136 A 1.水果采摘机果柄切割装置的设计方法,其特征在于,包括步骤: S1、提供固定盘、由多个切割刀片组成的刀片组及相对于固定盘可旋转且用于控制切割刀片进行旋转的旋转盘;处于打开状态的刀片组的中心处形成有让水果通过的第一避让孔; S2、切割刀片设计成具有刀片本体以及与刀片本体连接的第一销轴和第二销轴,旋转盘设计成具有让第一销轴插入的导向孔,固定盘设计成具有让第二销轴插入的安装孔和让水果通过的第二避让孔; 根据固定盘的第二避让孔的直径D1和旋转盘的定位孔的直径D2,确定刀片本体的刀口的弦长l1, S3、根据固定盘的第二避让孔的直径D1和固定盘的内直径D3,确定切割刀片的第一销轴的轴心与第二销轴的轴心之间的距离l2, S4、根据固定盘的第二避让孔的直径D1和切割刀片的第一销轴的轴心与第二销轴的轴心之间的距离l2,确定旋转盘的转角α, 2.根据权利要求1所述的水果采摘机果柄切割装置的设计方法,其特征在于,90°<θ≤120°。 3.根据权利要求1或2所述的水果采摘机果柄切割装置的设计方法,其特征在于,所述导向孔设计为圆弧形孔,导向孔的长度大于所述第一销轴的直径且导向孔的轴线与第一销轴的轴线相平行。 4.根据权利要求3所述的水果采摘机果柄切割装置的设计方法,其特征在于,对于周向上相邻的两个切割刀片,让其中一个切割刀片的第一销轴插入的导向孔的轴线与另一个切割刀片的第二销轴的轴线共线,导向孔以位于其径向上的第二销轴的圆心为圆心。 5.根据权利要求1至4任一所述的水果采摘机果柄切割装置的设计方法,其特征在于,所述旋转盘上设有拨柄,拨柄用于承受外界施加的使旋转盘旋转的旋转力矩,所述固定盘设计成具有让拨柄穿过的第三避让孔。 6.根据权利要求1至5任一所述的水果采摘机果柄切割装置的设计方法,其特征在于,所述固定盘设计成具有第一盘体和设置于第一盘体上的凸台,凸台设计成插入定位孔中,所述第二避让孔为在凸台上贯穿设置的圆孔,所述切割刀片通过第二销轴与凸台转动连接。 7.根据权利要求6所述的水果采摘机果柄切割装置的设计方法,其特征在于,所述固定盘设计成还具有与所述第一盘体连接的外檐和与第一盘体相对布置的第二盘体,第一盘体和第二盘体均为圆盘状结构且第一盘体和第二盘体为同轴设置。 8.根据权利要求7所述的水果采摘机果柄切割装置的设计方法,其特征在于,所述外檐为圆环形结构且外檐与所述第一盘体和第二盘体的外边缘连接,外檐与第一盘体和第二盘体为同轴设置,所述切割刀片位于第二盘体和所述凸台之间。 9.根据权利要求1至8任一所述的水果采摘机果柄切割装置的设计方法,其特征在于, 2

水果采摘机械手的设计

水果采摘机械手的设计 发表时间:2019-07-29T10:22:58.127Z 来源:《基层建设》2019年第14期作者:李永峰闫晓桂王光宇裴福玉 [导读] 摘要:机械手能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。 哈尔滨远东理工学院黑龙江哈尔滨 150025 摘要:机械手能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子轻工和原子能等部门。由于机械臂在各行各业中得到了愈来愈广泛的应用,机械臂控制的多样化、复杂化的需要也随之日趋增多。作为当今科技领域研究的一个热点,提高机械臂的控制精度、稳定性、操作灵活性对于提高其应用水平有着十分重要的意义。在原有机械手上进行PLC等设计可使机械手实现自动化定位控制丶自动化工作等。通过重新编程序可使其变成多功能机器。 关键词:采摘;机械手;水果 1、机械手的发展趋势 机械手是集机械、电子、控制、计算机、信息等多学科交叉综合,它的发展和进步依赖并促进相关技术的发展和进步。因此,机械手的主要发展方向如下: 机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化:由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。 机械手控制系统向基于pc机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构:大大提高了系统的可靠性、易操作性和可维修性。 机械手中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机械手还应用了视觉、力觉等传感器,而遥控机械手则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制。 虚拟现实技术在机械手中的作用从仿真、预演向用于过程控制发展,如使遥控机械手操作者产生置身于远端作业环境中的感觉来操纵机械手 2、设计水果采摘机械手的作用 据统计,2017年全国水果总产量(不含瓜果类,下同)达到1.82亿吨,比1978年增长26.7倍,年均增速8.9%。自1994年以来,我国水果总产量稳居世界第一。但目前存在果园人力不足、采摘效率低、有时因为采摘不及时水果坏掉、果子结在高处人工面临着高空采摘的危险等问题,而一切采摘过程目前都由人工采摘,在我国机械化的采摘目前处于空白期,即使有机械化机器的投入和使用也是个别体,且机器的投入成本往往很大,果农无法承担此高昂的成本使用该器械。 果实的采摘是一个季节性较强和劳动密集型的工作,采摘作业所用劳动力占整个生产过程所用劳动力的33% ~50%,采摘作业比较复杂,季节性很强,若使用人工采摘,不仅效率低、劳动量大,而且容易造成果实的损伤。使用采摘机械不仅提高采摘效率,而且降低了损伤率,节省了人工成本,提高了果农的经济效益。 目前而言我国是世界水果生产大国,但在果园管理程度不高(尤其是机械化采摘果品)由于人口老龄化和农村劳动力越来越少,在单调、繁重、危险的果实采摘作业上急需高效、通用、低成本的采摘技术,而智能化技术的出现和应用让人们的生活变得更加方便快捷,与传统机械臂相比,拥有智能化,仿生化等技术的机械臂操作起来更加简单方便快捷,运用起来也更加灵活多变,智能制造技术是未来先进制造技术发展的必然趋势,是抢占产业发展的制高点必胜法则。 3、水果采摘机械手的整体方案设计 为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是棒料时,使用夹持式手部。考虑到机械手的通用性,同时由于被抓取物件位置的不确定性,因此手腕必须设有回转运动才可满足工作的要求。因此,手腕设计成回转结构,实现手腕回转运动。按照抓取工件的要求,本机械手的手臂有三个自由度。 由于系统的动作迅速,反应灵敏,阻力损失和泄漏较小,成本低廉因此本机械手采用机械传动方式。考虑到机械手的通用性,同时使用点位控制,因此我们采用可编程序控制器(PLC)对机械手进行控制。当机械手的动作流程改变时,只需改变PLC程序即可实现,非常方便快捷。 4、水果采摘机械手的设计内容 语音驱动技术:利用语音识别系统,声电转化系统,电路系统等,对采集的目标语音进行处理,将发出的声音指令进行信息化处理,最后由指令声响效果激发拾音器进行声电转换来控制用电器的开关,并经过延时后能自动断开电源,从而达到声控制动的效果。 传感技术:在机器上安装相应的传感器,使其达到预想的结果。红外传感:检测物体信息执行动作;声音传感:检测声音执行动作;倾角传感器:用倾斜角度的大小来实现对机器的旋转。 开发无人操控,将机器开发为可人为控制和自行运行模式,运用单片机编程技术,和红外传感技术,对机器进行软件编程,在无人操作下,开启自动运行,实现对果物的自行摘取。 体感技术:运用体感技术,以达到人机合一的效果。 机器驱动设计:由于工作环境不用,对机器行驶要求不同,而在果园大都为凹凸不平的土质地面,所以在驱动方面采用履带式设计,其好处在于其可以减少路况对机器行驶的限制,可以在恶劣路况下完成工作。 电源设备的改进及应用:由于产品最终投入果园进行长运作,而又要确保对环境的保护,在确保不影响环境的情况下动力的选用尤为重要,供电设备的选用也将是研究的重之重。 设备的安全性:通过对设备机体结构的设计,确保其在运行过程中能够安全稳定的工作,并要对线路的安排布置也要做出相应的措施。并要对设备加装一些应急错失和短路保护装置。 5、结束语 本次设计的机械手,相对于专用机械手,通用机械手的自由度可变,控制程序可调,因此适用面更广。动作迅速,反应灵敏,能实现过载保护,便于自动控制。工作环境适应性好,不会因环境变化影响传动及控制性能。阻力损失和泄漏较小,不会污染环境。同时成本低

水果采摘装置设计

水果采摘装置设计 0文献综述 0.1水果采摘实现机械化的必然趋势 在水果的生产作业中,收获采摘是整个生产中最耗时最费力的一个环节。 水果收获期间需投入的劳力约占整个种植过程的50%~70%采摘作业质量的好 坏直接影响到水果的储存、加工和销售,从而最终影响市场价格和经济效益。水果收获具有很强的时效性,属于典型的劳动密集型的工作。但是由于采摘作业环境和操作的复杂性,水果采摘的自动化程度仍然很低,目前国内水果的采摘作业基本上还是手工完成。在很多国家随着人口的老龄化和农业劳动力的减少,劳动力不仅成本高,而且还越来越不容易得到,而人工收获水果所需的成本在水果的整个生产成本中所占的比例竟高达33%~50%高枝水果的采摘还带 有一定的危险性。因此实现水果收获的的机械化变得越来越迫切,发展机械化的收获技术,研究开发水果采摘机器人具有重要的意义。 研究和开发果蔬收获的智能机器人技术对于解放劳动力、提高劳动生产效率、降低生产成本、保证新鲜果蔬品质,以及满足作物生长的实时性要求等方面都有着重要的意义。采摘机器人是未来智能农业机械化的发展方向,具有广阔的应用前景。2004年11月1日颁布施行的《中华人民共和国农业机械化促进法》还明确规定国家采取措施鼓励,扶持农业机械化的发展,机械采摘取代手工作业是必然的发展趋势。 0.2国外水果机械化采摘装置研究进展及现状 水果的机械化收获技术已有40余年的研究历史。收获作业的自动化和机器人的研究始于20世纪60年代的美国,1968年美国学者Schertz和Brown首次提出应用机器人技术进行果蔬的收获,当时开发的收获机器人样机几乎都需要有人的参与,因此只能算是半自动化的收获机械。采用的收获方式主要是机械震摇式和气动震摇式,其缺点是果实易损,效率不高,特别是无法进行选择性的收获。 从20世纪80年代中期开始,随着电子技术和计算机技术的发展,特别是工业机器人技术、计算机图像处理技术和人工智能技术的日益成熟,以日本为代表的西方发达国家,包括美国、英国、法国、荷兰、以色列、西班牙等国家,都在水果采摘机

水果采摘机械手的设计

水果采摘机械手的设计 摘要:机械手能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物 件或操作工具的自动操作装置。它可代替人的繁重劳动以实现生产的机械化和自 动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、 电子轻工和原子能等部门。由于机械臂在各行各业中得到了愈来愈广泛的应用, 机械臂控制的多样化、复杂化的需要也随之日趋增多。作为当今科技领域研究的 一个热点,提高机械臂的控制精度、稳定性、操作灵活性对于提高其应用水平有 着十分重要的意义。在原有机械手上进行PLC等设计可使机械手实现自动化定位 控制丶自动化工作等。通过重新编程序可使其变成多功能机器。 关键词:采摘;机械手;水果 1、机械手的发展趋势 机械手是集机械、电子、控制、计算机、信息等多学科交叉综合,它的发展 和进步依赖并促进相关技术的发展和进步。因此,机械手的主要发展方向如下:机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、 检测系统三位一体化:由关节模块、连杆模块用重组方式构造机器人整机;国外 已有模块化装配机器人产品问市。 机械手控制系统向基于pc机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构:大大提高了系统的可靠性、易操作性和可维修性。 机械手中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感 器外,装配、焊接机械手还应用了视觉、力觉等传感器,而遥控机械手则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制。 虚拟现实技术在机械手中的作用从仿真、预演向用于过程控制发展,如使遥 控机械手操作者产生置身于远端作业环境中的感觉来操纵机械手 2、设计水果采摘机械手的作用 据统计,2017年全国水果总产量(不含瓜果类,下同)达到1.82亿吨,比1978年增长26.7倍,年均增速8.9%。自1994年以来,我国水果总产量稳居世界第一。但目前存在果园人力不足、采摘效率低、有时因为采摘不及时水果坏掉、 果子结在高处人工面临着高空采摘的危险等问题,而一切采摘过程目前都由人工 采摘,在我国机械化的采摘目前处于空白期,即使有机械化机器的投入和使用也 是个别体,且机器的投入成本往往很大,果农无法承担此高昂的成本使用该器械。 果实的采摘是一个季节性较强和劳动密集型的工作,采摘作业所用劳动力占 整个生产过程所用劳动力的33% ~50%,采摘作业比较复杂,季节性很强,若使 用人工采摘,不仅效率低、劳动量大,而且容易造成果实的损伤。使用采摘机械 不仅提高采摘效率,而且降低了损伤率,节省了人工成本,提高了果农的经济效益。 目前而言我国是世界水果生产大国,但在果园管理程度不高(尤其是机械化 采摘果品)由于人口老龄化和农村劳动力越来越少,在单调、繁重、危险的果实 采摘作业上急需高效、通用、低成本的采摘技术,而智能化技术的出现和应用让 人们的生活变得更加方便快捷,与传统机械臂相比,拥有智能化,仿生化等技术 的机械臂操作起来更加简单方便快捷,运用起来也更加灵活多变,智能制造技术 是未来先进制造技术发展的必然趋势,是抢占产业发展的制高点必胜法则。 3、水果采摘机械手的整体方案设计

一种小型高空电动水果采摘机械手装置设计

一种小型高空电动水果采摘机械手装置设计 发表时间:2018-10-17T09:46:53.860Z 来源:《基层建设》2018年第27期作者:祝怀志沈璐鹏叶国江 [导读] 摘要:水果采摘机器人在我国起步晚、发展缓慢,没有系统的方法用以设计采摘机械手,本文根据柑橘生产活动中完成果实采摘整个过程的的具体条件,首先运用所学知识进行机构尺寸的设计;然后创新设计内嵌式关节采摘机械手所有零部件的具体合理尺寸;接着根据机械手的工作方式选择合理的连接方式并通过创建合理约束完成机械手的装配。 衢州职业技术学院浙江衢州 324000 摘要:水果采摘机器人在我国起步晚、发展缓慢,没有系统的方法用以设计采摘机械手,本文根据柑橘生产活动中完成果实采摘整个过程的的具体条件,首先运用所学知识进行机构尺寸的设计;然后创新设计内嵌式关节采摘机械手所有零部件的具体合理尺寸;接着根据机械手的工作方式选择合理的连接方式并通过创建合理约束完成机械手的装配。 关键词:柑橘采摘机械手;内嵌式关节;机械设计 1.引言 近年来,随着全球经济的发展,果蔬供应需求日益增大。作为一个多类型果蔬生产的大国,果蔬的生产对全国的农业乃至国家的经济发展有着不过或缺的重要作用。为了适应时代的需求,在国家的鼓励号召下,全国大部分的果蔬生产已经成功进行了转型,由原来的小型散户种植变成了更加科学化,规模化,可控化的果蔬种植园,而全国果蔬的生产总量也得到了量和质的突破。可是相对经营方式的成功转型,在果蔬生产活动中,几乎占整个生产活动工作量的80%消耗于水果采摘过程,在很大程度的扼制着全国果蔬经济的发展。大量人力资源的投入不仅生产率没得到保障,就连生产质量也是不尽人意,而且艰苦的工作条件常使采摘人员工作中图中发生意外,导致人员受伤。为了提高果蔬采摘的效率,解放劳动力,保证水果采摘的质量,设计一款轻巧,灵便,满足工作条件的水果采摘机械手变得迫切且意义重大。 2.机械手设计 机械手是人们为了完成某些特定的生产活动,通过观察人类手臂的移动和手掌的抓举仿生设计出来的可控的机械系统,其一般包括由实现灵活移动的移动机构(手臂)和实现最终生产活动的执行末端(手掌)组成。机械手的灵活程度在很大程度上取决于机械手的自由度数和控制系统。自由度越多的机械手一般运动起来更加的灵活,人类的整个手部就是一个具有二十多个自由度的精巧结构。不过自由度越多,机械手控制起来就会变得越复杂,而人类之所以能够灵活的使用自己的手,是因为有上亿神经系统的精密控制。所以在设计机械手时,合理的选择机械手的自由度和完善控制系将决定它最终的成败。 2.1柑橘采摘机械手的系统构成 为了实现柑橘果实采摘活动,并在满足工作条件的情况下有尽可能大的工作空间,机械手必须满足俯仰,旋转等运动,所以机械手必须是多自由度的。图1为其简易结构示意图。 图1结构示意图 在图2-1中,1是控制计算机;2是底座;3是腰部;4是大臂;5是小臂。在采摘过程中,机械手在伺服电机的带动下,通过腰部的旋转,大小臂的俯仰将机械手的末端定位到所需要采摘的柑橘位置,然后通过末端的执行机构实现果实的采摘。 2.2 柑橘采摘机械手的材料选定 在柑橘采摘的整个生产活动中,由于机械臂并不需要受很大的力,为了更好的适应复杂的果园环境整体机构尽量灵巧轻便,另外考虑到制造的成本问题,综上几点,选择密度相对较低,但强度较高的铝合金为制造机械手的材料。以下是几种型号铝合金的性能参数表1。表1 铝合金性能参数表 为了满足机械臂对强度的要求以及尽可能的是机械手轻巧,优先选牌号为6061的铝合金作为机械手的材料。 2.3 基于果园环境的机械手CAD模拟 模拟原则:假设机械手是安装在履带式的行走机构上,在采摘过程中,当行走机构带着机械手靠近果树边沿时,要使机械手能成功采摘到果树上的所有成熟果实,在腰部旋转机构固定时,必须使其工作空间能够覆盖其半剖面,如图2。 2.4 机械手关节处伺服电机 设计一种将伺服电机内嵌于关节内部的机械手,不仅可以大幅减小机械手的体积使机械手整体看起来更加小巧精简,而且可以避免外

水果采摘装置设计

水果采摘装置设计

水果采摘装置设计 0文献综述 0.1水果采摘实现机械化的必然趋势 在水果的生产作业中,收获采摘是整个生产中最耗时最费力的一个环节。水果收获期间需投入的劳力约占整个种植过程的50%~70%。采摘作业质量的好坏直接影响到水果的储存、加工和销售,从而最终影响市场价格和经济效益。水果收获具有很强的时效性,属于典型的劳动密集型的工作。但是由于采摘作业环境和操作的复杂性,水果采摘的自动化程度仍然很低,目前国内水果的采摘作业基本上还是手工完成。在很多国家随着人口的老龄化和农业劳动力的减少,劳动力不仅成本高,而且还越来越不容易得到,而人工收获水果所需的成本在水果的整个生产成本中所占的比例竟高达33%~50%。高枝水果的采摘还带有一定的危险性。因此实现水果收获的的机械化变得越来越迫切,发展机械化的收获技术,研究开发水果采摘机器人具有重要的意义。 研究和开发果蔬收获的智能机器人技术对于解放劳动力、提高劳动生产效率、降低生产成本、保证新鲜果蔬品质,以及满足作物生长的实时性要求等方面都有着重要的意义。采摘机器人是未来智能农业机械化的发展方向,具有广阔的应用前景。2004年11月1日颁布施行的《中华人民共和国农业机械化促进法》还明确规定国家采取措施鼓励,扶持农业机械化的发展,机械采摘取代手工作业是必然的发展趋势。 0.2国外水果机械化采摘装置研究进展及现状 水果的机械化收获技术已有40余年的研究历史。收获作业的自动化和机器人的研究始于20世纪60年代的美国,1968年美国学者Schertz和Brown首次提出应用机器人技术进行果蔬的收获,当时开发的收获机器人样机几乎都需

水果采摘机械手装置设计与仿真

水果采摘机械手装置设计与仿真 摘要 近年来,随着全国经济的持续发展,人们对果蔬的需求越来越大。在我国的果蔬生产中,柑橘生产所的占比重日益增大。而在整个柑橘生产活动中,柑橘的采摘所占的工作量十分巨大。除此之外,水果采摘质量的好坏还将直接影响到水果的保鲜储藏,运输配送等后续工作,并最终将严重影响到经济效益。如果继续延续原始的手工采摘,不仅工作环境十分的艰苦,效率低下,而且水果采摘质量也得不到保障,更甚至时有采摘工作者在采摘过程中因为环境的复杂不小心从树上摔下而受伤的事故发生。为了适应当代果蔬经济的发展,设计一种多自由度,满足工作空间的小型柑橘采摘机械手对实现农业自动化和提高经济效益具有重要意义。 根据柑橘生产活动中完成果实采摘整个过程的的具体条件,首先运用所学知识进行机构尺寸的设计;然后创新设计内嵌式关节采摘机械手所有零部件的具体合理尺寸;再按照设计的零件图通过Pro/E三维造型出机械手的所有零部件;接着根据机械手的工作方式选择合理的连接方式并通过创建合理约束完成机械手的装配;最后通过选用Pro/E 中的机构模式,经过旋转轴的自定义,伺服电机的添加,定义初始条件等完成机械手的运动仿真。 关键词:柑橘采摘机械手,内嵌式关节,Pro/E三维造型,运动仿真

Abstract In recent years, with the continuous development of economy, the proportion of citrus production in fruit and vegetable production is growing in our country. In the entire citrus production activities, the workload of citrus picking is very big. What’s more, the quality of fruit picking will directly affect the fruit storage, transportation and other follow-up work ,which eventually has serious influence on the economic benefit. If we continue to use the original manual picking, not only working environment is very difficult, working inefficient, but also the quality of fruit picking is not guaranteed .what’s worse, the fruit picking workers maybe fell from the trees and injured accidentally because the environment is very complex in the process of picking . In order to adapt to the development of contemporary economic fruit and vegetable, it is of great significance to agricultural automation realized and improving the economic benefit that designing a kind of small citrus picking manipulator with the features of multi-degree of freedom and satisfied the working space. According to the specific conditions of the whole process of fruit picking in citrus production activities, at first ,using the acquired knowledge to creatively design all parts of embedded citrus picking manipulator joints with reasonable size. Then according to the design of the part drawing shapes all parts of the manipulator through the Pro/E 3d modeling software. Next choosing the reasonable connection according to the workings of a manipulator and creating a reasonable constraint to complete the assembly of the manipulator. Finally ,through choosing mechanism model in Pro/E, after the axis of rotation of the custom, the adding of the servo motor and defined the initial conditions to complete the motion simulation of the manipulator. Keywords: citrus picking manipulator, embedded joints, Pro/E 3d modeling , motion simulation

苹果采摘机械人结构设计

苹果采摘机械人结构设计 水果采摘费用高且劳动量大,为了快速且准确完成苹果采摘任务,需要进行水果采摘机械人结构设计。首先进行采摘机械机构选型,确定合适自由度;其次,依据典型果树轮廓确定采摘臂结构尺寸,绘制采摘机械手臂零件图和装配图;最后,搭建采摘机械人结构试验台,进行实体运动和抓取实验对设计效果进行验证。试验结果表明,该设计方案基本能够达到预期。该设计方法,对农业领域其他类型采摘机械手设计有一定参考价值。 标签:采摘机械手臂;苹果;结构设计 引言 水果采摘季节性强、费用高且劳动量大[1]。加速农业现代化进程,实施“精确”农业,广泛应用农业机器人,提高资源利用率和农业产出率,降低劳动强度,提高经济效率将是现代农业发展的必然趋势。研究采摘机械人,对于降低人工劳动强度和采摘成本、保证水果适时采收,具有重大的意义[2]。我国从上世纪70年代开始研究水果蔬菜类的采摘机械,并且也逐渐起步,如上海交通大学已经开始了对黄瓜采摘机器人的研制[3],浙江大学对番茄采摘机器人进行了结构分析与设计的优化[4],中国农业大学对采摘机器人的视觉识别装置进行了研究[5]。目前,我国研究的采摘机器人还有西红柿、橘子、草莓、荔枝和葡萄采摘机器人等[6-8]。文章对苹果采摘机械手臂进行选型,进一步进行详细结构设计,最后对设计结果进行试验验证。 1 机械人机构选型及自由度的确定 由于采摘机械人的作业对象是苹果,质量轻,体积小,故而可选择较为简单、灵活、紧凑的结构形式。 根据机械人手臂的动作形态,按坐标形式大致可将机械人手臂部分分为以下四类[9]:直角坐标型机械手;圆柱坐标型机械手;球坐标(极坐标)型机械手;多关节型机械手。采摘机械臂的结构型式选取主要取决于机械人的活动范围、灵活性、重复定位精度、持重能力和控制难易等要求。以上四种型式,它们的活动范围和灵活度逐渐增大。经过对苹果采摘空间的研究,结果表明,苹果树树冠和底部的苹果分布极少,大多分布在树冠中部,大约有80%以上的苹果分布在距地面垂直高度1-2m、距树干左右方向1-2m的空间范围内,且阴阳两面的苹果分布率并无明显的差异。这就要求采摘机械手应当具有较大的工作空间,因此选用多关节型机械手较为合适,且其占地面积较小,更加适合苹果采摘作业。 实际中,苹果生长位置随机分布,这就要求机械臂的末端执行器能够以准确的位置和姿态移动到指定点,因此,采摘机械人还应具有一定数量的自由度。机械臂的自由度是设计的关键参数,其数目应该与所要完成的任务相匹配。一般来说,自由度数量越多,机械臂的灵活性、避障能力越好,通用性也越广,但增加

相关主题
文本预览
相关文档 最新文档