当前位置:文档之家› 基坑监控量测方案

基坑监控量测方案

基坑监控量测方案
基坑监控量测方案

基坑监控量测方案 Prepared on 22 November 2020

目录

1编制依据

编制依据

1、贵阳市*******升级改造工程设计图纸;

2、贵阳市*******升级改造工程岩土工程勘察报告;

3、贵阳市*******高效沉淀池、紫外线消毒渠及巴氏计量槽基坑边坡支护工程施工图设计

4、贵阳市*******基坑支护与开挖专项施工方案

5、图集、标准、规范

《建筑基坑支护技术规程》(JGJ120-2012)

《工程测量规范》(GB50026-2007)

《建筑变形测量规范》JGJ8-2007;

《建筑基坑工程监测技术规范》(GB50497-2009)

《建筑施工测量技术规程》DB11/T446-2007;

6、本企业的一体化管理体系文件要求等。

编制原则

根据本工程的特点和地理位置,经过对设计资料的仔细阅读和分析,在现场调查的基础上,结合现场施工条件充分考虑施工方案的安全合理性及可行性,以实现对基坑施工质量、安全等进行全方位有效控制为原则进行编制。

2工程概况

工程简介

贵阳市*******位于南明区后巢乡五里冲村,背靠青龙山,总占地面积约万㎡,尾水就近排入市西河,服务范围面积约。本次升级改造工程建设规模为 8万m3/d,主要利用现状厂内初沉池与鼓风机房之间预留地布置,占地面积约亩。项目主要新建构(建)筑物主要有:高效沉淀池、紫外线消毒渠及巴氏计量槽。

本次基坑监控测量主要内容为高效沉淀池和紫外线消毒渠基坑,基坑平面位置图详见附图1:施工平面布置图。基坑开挖深度最深处为,最浅处为,监控量测一级边坡执行。

工程地质及水文

根据钻探结果表明:场地内岩土自上而下依次为耕植土、素填土、红粘土及下伏基岩组成,钻探揭露地层特征自上而下依次叙述如下:

表工程地质表

表基坑各断面岩土层厚度统计表

水文、气象条件

根据勘察报告,场地地下水水位埋深~,标高~,低于拟建建筑物基础开挖施工标高≥3m,场地水文地质条件相对简单。

贵阳市(属亚热带湿润温和型气候,兼有高原性和季风性气候特点)降雨主要分布在夏季(6月~8月),降雨量在530~600mm之间,本工程工期(2013年11月~2014年3月)主要集中在冬季与春季,总的来说,降雨频率较高,但降雨量较小(约为105~161mm)。

施工条件

高效沉淀池与紫外线消毒渠均建于厂区预留场地范围内,周围管线复杂,具体见附图2:既有管线平面布置图及附图3既有管线剖面图。

3监测目的与技术要求

基坑支护结构设计与施工不仅涉及到结构问题和岩土工程问题,而且因为地下工程的不确定因素太多,必须结合工程地质水文资料、环境条件,是个复杂的系统工程,故施工过程中必须加强信息化施工,加强施工过程的监测和对周围环境的检测,及早发现问题,及时采用相应对策,消除事故隐患。

监测目的

1、将监测数据与预测值相比较,判断前一步施工工艺和施工参数是否符合预期要求,以确定和调整下一步施工,确保施工安全。

2、将现场测量的数据、信息及时反馈,以修改和完善设计,使设计达到优质安全、经济合理。

3、将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使施工更符合实际,便于以指导今后的工程建设。

4、根据监测结果,对即将出现的不良问题作出预报,提前处理,预防工程事故发生。

5、积累资料和经验,为今后的同类工程的施工提供类比依据。

技术要求

1、相关设计图纸;

2、《工程测量规范》(GB50026-2007)

3、《建筑变形测量规范》JGJ8-2007;

4、《建筑基坑工程监测技术规范》GB50497-2009;

5、国家相关规范规程。

4监测项目

根据本工程的特点确定的量测项目详见表

5测点布置

测点布置要求

1、基坑监测点应当在基坑开挖之前进行布设。

2、基坑监测点的布置应最大程度的反应基坑的实际状态及变化趋势,并满足监控要求。

3、基坑监测点的布设不得妨碍基坑的正常施工。

4、监测标志应稳固、明显、结构合理,监测点应避开障碍物,便于观察。

5、在基坑较深、坡度较陡及鼓风机房处应适当加密监测点。

6、加强监测点的保护,必要时应设置监测点的保护装置和保护设施。

测点布置方法

为保证所有监测工作的统一,提高监测数据的精度,使监测工作有效的指导整个工程施工,监测工作采用整体布设,分级布网的原则。即首先布设统一的监测控制网,再在此基础上布设监测点(孔)。

1、建立边坡检测预报系统,制定监测报告。

①在基坑施工过程中应在坡顶按每间隔不大于20m且每边不应少于3个监测点数布设,用于观测边坡水平位移和竖向直位移;②在管道外漏段中部布设点位,进行管线变形观测;在基坑东侧、南侧、西侧边坡顶中部布置土体深层水平位移观测;③对在影响范围内既有建筑物,布设建筑物竖向位移观测点;④观测频率不少于1次

/3d,发现异常情况及时启动应急预案进行处理,并通知相关单位,以确保基坑安全。

2、基坑开挖5m深以上时,在基坑壁每隔10m设一测点。

3、环境检测点,基坑开挖深度倍范围内设测点。地下管线将观测点布置在管线本身上;建筑物测点布置在墙角等外形突出部位。

4、其它可采用直接观测法或者其它可达到观测目的的途径。

测点平面布置

监测基准点采用贵阳市测绘院所提供的控制桩EQ01、EQ02、EQ03,同时为方便测量,在基坑影响范围之外加密控制点EQ04点,建立监控量测控制网。

基坑监测点延基坑四周布设,用于监测基坑的水平和竖向位移。基坑每边不少于三处,每处设置两个点,其中一组12个点布设在距基坑坡顶1m以内,编号为

JK01~JK12;另一组12个点布置在距基坑坡顶3m以内,编号为:JK01~

监测点埋设方法

基坑周围的监测点用长度1m,直径20mm的钢筋制作,在定位处挖

30cm*30cm*40cm的坑,将钢筋砸进坑底,钢筋上顶高程坑面10cm,用不低于C30的

混凝土包裹钢筋,混凝土高出坑面5cm,用直径10cm长20cm的pvc管将钢筋套住,高出坑面8cm,以起到保护监测点的作用。振捣密实pvc管内外的混凝土,完成埋设。待第二天混凝土上强度之后在钢筋头上用钢锯锯上十字丝。

鼓风机房的沉降观测点用直径12mm的钢筋制作(做一个弯钩),在鼓风机房墙角打孔后,将做好的钢筋砸进孔内,注意必须砸紧固。

1、开挖前,对施工场地地下是否有管线作进一步探测查实,避免开挖工作伤及地下设施。

2、现场基坑监测点布设、保护、测量完成。

3、根据方案确定的开挖路线、顺序、坡率、基底标高,放出开槽边坡线。

4、施工现场完成“三通一平一亮”。

5、临时供水、供电、排水安装完成。

6、基本生产、生活设施施工完成。

6监测方法及精度

监测方法要求

采用满足精度要求的测量仪器进行观测,仪器必须经过标定和校准,并在有效期内。每次观测采用同样的观测路线和观测方法,使用同一测量仪器,固定一个观测人员,在相同的环境和条件下观测。监测点的初始值应为施工前至少连续观测三次的稳定值的平均值。

水平位移监测

水平位移采用全站仪进行极坐标观测,每次固定选用EQ03和EQ01作为测站点和后视点,选用EQ02作为检查点。对中误差小于,监测点坐标中误差小于。

竖向位移监测

竖向位移采用水准仪进行观测,选用EQ03作为测量基准点,采用闭合回路观测,每次观测闭合到EQ03点,定期用基准点EQ01和EQ02检查EQ03的高程。检查点测站高差中误差小于。

管线变形监测

基坑监控点JK01、JK02及JK12在布设在既有管线上,管线变形观测水平位移监测精度宜不低于,竖向位移监测精度宜不低于1mm。

建筑物变形监测

建筑物竖向位移观测同上述基坑竖向位移监测同步进行,频率相同;建筑物裂缝监测在出现裂缝后开始实施监测,裂缝监测包括裂缝的位置、走向、长度、宽度、深

度及变化程度,观测周期根据其裂缝变化速度而定,开始为半月测一次,以后一月测一次。观测精度宽度不宜低于,长度和深度不宜低于1mm。

7监测人员及主要仪器设备

人员配置

项目部工程设置测量主管一名,专门负责进行基坑监控量测工作。

表测量人员分工表

主要仪器设备

表测量仪器台账

测量仪器保管制度

(1)按规定程序文件要求建立测量仪器台帐。测量所使用的仪器精度要满足设计及规范要求。

(2)测量仪器由专人负责保管,保证仪器的完好性,始终处于正常使用状态,并定期进行保养。

(3)测量仪器应经过有关部门鉴定,具有检验合格证,鉴定周期满后,要及时送检校验。

(4)施测人员在施测中应坚守岗位,雨天或强烈阳光下应打伞。仪器架好设,须有专人看护,不得只顾其他事情,把仪器丢在一边不管。

(5)测量人员持证上岗,严格遵守仪器测量操作规程作业。

8监测频率

基坑工程监测频率应以能系统反应监测对象所测项目的重要变化过程,而又不遗留其变化时刻为原则。应贯穿于基坑工程和地下工程施工全过程。监测工作从基坑工程工程施工前开始,直至地下工程完成为止。对有特殊要求的周边环境的监测应根据需要延续至变形趋于稳定后才结束。

监测平率取决于基坑工程等级、周边环境、自燃条件,当检测值相对稳定时,可适当降低监测频率。由于本基坑开挖深度超过10米,因此采用一级基坑规定的监测

频率进行控制。

出现下列情况之一时,应加强监测,提高监测频率,并及时向上级领导报告监测结果:

1、监测数据达到报警值;

2、监测数据变化量较大或者速率加快;

3、存在勘察中未发现的不良地质条件;

4、基坑及周边大量积水、长时间连续降雨、市政管道出现泄漏;

5、基坑附近地面荷载突然增大或超过设计限值;

6、支护结构出现开裂;

7、周边地面出现突然较大沉降或严重开裂;

8、临近的建(构)筑物出现较大沉降、不均匀沉降或严重开裂;

9、基坑底部、坡体或支护结构出现管涌、渗漏或流砂等现象;

10、基坑工程发生事故后重新组织施工;

11、出现其他影响基坑及周边环境安全的异常情况。当有危险事故征兆时,应实时跟踪监测。

9监测报警值

1、基坑监测报警值规定

基坑监测报警值应以监测项目的累计变化量和变化速率两个值控制。因基坑开挖引起基坑内外地层位移按下列条件控制:

(1)不得导致基坑失稳;

(2)不得影响地下结构的尺寸、形状和地下结构物的正常施工;

(3)对周边建(构)筑物的变形不得超过相关技术规定的要求;

(4)不得影响周边道路、地下管线等正常使用。

2、基坑监测报警值参考表

3、需要报警的情况

当出现下列情况之一时,必须立即报警,若情况比较严重,应立即停止施工,并对基坑支护结构和周边的保护对象采取应急措施:

(1)当监测数据达到报警值;

(2)基坑支护结构或周边土体出现异常情况或基坑出现渗漏、流砂、管涌、隆起或陷落等;

(3)基坑支护结构的支撑或锚杆体系出现过大变形、压屈、断裂、松弛或拔出迹象;

(4)周边建(构)筑物的结构部分、周边地面出现可能发展的变形裂缝或较严重的突发裂缝;

(5)根据当地工程经验判断,出现其他必须报警的情况。

10监测数据的记录制度和处理方法

一般规定

1、现场测试人员应对监测数据的真实性扶着,监测分析人员应对监测报告的可靠性负责。

2、监测记录、监测当日报表和监测报告提供的数据、图标应客观、真实、准确、及时。

3、外业观测值和记事项目,必须在现场直接记录与记录表中,任何原始记录不得涂改、伪造和转抄,并有测试、记录人员签字。

监测资料要求

基坑监测应使用正式的监测记录表格,并有相应的工况描述。监测数据应及时整理,对监测数据的变化和发展情况应及时分析和评述。监测数据出现异常时,应及时分析原因,必要时进行重测。

监测表格样式见附件

监测信息反馈

进行监测数据分析是,应结合其他相关项目的监测数据和自然环境、施工工况等情况以及以往数据,考量其发展趋势,并作出预报。

监测成果应包括当日报表、阶段性报告、总结报告。报表应按时报送。报表中监测成果宜用表格和变化曲线或图形反应。

日报表应包括下列内容:

1、当日的天气情况和施工现场的工况;

2、仪器监测项目各监测点的本次测试值、单次变化值、变化速率一级累计值等,必要时绘制有关曲线图;

3、巡视检查记录;

4、对监测项目应有正常或异常的判断性结论;

5、对达到或超过监测报警值的监测点应有报警标示,并有原因分析及建议;

6、对巡视检查发现的异常情况应有详细描述,危险情况应有报警标示,并有原因分析及建议。

11附件

附表1:深基坑位移沉降观测记录表;

附表2:深基坑监测点坐标及标高;

附图1:施工平面布置图;

附图2:既有管线平面布置图;

附图3:既有管线剖面图;

附图4:监测点及控制点平面布置图;

附表1:

监测人:复核人:日期:

附表2:深基坑监测点坐标及标高

建筑深基坑工程监测要求

附件3: 建筑深基坑工程监测要求 一、基坑设计文件中应明确基坑支护监测的要求,包括监测项目、测点布置、观测精度、观测频率和临界状态报警值等。基坑监测单位必须制定监测方案,包括监测目的、监测内容、测点布置、观测方法、监测项目报警值、监测结果处理要求和监测结果反馈制度等。监测内容和观测项目、频率、数量、方法等见附表3-1、3-2。 二、当出现下列情况时,应加强观测,加大监测频率,并及时向建设、施工、监理、设计、质量监督等部门报告监测成果。 1、监测项目的监测值达到报警标准; 2、监测项目的监测值变化过大或者速率加快; 3、出现超深开挖、超长开挖、未及时加撑等不按设计工况施工的情况; 4、基坑及周围环境中大量积水、长时间连续降雨、市政管道出现渗漏; 5、基坑附近地面荷载突然增大; 6、支护结构出现开裂;

7、邻近的建筑物或地面突然出现大量沉降、不均匀沉降或严重开裂; 8、基坑底部、坡体或围护结构出现管涌、流沙现象。 三、当出现下列情况之一时,应及时报警;情况严重时,应立即停工,并对基坑支护结构和周围环境中的保护对象采取应急措施。 1、出现了基坑工程设计方案、监测方案确定的报警情况,监测项目实测值达到设计监控报警值; 2、基坑支护结构或后面土体的最大位移大于附表3-3的规定,或其水平位移速率已连续三日大于3mm/d; 3、基坑支护结构的支撑或锚杆体系中有个别构件出现应力剧增、压屈、断裂、松弛或拔出迹象; 4、已有建筑物的不均匀沉降已大于现行的地基基础设计规范规定的允许值,或建筑物的倾斜速率已连续三天大于0.0001H/d; 5、已有建筑物的砌体部分出现宽度大于3mm的变形裂缝;或其附近地面出现15mm的裂缝;且上述裂缝尚可能发展; 6、基坑底部或周围土体出现可能导致剪切破坏的迹象或其他可能影响安全的征兆(流砂、管涌等)。四、观测数据应及时整理,沉降、位移等观测项目应绘制随时间变化的关系曲线,并对变形和内力的发展

最新基坑开挖监测方案

基坑开挖监测方案

1.工程概况 拟建综合楼工程项目为地下二层、地上八层(局部三层、五层),设地下室二层,预计开挖深度约为地面以下9.0m左右。挡土结构和支承结构为钻孔灌注桩,止水桩为高压旋喷水泥土桩,大量土方为支撑和支挡下挖土。 地理位置处于解放东路、茶局路交汇处西北角,场地为原供电局旧址。基坑四周建筑物密集,东侧为十层交通大厦,其余四周为4-5层砖混结构的住宅楼,紧邻基坑为110KV城中高压变电所,该所为本工程监测的重点。 设计单位:工程桩为机械工业部深圳设计研究院,围护桩为南京南大岩土工程技术有限公司,《岩土工程勘察报告》由宜兴市建筑设计研究院提供。2.施工监测的重要性和目的 2.1施工监测的重要性 在基坑开挖的施工过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起维护结构承受荷载并导致围护结构和土体的变形,围护结构的内力(围护桩和墙的内力,支撑轴力或土锚拉力等)和变形(深基坑坑内土体的隆起、基坑支护结构及其周围土体的沉降和侧向位移等)中的任一量值超过容许的范围,将造成基坑的失稳破坏或对周围环境造成不利影响,深基坑开挖工程往往在建筑密集的市中心,施工场地四周有建筑物和地下管线,基坑开挖所引起的土体变形将在一定程度上改变这些建筑物和地下管线的正常状态,当土体变形过大时,会造成邻近结构和设施的失效或破坏。同时基坑相邻的建筑物又相当于较重的集中荷载,基坑周围的管线常引起地表水渗漏,这些因素又是导致土体变形加剧的原因。基坑工程设置于力学性质相当复杂的地层中,在基坑围护结构设计和变形预估时,一方面,基坑围护体系所承受的土压力等荷载存在着较大的不确定性;另一方面,对地层和围护结构一般都作了较多的简化和假定,与实际有一定的差异;加之,基坑开挖与围护结构施工过程中,存在着时间和空间上的延迟过程,以及降雨、地面堆载和挖机撞击等偶然因素的作用,使得现阶段在基坑工程设计时对结构内力计算以及土体变形的预估与工程实际情况有较大的差异,并在相当程度上仍依靠经验。因此,在基坑施工过程中,只有对基坑支护结构、基坑周围的土

深基坑监控量测作业指导书

地铁车站深基坑监控量测作业指导书 1、工程概况 1.1工程简介 ×××站为地下三层岛式车站,有效站台中心里程为×××+×××,起点里程为×××+×××,终点里程为×××+×××,全长149.0m,标准段外包宽21.8m,站台宽12.0m,线间距15.0m,采用明挖法施工。围护结构采用地下连续墙加内支撑。 1.2监测的重点 根据设计图纸中有关施工监测部分的内容,结合×××站的地理位置、基坑的开挖深度及车站的设计特点来考虑,我们认为监测重点为监测地下连续墙的水平位移、地表沉降、支撑轴力、地面建筑物沉降倾斜、地面建筑裂缝、地下水位、墙身变形支撑立柱沉降等方面监测。 1.3工程地质情况简介 根据地质调查和钻孔揭露,场区表层分布第四系全新统(Q4),其下依次为全新统冲积层(Q4al)、第四系中更新统冲积层(Q2al),第四系残积层(Qel),下伏基岩主要为白垩系神皇山组(Ks)紫红色泥质粉砂岩、偶夹粉砂质泥岩或砾岩。 2、目的 规范深基坑施工过程中监控量测作业行为,按照设计及规范要求监控测量到位,确保深基坑开挖施工安全受控,制定本作业指导书。 3、适应范围 本作业指导书适用于开挖深度30米内,不需要提前进行基坑降水施工,杂填土至中风化泥质粉砂岩无降水条件下的地铁车站明挖深基坑开挖监控量测施工,。 4、编制依据 4.1×××轨道交通×××标段合同文件,×××站监控量测设计图纸、围护结构设计图纸; 4.2×××站所处的周边环境、地质条件、工程特点等实际情况; 4.3相关量测的规范、标准以及公司之前监控量测施工经验; 4.4通过批复的深基坑施工方案等。 5、技术标准及要求 5.1本标段×××站主体围护结构设计图纸

《建筑基坑工程监测技术规范》

《建筑基坑工程监测技术规范》 一、单选题 1、开挖深度大于等于( )的基坑应实施基坑工程监测。 A、5m B、6m C、7m D、8m 2、基坑工程施工前,应有( )委托具有相应资质的单位对基坑工程实施现场监测。 A、涉及方 B、勘探方 C、建设方 D、施工方 3、围护墙或基坑边坡顶部的水平和竖向位移监测点应沿基坑周边不 知,周边( )应布置监测点。 A、中部、端部 B、中部、阳角 C、端部、阳角 D、端部、阴角 4、围护墙或基坑边坡顶部的监测点水平间距不宜大于( ) A、10m B、15m C、20m D、25m 5、用测斜仪观测深层水平位移时,当测斜管埋置在土体中,测斜管长 度不宜小于基坑开挖深度的( ) A、0.5倍 B、1倍 C、1.5倍 D、2倍 6、围护墙竖直方向neili监测点应布置在弯矩极值处,竖向间距宜为( ) A、1m-3m B、2m-4m C、3m-5m D、4m-6m 7、钢支撑的监测截面宜选择在两指点间( )部位或支撑的端头。 A、1/2 B、1/3 C、1/4 D、1/5 8、每层锚杆的内力监测点数量应为该层锚杆总数的1%-3%,并不应少于( )根 A、3根 B、4根 C、5根 D、6根 9、基坑外地下水位监测点应沿基坑、被保护对象的周边或在基坑与被

保护对象之间布置,监测点间距宜为( ) A、10m-30m B、20m-40m C、30m-50m D、20m-50m 10、水位观测管的管底埋置深度应在最低设计水位或最低允许地下水位之下( )。 A、1m-3m B、2m-4m C、3m-5m D、4m-6m 11、测斜仪的系统精度不宜低于( ) A、0.15mm/m B、0.2mm/m C、0.25mm/m D、0.3mm/m 12、开挖深度为6米的一级基坑,现场进行检测的频率为( ) A、1次/1d B、1次/2d C、2次/1d D、3次/1d 13、一级基坑土钉墙顶部水平位移累计绝对值超过( )应进行报警。 A、20mm B、25mm C、30mm D、15mm 14、一级基坑土钉墙顶部水平位移的变化速率超过( )应进行报警。 A、2mm/d B、3mm/d C、4mm/d D、5mm/d 15、一级基坑土钉墙顶部水平位移累计绝对值超过( )应进行报警。 A、10mm-15mm B、15mm-25mm C、25mm-30mm D、30mm-35mm 16、一级基坑土钉墙顶部水平位移的变化速率超过( )应进行报警。 A、1-5mm/d B、5-10mm/d C、10-15mm/d D、15-20mm/d 17、地下水位变化累计值超过( )应进行报警。 A、250mm B、500mm C、750mm D、1000mm 18、地下水位变化速率超过( )应进行报警。 A、250mm /d B、500mm/d C、750mm /d D、1000mm/d 19、临近建筑物位移累计值超过( )应进行报警。 A、4mm B、6mm C、8mm D、10mm

浅谈深基坑的监控量测

浅谈深基坑的监控量测 摘要:在深基坑施工过程中对监控量测进行规范化应用及系统化的管理,掌握基坑支护及基坑周围土体的变化情况,为施工安全提供重要保障。 关键词:深基坑;监控;量测 随着社会科技的长足发展,施工工法的与时俱进,人们对深基坑施工的安全要求逐步提高,监控量测在诸多安全保障措施中显得尤为重要。其通过对基坑支护状态及基坑周围土体变化情况进行全面系统的数据分析,来为基坑提供重要的安全保障,保证基坑顺利施工。就此对深基坑监控测量小作浅析。 一、监控量测的目的及意义 1、施工过程中对周围构筑物、地下管线沉降进行监测,确保基坑开挖施工影响范围内的构筑物及地下管线的安全。 2、通过监控量测了解基坑支护结构在施工过程中受力的动态变化,了解基坑开挖引起周边土体变形的大小,准确掌握基坑开挖过程中可能产生失稳的薄弱环节。 3、通过监控量测,收集相应工程数据,为以后的工程设计、施工及规范修改提供参考和积累经验,并可以和计算结果比较,完善计算理论。 二、监控量测的内容及频率 深基坑监测一般分为必测和应测。必测项目有:桩顶水平位移、土体测向位移、桩体变形、土压力、支撑轴力、支撑竖向位移、地下水位、建筑物沉降倾斜、支撑立柱沉降、基底沉降或回弹、地面沉降、重要管线沉降等。应侧项目有:孔隙水压力、桩内钢筋应力应变、钢架内钢筋应力应变等。 监测频率一般按施工条件及施工进度而定,一般不超过规范要求,必要情况进行加密监测。 三、监控量测预警管理标准 应按照安全风险管理体系的要求,负责施工安全为主,实施监测、巡视等现场工作,针对不同风险源及风险等级,建立不同的风险评估体系,提供预警建议,并开展监控信息汇总整理、反馈及现场控制指导等咨询服务工作。根据现场巡视信息及监测数据及时地分析,综合评定,必要时发送预警信息,同时加密观测频率及加大巡视力度。现场监测成果按黄色、橙色和红色三级预警进行管理和控制。 四、监控量测组织机构

基坑监控量测方案资料教学内容

亳州市谯城区8#还原小区监控量测施工方案 一、编制依据 1、中铁城市规划设计研究院有限公司设计的《亳州市谯城区8#还原小区施工图纸》 2、《亳亳州市谯城区8#还原小区施工组织设计》 3、土建工程施工涉及的有效国家建筑工程施工质量验收规范和规程: 4、《工程测量规范》(GB50026-2007) 5、《建筑施工测量手册》 6、《建筑基坑支护技术规程》(JGJ120-99) 7、《建筑地基基础设计规范》(GB50007-2002) 8、《建筑变形测量规程》 (JGJ8-2007) 9、《国家一、二等水准测量规范》 (GB12897-2006) 10、本基坑设计文件、图纸、本工程总平面图 二、工程概况 亳州市谯城区8#还原小区工程,位于汤王北路以东,涡河路以南,花戏楼路以西,三圣庙路以北,包括4幢24层住宅,4幢28层住宅,9幢33层住宅,5幢沿街商铺,人防工程及地下车库。主楼为剪力墙结构,商业房为框架结构,人防车库为框架-剪力墙结构。施工区域东西长度410~510m、南北长度300m,总占地面积140834m2,约211亩,总建筑面积约为46.89万m2,其中住宅面积34.78万m2。 厂区内经当地规划部门交与我方四个控制点后为满足施工要求经过加密,平面高程控制点分别有KZ2(3752393.330,499680.142,38.511)、KZ10(3752130.963,499621.497,37.834)、KZ11(3752133.942,499714.240,38.164)、KZ14(3752359.988,499770.363),KZ15(3752281.985,499787.5050)。 三、水文地质情况 (1)地形地貌 亳州市谯城区8#还原小区工程,位于汤王北路以东,涡河路以南,花

基坑施工监控量测

基坑施工监控量测 监控量测是施工的重要组成部分,由于底层存在着相当的变异性和离散性;在对基坑维护结构进行设计和变形估计是对土层和围护结构本身的分析与实际状况存在一定的近似性和相对误差以及基坑开挖和施筑过程中,维护结构的受力处于经常性的动态变化状况,使结构荷载作用时间和影响范围难以预料。 通过检测随时掌握土层和支护结构内里的变化情况,为施工开展 提供及时地反馈信息,为基坑周围环境进行及时有效的保护提供依据;将监测结果用于反馈优化设计,并将监测结果和理论测试值比较分析,检验设计理论。为以后工程做技术储备。 监控量测得方法: 监控量测的内容包括:基坑内外的观察、边坡土体顶部的水平位移、基坑周围地表沉降、桩顶位移、地下水位、桩体变形、桩内钢筋应力应变、锚杆应力。在本施工过程中,选择以下监控量测做测必测项目,对于选测项目以基坑施工监控量测表中施工方法进行监测:1对于基坑内外观察主要以现场观察为手段对基坑外地面、建筑地层描述及支护桩,内支撑的稳定情况进行观测,要求随时进行; 2、对边坡土体顶部水平位移的监测要求在边坡顶部长、短边中点设监测点,但监测点间距应小于30m,可利用经纬仪进行量测,量测精度及时间见基坑施工监控量测表中说明; 3、对于桩顶位移的监测要求在桩顶冠梁处设监测点,对本工程

要求再基坑边上不超过30m的距离选定监测点,一般要求采用经纬仪或全站仪进行监测,测量精度和时间间隔要求如基坑施工监控量测表; 4、对于地下水位的监测要求在基坑周边四个角点和长短边的中 点,当基坑尺寸过大时每隔30m设一个监测点,两侧精度以及时间间隔要求见基坑施工监控量测表; 5、桩体变形的监测,要求对基坑长短边中点处进行监测,对所监测的桩体竖向每隔1m为测点间距,利用侧斜管和侧斜仪进行桩体变形测量。 监测注意事项: 1、基坑监测应该掌握现场及工程详细情况,和工程建设单位、 施工单位、监理单位、设计单位以及管线各主管部门和道路监察部门充分协调制定监测方案。内容包括:工程概况,监测目的,监测内容, 监测方法,成果提交(当日报表,监测总结报告),监测费用(材料,人工,成果整理费用)。 2、基坑监测应以获得定量数据的专门机器测量或专用测试元件 监测为主,以现场目测为辅。 3、监测手段必须已被实践证明是准确的,并且必须简便易行,以适应现场快速变化的工作状况。应采纳多种监测手段,施行多项内容,设置多道防线的测试方案。 4、各项监测项目在基坑支护施工前应测得稳定的初始值;且不少于两次。 5、各项监测工作的时间间隔根据施工进程确定,参照《建筑基坑

浅谈深基坑监测

浅谈深基坑监测 发表时间:2019-03-22T16:29:36.773Z 来源:《防护工程》2018年第34期作者:方兆成 [导读] 本文以本人在芜湖赭ft印象深基坑监测工作为例,结合前人研究方法与成果,简要阐述了深基坑监测的工作内容与方法,以及一些基坑监测过程可能出现的安全隐患的处置建议和应注意的事项。 浙江煤炭地质局勘探一队浙江湖州 313004 摘要:城市基坑开挖具有施工风险高、难度大等特点。基坑监测能起到指导正确施工的作用,是避免事故发生的必要措施。当前,基坑监测与工程的设计、施工同被列为深基坑工程质量保证的三大基本要素。 本文以本人在芜湖赭ft印象深基坑监测工作为例,结合前人研究方法与成果,简要阐述了深基坑监测的工作内容与方法,以及一些基坑监测过程可能出现的安全隐患的处置建议和应注意的事项。 关键词:深基坑,基坑监测,水平位移,竖向位移 1 工程概况 1.1一般概况 芜湖赭ft印象工程项目位于芜湖市镜湖区,东至小赭ft,南至赭ft公园,西至长宁路,北至平安ft庄。总面积为 56890 ㎡,该地块的平时功能为商业及车库,地下第一、二层为商业,地下第三层为机动车及非机动车车库,战时功能为核 6 级二等人员掩蔽所及物资库。基坑开挖深度 13.7~18.2m。根据本基坑的挖深及周边的环境,确定本基坑安全等级为一级。本基坑采用的支护方式为柱列式钻孔灌注桩连锁法,并用水泥土搅拌桩止水、锚索钢腰梁锚拉加固,灌注桩深度约 17.5~22m。 1.2地质条件 本工程施工影响范围内的土层由上及下分别有:杂填土、淤泥质粉质粘土、粉质粘土、全风化火ft角砾岩、强风化火ft角砾岩、中风化火ft角砾岩。 2监测内容与方法 2.1监测内容 基坑开挖中经常运用时空效应规律,做好监测工作能可靠、合理地利用土体自身在基坑开挖过程中控制土体位移的潜力,从而达到保护环境及最大限度保护各相关方面利益的目的。 根据本工程的要求、周围环境、基坑自身的特点及相关工程的规范、经验,按照安全、经济、合理的原则,设置的监测项目如下: (一) 周边环境监测 (1)地下综合管线垂直、水平位移监测 (2)周边建(构)筑物垂直位移监测 (3)周边地表沉降剖面监测 (4)裂缝监测 (二) 围护结构监测 (1)围护结构顶部垂直兼水平位移监测 (2)围护结构深层水平位移监测 (3)地下水位观测 (4)支护结构锚索轴力监测 2.2监测方法 2.2.1监测点垂直位移测量 竖向位移监测可采用几何水准或液体静力水准等方法。基坑围护墙(坡)顶、墙后地表与立柱、周边建(构)筑物的竖向位移监测精度应根据竖向位移报警值确定。 2.2.2监测点水平位移测量 本工程采用极坐标法,在基坑外围护结构顶部及管线上布设观测点作为工作基点,使用全站仪采集各监测点的平面坐标值,某监测点本次的水平坐标值与初始坐标值的差值为该点累计水平位移,各变形监测点初始平面坐标值均为取两次平均的值。 2.2.3围护结构深层(土体)水平位移监测 围护墙体或坑周土体的深层水平位移的监测采用在墙体或土体中预埋测斜管(管长达 1.2 倍以上灌注桩长)、通过测斜仪观测各深度(0.5 米一个测点)处水平位移的方法。 2.2.4坑外潜水水位观测 对于水位动态变化的量测,可在基坑降水前测得各水位孔孔口标高及各孔水位深度,孔口标高减水位深度即得水位标高,初始水位为连续两次测量的平均值。每次测得水位标高与初始水位标高的差即为水位累计变化量。 2.2.5支护结构锚索轴力监测 本工程支护结构采用锚杆、钢腰梁支撑,锚杆拉力量测宜采用专用的锚杆测力计,钢筋锚杆可采用钢筋应力计或应变计,当使用钢筋束时应分别监测每根钢筋的受力。锚杆轴力计、钢筋应力计和应变计的量程宜为设计最大拉力值的 1.2 倍,量测精度不宜低于 0.5%F·S,分辨率不宜低于 0.2%F·S。应力计或应变计应在锚杆锁定前获得稳定初始值。[3] 2.2.6裂缝监测 裂缝监测应包括裂缝的位置、走向、长度、宽度、深度及变化程度。裂缝监测数量根据需要确定,主要或变化较大的裂缝应重点监测。裂缝宽度监测精度不宜低于 0.1mm,长度和深度监测精度不宜低于 1mm。

基坑监控量测方案精编WORD版

基坑监控量测方案精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

目录 1编制依据 (2) 1.1编制依据 (2) 1.2编制原则 (2) 2工程概况 (2) 2.1工程简介 (2) 2.2工程地质及水文 (3) (3) (3) 2.3施工条件 (3) 3监测目的与技术要求 (4) 3.1监测目的 (4) 3.2技术要求 (4) 4监测项目 (4) 5测点布置 (5) 5.1测点布置要求 (5) 5.2测点布置方法 (5) 5.3测点平面布置 (5) 5.4监测点埋设方法 (6)

6监测方法及精度 (7) 6.1监测方法要求 (7) 6.2水平位移监测 (7) 6.3竖向位移监测 (7) 7监测人员及主要仪器设备 (7) 7.1人员配置 (7) 7.2主要仪器设备 (8) 8监测频率 (8) 9监测报警值 (9) 10监测数据的记录制度和处理方法 (10) 10.1一般规定 (10) 10.2监测资料要求 (10) 10.3监测信息反馈 (10) 11附件 (11)

1编制依据 1.1编制依据 1、贵阳市*******升级改造工程设计图纸; 2、贵阳市*******升级改造工程岩土工程勘察报告; 3、贵阳市*******高效沉淀池、紫外线消毒渠及巴氏计量槽基坑边坡支护工程施工图设计 4、贵阳市*******基坑支护与开挖专项施工方案 5、图集、标准、规范 《建筑基坑支护技术规程》(JGJ120-2012) 《工程测量规范》(GB50026-2007) 《建筑变形测量规范》JGJ8-2007; 《建筑基坑工程监测技术规范》(GB50497-2009) 《建筑施工测量技术规程》DB11/T446-2007; 6、本企业的一体化管理体系文件要求等。 1.2编制原则 根据本工程的特点和地理位置,经过对设计资料的仔细阅读和分析,在现场调查的基础上,结合现场施工条件充分考虑施工方案的安全合理性及可行性,以实现对基坑施工质量、安全等进行全方位有效控制为原则进行编制。 2工程概况 2.1工程简介 贵阳市*******位于南明区后巢乡五里冲村,背靠青龙山,总占地面积约 6.70万

深基坑监控测量安全培训试题及答案

深基坑监控测量安全培训试题 姓名成绩 一、单项选释题(每题3分,共30分) 1、基坑围(支)护结构施工时,遇到雷雨(C)级以上大风等恶劣天气时,应暂停施工,并对现场人员、设备、材料等采取相应的保护错施。 A:4 B:5 C:6 D:7 2、深度超过(B)的基坑《槽)支护、降水工程属于危险性较大的分部分项工程。 A:2m(含2) B:3m(含2) C:4m(含4m) D:5m(含5m) 3、深基坑工程的前期工作的主导单位是(A) A.建设单位 B.勘察设计单位 C.施工单位 D.监理单位 4、基坑周边在基坑深度距离(A)范围内,严禁设置塔吊等大型设备和搭设职工宿舍。 A.2倍 B.3倍 C.4倍 D5倍 5、在深基坑周围上述距离范围内,确需要搭设办公用房、堆放料具等。深基坑工程施工单位应对基坑进行特殊加固处理,加固方案应当(A) A.经原专家组论证 B.在组织专家组进行论证 C.另行组织个别专家进行论证 D.以上三者 6、高大模板支撑系统搭设前,由(B)组织相关人员对需要处理或者加固的地基、基础进行验收,并留存记录 A.企业技术负责人 B.项目技术负责人 C.项目负责人 D.监理单位总监 7、当基坑开挖抽水量大于(A)时,应进行地下水回灌,并避免地下水被污染。 A.50万m3 B.80万m3 C.90万m3 D.100万m3 8、下列哪项不属于一级基坑(B) A.重要工程或支护做主体结构的一部分 B.开挖深度为8m C.与临近建

筑物、重要设施的距离在开挖深度以内的基坑 9、深基坑专项施工方案论证会由(c)组织召开 A建设单位;B:滥理单位; C:施工单位;D:设计单位 10、基坑开挖期间基坑监测的频率为(A) A不少于1次/d;B:不少于2次/d; C:不少于3次/d;D:不少于4次/d 二、多项选择题。(每题5分,共50分) 1、基坑工程包括哪些(ABCD) A:支护结构设计 B:支护结构施工 C:基坑开挖、降水 D:施工监测 2、深基坑工程施工存在的安全风险主要有:(ABD) A、基坑围护体系破坏; B、土体渗透破坏; C、自然灾害; D、周边环境破坏。 3、以下属于深基坑工程专项方案组成部分的有:(AB0) A、勘察设计方案: B、施工方案; C、监理方案; D、监测方案。 4、深基坑工程监测对象有(ACD) A、围护结构; B、地表水状况 C、基坑底部及周边土体 D、周边管线及设施 5、目前常采用的基坑维护结构主要有(ABCD)

基坑施工监控与监测方案

第十章基坑施工监控与监测方案 10.1 监控与监测目的 基坑开挖施工过程中,基坑边坡土体应力状态发生变化,边坡土体和支护结构不可避免产生侧向位移、沉降。如果变形过大,或变形速率明显加快,超过了限值,会影响周围建筑物、管线的正常使用。基坑监测是基坑工程中重要的组成部分,尤其超深、周边环境复杂的基坑,监测工作是必不可少的,在施工过程中,对支护结构、周围建筑物必须进行监测,根据观测数据及时调整开挖速度和支护措施,确保基坑工程顺利进行。没有基坑监测就不能及时发现基坑的安全隐患。实践证明,忽视基坑监测造成的后果是灾难性的,因此,必需对基坑监测引起足够重视。该基坑工程基坑深度超过11m,5#楼基础深度超过15m,难度大、技术含量高。鉴于基坑工程的复杂性、不确定性因素,该工程必需采用信息化施工,通过监测,及时分析反馈监测结果,掌握基坑支护结构及周边环境的情况,确保基坑安全。概括而言,本次监测工作的主要目的如下: (1)及时为基坑工程施工反馈变形信息,施工方可随时根据监测资料调整施工程序,消除安全隐患,是工程信息化施工的重要组成部分,是判断基坑安全和环境安全的重要依据; (2)为修正设计和施工参数、预估发展趋势、确保工程质量及周边管线的安全运营提供实测数据,是设计和施工的重要补充手段; (3)为各相关单位优化施工方案提供信息。 10.2 监控与监测内容 10.2.1监测原则 (1)以该工程基坑施工区域周围3倍基坑开挖深度范围内地下管线、周边土体和基坑围护结构本身作为本工程监测及保护的对象; (2)基坑周边3倍开挖深度范围内的土体地面沉降比较明显地反映出基坑围护结构的变形情况和周边环境受基坑影响变形趋势。故基坑周围垂直基坑走向要布设若干组地表沉降监测断面; (3)设置的监测内容和监测点必须满足本工程设计和符合有关规范规程的要求,并能全面反映本工程施工过程中周围环境和基坑围护体系的变化情况; (4)监测过程中,采用的监测方法、监测仪器及监测频率符合设计和规范要求,能及时、准确地提供数据,满足信息化施工的要求; (5)监测数据的整理和提交满足现场施工及建设单位的要求。 157

地铁施工的监控量测

地铁施工的监控量测 发表时间:2019-06-24T15:00:29.257Z 来源:《防护工程》2019年第6期作者:刘毅平李洪伟 [导读] 青岛市地铁8号线河套停车场接驳站为大涧站,选址于大涧村西侧,正阳西路北侧。 中国建筑第二工程局有限公司北京分公司北京 100160 摘要:随着我国地铁建设项目规模的增大、数量的增加,地铁施工安全问题日益突出,监控测量就显得至关重要。文中详细阐述了施工监控量测的目的和任务、主要内容、监测控制值、监测反馈,可供参考。 关键词:地铁施工监控 1 工程概况 青岛市地铁8号线河套停车场接驳站为大涧站,选址于大涧村西侧,正阳西路北侧,大沽河南侧、规划济青高铁东侧、规划机场高速西侧。出入线及正线区间线路呈西-东走向,站址位于城阳区河套街道,沿正阳西路敷设。现状正阳西路道路宽度为24m,为双向六车道,车流量较大。 2 地下管线 建设地点周边管线主要雨污水管道、给水管、通信光缆、燃气管线,均沿正阳西路敷设,其中胶大区间明挖断施工前均对影响范围内地下管线临时迁改,待结构施工完毕后再原位恢复,暗挖区间及竖井横通道施工过程下穿地下管线不进行迁改。 3 监控量测的目的和任务 地下工程按信息化设计,现场监控量测是监视围岩稳定、判断隧道支护衬砌设计是否合理安全、施工方法是否正确的重要手段,通过监控量测,达到以下目的: (1)通过对监测数据的分析处理,监测基坑稳定和周边建筑物、临近管线的沉降、变形情况,掌握变化规律、预测发展与趋势,保证基坑施工、周边建筑物、临近管线安全。 (2)将现场监测的数据、信息及时反馈,以修改和完善设计,使设计达到优质安全、经济合理。 (3)将现场测量的数据与理论预测值比较,用反分析法进行分析计算,使设计更符合实际,以便指导今后的工程建设。 4 主要内容 暗挖施工监控测量内容见下表: 4.1初支拱顶沉降 (1)监测目的 拱顶沉降监测是反映地下工程结构安全和稳定的重要数据,是围岩与支护系统力学形态变化的最直接、最明显的反映。 (2)初始值的采集 测点埋设后,应在短时间内对监测点进行初始值采集,确保至少获得三次准确的测值,取其平均值作为初始值。 4.2洞内净空收敛 (1)监测目的 地下工程开挖后,净空收敛也是反映围岩与支护结构力学形态变化的最直接、最明显的参数,通过监测可了解围岩和支护结构的稳定状态。 (2)初始值的采集 测点埋设后,应在短时间内对监测点进行初始值采集,确保至少获得三次准确的测值,取其平均值作为初始值。 4.3地表沉降 (1)监测目的 地表沉降是地下结构监测施工最基本监测项目,它最直接地反映地下结构周边土体变化情况。 (4)初始值的采集 测点埋设后,应在掌子面到达之前对监测点进行初始值采集,确保至少获得三次准确的测值,取其平均值作为初始值。 4.4相邻地下管线变形 (1)监测目的 地下结构开挖时伴随着土方的大量卸载,周边水土压力重新分布,势必对相邻地下管线造成一定影响,甚至使管线产生位移。对相邻地下管线变形进行监测,及时采取有效措施保证管线安全,不仅关系到施工的顺利进行,更关系到周边居民的正常生活。

深基坑施工监测技术

万达广场 十项新技术应用总结之11 深基坑施工监测技术 二0一一年八月

目录 一、工程简况2 二、监测目的、依据、原则2 三、监测容及代表照片3 四、监测实施3 五、测量精度4 六、仪器设备5 七、测量周期5 八、预警报告5 九、预防措施、应急措施以及质量安全措施6 十、经济和社会效益以及应用体会9 一、工程简况 万达广场位于市润州区,地处庄泉路东侧,庄泉东路西侧,北府路北侧,南路西。万达广场地块总面积约为8万平方M,总建筑面积约38.88万平方M,地上面积约30万平方M,地下面积约8.88万平方M,分为写字楼、公寓、商业及酒店等。公寓由3栋酒店式公寓和商业用房组成,其中公寓31层,面积7.47万平方M,框剪结构;商业用房2—3层,面积4.17万平方M,结构埋深约4M;商务区由2栋写字楼及购物广场构成,2栋写字楼26层,面积5.07万平方M,均为框剪结构;裙房购物广场5层,面积8.57万平方M,框架结构,结构埋深约10M。酒店区由五星级酒店及商务酒店和独立酒楼及裙房组成,五星级酒店主楼20层,主楼面积为2.14万平方M,酒店裙房为4层,面积1.41万平方,地下二层,商务酒楼为9层,0.78万平方M,独立酒楼为5层,面积为0.42万平方。整体地下室为两层,局部一层,面积约8.88万平方M。以上拟建工程基坑面积约为54840平方M左右,周长约为1173.8M。基坑

开挖深度在4.5到13.7M之间不等,基坑南侧采用悬臂桩的支护形式,基坑北侧采用放坡土钉和支护桩加两层锚索相结合的支护桩形式,桩间挂网喷浆。两侧采用排桩加两层支撑的支护形式,两侧CD、CM、NO及PQ段采用自然放坡的支护形式,其余两段均采用放坡支护形式。 二、监测目的、依据、原则 2.1监测目的 在基坑开挖期间,随着取土的深入,围护结构由于受到土压力和周围道路动载力作用,会产生比较明显的变形。如果超过一定的围,会引起基坑的倒塌和对周围道路及管线的破坏。因此应对基坑在开挖期间进行必要的监测,及时提供基坑及周围附属物的变形数据,指导施工的顺利进行,保证施工的安全。 2.2监测依据 2.3监测原则 基坑开挖是基坑卸荷过程。由于卸荷而引起坑底土体产生以向上为主的位移,同时也引起围护墙在两侧压力差的作用下而产生的水平方向位移和因此产生的墙外侧土体的位移,基坑变形包括维护墙的变形坑底隆起及基坑周围地层位移等,加强基坑在开挖期间的监测工作可以保证基坑及周围附属设施的安全,并可合理地利用土体自身在基坑开挖过程中控制土体位移的潜力而达到保护环境的目的,根据本工程自身特点和现场施工的具体情况,监测方案按以下原则进行。 1、设置的监测容及监测点必须满足本工程设计要求及各有关规要求,并能客观全面反映工程施工过程中周围环境及基坑维护体系的变化情况。 2、监测过程中采用的方法、设备、频率,均应符合设计要求和有关规要求,能及时、准确地提供监测数据,满足现代化、信息化施工要求。

某市政道路施工测量及监控量测施工方案

施工测量及监控量测 一施工测量 ㈠、测量控制点的移交和复测 工程上场后,由施工测量人员负责与监理工程师进行工程范围测区内有关三角网点、水准网点和中线控制桩点等基本数据测量资料的移交工作,并按规定作好交接手续;同时在收到基本数据测量资料后进行复核验算和复测工作,在此基础上实施工程施工所需的施工测量工作。 ㈡、施工测量 施工测量工作选派有经验的专业测量人员,采用全站仪、经纬仪、水准仪等精密仪器操作,主要包括以下几方面内容: (1)、根据监理工程师提供的测量数据资料研究布设自己的控制网点,增设的控制网点与监理工程师提供的三角网点和水准网点的基本数据完全吻合,同时满足规定的施测精度。 (2)、根据监理工程师提供的基本数据测量资料精确地测定建筑物的位置,进行施工放样和全部测量数据的计算工作。 (3)、在放测前10天将有关施工测量的意见报告(一式五份)报送监理工程师审批,内容包括:施测方法和计算方法;操作规程;观测仪器设备的配置和测量专业人员的设置等。 (4)、施工全过程中,保护和保存好施工范围内全部三角网点、水准网点和自己布设的控制点,使之容易进入和通视,防止移动和损坏。一旦发生移动和破坏立即报告监理工程师,并共同协商补救措施。 (5)、全部测量数据和放样均报监理工程师检查,必要时在监理工程师的直接监督下

进行对照测量。 二工程施工的监控量测 本工程采用明挖法施工,由于基坑开挖、降水施工对地层产生扰动,有可能引起地表、附近重要或高大建筑物变形或沉陷,危及附近建筑物的安全。因此,在施工过程中按规范要求进行施工监控量测,并根据监测成果,及时反馈信息指导施工,修正设计参数,优化施工工艺,变更施工方法,以确保建(构)筑物及作业人员、居民的安全。 ㈠、监控量测的目的 工程上场伊始,组织具备有丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员成立专业监测小组,及时收集、整理各项监测资料,并对这些资料进行计算、分析、对比,以达到下列目的: 1、通过监控量测了解基坑周围土体在施工过程中的动态变化,明确工程施工对原始地层的影响程度及可能产生失稳的薄弱环节。预测基坑及结构的稳定性和安全性,提出工序施工的调整意见及应采取的安全措施,保证整个工程安全、可靠的推进。 2、通过监控量测了解支护结构的受力和变位状态,并对其安全稳定性进行评价。优化设计,使围护结构达到优质、安全、经济合理、施工快捷的效果。 3、通过监控量测,了解工程施工对周围地下管线的影响程度,以确保其处于安全的工作状态。 4、通过监控量测,了解施工降水效果及对周围地下水位的影响程度。 5、通过监控量测,为修正设计和施工参数、预估发展趋势、确保工程质量及周边管线的安全运营提供实测数据,是设计和施工的重要补充手段。 6、通过监控量测,收集数据,为以后的类似工程设计、施工及规范修改提供参考和

地铁车站监控量测方案_(车站)

一、汉中门车站基坑施工监测方案 1.1 工程概况 汉中门车站位于汉中路南侧,其南侧为汉中门市民广场,北侧为南京中医药大学,车站西端离虎踞路高架桥最近的桥墩约30m车站总长度为:161. 50米, 车站标准段宽度:20. 90米。顶板埋深约2. 8?3. 6米,基坑开挖深度约20. 93?23. 1米。车站西端南北侧在施工阶段各设一个10nm8m的盾构吊出井,东端车站底板设1. 9X1. 9的电缆过轨通道与I号风道内电缆夹层相界接。车站东西两端北侧设活动塞风道、风井,在南北两侧共设四个出入口通道。车站西端地下三层设防淹门一道(与人防隔断门结合),其承载力按秦淮河百年一遇洪水标高11 . 5m 考虑。汉中门站地形平坦,本场地南侧为汉中门广场。车站设计为地下三层三跨箱形结构,采用明挖顺做法施工;岛式站台,站台宽12m 有效站台长度140m。 根据本工程特点,车站土体基坑围扩设计采用间隔布设、桩芯相切、护壁咬合人工挖孔桩,同时利用人工挖孔桩设混凝土圈梁,与主体结构共同参与基坑围护。车站西端的2、3 号出入口由于地质条件好分别采用锚喷支护及土钉支护;位于车站东端的1、4号出入口采用? 800钻孔灌注桩作为基坑围护结构,桩间距900。地下二层框架结构,围护结构采用密排的? 1000人工挖孔桩,挖孔桩采用钢筋砼桩与素砼桩间隔布设(局部地段采用密排钢筋砼桩),桩芯相切,护壁咬合。东端1号风道为地下三层框架结构,围护结构采用密排的?1200人工挖孔 桩,挖孔桩采用钢筋砼桩,桩芯相切,护壁咬合。围护结构支撑采用?609mm勺钢管支撑(壁厚t=12mm),竖向设四道,支撑水平间距为5m

1. 2工程地质条件和周边环境情况 1. 2. 1.地形、地貌、地质 汉中门站拟建场区隶属于I级阶地地貌单元。地表以下1. 80—4. 30米为近期杂填土、粉质粘土、素填土;第四系沉积层底板埋深5. 10—22. 90米,主要为全新世?上更新世沉积粉质粘土和混合土:下部基岩为白垩系“红层” ,岩芯为泥质粉砂岩加粉砂质泥岩,软硬相间,属极软岩。汉中门车站地质参数由《南京地铁二号线汉中门站岩土工程详细勘察报告》(编号:2004168-1)提供。穿越的主要土层由上至下依次为:①—杂填土; ①—2b2-3素填土;②—15-2粉质粘土;②一3b2-3粉质粘土;③一lb |-2粉质粘土:③一2b2-3粉质粘土;③一3b1- 2粉质粘土:③一4e粉质粘土:Klg-1a强风化泥质粉砂岩:Klg-2a中风化泥质粉砂岩。 1. 2. 2.水文 本站地下水类型主要为上层滞水、孔隙潜水和基岩风化裂隙水。上层滞水主要赋存于①层填土的碎砖、碎石等杂物的孔隙格架中;孔隙潜水分布在②层软土中;③层硬可塑粉质粘土,可视为相对隔水层;基岩风化裂隙水土要分布于岩石风化界面和粉砂岩、泥质粉砂岩裂隙中,裂隙多被允填、裂隙一般不富水。地下水年变幅0. 50?1. 50米,地下水对砼无腐蚀性,对钢筋砼结构中的钢筋无腐蚀性,对钢结构具有弱腐蚀性。场地土对砼无腐蚀性,对钢结构有弱腐蚀性。 设计时,地下水位埋深按1. 00米考虑。 1. 2. 3.气象 本项目所在区域处于长江下游北热带季风气候区,具有气候温和,雨量充沛,日照充足,无霜期长,四季分明等特点,因受大陆、海洋以及来自南北天气系统段影响,气候比较复杂,年际间的变化大,气象灾害比较频繁,年降雨量为1000?1200mm年内分布也不

深基坑监控量测施工工艺工法

深基坑监控量测施工工艺工法 1 前言 1.1工艺工法概况 地铁土建施工中监控量测作为必要的手段存在于各个施工过程中;监控量测信息化管理在施工质量及安全控制方面起这举足轻重的作用。监测项目类别有位移监测项目:围护结构桩顶水平位移及垂直位移、基坑周边土体沉降及水平位移等;应力监测项目:围护结构支撑轴力、围护桩内力等;应变监测项目:围护桩变形、土体变形、建筑物沉降倾斜及裂缝、地下管线沉降变形等。 1.2工艺原理 1.2.1在施工中,实际施工的工作状态往往与设计预估的工作状态存在一定的差异,有时差异的程度还相当大。设计预测和预估往往只能够大致描述正常的施工条件下,围护结构与相邻环

境的变形规律受力范围。由于差异的存在和不确定,必须在开挖和支护施筑期间开展严密的现场监控量测,以保证工程的顺利进行。 1.2.2通过监测基坑稳定和变形情况,验证围护结构、支护结构的设计效果,保证基坑稳定、支护结构稳定、地表建筑物和地下管线的安全。 1.2.3通过监控量测提供判断基坑、结构和周边环境基本稳定的依据。 1.2.4通过监控量测,了解施工方法和施工手段的科学性和合理性,以便及时调整施工方法,保证施工安全。 1.2.5通过量测数据的分析处理,掌握基坑和围岩稳定性的变化规律,修改或确认设计及施工参数,并为今后类似工程的建设提供经验。 2 工艺工法特点

2.1时效性 普通工程测量一般没有明显的时间效应。基坑监测通常是配合开挖过程,有鲜明的时间性。测量结果是动态变化的,1d以前(甚至几小时以前)的测量结果都会失去直接的意义,因此变化快的关键时期,可能每天需进行数次。基坑监测的时效性要求对应的方法和设备具有采集数据快、全天候工作的能力,甚至适应夜晚或大雾天气等严酷的环境条件。 2.2高精度 普通工程测量中误差限值通常在数毫米,而正常情况下基坑施工中的环境变形速率可能在0.1mm/d以下,要测到这样的变形精度,普通测量方法和仪器不能胜任,因此基坑施工中的测量通常采用一些特殊的高精度仪器。 2.3为建筑施工和使用提供安全信息,优化设计,指导施工 将量测的数据整理分析得到的信息及时反馈到设计和施工

基坑监测方案完整版最新

长江国际花园1.1期住宅小区(凯迪大酒店)酒店二期项目 基坑工程 监 测 方 案 扬州大学工程设计研究院 二○一九年一月

监测方案 工程名称:长江国际花园1.1期住宅小区(凯迪大酒店)酒店二期 工程地点:泰兴市虹桥镇虹桥大道北侧,飞虹路东侧 建设单位:江苏凯地置业有限公司 编写: 校对: 审核: 扬州大学工程设计研究院 2019年01月25日

目录 1. ...................................................................................................................................... 工程概况4 2. .................................................................................................................. 监测目的及编制依据4 2.1. ........................................................................................................................... 监测目的4 2.2. ........................................................................................................................... 编制依据4 3. .................................................................................................................. 监测内容及布点方法5 3.1. ....................................................................................................... 本工程主要监测项目5 3.2. ....................................................................................................................... 基准点布设5 3.3. ....................................................................................................................... 监测点布设6 4. .......................................................................................................................... 监测方法及精度9 4.1. ............................................................................................... 平面控制网及水准基准网11 4.2. ................................................................................................................... 观测注意事项11 4.3. ............................................................................................................... 数据处理及分析11 4.4. ....................................................................................... 围护桩(坡)顶面位移及沉降12 4.5. ........................................................................................... 围护结构外围地下水位观测13 4.6. ....................................................................................................... 周围道路及建筑沉降14 4.7. ........................................................................................................... 深层土体水平位移14 4.8. ........................................................................................................................... 锚杆内力14 4.9. ........................................................................................................................... 巡视检查15 5. .................................................................................................................. 仪器设备和人员组成15 6. ...................................................................................................................................... 监测频率16 7. ...................................................................................................................... 预警值和预警制度17 7.1. ........................................................................................................................... 监测报警17 7.2. ................................................................................................................... 监测报警措施17 8. ...................................................................................................... 监测数据的处理及信息反馈17 8.1. ....................................................................................................... 监测数据的分级管理17 8.2. ................................................................................................... 监测数据的分析和预测18 8.3. ............................................................................................................... 监测数据的反馈18 9. .............................................................................................................................. 技术保证措施18 9.1. ........................................................................................................................... 测试方法19

相关主题
文本预览
相关文档 最新文档