当前位置:文档之家› 仪器分析讲义概论

仪器分析讲义概论

仪器分析讲义概论
仪器分析讲义概论

现代仪器分析技术

第一章概论

随着近代科学技术的进步,尤其是电子技术.计算机技术和激光技术的应用,分析化学的理论和测试技术也有了飞跃的发展。应用机械、光学和电子技术的新物理分析方法也不断勇现,从而在分析化学范畴内形成了一个较完整的领域,称为现代仪器分析技术。

物质的许多物理性质与其化学组成.含量和结构之间存在着密切的内在联系。因此,测量物质的物理性质,可以获得所需的定性定量分析以及结构信息。从而为确定物质成分及其数量与结构,以至空间取向旋光异够等方面的研究,提供了强有力的手段。分析化学从以化学分析为主的经典分析化学,发展到当今以仪器分析为主的现代分析化学,是由生产技术发展的需求所决定的,可以毫不夸张地说,一个国家所具备的分析化学水平,是衡量其科学技术水平的重要标志之一。

一.仪器分析法的分类

通常将利用较特殊的仪器,以测量物质的物理性质为基础的一大类化学分析法,称为''现代仪器分析''。

1较特殊的仪器:

1.1色谱分析仪器:

薄层色谱扫描法、气相色谱法、高效液相色谱法、毛细管电永法气相色谱仪,主要对物质的各组分先行分离并同时进行定性、定量分析。

1.2光谱分析仪器:

可见一紫外分光光度法、荧光分光光度法、原子吸收光谱法,等离子体发射波谱法,主要对物质的组分及元素组成进行分析。

1.3质谱分析仪器:

高分辨磁质谱、飞行时间质谱、四级杆质谱、离子阱质谱,主要确定物质的分子量和结构。

1.4核磁共振波谱分析仪器:

氢谱、碳谱,主要确定物质的分子结构。

1.5电子显微镜分析仪器:

透射电子显微镜、扫描电子显微镜、原子力显微镜等,主要用于物质的晶体结构和微观形态分析。

1.6电化学分析仪器:

电位分析、库伦分析、极谱分析等,主要用于无机离子的定量分析。

2物质的物理性质

(一)、有机分子

1沸点低于400℃含碳、氢、氧、氮硫的低沸点有机物。

2沸点高于于400℃含碳、氢、氧、氮硫的高沸点有机物。

3含有多个不饱和双键和芳香族化合物。

4含有多种键和官能团的有机物。

5能转化成带点离子的有机物。

6有机物中含有特殊磁的原子核。

(二)、阳离子

钾、钠、钙、镁、铝、锌、铁、锡、铅、铜、铬、汞、银、金等。

(三)、阴离子

卤素、硫酸根、亚硫酸、硝酸根、亚硝酸根、碳酸根等离子。

3化学分析方法

物质几乎所有的物理性质,都可用于分析化学上。可用于分析目的的物理性质及仪器分析方法的分类,可以简单归纳为色谱光谱电化学及其它方法(见表1—1)。习惯上也有按分析目的来进行分类的如:

①成分分析:,如可见一紫外分光光度法、荧光分光光度法、原子吸收光谱法,等离子体发射波谱法及电子探针等。

②分离分析:如薄层色谱扫描法、气相色谱法、高效液相色谱法、毛细管电冰法及超离心法等。

③形态分析:对待测物的表面或剖面的结构形态进行分析,如利用透射电子成象的透射电子显微镜和利用二次电子成象或其他成象原理的扫描电子显微镜等。,

④结构分析:,是研究未知化合物必不可少的手段之一,如红外吸收光谱法,核磁共振波谱法、质谱法及X一射线衍射分析法等。

二.仪器分析法的特点

仪器分析方法与经典化学分析方法相比较,有如下特点:

(一)灵敏度高仪器分析法的检出限相当低,通常为百万分之一(10-6)级,有些方法可达十亿分之一(10-9)级,甚至还可达到万亿分之一(10-12)级。因此。仪器分析法特别适用于微量和痕量成分的测定。这对于物质中微量组分及纯物质的分析等具有重要和特殊得意义。

(二)选择性好一般来说仪器分析法的选择性比化学分析法好的多。某些仪器分析法消除背景干扰能力强,可不需预处理,只要选择适当的条件,可对混合物中的某一组分或多个组分进行分析测定。因此,用于复杂组分试样或生物组织试样的分析是十分方便的。(三)分析速度快由于电子技术计算机技术和激光技术的应用,分析结果可在很短的时间内得出。例如发射光谱法可在2—3分钟内,同时测定20—30种元素。傅立叶红外光谱法可在1—2秒中之内完成一个化合物的红外谱图测定。气相色谱法可在5—20分钟内完成,对一个多组分复杂有机混合物中各组分的定量分析。

(四)应用范围广仪器分析法是分析化学的重要组成部分,是一门新兴的学科,近50年来得到了深入快速的发展,已广泛用于石油化工有机合成生理生化医药卫生乃至空间探索等领域。

(五)相对误差较大通常仪器分析法相对误差为3—5%,因此,不适合常量及高含量组分的分析。

(六)设备复杂昂贵操作者不但需要有较广泛的基础理论知识和较高的素质,而切还要有一定的工作经验操作技巧及一般维护保养知识与经验。才能灵活运用各种大型精密分析仪器,发挥其功能,体现出使用大型精密仪器进行分析工作的特点。

三仪器分析法的发展趋势

现代科学技术及国民经济的发展,对分析化学的要求不断提高,分析化学的飞跃发展,

使其经典的定义、基础、原理、方法、技术及仪器等方面,均发生了根本的变化。仪器分析已远远超出了化学的概念,突破了纯化学领域,将数学、物理学、电子学、计算机科学等现代科学技术紧密的结合起来,而发展成为一门多学科的综合性科学。

1、一机多用或多机连用是今后的发展趋势,充分发挥各种分析方法的优点,从而提高分析的效能,成为分析复杂样品的有利工具。如GC—MS、GC—IR、HPLC—MS等仪器,已实现了联机并应用于分析测试。

2、吸取其它学科的新成果,创建新的分析方法,也是今后仪器分析发展的趋势之一。如光声波谱法及毛细管电泳分析法等。利用物质一切可以利用的性质,建立表征测量的新方法、新技术、从而开拓新的领域。总之,仪器分析趋向于小型化、简单化、智能化、精度高、分析速度快、分辨本领强、用途广等方面。

3、应该指出,仪器分析方法用于高含量组分的分析,仍具有一定的局限性,其准确性不是很高。目前不能以仪器分析方法来替代化学分析,一般在进行仪器分析测试之前,需采用化学方法对试样进行预处理。如:萃取分离;富集纯化;排除干扰等。同时,仪器分析法在定性、定量时,需要标准物进行对照,而一般标准物均需用化学分析方法进行标定在进行复杂物质分析时,往往采用几种方法综合应用。因此,化学分析与现代仪器分析是相互不可代替的是互为补充的。

第二章色谱分析法

§2—1概述:

色谱学是现代分离、分析技术中的重要方法之一,也是一门新兴的学科。近五十年来色谱学各分支,都得到了深入的发展。将一定样品中相关的化学物质拆解成纯的物质称为分离。分离是研究物质组成乃至整体性能的一种十分有效和常用的现代分析化学方法。混合是自发的,而分离是被动的。如将盐、糖、水放入同一杯子中,溶解后就无法再分别出谁是谁了,除非对它施加某种影响力或作用力。根据所加的作用力不同,可以将分离分成不同的类型。如表2—1。

表格2—1分离类型及表征

将色谱学分离技术应用于分析化学中,就是色谱分析。它以其具有高分离效能、高检测性能、分析时间快速而成为现代仪器分析方法中应用最广泛的一种方法。它的分离原理是,使混合物中各组分在两相间进行分配,其中一相是不动的,称为固定相,另一相是携带混合物流过此固定相的流体,称为流动相。当流动相中所含混合物经过固定相时,就会与固定相发生作用。由于各组分在性质和结构上的差异,与固定相发生作用的大小、强弱也有差异,因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后不同的次序从固定相中流出。这种借在两相间分配原理而使混合物中各组分分离的技术,称为色谱分离技术或色谱法(又称色层法、层析法)。

§2—1—1色谱法的由来

最早的色谱分离方法是俄国的植物学家茨维特于1906年首先提出来的。他把植物色素的石油醚抽提液到入一根装有碳酸钙吸附剂的竖直玻璃管中,并再加入纯的石油醚,任其自由下流,结果在管内形成不同颜色的谱带,即溶液中不同的色素得到了分离,“色谱”一词因而的名。后来这种方法逐渐地用于无色物质得分离,但“色谱”一词却沿袭使用下来。

§2—1—2色谱法的分类

现在的所谓色谱法,实质是利用不同的物质在不同的两相中具有不同的分配系数。当两相作相对运动时,这些物质在两相中的分配反复进行多次,这样使得那些分配系数只有微小差异的组分产生很大的分离效果,从而使不同的组分得到分离。

色谱法有许多类型,从不同的角度出发,有以下几种色谱分类方法。

一、按流动相分类:

1、气相色谱法GC(气固色谱GSC;气液色谱GLC)

2、液相色谱法LC(液固色谱LSC;液液色谱LLC中如果固定液的极性大于流动

相极性称为正相色谱,当固定液的极性小于流动相的极性时称为反相色谱)

3、超临界流体色谱法SFC(超临界流体与固体色谱SFSC;超临界流体与液体色谱

SFLC)

流动相密度:气体10-3 g/ml

液体0.8—1 g/ml

超临界流体0.2—0.9 g/ml(对多种物质优良好的溶解性)所谓超临界流体色谱是指:以超过其物质的临界压力和临界温度的流体为流动相的色谱分析方法,也就是利用界于液态和气态之间的流体作为流动相。

二、按固定相的形状分类:

1、柱色谱(仪器分析方法中都是使用柱色谱)

2、纸色谱

3、薄层色谱

4、棒色谱

三、按所利用的物理化学原理分类

1、吸附色谱:利用表面对物质的物理吸附原理。

2、分配色谱:利用组分在两个不相混溶的相中,有不同的分配系数的原理。

3、离子交换色谱:利用离子交换树脂上可电离的离子与流动相中具有相同电荷的溶

质离子进行可逆交换。

4、离子对色谱:将一种(或多种)与溶质分子电荷相反的离子(称为对离子或反离

子)加到流动相或固定相中,使其与溶质离子结合形成离子对化合物,从而控制

溶质离子的保留行为。

5、离子色谱:以离子交换树脂为固定相,电解质溶液为流动相,主要用于无机离子

的分离及定量。

6、空间排阻色谱:以凝胶(gel)为固定相它类似于分子筛的作用,按分子的大小进

行分离。

§2—1—3色谱法的发展历史

1906年出现“液固色谱”以后的40年里,液相色谱技术得到初步的应用与发展,并开始采用紫外检测技术。同时,气固色谱也在逐渐发展。

1946年出现了热导池检测器。(气相色谱检测器)

50年代中期出现了氢火焰离子化检测器(10-12g/s);电子捕获检测器(10-13g/s)这些新型检测器的出现,推动了气相色谱的发展,使其理论基础得到了不断的进展,并加以完善,建立了系统的色谱理论基础。

60年代中期出现了电子数字积分仪大大提高了数字处理精度。同时,人们把气相色谱上获得系统理论与实践经验应用于液相色谱的研究。采用了高压输液泵和紫外检测器,所以高效液相色谱法才蓬勃发展起来。

70年代色谱仪的性能不断得到改善,初期已产生带小型微机的色谱仪。后期这些小型微机不仅可以进行数据采集、数据处理,还可以用来控制色谱条件。色谱工作者可以根据自己的要求编排程序进行工作。

80年代出现了很多功能全面的高智能的气相色谱仪。如:反应色谱、裂解色谱、程序升温色谱等。

90年代出现毛细管色谱、超临界流体色谱、毛细管电泳色谱等。后期出现色谱工作站与普通微机联用,测定结果可以送入微机网站。

21世纪的色谱分离分析技术主要体现在多机联用,目前应用最多的是GC—MS,HPLC—MS。

§2—2色谱法的特点

§2—2—1选择性:能够分离分析性质极其相似的物质。

§2—2—2高效能:在较短的时间里,同时分离和测定极为复杂的混合物。

§2—2—3高灵敏度:由于检侧器灵敏度的不断提高,很容易实现微量和痕量分析。一般可达到10-12—10-13g/s

§2—2—4分析速度快:前处理简单,分析周期短。

§2—2—5应范围广:理论上讲,自然界中的有机物几乎可以全部用色谱法进行分离测定。一般物质沸点较低(低于4000C)、热稳定性好、相对分子量低(低于400)的有机物用气相色谱分析。而沸点较高、热稳定性差的有机物用液相色谱分析。

§2—3色谱过程

§2—3—1气相色谱仪器构造及样品分析流程

气相色谱法是采用气体作为流动相的一种色谱法。在此法中,载气(是不与被测物作用,用来载送试样的惰性气体,如氢、氮、氦等)载着欲分离的试样通过色谱柱中的固定相,使试样中各组分分离,然后分别进行检测。其简单流程如图2-1所示。

载气由高压钢瓶1供给,经减压阀减压后,进入载气净化干燥管,除去载气中的水分。由总流量控制阀调节载气的压力和流量。压力表可以指示载气的柱前流量和压力。再经过进样器(包括气化室、及温度控制装置),试样就从进样器注入(如为液体试样,经进样器瞬间气化为气体)。由不断流动的载气携带试样进入色谱柱,将各组分分离,各组分依次进入检测器后放空。检测器信号由记录系统记录下来,就可得到如图2-2所示的色谱图。图中的各个峰代表混合物中的各个组分。

图2—1气相色谱流程图(FID检测器)

图2—2色谱图(24种有机磷农药的分离)

由图2-1可见,气相色谱仪一般由五部分组成。

一、气相色谱组成:气路部分、进样部分、分离部分、检测部分、记录部分。 1、气路部分主要提供稳定的气相环境。(如图2—1) 2、进样部分主要提供试样瞬间汽化的环境。

3、分离部分主要提供混合物分离的环境。

载气

A+B

色谱柱 检测器 记录器

样品在色谱柱中的分离情况示意图2—3

要求待分析试样瞬间汽化而不分解必须使进样系统热容量大、死体积小、无催化作用。

仪器分析实验思考题答案合集汇编

一、离子选择性电极法测定水中微量氟 1、总离子强度调节剂(TISAB)是由那些组分组成,各组分的作用是什么? 答:氯化钠,柠檬酸钠,冰醋酸,氢氧化钠,氯化钠是提高离子强度,柠檬酸钠是掩蔽一些干扰离子,冰醋和氢氧化钠形成缓冲溶液,维持体系PH值稳定!2、测量氟离子标准系列溶液的电动势时,为什么测定顺序要从低含量到高含量? 答:测什么一般都是从低到高,每测一个你都冲洗电极吗,不冲洗的话,从低到高,比从高到低,影响小。还有就是防止测到高浓度的溶液使电极超出使用范围。 3、测定F-浓度时为什么要控制在测定F-离子时,为什么要控制酸度,pH值过高或过低有何影响? 答:因为在酸性溶液中,H+离子与部分F-离子形成HF或HF2-,会降低F-离子的浓度;在碱性溶液中,LaF3 薄膜与OH-离子发生反应而使溶液中F-离子浓度增加。因此溶液的酸度对测定有影响。氟电极的适用酸度范围为pH=5~6,测定浓度在10^0~10^-6 mol/L范围内,△φM与lgC F-呈线性响应,电极的检测下限在10-7 mol/L左右。 二、醇系物的气相色谱分析 1、如何进行纯物质色谱的定性分析? 色谱无法对未知纯物质定性分析(这里所谓未知就是你对它的分子组成、结构一无所知),除非你已经知道它可能是某种物质或某几种物质之一,那么你可以用这几种物质的标准品和待分析的纯物质样品在相同色谱条件下对照,保留时间相同,则证明是同种物质。 为色谱峰面积; A i 为相对重量校正因子,f(甲醇)=1.62、f(乙醇)=1.65、f(正丙醇)=1.05、f(正f i 丁醇)=0.87 三、邻二氮菲分光光度法测定铁 1、 2、制作标准曲线和进行其他条件试验时,加入还原剂、缓冲溶液、显色剂等试 剂的顺序能否任意改变?为什么?

《仪器分析》实验讲义,

《仪器分析》实验讲义 中国矿业大学环境与测绘学院环境科学系 2010年9月

前言 仪器分析实验课是化学类各专业本科生的基础课之一,也是非化学类各专业本科生的选修课之一。仪器分析实验课教学应该使学生尽量涉及较新和较多的仪器分析方法、尽量有效地利用每个实验单元的时间和尽量做一些设计性实验。教学过程中不仅要巩固和提高学生仪器分析方法的理论知识水平和实验操作技能,而且要着重培养学生分析问题和解决问题的能力。通过仪器分析实验课的教学,应基本达到: (1)巩固和加深对各类常用仪器分析方法基本原理的理解 (2)了解各类常用仪器的基本结构、测试原理与重要部件的功能 (3)学会各类常用仪器使用方法和定性、定量测试方法 (4)掌握与各类常用仪器分析方法相关联的实验操作技术 (5)了解各类常用仪器分析方法的分析对象、应用与检测范围 (6)培养对实验中所产生的各种误差的分析与判断能力 (7)掌握实验数据的正确处理方法与各类图谱的解析方法。

实验一水中氟化物的测定(氟离子选择电极法) 一、实验目的 (1)掌握电位法的基本原理。 (2)学会使用离子选择电极的测量方法和数据处理方法 一、原理 将氟离子选择电极和参比电极(如甘汞电极)浸入预测含氟溶液,构成原电池。该原电池的电动势与氟离子活度的对数呈线形关系,故通过测量电极与已知氟离子浓度溶液组成的原电池电动势和电极与待测氟离子浓度溶液组成的原电池电动势,即可计算出待测水样中氟离子浓度。常用定量方法是标准曲线法和标准加入法。 对于污染严重的生活污水和工业废水,以及含氟硼酸盐的水样均要进行预蒸馏。 三、仪器 1. 氟离子选择性电极。 2. 饱和甘汞电极或银—氯化银电极。 3. 离子活度计或pH计,精确到0.1mV。 4. 磁力搅拌器、聚乙烯或聚四氟乙烯包裹的搅拌子。 5. 聚乙烯杯:100 mL,150 mL。 6. 其他通常用的实验室设备。 四、试剂 所用水为去离子水或无氟蒸馏水。 1. 氟化物标准储备液:称取0.2210g标准氟化钠(NaF)(预先于105—110℃烘干2h,或者于500—650℃烘干约40min,冷却),用水溶解后转入1000mL容量瓶中,稀释至标线,摇匀。贮存在聚乙烯瓶中。此溶液每毫升含氟离子100μg。 2. 氟化物标准溶液:用无分度吸管吸取氯化钠标准储备液10.00mL,注入1000mL容量瓶中,稀释至标线,摇匀。此溶液每毫升含氟离子10μg。 3. 乙酸钠溶液:称取15g乙酸钠(CH3COONa)溶于水,并稀释至100mL。 4. 总离子强度调节缓冲溶液(TISAB):称取58.8g二水合柠檬酸钠和85g硝酸

仪器分析报告(完整版)

绪论 一、什么是仪器分析?仪器分析有哪些特点?(简答,必考题) 仪器分析是分析化学的一个重要部分,是以物质的物理或物理化学性质作为基础的一类分析方法,它的显著特征是以仪器作为分析测量的主要手段。 1、灵敏度高,检出限量可降低。 如样品用量由化学分析的mL、mg级降低到仪器分析的、级,甚至更低。适合于微量、痕量和超痕量成分的测定。 2、选择性好。 很多的仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。 3、操作简便,分析速度快,容易实现自动化。 4、相对误差较大。 化学分析一般可用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。 5、需要价格比较昂贵的专用仪器。 二、仪器分析的分类 光化学分析法,电化学分析法,色谱分析法和其他仪器分析方法。 三、仪器分析法的概念 仪器分析法是以物质的物理或物理化学性质为基础,探求这些性质在分析过程中所产生的分析信号与物质的内在关系,进而对待测物进行定性、定量及结构分析及动态分析的一类测定方法。 四、仪器分析法的主要性能指标 精密度,准确度,灵敏度,标准曲线的线性范围,检出限(浓度—相对检出限;质量—绝对检出限) 五、选择分析方法的几种考虑 仪器分析方法众多,对一个所要进行分析的对象,选择何种分析方法可从以下几个方面考虑: 1.您所分析的物质是元素?化合物?有机物?化合物结构剖析? 2.您对分析结果的准确度要求如何?

3.您的样品量是多少? 4.您样品中待测物浓度大小范围是多少? 5.可能对待测物产生干扰的组份是什么? 6.样品基体的物理或化学性质如何? 7.您有多少样品,要测定多少目标物? 光谱分析法导论 一、什么是光谱分析法 以测量光与物质相互作用,引起原子、分子内部量子化能级之间的跃迁产生的发射、吸收、散射等波长与强度的变化关系为基础的光学分析法,称为光谱分析法——通过各种光谱分析仪器来完成分析测定——光谱分析仪器基本组成部分:信号发生系统,色散系统,检测系统,信号处理系统等。 二、光谱的分类 1、按产生光谱的物质类型:原子光谱(线状光谱)、分子光谱(带状光谱)、固体光谱 2、按产生光谱方式:发射光谱、吸收光谱、散射光谱 3、按光谱性质和形状:线状光谱、带状光谱、连续光谱 三、光谱仪器的组成 1、光源:要求:强度大(分析灵敏度高)、稳定(分析重现性好) 按光源性质:连续光源:在较大范围提供连续波长的光源,氢灯、氘灯、钨灯等 线光源:提供特定波长的光源,金属蒸气灯(汞灯、钠蒸气灯)、空心 阴极灯、激光等。 2、单色器:是一种把来自光源的复合光分解为单色光,并分离出所需要波段光束的装置(从连续光源的辐射中选择合适的波长频带)。 单色光具有一定的宽度(有效带宽)。有效带宽越小,分析的灵敏度越高、选择性越好、分析物浓度与光学响应信号的线性相关性也越好。 3、样品室:光源与试样相互作用的场所; 吸收池:紫外-可见分光光度法:石英比色皿 红外分光光度法:将试样与溴化钾压制成透明片 4、检测器 5、显示与数据处理 二、光的能量E 、频率υ、波长λ、波数σ的关系 E=h υ=hc/λ=hc σ 不同波长的光(辐射)具有不同的能量,波长越长,频率、波数越低,能量越低 KcL A

仪器分析(讲义)

第一章引言 内容提要:仪器分析与化学分析的区别与联系、仪器分析方法的分类及发展趋势。 重点难点:仪器分析方法的分类 一、仪器分析和化学分析 分析化学是研究物质的组成、状态和结构的科学,它包括化学分析和仪器分析两大部分。 化学分析是指利用化学反应和它的计量关系来确定被测物质的组成和含量的一类分析方法。 测定时需使用化学试剂、天平和一些玻璃器皿。 仪器分析是以物质的物理和物理化学性质为基础建立起来的一种分析方法,测定时,常常需要使用比较复杂的仪器。仪器分析的产生为分析化学带来革命性的变化,仪器分析是分析化学的发展方向。 仪器分析的特点(与化学分析比较) L级,甚至更低。适合于微量、痕量和超痕量成分的测定。g、灵敏度高,检出限量可降低:如样品用量由化学分析的mL、mg级降低到仪器分析的 选择性好:很多的仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。操作简便,分析速度快,容易实现自动化。 仪器分析的特点(与化学分析比较) 相对误差较大。化学分析一般可用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。需要价格 比较昂贵的专用仪器。 仪器分析与化学分析关系 仪器分析与化学分析的区别不是绝对的,仪器分析是在化学分析基础上的发展。 不少仪器分析方法的原理,涉及到有关化学分析的基本理论; 不少仪器分析方法,还必须与试样处理、分离及掩蔽等化学分析手段相结合,才能完成分析的全过程。 仪器分析有时还需要采用化学富集的方法提高灵敏度; 有些仪器分析方法,如分光光度分析法,由于涉及大量的有机试剂和配合物化学等理论,所以在不少书籍中,把它列入化学分析。 应该指出,仪器分析本身不是一门独立的学科,而是多种仪器方法的组合。可是这些仪器方法在化学学科中极其重要。它们已不单纯地应用于分析的目的,而是广泛地应用于研究和解 决各种化学理论和实际问题。因此,将它们称为“化学分析中的仪器方法”更为确切。 发展中的仪器分析 20世纪40~50年代兴起的材料科学,60 ~70年代发展起来的环境科学都促进了分析化学学 科的发展。80年代以来,生命科学的发展也促进分析化学一次巨大的发展。仪器分析是分 析化学的重要组成部分,也随之不断发展,不断地更新自己,为科学技术提供更准确、更灵敏、专一、快速、简便的分析方法。 如生命科学研究的进展,需要对多肽、蛋白质、核酸等生物大分子进行分析,对生物药物分 析,对超微量生物活性物质,如单个细胞内神经传递物质的分析以及对生物活体进行分析。 信息时代的到来,给仪器分析带来了新的发展。信息科学主要是信息的采集和处理。计算机与分析仪器的结合,出现了分析仪器的智能化,加快了数据处理的速度。它使许多以往难以完成的任务,如实验室的自动化,图谱的快速检索,复杂的数学统计可轻而易举得于完成。 信息的采集和变换主要依赖于各类的传感器。这又带动仪器分析中传感器的发展,出现了光导纤维的化学传感器和各种生物传感器。 联用分析技术已成为当前仪器分析的重要发展方向。将几种方法结合起来,特别是分离方法(如色谱法)和检测方法(红外光谱法、质谱法、核磁共振波谱法、原子吸收光谱法等)的

仪器分析实验整理讲义

仪器分析实验讲义 2016年3月

实验目录 实验一、核磁共振氢谱确定有机物结构 实验二、X射线衍射的物相分析 实验三、电感耦合等离子体发射光谱法测定茶叶中的金属元素火焰原子吸收法测定自来水中的钙、镁硬度 实验四、常规样品的红外光谱分析 实验五、苯丙氨酸和酪氨酸的紫外可见光谱分析 实验六、苯丙氨酸和酪氨酸的分子荧光光谱分析 实验七、内标法测定奶茶中的香兰素含量 实验八、毛细管电泳仪分离测定雪碧、芬达中的苯甲酸钠 实验九、液相色谱仪分离测定奶茶、可乐中的咖啡因 实验十、循环伏安法观察Fe(CN)6及抗坏血酸的电极反应过程实验十一、氟离子选择性电极法测定湖水中F-含量 实验十二、差热与热重分析研究Cu2SO4.5H2O脱水过程

实验1 根据1HNMR推出有机化合物C9H10O2的分子结构式 一、实验目的 (1)了解核磁共振谱的发展过程,仪器特点和流程。 (2)了解核磁共振波谱法的基本原理及脉冲傅里叶变换核磁共振谱仪的工作原理。 (3)掌握A V300MHz核磁共振谱仪的操作技术。 (4)熟练掌握液体脉冲傅里叶变换核磁共振谱仪的制样技术。 (5) 学会用1HNMR谱图鉴定有机化合物的结构。 二、实验原理 1HNMR的基本原理遵循的是核磁共振波谱法的基本原理。化学位移是核磁共振波谱法直接获取的首要信息。由于受到诱导效应、磁各向异性效应、共轭效应、范德华效应、浓度、温度以及溶剂效应等影响,化合物分子中各种基团都有各自的化学位移值的范围,因此可以根据化学位移值粗略判断谱峰所属的基团。1HNMR中各峰的面积比与所含的氢的原子个数成正比,因此可以推断各基团所对应氢原子的相对数目,还可以作为核磁共振定量分析的依据。偶合常数与峰形也是核磁共振波谱法可以直接得到的另外两个重要的信息。它们可以提供分子内各基团之间的位置和相互连接的信息。根据以上的信息和已知的化合物分子式就可推出化合物的分子结。图1是1H-NMR所用的脉冲序列。 图1:zg脉冲序列 三、仪器与试剂 1. 仪器 瑞士bruker公司生产的A V ANCE300NMR谱仪;?5mm的标准样品管1支。滴管1个。 2. 试剂 TMS(内标);CDCL3(氘代氯)仿;未知样品:C9H10O2。 四、操作步骤 1. 样品的配制 取2mg的:C9H10O2)放入? 5mm核磁共振标准样品管中,再将0.5ml氘代氯仿也加入此样品管中(溶液高度最好在3.5—4.0cm之间),轻轻摇匀,等完全溶解后,方可测试。若样品无法完全溶解,也可适当加热或用微波震荡等致其完全溶解。 2. 测谱 (1)样品管外部用天然真丝布擦拭干净后再插入转子中,放在深度规中量好高度。 严格按照操作规程(此处操作失误有可能摔碎样品管损害探头!)。按下“Lift on/off”键,

仪器分析法概论

仪器分析法概论 一、近代仪器分析的发展过程 50年代仪器化;60年代电子化;70年代计算机化;80年代智能化;90年代信息化;21世纪是仿生化和进一步智能化。 二、化学分析法与仪器分析法的关系 重量分析法 化学分析法酸碱滴定法 滴定分析法沉淀滴定法 配位滴定法 氧化还原滴定法 天平的出现化学分析法的优点:准确、仪器简单、快速、适用于常量化学。 比色计、分光光度计出现 光谱分析法-根据物质发射的电磁辐射或物质与辐射的相互作用建仪器分析法立起来的一类仪器分析方法。 (精密仪器)色谱分析法-是一种物理或物理化学分离分析方法。 仪器分析法的优点:灵敏、快速、准确、适用于微量和痕量分析。 第十一章光谱分析法概论

1.定义:光学分析法是根据物质发射的电磁辐射或物质与辐射的相互作用建立起来的一类仪器分析方法。 2.光学分析法包含的三个主要过程: (1)由仪器设置的能源提供能量照射至被测物质。 (2)能量与被测物质之间相互发生作用。 (3)产生可被检测的讯号。 第一节 电磁辐射及其与物质的相互作用 (一)电磁辐射和电磁波谱 1.光的波粒二象性:光是一种电磁辐射(电磁波),是一种以巨大速度通过空间而不需要任何物质作为传播媒介的光子流,它具有波粒二象性。 (1)光的波动性:光的波动性用波长λ(nm )、波数σ(cm - 1)和频率υ(Hz )表述。 在真空中,波长、波数和频率的关系为: ,C υλ= (11-1) 光速=光的频率×波长 (11-2) 波数=1/波长 (2)光的微粒性:用以解释光与物质相互作用产生的光电效应、光的吸收和发射等现象。 光的微粒性用每个光子具有的能量E 作为表征,光子的能量是与频率成正比,与波长成反比。它与频率、波长和波数的关系为: 从γ射线一直到无线电波都是电磁辐射,光是电磁辐射的一种形式,每个波段之间,由于波长或频率不同,光子具有的能量也不相同。电磁辐射按照波长顺序的排列称为电磁波谱,电磁波谱的波长或能量是没有边际的,表11-1所示的电磁波谱只是排列出了已被人们认识了的几个主要波段。下册主要讨论近紫外区、可见区和近红外区、远红外区的电磁波谱与物质的定性和定量关系。从表可见,光的波长越短、频率越高,能量越大;反之亦然。 表11-1 电磁波谱及其在仪器分析中的应用 C υλ =1σλ =C E h h υλ ==

仪器分析实验讲义

1. 阳极溶出伏安法测定水中微量镉 1.1 实验目的 1. 了解阳极溶出伏安法的基本原理。 2. 掌握汞膜电极的制备方法。 3. 学习阳极溶出伏安法测定镉的实验技术。 1.2 基本原理 溶出伏安法是一种灵敏度高的电化学分析方法,一般可达10-8~10-9 mol/L,有时可达10-12mol/L,因此在痕量成分分析中相当重要。 溶出伏安法的操作分两步。第一步是预电解过程,第二步是溶出过程。预电解是在恒电位和溶液搅拌的条件下进行,其目的是富集痕量组分。富集后,让溶液静止30s 或1min,再用各种极谱分析方法(如单扫描极谱法) 溶出。 阳极溶出伏安法,通常用小体积悬汞电极或汞膜电极作为工作电极,使能生成汞齐的被测金属离子电解还原,富集在电极汞中,然后将电压从负电位扫描到较正的电位,使汞齐中的金属重新氧化溶出,产生比富集时的还原电流大得多的氧化峰电流。 本实验采用镀一薄层汞的玻碳电极作汞膜电极,由于电极面积大而体积小,有利于富集。先在-1.0 V (vs.SCE) 电解富集镉,然后使电极电位由-1.0 V 线性地扫描至-0.2 V,当电位达到镉的氧化电位时,镉氧化溶出,产生氧化电流,电流迅速增加。当电位继续正移时,由于富集在电极上的镉已大部分溶出,汞齐浓度迅速降低,电流减小,因此得到尖峰形的溶出曲线。 此峰电流与溶液中金属离子的浓度、电解富集时间、富集时的搅拌速度、电极的面积和扫描速度等因素有关。当其它条件一定时,峰电流i p只与溶液中金属离子的浓度c 成正比: i p=Kc 用标准曲线法或标准加入法均可进行定量测定。标准加入法的计算公式为: 式中c x、Vx、h 分别为试液中被测组分的浓度、试液的体积和溶出峰的峰高;c s、Vs 为加入标准溶液的浓度和体积;H 为试液中加入标准溶液后溶出峰

(精)仪器分析实验讲义

实验一722 型分光光度计的性能检测 一、目的 1、学会使用分光光度计 2、掌握分光光度计的性能检验方法 二、提要 1、分光光度计的性能好坏,直接影响到测定结果的准确性,因此新购仪器及使用一定时间后,均需进行检验调整。 2、利用KMnO4溶液的最大吸收峰值来检验波长的精度。 3、用同种厚度的比色皿,由于材料及工艺等原因,往往造成透光率的不一致,从而影响测定 结果,故在使用时须加以选择配对。 三、仪器与试剂 1、722 型分光光度计; 2、小烧杯; 3、坐标纸; 4、滴管; 5、擦镜纸; 6、KMnO4溶液; 四、操作步骤 1、吸收池透光率的检查(测定透光率) 吸收池透光面玻璃应无色透明,并应无水、干燥。 检查方法如下:以空气的透光率为100%,则比色皿的透光率应不低于84%,同时在450nm、650nm 处测其透光率,各透吸收池透光率差值应小于5%。 2、吸收池的配对性(测定透光率) 同种厚度的吸收池之间,透光率误差应小于0.5%。 检查方法如下:将蒸馏水分别注入厚度相同的几个吸收池中。以其中任一个比色皿的溶液做空白,在440nm 波长处分别测定其它各比色皿中溶液的透光率,然后选择相差小于0.5% 的吸收池使用。 3、重现性(光度重复性)(测定透光率) 仪器在同一工作条件下,用同种溶液连续测定7 次,其透光率最大读数与最小读数之差(极差)应小于0.5%。 检查方法如下:以蒸馏水的透光率为100%,用同一KMnO4溶液连续测定7 次,求出极差,如小于0.5%,则符合要求。 4、波长精度的检查(测定A) 为了检查分光系统的质量,可用KMnO4溶液的最大吸收波长525nm 为标准,在待检查仪器上测绘KMnO4溶液的吸收曲线。 检查方法如下:取3.0×10-5mol/L 的KMnO4溶液,以蒸馏水为空白,在460nm~580nm 范围内,分别测定460、480、500、510、520、522、524、525、526、528、530、540、550、560、570、580nm 波长处的吸光度,在坐标纸上绘出吸收曲线。若测得的最大吸收波长在525±10nm 以内,说明该仪器符合要求。

仪器分析实验内容(一)-推荐下载

邻二氮菲分光光度法测定试样中的微量铁 一、实验目的 1.掌握邻二氮菲分光光度法测定微量铁的方法原理2.熟悉绘制吸收曲线的方法,正确选择测定波长3.学会制作标准曲线的方法 4.通过邻二氮菲分光光度法测定微量铁,掌握721型分光光度计的正确使用方法,并了解此仪器的主要构造。 二、实验原理 邻二氮菲(phen )和Fe 2+在pH3~9的溶液中,生成一种稳定的橙红色络合物Fe(phen) ,其lg K =21.3,ε508=1.1×104 L·mol -1·cm -1,铁含量在0.1~6μg·mL -1范围内遵守比尔定律。显色前需用盐酸羟胺或抗坏血酸将Fe 3+全部还原为Fe 2+,然后再加入邻二氮菲,并调节溶 液酸度至适宜的显色酸度范围。有关反应如下: ==== ↑+ 2H 2O + 4H + + 2Cl -HCl OH NH 2Fe 223?++22N Fe 2++N N Fe 2+ + 3 Fe 3 2+ 用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度A ,以溶液的浓度C 为横坐标,相应的吸光度A 为纵坐标,绘制标准曲线。在同样实验条件下,测定待测溶液的吸光度Ax ,根据测得吸光度值Ax 从标准曲线上查出相应的浓度值Cx ,即可计算试样中被测物质的质量浓度。 三、仪器和试剂 1.仪器 721型分光光度计,1 cm 比色皿。2.试剂 (1)100 μg·mL -1铁标准储备溶液。 (2)100 g·L -1盐酸羟胺水溶液。用时现配。 (3)0.1% 邻二氮菲水溶液。避光保存,溶液颜色变暗时即不能使用。(4)pH=5.0的乙酸-乙酸钠溶液。四、实验步骤 1.显色标准溶液的配制 在序号为1~6的6只50 mL 容量瓶中,用吸量管分别加入0,0.4,0.8,1.2,1.6,2.0 mL 铁标准使用液(含铁约100μg·mL -1),分别加入1.00 mL 100 g·L -1盐酸羟胺溶液,摇匀后放置2 min ,再各加入5.0 mL 乙酸-乙酸钠溶液,3.00 mL 0.1% 邻二氮菲溶液,以水稀释至刻度,摇匀。 2.吸收曲线的绘制 在分光光度计上,用1 cm 吸收池,以试剂空白溶液(1号)为参比,在480~540 nm 之间进行扫描,测定待测溶液(如5号)的吸光度A ,得到以波长为横坐标,吸光度为纵坐标的吸收曲线,从而选择测定铁的最大吸收波长λmax。 3.标准曲线的测绘 以步骤1中试剂空白溶液(1号)为参比,用1 cm 吸收池,在 严等问题,合理调试工作并且保护装置调试技

仪器分析实验试题及答案

一、填空题 1、液相色谱中常使用甲醇、乙腈和四氢呋喃作为流动相,这三种溶剂在反相液相色谱中的洗脱能力大小顺序为甲醇<乙腈<四氢呋喃。 2、库仑分析法的基本依据是法拉第电解定律。 3、气相色谱实验中,当柱温增大时,溶质的保留时间将减小;当载气的流速增大时,溶质的保留时间将减小。 二、选择题、 1、、色谱法分离混合物的可能性决定于试样混合物在固定相中___D___的差别。 A. 沸点差 B. 温度差 C. 吸光度 D. 分配系数。 2、气相色谱选择固定液时,一般根据___C__原则。 A. 沸点高低 B. 熔点高低 C. 相似相溶 D. 化学稳定性。 3、在气相色谱法中,若使用非极性固定相SE-30分离乙烷、环己烷和甲苯混合物时,它们的流出顺序为(C ) A. 环己烷、乙烷、甲苯; B. 甲苯、环己烷、乙烷; C. 乙烷、环己烷、甲苯; D. 乙烷、甲苯、环己烷 4、使用反相高效液相色谱法分离葛根素、对羟基苯甲醛和联苯的混合物时,它们的流出顺序为(A ) A. 葛根素、对羟基苯甲醛、联苯; B. 葛根素、联苯、对羟基苯甲醛; C. 对羟基苯甲醛、葛根素、联苯; D. 联苯、葛根素、对羟基苯甲醛 5、库仑滴定法滴定终点的判断方式为(B ) A. 指示剂变色法; B. 电位法; C. 电流法 D. 都可以 三、判断题 1、液相色谱的流动相又称为淋洗液,改变淋洗液的组成、极性可显著改变组分的分离效果。(√) 2、电位滴定测定食醋含量实验中电位突越点与使用酸碱滴定法指示剂的变色点不一致(×) 四、简答题 1、气相色谱有哪几种定量分析方法? 答:气相色谱一般有如下定量分析方法:内标法、外标法、归一法、标准曲线法、标准加入法。 2、归一化法在什么情况下才能应用?

仪器分析实验内容

1 邻二氮菲分光光度法测定试样中的微量铁 一、实验目的 1.掌握邻二氮菲分光光度法测定微量铁的方法原理 2.熟悉绘制吸收曲线的方法,正确选择测定波长 3.学会制作标准曲线的方法 4.通过邻二氮菲分光光度法测定微量铁,掌握721型分光光度计的正确使用方法,并了解此仪器的主要构造。 二、实验原理 邻二氮菲(phen )和Fe 2+在pH3~9的溶液中,生成一种稳定的橙红色络合物Fe(phen)2+3 ,其lg K =21.3,κ508=1.1×104 L ·mol -1·cm -1,铁含量在0.1~6μg ·mL -1 范围内遵守比尔定律。 显色前需用盐酸羟胺或抗坏血酸将Fe 3+全部还原为Fe 2+,然后再加入邻二氮菲,并调节溶液 酸度至适宜的显色酸度范围。有关反应如下: HCl OH NH 2Fe 223?++ ==== 22N Fe 2++↑+ 2H 2O + 4H + + 2Cl - N N Fe 2++ 3 N N Fe 3 2+ 用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度A ,以溶液的浓度C 为横坐标,相应的吸光度A 为纵坐标,绘制标准曲线。在同样实验条件下,测定待测溶液的吸光度Ax ,根据测得吸光度值Ax 从标准曲线上查出相应的浓度值Cx ,即可计算试样中被测物质的质量浓度。 三、仪器和试剂 1.仪器 721型分光光度计,1 cm 比色皿。 2.试剂 (1)100 μg·mL -1铁标准储备溶液,10 μg·mL -1铁标准使用液。 (2)100 g ·L -1盐酸羟胺水溶液。用时现配。 (3)0.1% 邻二氮菲水溶液。避光保存,溶液颜色变暗时即不能使用。 (4)1.0 mol ·L -1乙酸钠溶液。 四、实验步骤 1.显色标准溶液的配制 在序号为1~6的6只50 mL 容量瓶中,用吸量管分别加入0, 2.0,4.0,6.0,8.0,10.0 mL 铁标准使用液(含铁10μg·mL -1),分别加入1.00 mL 100 g ·L -1盐酸羟胺溶液,摇匀后放置2 min ,再各加入5.0 mL 1.0 mol ·L -1乙酸钠溶液,3.00 mL 0.1% 邻二氮菲溶液,以水稀释至刻度,摇匀。 2.吸收曲线的绘制 在分光光度计上,用1 cm 吸收池,以试剂空白溶液(1号)为参比,在460~560 nm 之间进行扫描,测定待测溶液(5号)的吸光度A ,得到以波长为横坐标,吸光度为纵坐标的吸收曲线,从而选择测定铁的最大吸收波长λmax 。 3.标准曲线的测绘 以步骤1中试剂空白溶液(1号)为参比,用1 cm 吸收池,在选 定波长下测定2~6号各显色标准溶液的吸光度。以铁的浓度(μg.mL -1)为横坐标,相应的吸

仪器分析各章习题与答案重点讲义资料

第一章绪论 问答题 1. 简述仪器分析法的特点。 第二章色谱分析法 1.塔板理论的要点与不足是什么? 2.速率理论的要点是什么? 3.利用保留值定性的依据是什么? 4.利用相对保留值定性有什么优点? 5.色谱图上的色谱流出曲线可说明什么问题? 6.什么叫死时间?用什么样的样品测定? . 7.在色谱流出曲线上,两峰间距离决定于相应两组分在两相间的分配系数还是扩散速率?为什么? 8.某一色谱柱从理论上计算得到的理论塔板数n很大,塔板高度H很小,但实际上柱效并不高,试分析原因。 9.某人制备了一根填充柱,用组分A和B为测试样品,测得该柱理论塔板数为4500,因而推断A和B在该柱上一定能得到很好的分离,该人推断正确吗?简要说明理由。 10.色谱分析中常用的定量分析方法有哪几种?当样品中各组分不能全部出峰或在组分中只需要定量其中几个组分时可选用哪种方法? 11.气相色谱仪一般由哪几部分组成?各部件的主要作用是什么? 12.气相色谱仪的气路结构分为几种?双柱双气路有何作用? 13.为什么载气需要净化?如何净化? 14.简述热导检测器的基本原理。 15.简述氢火焰离子化检测器的基本结构和工作原理。 16.影响热导检测器灵敏度的主要因素有哪些?分别是如何影响的? 17.为什么常用气固色谱分离永久性气体? 18.对气相色谱的载体有哪些要求? 19.试比较红色载体和白色载体的特点。 20.对气相色谱的固定液有哪些要求? 21.固定液按极性大小如何分类?

22.如何选择固定液? 23.什么叫聚合物固定相?有何优点? 24.柱温对分离有何影响?柱温的选择原则是什么? 25.根据样品的沸点如何选择柱温、固定液用量和载体的种类? 26.毛细管色谱柱与填充柱相比有何特点? 27.为什么毛细管色谱系统要采用分流进样和尾吹装置? 28.在下列情况下色谱峰形将会怎样变化?(1)进样速度慢;(2)由于汽化室温度低,样品不能瞬间汽化;(3)增加柱温;(4)增大载气流速;(5)增加柱长;(6)固定相颗粒变粗。 29.二氯甲烷、三氯甲烷和四氯甲烷的沸点分别为40℃,62℃,77℃,试推测它们的混合物在阿皮松L柱上和在邻苯二甲酸二壬酯柱上的出峰顺序。 30.流动相为什么要预先脱气?常用的脱气方法有哪些? 31.高压输液泵应具备什么性能? 32.在HPLC中,对流动相的要求是什么? 33.何谓梯度洗脱?适用于哪些样品的分析?与程序升温有什么不同? 33.什么是化学键合固定相?化学键合相的特点有哪些? 34.反相键合相色谱法具有哪些优点? 35.为何高效液相色谱法一般采用全多孔微粒型固定相? 36.指出下列物质在正相色谱和在反相色谱中的洗脱顺序: 37.在硅胶柱上,用甲苯为流动相时,某物质的保留时间为28 min,若改用CCl4或CHCl3。为流动相,指出哪一种溶剂能减少该物质的保留时间? 第三章光学分析法导论 一、选择题 1.在光学分析法中, 采用钨灯作光源的是 ( ) (1)原子光谱 (2)分子光谱 (3)可见分子光谱 (4)红外光谱 2.可见光的能量应为 ( ) (1) 1.24×104~ 1.24×106eV (2) 1.43×102~ 71 eV (3) 6.2 ~ 3.1 eV (4) 3.1 ~ 1.65 eV 3.已知:h=6.63×10-34 J s则波长为0.01nm的光子能量为 ( ) (1) 12.4 eV (2) 124 eV (3) 12.4×105eV (4) 0.124 eV 4..频率可用下列哪种方式表示(c------光速,λ---波长,б---波数() (1). б/c (2). cб(3).1/λ(4)、c/б 5.光量子的能量正比于辐射的() (1). 频率(2).波长(3).波数(4).传播速度 6. 下列四个电磁波谱区中,请指出能量最小(),频率最小(),波数最大者(),波长最短者()

仪器分析实验

实验一苯及其衍生物的紫外吸收光谱的测绘及溶剂对紫外吸收光谱的影响 一、目的要求 1.了解不同的助色团对苯的紫外吸收光谱的影响。 2.观察溶剂极性对丁酮、异亚丙基丙酮的吸收光谱以及pH 对苯酚的吸收光谱的影响。 3.学习并掌握紫外可见分光光度计的使用方法。 二、实验原理 具有不饱和结构的有机化合物,特别是芳香族化合物,在紫外区(200~ 400nm)有特征吸收,为鉴定有机化合物提供了有用的信息。方法是比较未知物与纯的已知化合物在相同条件(溶剂、浓度、pH 值、温度等)下绘制的吸收光谱,或将未知物的紫外光谱与标准谱图(如Sadtler紫外光谱图)比较,如果两者一致,说明至少它们的生色团和分子母核是相同的。 E1带、E2带和B带是苯环上三个共轭体系中的的π→π*跃迁产生的,E1带和E2带属强吸收带,在230~270nm范围内的B带属弱吸收带,其吸收峰常随苯环上取代基的不同而发生位移。 影响有机化合物的紫外吸收光谱的因素有:内因(共轭效应、空间位阻、助色效应)和外因(溶剂的极性和酸碱性)。 溶剂的极性和酸碱性不仅影响待测物质吸收波长的移动,还影响吸收峰吸收强度和它的形状。 三、仪器 紫外可见分光光度计(自动扫描型)石英吸收池容量瓶(10 mL,5 mL)吸量管(1 mL,0.1 mL)四、试剂 苯、乙醇、氯仿、丁酮、异亚丙基丙酮、正庚烷(均为A.R) 苯的正庚烷溶液(以1︰250比例混合而成)、甲苯的正庚烷溶液(以1︰250比例混合而成) 0.3 mg ·mL-1苯酚的乙醇溶液、0.3 mg ·mL-1苯酚的正庚烷溶液、0.4 mg ·mL-1苯酚的水溶液、0.8 mg ·mL-1苯甲酸的正庚烷溶液、0.8 mg ·mL-1苯甲酸的乙醇溶液、0.3 mg ·mL-1 苯乙酮的正庚烷溶液、0.3 mg ·mL-1苯乙酮的乙醇溶液 异亚丙基丙酮分别用水、甲醇、正庚烷配成浓度为0.4 mg ·mL-1的溶液 五、实验步骤 1.苯及其一取代物的吸收光谱的测绘 在五只5 mL容量瓶中分别加入0.50 mL苯、甲苯、苯乙酮、苯酚、苯甲酸的正庚烷溶液,用正庚烷稀释至刻度,摇匀。将它们依次装入带盖的石英吸收池中,以正庚烷为参比,从220~320 nm进行波长扫描,得吸收光谱。 观察各吸收光谱的图形,找出最大吸收波长λmax,并计算各取代基使苯的λmax红移了多少?2.溶剂性质对紫外吸收光谱的影响 (1)溶剂极性对n→π* 跃迁的影响在三只5 mL的容量瓶中,各加入0.02 mL(长嘴滴管1滴)的丁酮,分别用水、乙醇、氯仿稀释至刻度,摇匀。将它们依次装入石英吸收池,分别相对各自的溶剂,从220~350 nm进行波长扫描,制得吸收光谱。比较它们吸收光谱的最大吸收波长的变化,并解释。 (2)溶剂极性对π→π* 跃迁的影响在三只10 mL的容量瓶中依次加入0.20 mL分别用水、甲醇、正庚烷配制的异亚丙基丙酮溶液,并分别用水、甲醇、正庚烷稀释至刻度,摇匀。将它们依次装入石英吸收池,相对各自的溶剂,从200 ~300 nm 进行波长扫描,制得吸收光谱。比较吸收光谱的最大吸收波长的变化,并解释。 (3)溶剂极性对吸收峰吸收强度和形状的影响在三只5 mL的容量瓶中,分别加入0.50 mL苯酚、苯乙酮、苯甲酸乙醇溶液,用乙醇稀释至刻度,摇匀。将它们依次装入带盖的石英吸收池中,以乙醇为参比,从220~320 nm进行波长扫描,得吸收光谱。与苯酚、苯乙酮、苯甲酸的正庚烷溶液的吸收光谱相比较,得出结论。 3.溶液的酸碱性对苯酚吸收光谱的影响在二只5 mL的容量瓶中,各加入0.50 mL苯酚的水溶液,分别用0.1 mol·L-1HCl、0.1 mol·L-1NaOH溶液稀释至刻度,摇匀。将它们分别依次装入石英吸收池,相对水,从220~350 nm进行波长扫描,制得吸收光谱。比较它们的最大吸收波长,并解释。 六、思考题 1.举例说明溶剂极性对n→π*跃迁和π→π* 跃迁吸收峰将产生什么影响? 2.在本实验中能否用蒸馏水代替各溶剂作参比溶液,为什么? 实验二紫外分光光度法测定芳香族化合物 一、实验目的 1、了解紫外吸收光谱在有机结构分析的应用;借助“标准吸收光谱图”鉴定未知物; 2、学习有机物的定量分析方法。 二、实验原理

仪器分析实验目录和讲义(2015)

实验讲义 实验65火焰原子吸收光谱法测定钙 实验目的 掌握原子吸收分光光度法的基本原理,了解原子吸收分光光度计的基本结构;了解原子吸收分光光度法实验条件的优化方法,了解与火焰性质有关的一些条件参数及其对钙测定灵敏度的影响;掌握火焰原子吸收光谱分析的基本操作;加深对灵敏度、准确度、空白等概念的认识。 实验原理 原子吸收光谱法是基于被测元素基态原子在蒸气状态对其原子共振辐射的吸收进行元素定量分析的方法。每种元素有不同的核外电子能级,因而有不同的特征吸收波长,其中吸收强度最大的一般为共振线,如Ca的共振线位于422.7 nm。溶液中的钙离子在火焰温度下变成钙原子,由空心阴极灯辐射出的钙原子光谱锐线在通过钙原子蒸汽时被强烈吸收,其吸收的程度与火焰中钙原子蒸汽浓度符合郎伯-比耳定律,即:A=log(1/T)=KNL(其中:A—吸光度,T —透光度,L—钙原子蒸汽的厚度,K—吸光系数,N—单位体积钙原子蒸汽中吸收辐射共振线的基态原子数)。在一定条件下,基态原子数N与待测溶液中钙离子的浓度成正比,通过测定一系列不同钙离子含量标准溶液的A值,可获得标准曲线,再根据未知溶液的吸光度值,即可求出未知液中钙离子的含量。 原子化效率是指原子化器中被测元素的基态原子数目与被测元素所有可能存在状态的原子总数之比,它直接影响到原子化器中被测元素的基态原子数目,进而对吸光度产生影响。测定条件的变化(如燃助比、测光高度或者称燃烧器高度)和基体干扰等因素都会严重影响钙在火焰中的原子化效率,从而影响钙测定灵敏度。因此在测定样品之前都应对测定条件进行优化,基体干扰则通常采用标准加入法来消除。 仪器和试剂 AA-300型原子吸收分光光度计(美国PE公司);比色管(10 mL 6支);比色管(25 mL 1支);容量瓶(100 mL 1个);移液管(5 mL 2支)。 钙标准溶液(100 μg·mL-1);镧溶液:(10 mg·mL-1)。 本实验以乙炔气为燃气,空气为助燃气。 实验内容 1. 测试溶液的制备 (1)条件试验溶液的配制:将100 μg·mL-1的Ca2+标液稀释成浓度约为2-3 μg·mL-1的Ca2+试液100 mL,摇匀。此溶液用于分析条件选择实验。

常用仪器分析方法概论.

第十三* 常用仪分析方法轨淹 第一节仪器分析简介 仪器分析法是通过测定物质的光、电、 磁等物理化学性质来确定其化学组 含量和化学结构的分析方法。 热、 - \ 6 *豪

方法试样质!n/mg试液体积/mL 常量分析>100>10 半微量分析10~1001~10 微量分析0?1~100.1-1 超微量分析<0.1<0.01 ?灵敏度高,检出限量可降低.样品用量由化学分析的mL、mg级降低到pg、|1L级,S至至低。适合于微量、痕量和超痕量成分的测定。 ?选择性好:仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。 ?操作简便,分析速度快,容易实现自动化。 ?相对误差较大:化学分析一般用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。

?需要价格比较昂贵的专用仪器。

仪器分析与化学分析关系 仪器分析是在化学分析基础上的发展 -不少仪器分析方法的原理,涉及到有关化学分析的基本理论; -不少仪器分析方法,还必须与试样处理、分离及掩蔽等化学分析手段相结合,才能完成分析的全过程。 -仪器分析有时还需要采用化学富集的方法提高灵敏度; -有些仪器分析方法,如分光光度分析法,由于涉及大量的有机试剂和配合物化学等理论,所以在不少书籍中,把它列入化学分析。 仪器分析与化学分析关系 ?应该指出,仪器分析本身不是一门独立的学科,而是务种仪器方法的组合。这些仪器方法在化学学科中极其重要,已不单纯地应用于分析的目的,而是广泛地应用于研究和解决各种化学理论和实际问题。因此,将它们称为“化学分析中的仪器方法' 更为确切。 4和滞 Vi

大一仪器分析实验讲义(2014修订)

实验65火焰原子吸收光谱法测定钙 实验目的 掌握原子吸收分光光度法的基本原理,了解原子吸收分光光度计的基本结构;了解原子吸收分光光度法实验条件的优化方法,了解与火焰性质有关的一些条件参数及其对钙测定灵敏度的影响;掌握火焰原子吸收光谱分析的基本操作;加深对灵敏度、准确度、空白等概念的认识。 实验原理 原子吸收光谱法是基于被测元素基态原子在蒸气状态对其原子共振辐射的吸收进行元素定量分析的方法。每种元素有不同的核外电子能级,因而有不同的特征吸收波长,其中吸收强度最大的一般为共振线,如Ca的共振线位于422.7 nm。溶液中的钙离子在火焰温度下变成钙原子,由空心阴极灯辐射出的钙原子光谱锐线在通过钙原子蒸汽时被强烈吸收,其吸收的程度与火焰中钙原子蒸汽浓度符合郎伯-比耳定律,即:A=log(1/T)=KNL(其中:A—吸光度,T —透光度,L—钙原子蒸汽的厚度,K—吸光系数,N—单位体积钙原子蒸汽中吸收辐射共振线的基态原子数)。在一定条件下,基态原子数N与待测溶液中钙离子的浓度成正比,通过测定一系列不同钙离子含量标准溶液的A值,可获得标准曲线,再根据未知溶液的吸光度值,即可求出未知液中钙离子的含量。 原子化效率是指原子化器中被测元素的基态原子数目与被测元素所有可能存在状态的原子总数之比,它直接影响到原子化器中被测元素的基态原子数目,进而对吸光度产生影响。测定条件的变化(如燃助比、测光高度或者称燃烧器高度)和基体干扰等因素都会严重影响钙在火焰中的原子化效率,从而影响钙测定灵敏度。因此在测定样品之前都应对测定条件进行优化,基体干扰则通常采用标准加入法来消除。 仪器和试剂 AA-300型原子吸收分光光度计(美国PE公司);比色管(10 mL 6支);比色管(25 mL 1支);容量瓶(100 mL 1个);移液管(5 mL 2支)。 钙标准溶液(100 μg·mL-1);镧溶液:(10 mg·mL-1)。 本实验以乙炔气为燃气,空气为助燃气。 实验内容 1. 测试溶液的制备 (1)条件试验溶液的配制:将100 μg·mL-1的Ca2+标液稀释成浓度约为2-3 μg·mL-1的Ca2+试液100 mL,摇匀。此溶液用于分析条件选择实验。 (2)标准溶液的配制:用分度吸量管取一定体积的100 μg·mL-1 Ca2+标液于25 mL比色管中,用去离子水稀释至25 mL刻度处(若去离子水的水质不好,会影响钙的测定灵敏度和校

仪器分析实验习题及参考答案概要.doc

色谱分析习题及参考答案 一、填空题 1、调整保留时间是减去的保留时间。 2、气相色谱仪由五个部分组成,它们 是 3、在气相色谱中,常以和来评价色谱柱效能,有时也用 表示柱效能。 4、色谱检测器按响应时间分类可分为型 和型两种,前者的色谱图为 曲线,后者的色谱图为曲线。 5、高效液相色谱是以为流动相,一般叫做,流动相的选择对分离影响很大。 6、通过色谱柱的和之比叫阻滞因子, 用符号表示。 7、层析色谱中常用比移值表示。由于比移值Rf重现性较差,通常 用做对照。他表示与移行距离之比。 8、高效液相色谱固定相设计的原则是、以达到减少谱带变宽的目的。 二、选择题 1、色谱法分离混合物的可能性决定于试样混合物在固定相中______的差别。 A. 沸点差, B. 温度差, C. 吸光度, D. 分配系数。 2、选择固定液时,一般根据_____原则。

A. 沸点高低, B. 熔点高低, C. 相似相溶, D. 化学稳定性。 3、相对保留值是指某组分2与某组分1的_______。 A. 调整保留值之比, B. 死时间之比, C. 保留时间之比, D. 保留体积之比。 4、气相色谱定量分析时______要求进样量特别准确。 A.内标法; B.外标法; C.面积归一法。 5、理论塔板数反映了 ______。 A.分离度; B. 分配系数; C.保留值; D.柱的效能。 6、下列气相色谱仪的检测器中,属于质量型检测器的是 A.热导池和氢焰离子化检测器;B.火焰光度和氢焰离子化检测器; C.热导池和电子捕获检测器; D.火焰光度和电子捕获检测器。 7、在气-液色谱中,为了改变色谱柱的选择性,主要可进行如下哪种(些)操作?() A. 改变固定相的种类 B. 改变载气的种类和流速 C. 改变色谱柱的柱温 D. (A)和(C) 8、进行色谱分析时,进样时间过长会导致半峰宽______。 A. 没有变化, B. 变宽, C. 变窄, D. 不成线性 9、在气液色谱中,色谱柱的使用上限温度取决于 _____ A.样品中沸点最高组分的沸点, B.样品中各组分沸点的平均值。 C.固定液的沸点。 D.固定液的最高使用温度 10 、分配系数与下列哪些因素有关_____ A.与温度有关; B.与柱压有关; C.与气、液相体积有关; D.与组分、固定液的热力学性质有关。 11、对柱效能n,下列哪些说法正确_ ____ A. 柱长愈长,柱效能大; B.塔板高度增大,柱效能减小; C.指定色谱柱对所有物质柱效能相同; D.组分能否分离取决于n值的大小。

相关主题
文本预览
相关文档 最新文档