当前位置:文档之家› 武汉大学仪器分析实验讲义

武汉大学仪器分析实验讲义

武汉大学仪器分析实验讲义
武汉大学仪器分析实验讲义

仪器分析实验讲义

武汉大学药学院

目录

仪器分析实验注意事项 (1)

实验一色氨酸紫外吸收光谱定性扫描及定量分析 (2)

实验二不同物态样品红外透射光谱的测定 (3)

实验三二氯荧光素量子产率的测定 (5)

实验四核磁共振波谱法测定乙基苯的结构 (7)

实验五循环伏安法测定铁氰化钾的电极反应过程 (9)

实验六气相色谱定量分析 (12)

实验七高效液相色谱法分离巴比妥与苯巴比妥 (15)

实验八毛细管区带电泳(CZE)分离硝基苯酚异构体 (165)

实验九液相色谱-质谱联用技术测定饮用水中一氯酚异构体 (19)

实验十饮料中咖啡因含量的测定(设计实验) (20)

仪器分析实验注意事项

1.实验前必须详细预习实验讲义,明了实验目的、原理方法及操作步骤。

2.要听从老师的指导,严格按照实验步骤进行,切勿随意乱动。

3.实验中所遇难题,应先独立思考,再与指导老师共同讨论研究。

4.必须如实记录观察到的现象和实验数据。

5.保持实验环境和仪器的清洁整齐。

6.必须遵守实验室的规则:

(1)确保人身安全,使用强酸、强碱、有毒试剂时尤其要细心。

(2)室内不得高声谈笑,必须保持安静的实验环境。

(3)按时到实验室,不迟到,不早退。

(4)爱护仪器,不浪费药品,节约水电,遵守实验室的安全措施。

(5)滤纸、火柴棒、碎玻璃等应投入废物缸,切勿丢入水池内。

(6)各组及同学之间应相互协作,合理安排实验时间及实验内容。

(7)每次实验后由班长安排同学轮流值日,值日要负责当天实验室的卫生,安

全和一些服务性工作。最后离开实验室时,应检查水、电、门窗等是否关闭。

(8)对实验的内容和安排不合理的地方可提出改进意见。对实验中出现的一切反常

现象应进行讨论,并大胆提出自己的看法,做到生动活泼,主动地学习。

(9)实验室禁止吸烟。

实验一色氨酸紫外吸收光谱定性扫描及定量分析

一、实验目的

1.了解紫外-可见光谱定性分析原理。

2.掌握紫外-可见光谱定性图谱数据的处理方法。

3.熟悉紫外-可见光谱分析仪的定性、定量扫描实验操作方法。

二、基本原理

紫外-可见光谱是用紫外-可见光的物质电子光谱,它研究产生于价电子在电子能级间的跃迁,研究物质在紫外-可见光区的分子吸收光谱。当不同波长的单色光通过被分析的物质时能测得不同波长下的吸光度或透光率,以ABS为纵坐标对横坐标波长λ作图,可获得物质的吸收光谱曲线。一般紫外光区为190 ~ 400nm,可见光区为400 ~ 800nm。

紫外吸收光谱的定性分析为化合物的定性分析提供了信息依据。虽然分子结构各不相同,但只要具有相同的生色团,它们的最大吸收波长值就相同。因此,通过对未知化合物的扫描光谱、最大吸收波长值与已知化合物的标准光谱图在相同溶剂和测量条件下进行比较,就可获得基础鉴定。

参与蛋白质组成的20种氨基酸,在可见光区都无光吸收;在紫外光区只有酪氨酸、苯丙氨酸和色氨酸具有光吸收能力,其中以色氨酸吸收紫外光的能力最强,色氨酸、酪氨酸最大紫外吸收峰在280nm。因此,可以根据它们的紫外吸收光谱特征,在紫外-可见光谱分析仪的定性测量模式中通过光谱扫描测量其吸光度-波长的图谱,对它进行准确可靠的定性鉴别。蛋白质在280nm处有特征性的最大吸收峰是由它所含有的色氨酸和酪氨酸所引起的。利用这一性质可测定蛋白质的含量。

三、实验方法

1.配置20μg·mL-1色氨酸标准溶液。

2.打开紫外-可见光谱仪,初始化仪器,预热5min。

3.定性扫描:在应用菜单中选择定性分析模式,在配置菜单中设置好需要的横坐标(波长值)扫描范围200 ~ 400nm和纵坐标(ABS或%T值)0~ 1ABS记录范围以及扫

描。

4.定量分析:定波长扫描。将波长设定,改变分析物的浓度,可得不同的ABS值,

据此可达定量测定的目的。

5.不同的仪器型号参照不同的使用说明。

四、结果处理

1.确定色氨酸在不同波长时的最大波长峰值。

2.固定波长扫描,绘制定量测量的工作曲线,计算未知浓度。

五、思考题

1.综述紫外吸收光谱分析的基本原理。

2.影响紫外光谱定性扫描的各种因素有哪些?

3.根据自己所学知识,总结紫外吸收光谱分析在生物医药方面有哪些应用?

实验二不同物态样品红外透射光谱的测定

一、实验目的

1.了解红外光谱仪的基本组成和工作原理。

2.掌握红外光谱分析时各种物态试样的制备及测试方法。

3.熟悉化合物不同基团的红外吸收频率范围,学会用标准数据库进行图谱检索及化合

物结构鉴定的基本方法。

二、基本原理

红外光谱分析是研究分子振动和转动信息的分子光谱。当化合物受到红外光照射,化合物中某个化学键的振动或转动频率与红外光频率相当时,就会吸收光能,并引起分子永久偶极矩的变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应频率的透射光强度减弱。分子中不同的化学键振动频率不同,会吸收不同频率的红外光,检测并记录透过光强度与波数(1/cm)或波长的关系曲线,就可得到红外光谱。红外光谱反映了分子化学键的特征吸收频率,可用于化合物的结构分析和定量测定。

根据实验技术和应用的不同,我们将红外光划分为三个区域:近红外区(0.75~2.5 μm;ν:13158~4000),中红外区(2.5~25 μm;ν:4000~400)和远红外区(25~1000 μm;ν:400~10)。分子振动伴随转动大多数在中红外区,一般的红外光谱都在此波数区间进行检测。

红外光源傅里叶变换红外光谱仪主要由红外光源、迈克尔逊干涉仪、检测器、计算机和记录系统五部分组成。红外光经迈克尔逊干涉仪照射样品后,再经检测器将检测到的信号以干涉图的形式送往计算机,进行傅里叶变换的数学处理,最后得到红外光谱。

三、实验方法

1.样品的制备

a固体样品的制备。(L-酪氨酸压片)

(1)溴化钾压片。

取约1mg固体试样于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加约200 mg干燥溴化钾粉末一起研磨,直至二者完全混合均匀(颗粒约为2 μm以下)。取出压片模具,将一压舍光面向上放入模芯中,套上套环,用样品勺将样品小心加入模具中,堆积均匀,另取一压舌光面向下放入模芯中,稍加压力使样品铺平,盖上罩子。把装好的模具放在油压机上,关闭气压阀,手动加压直至压力表指示约为400kgf时,停止加压,保持1~3min后放气泄压。取出模具,将样品脱模,得一透明圆片,用小镊子将其放在试样架上,插入检测池测定红外光谱图。

(2)液体石蜡研糊。

取2~3mg固体试样于干净的玛瑙研钵中研细,滴加1~2滴液体石蜡后,充分研磨混匀呈糊状,在红外灯下干燥,取出样品架和溴化钾(或氯化钠)盐片,将研磨好的样品用不锈钢勺刮到盐片上,涂匀后压上另一盐片,装入样品架下面板,位置调整适当后,插入上面板,将样品架的对角用螺丝旋紧固定,然后插入检测池测定红外光谱图。

(3)薄膜法(多用于高分子化合物的测定)。

通常将试样热压成膜,将膜夹在两盐片之间,放入样品架固定,测定其红外图谱(薄膜样品可直接采用此法测定)。也可将聚合物溶于适当的溶剂中(浓度为1%~20%),然后将溶液滴在盐片上摊匀,在红外灯下使溶剂逐渐挥发成膜后,盖上另一盐片,装入样品架固定,插入检测池测定红外光谱图。

b液体样品的制备。(水杨酸甲酯)

液膜法:对于高沸点、低粘度的样品,可将样品直接滴在盐片上,盖上另一盐片;对于粘度较大的样品,用不锈钢勺将少许样品涂在盐片表面,在红外灯下烘烤,将样品刮匀,盖上另一盐片,使两盐片之间形成一定厚度的液膜,装入样品架固定,插入检测池测定红外光谱图。对于低沸点易挥发的样品,应采用封闭式液体池检测。

c气体样品的制备。

取出气体进样槽,打开进样槽两活塞中任意一个,将其与真空泵相连接;打开真空泵,抽出空气槽内原有的空气,关闭抽气活塞及油泵开关。将气体样品接入样槽任意一个人口,打开活塞注样,气体样品吸收峰强度的大小是通过调整气槽内样品压力实现的,因此在注样时,可将气槽另一入口和压力计相连,使气槽压力控制在所需范围内进行检测。

2.样品检测

将预先制备好的样品插入样品架,记录红外图谱。

四、注意事项

1.溴化钾样品的浓度和片的厚度应适当,在样品研磨、放置的过程中应该特别注意干

燥。

2.切不可用手触摸氯化钠、溴化钾盐片表面;用丙酮清洗盐片,用镜头纸或脱脂棉擦

拭后,放入干燥器中保存。

3.液体样品制备前应干燥除水,水溶液应使用CaF2或BaF2窗片;腐蚀性样品切不可

用常规盐片制备。

五、数据处理

1.采用常规图谱处理功能,对所测图谱进行基线校正及适当的平滑处理,标出主要吸

收峰的波数值,储存数据。

2.判别官能团的归属。

3.归纳不同化合物中相同基团出现的频率范围。

六、思考题

1.为什么溴化钾压片制样容易造成图谱倾斜,而液体和薄膜样品却没有这种现象?

2.区别饱和碳氢与不饱和碳氢的主要标志是什么?有机酸、苯环的光谱特征是什么?

实验三二氯荧光素量子产率的测定

一、实验目的

1.了解荧光分析法及测量荧光物质的荧光量子产率的基本原理。

2. 掌握二氯荧光素量子产率的测量方法和相关影响因素。

二、基本原理

荧光分析法在有机电致发光、生物医药、临床诊断等领域得到广泛应用。高性能荧光材料的制备已成为这些领域的研究热点与前沿,而这些荧光材料的荧光量子产率的高低直接影响它们的性能优劣。荧光量子产率(Y F )即荧光物质吸光后所发射的荧光的光子数与所吸收的激发光的光子数之比值。它的数值在通常情况下总是小于1。Y F 的数值越大则化合物的荧光越强,而无荧光的物质的荧光量子产率却等于或非常接近于零。

荧光量子产率一般采用参比法测定。即在相同激发条件下,分别测定待测荧光试样和已知量子产率的参比荧光标准物质两种稀溶液的积分荧光强度(即校正荧光光谱所包括的面积)以及对一相同激发波长的入射光(紫外-可见光)的吸光度,再将这些值分别代入特定公式进行计算,就可获得待测荧光试样的量子产率:

Y u = Y s ·Fs Fu ·Au As

Y u 、Y s —待测物质和参比标准物质的荧光量子产率;

F u 、F s —为待测物质和参比物质的积分荧光强度;

A u 、A s —为待测物质和参比物质在该激发波长的入射光的吸光度(A=εbc )。

运用此公式时一般要求吸光度A s 、A u 低于0.05。参比标准样最好选择其激发波长值相近的荧光物质。有分析应用价值的荧光化合物的Y u 一般常在0.1-1之间。

三、实验方法

1. 配制二氯荧光素(0.25μg·mL -1)待测试样溶液(含1.0mol·L -1 NaOH 水溶液),罗丹

明B (0.25μg·mL -1)参比标准溶液(溶剂为无水乙醇);

2. 打开分子荧光光谱仪和紫外-可见分光光度计;

3. 移取所需浓度的二氯荧光素与罗丹明B 溶液,用相应溶剂稀释至10.0 mL

(A 505nm <0.05),在紫外-可见分光光度计上测定其吸收光谱曲线;分别测定它们在505 nm 处的吸光度。

4. 移取上述相同的溶液于荧光比色皿中,在荧光仪上分别扫描其荧光激发光谱及发射

光谱;分别测定它们以505 nm为激发波长时的荧光发射光谱。

四、数据处理

1.计算二氯荧光素和标准物质罗丹明B的荧光光谱的相对积分面积。

2.从相关资料查阅参比标准物质罗丹明B在乙醇溶剂中的量子产率。

3.将所获得的各相关数据代入荧光量子产率计算公式计算二氯荧光素溶液的量子产

率数值。

五、思考题

1.如何测定某物质的荧光激发光谱与发射光谱曲线?

2.测量某荧光物质的荧光量子产率时,如何选择荧光参比标准物质,它的作用是什

么?

3.吸光度的测定与测定荧光光谱的面积时的激发波长为什么要一致?

4.为什么要求待测物质与荧光参比溶液均为稀溶液?稀至何种程度?

实验四核磁共振波谱法测定乙基苯的结构

一、实验目的

1.了解核磁共振的基本原理以及仪器的基本结构。

2.了解核磁共振波谱样品的制备、测定方法与步骤、简单图谱的识别与分析。

3.了解核磁共振波谱仪使用的注意事项。

二、基本原理

原子核可看作核电荷均匀分布的球体,并象陀螺一样自旋,

有磁矩产生,是核磁共振研究的主要对象。磁矩不为零的原子核

存在核自旋。

由此产生的核磁矩μ的大小与磁场方向的角动量P有关:

μ=γ P

式中,γ为磁旋比,每种核有其固定值。

而且,P=mh/2π

或μ=mγh/2π

式中,h为Plank常数(6.624×10-27erg.s);m为磁量子数,其大小由自旋量子数L决定,m共有2L+1个取值,或者说,角动量P有2L+1个状态。

必须注意:在无外加磁场时,核能级是简并的,各状态的能量相同。

对氢核来说,L=1/2,其m值只能有2×1/2+1=2个取向。+1/2和-1/2,表示H核在磁场中,自旋轴只有两种取向:

a)与外加磁场方向相同,m=+1/2,磁能级较低;

b)与外加磁场方向相反,m=-1/2,磁能级较高;

在强磁场中,核自旋的能级将发生分裂。该分裂能级小:如在1.41T磁场中,磁能级差约为25×10-3J,当吸收外来电磁辐射(4~900MHz)时,将发生核能级的跃迁——产生所谓核磁共振(NMR)现象。即:

射频辐射原子核(强磁场下,能级分裂)吸收能级跃迁NMR NMR通过研究原子核对射频辐射的吸收,以对各种有机和无机物的成分、结构进行定性分析,有时亦可进行定量分析。如在测定有机化合物的结构时,利用质子共振(1H NMR)信号出现的位置、强度及其分裂情况以确定氢原子的位置、环境以及官能团和C骨架上的H 原子相对数目等。

与UV-vis和红外光谱法类似,NMR也属于吸收光谱,只是研究的对象是处于强磁场中的原子核对射频辐射的吸收。

当样品被宽频射频信号照射后,样品的总磁化矢量偏离平衡态。在断开射频辐射后,磁化矢量会逐步返回平衡态(弛豫),同时产生感应电动势,即自由感应衰减(FID)。其特征为随时间而递减的点高度信号,再经过傅里叶变换后,得到强度随频率的变化曲线,即为我们所熟知的核磁共振谱图。

三、实验方法

1.样品溶液的配制:配制浓度约为0.01mol·L-1的乙基苯的氘代氯仿溶液,并装入核

磁样品管。

2.在PC机的操作平台实现样品检测。

四、数据处理

1.对所得图谱进行分析。

五、思考题

1.样品旋转的作用是什么?

2.为什么需要匀场,使用氘代溶剂的作用是什么?

3.氢谱和碳谱实验中谱宽的选择范围如何确定?

实验五循环伏安法测定铁氰化钾的电极反应过程

一、实验目的

1.学习循环伏安法测定电极反应参数的基本原理及方法。

2.熟悉CHI电化学工作站的使用技巧。

二、基本原理

循环伏安法(Cyclic Voltammetry,CV)是最重要的电分析化学研究方法之一。其仪器简单、操作方便、图谱解析直观,在电化学、无机化学、有机化学、生物化学的研究领域广泛应用。

伏安分析法是在一定电位下测量体系的电流,得到伏安特性曲线。根据伏安特性曲线进行定性定量分析。如以等腰三角形的脉冲电压(三角波)加在工作电极上,得到的电流电压曲线包括两个分支,如果前半部分电位向阴极方向扫描,电活性物质在电极上还原,产生还原波,那么后半部分电位向阳极方向扫描时,还原产物又会重新在电极上氧化,产生氧化波。因此一次三角波扫描,完成一个还原和氧化过程的循环,故该法称为循环伏安法,其电流~电压曲线称为循环伏安图。如果电活性物质可逆性差,则氧化波与还原波的高度就不同,对称性也较差。循环伏安法中电压扫描速度可从每秒种数毫伏到1伏。工作电极可用悬汞电极,或铂、玻碳、石墨等固体电极。

[Fe(CN)6]3-~[Fe(CN)6]4-是典型可逆的氧化还原体系,其氧化还原电对的标准电极电位为:

[Fe(CN)6]3- + e - = [Fe(CN)6]4- φ θ = 0.36V ( vs.NHE )

电极电位与电极表面活度的Nernst 方程式为:

φ = φ θ + RT/Fln(C Ox /C Red )

在一定扫描速率下,从起始电位(-0.2V )正向扫描到转折电位(+0.8V )期间,溶液中

[Fe(CN)6]4-被氧化生成[Fe(CN)6]3-,产生氧化电流;当负向扫描从转折电位(+0.8V )变到原起始电位(-0.2V )期间,在指示电极表面生成的[Fe(CN)6]3-被还原生成[Fe(CN)6]4-,产生还i —E 曲线

原电流。为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。在0.1MNaCl 溶液中K 4[Fe(CN)6]的扩散系数为0.63×10-5cm·s -1;电子转移速率大,为可逆体系(1MNaCl 溶液中,25℃时,标准反应速率常数为5.2×10-2cm·s -1)。溶液中的溶解氧具有电活性,用通入惰性气体除去。

E pc 、E pa 分别为阴极峰值电位与阳极峰值电位。I pc 、I pa 分别为阴极峰值电流与阳极峰值电流。这里P 代表峰值,a 代表阳极,c 代表阴极。

正扫时(向左的扫描)为阴极扫描:

Fe(CN)63- + e - = Fe(CN)62-

反扫时(向右的扫描)为阳极扫描:

Fe(CN)62- - e - = Fe(CN)63-

对可逆体系:

① i pa / i pc =1

② 还原峰电位和氧化峰电位电位差:△Φ= Φpa — Φpc = 0.056/n V

式量电位: Φpa + Φpc )/ 2 对可逆体系的正向峰电流,由Randles -Savcik 方程可表示为: 其中,ip 为峰电流(A );n 为电子转移数;A 为电极面积(cm 2);D 为扩散系数(cm 2·s -1);v 为扫描速度(V s -1);c 为浓度(mol·L -1)。

三、实验方法

1. 配置溶液,铁氰化钾标准溶液(5.0×10-2mol·L -1),氯化钾溶液(1.0 mol·L -1)。

2. 工作电极的预处理:玻碳电极用含Al 2O 3粉末(粒径0.05 μm )的抛光布抛光,然

后用蒸馏水超声清洗。

3. 将电极系统置于待测试液中,打开仪器,设置参数,进行实验。

4. 支持电解质的循环伏安图:在电解池中放入1.0 mol·L -1 KCl 溶液,插入电极,以新

处理的铂电极为指示电极(绿色夹子),铂丝电极为辅助电极(红色夹子),饱和甘汞电极为参比电极(白色夹子),进行循环伏安仪设定,扫描速率为20mV/s ;起始电位为-0.2 V ;终止电位为+0.8 V ,灵敏度1.e-0.04。静置一分钟后,开始循环伏安扫描,记录循环伏安图。

5. K 4[F e (CN)6]溶液的循环伏安图:分别作0.02、0.04、0.08、0.12、0.16mol·L -1的K 4 0'Ox pa Red C RT In F

C ???=+53/21/21/2

p 2.6910i n ACD v =?

[Fe(CN)6]溶液(均含支持电解质NaCl浓度为0.10 mol·L-1)循环伏安图。

6.不同扫描速率K4 [Fe(CN)6]溶液的循环伏安图:在0.16 mol·L-1 K4 [Fe(CN)6]溶液中,以20、40、60、80、100mV·s-1,在-0.2至+0.8 V电位范围内扫描,分别记录循环伏

安图。

四、结果处理

1.绘制出同一扫描速度下的铁氰化钾浓度(c)同i pa与i pc的关系曲线。

2.绘制出同一铁氰化钾浓度下的i pa和i pc与相应的v1/2的关系曲线图。

五、实验注意事项

1.实验前电极表面要处理干净,这是影响实验的主要因素;

2.扫描过程保持溶液静止。

六、思考题

1.铁氰化钾浓度与峰电流i p是什么关系?而峰电流(i p)与扫描速度(v)又是什么

关系?

2.峰电位(E p)与半波电位(E1/2)和半峰电位(E p/2)相互是什么关系?

实验六气相色谱定量分析

一、实验目的

1.用环己烷作内标来定量苯和甲苯。测定定量校正因子,根据色谱图,用内标一点法

测定混合物中各组分的含量。

2.学习定量校正因子的测定和气相色谱常用的定量方法。

二、基本原理

色谱定量分析的依据是被测物质的量与它在色谱图上的峰面积(或峰高)成正比。数据处理软件(工作站)可以给出包括峰高和峰面积在内的多种色谱数据。因为峰高比峰面积更容易受分析条件波动的影响,且峰高标准曲线的线性范围也较峰面积的窄,因此,通常情况是采用峰面积进行定量分析。

1. 校正因子定量

2. 归一化法

3. 外标法

4. 内标法

5. 标准加入法

校正因子定量:绝对校正因子fi:单位峰面积所对应的被测物质的浓度(或质量),即

样品组分的峰面积与相同条件下该组分标准物质的校正因子相乘,即可得到被测组分的浓度。绝对校正因子受实验条件的影响,定量分析时必须与实际样品在相同条件下测定标准物质的校正因子。相对校正因子f’:某物质i与一选择的标准物质S的绝对校正因子之比。即

相对校正因子只与检测器类型有关,而与色谱条件无关。

归一化法归一化法是将所有组分的峰面积分别乘以它们的相对校正因子后求和,即所谓"归一",被测组分X的含量可以用下式求得:

采用归一化法进行定量分析的前提条件是样品中所有成分都要能从色谱柱上洗脱下来,并能被检测器检测。归一法主要在气相色谱中应用。

外标法

直接比较法:将未知样品中某一物质的峰面积与该物质的标准品的峰面积直接比较进行定量。通常要求标准品的浓度与被测组分浓度接近,以减小定量误差。

标准曲线法:将被测组分的标准物质配制成不同浓度的标准溶液,经色谱分析后制作一条标准曲线,即物质浓度与其峰面积(或峰高)的关系曲线。根据样品中待测组分的色谱峰面积(或峰高),从标准曲线上查得相应的浓度。标准曲线的斜率与物质的性质和检测器的特性相关,相当于待测组分的校正因子。

内标法

以一定量的纯物质(内标物),加入到准确称定的试样中,根据试样和内标物的重量及其峰面积比,求出某组分的含量。

内标校正曲线法:将一系列不同浓度的对照液,加入相同量的内标物,测Ai和As,以Ai/As对对照溶液浓度作图。求出斜率、截距后。随后,试样液也加入与对照液相同量的内标物,测得Ai/As。最后计算试样的含量。

内标对比法(内标一点法):

标准加入法

标准加入法:是一种被广泛使用的检验仪器准确度的测试方法,尤其适用于检验样品中是否存在干扰物质。将一定量已知浓度的标准溶液加入待测样品中,测定加入前后样品的浓度。加入标准溶液后的浓度将比加入前的高,其增加的量应等于加入的标准溶液中所含的待测物质的量。如果样品中存在干扰物质,则浓度的增加值将小于或大于理论值

三、实验方法

1.色谱条件

分析柱为HP-1毛细管柱30m×0.25um×0.25um,FID检测器。进样口温度140 0C,柱温60 0C,检测器温度150 0C。分流进样,分流比为100:1,进样体积为0.2ul。载气为氮气或氢气,流速为15~20mL/min (柱后)。

2.测定相对重量校正因子

在分析天平上,于5mL磨口试管中,按重量比大约2:1的比例,称取环己烷和苯配制二元混合物。待色谱仪基线稳定后,进样分析二元混合物,重复3~5次。量取己烷和苯的峰面积,按公式求出环己烷对苯的相对重量校正因子。

以此为例,测定并求出环己烷对甲苯的相对重量校正因子。

3.定量测定

准确量取环己烷、苯、甲苯按体积1:1:1混合,作为标准储备液。

取0.2微升被测样品注入色谱分析,重复3次,取峰高(或峰面积)平均值,采用内标一点法测定样品中待测物质的浓度。

四、思考题

1.在气相色谱定量分析中,峰面积为什么要用校正因子校正?

2.试说明归一化法定量分析的适用范围。

实验七高效液相色谱法分离巴比妥与苯巴比妥

一、实验目的

1.学习高效液相色谱的操作以及采用高效液相色谱法进行定性和定量分析的基本原

理和方法。

2.了解反相液相色谱法分离非极性化合物的基本原理。

3.掌握用反相色谱法分离非极性化合物的方法。

二、基本原理

高效液相色谱法是一种重要的色谱分离技术。根据所用固定相和分离机理的不同,一般将高效液相色谱分为分配色谱、吸附色谱、离子交换色谱和空间排斥色谱等。

在分配色谱中,组分在色谱柱上的保留程度取决于它们在固定相和流动相之间的分配系数K:为组分在固定相中的浓度与组分在流动相中浓度之比。

显然,K值越大,组分在固定相上的保留时间越长,固定相与流动相之间的极性差值也越大。因此,出现了流动相为非极性而固定相为极性物质的正相色谱法和流动相为极性而固定相为非极性的反相色谱法。目前应用最广的固定相是通过化学反应的方法将固定相溶液键合到硅胶表面上,即所谓的键合固定相。若将正构烷烃等非极性物质(如n-C18烷)键合到硅胶基质上,以极性溶剂(如甲醇和水)为流动相,则可分离非极性或弱极性的化合物。据此,采用反相液相色谱法可分离烷基苯类化合物。

在反相液相色谱中,固定相的极性小于流动相,洗脱顺序取决于溶质分子的疏水性,疏水性强的保留时间长。高效液相色谱法也可以进行定量分析,根据浓度与峰面积的关系确定待测物质的含量。本实验就是基于巴比妥与苯巴比妥的极性差异对其进行分离与定量分析。

三、实验方法

1.以流动相为溶剂,配制巴比妥、苯巴比妥的标准溶液,浓度均为0.15mg·mL-1。

2.开启仪器,设置参数。

3.待仪器稳定后,分别用注射器进混样各20微升,进样的同时,记录保留时间和保

留距离。

4.进未知样20微升,记下各组分色谱峰的保留时间。

5.以标准物的保留时间为基准,给未知样品各组分定性。

6.根据标准物的峰面积,估算未知样品中相应组分的含量。

四、思考题

1.解释未知试样中各组分的洗脱顺序。

2.试述正相色谱的基本原理及应用。

实验八毛细管区带电泳(CZE)分离硝基苯酚异构体

一、实验目的

1.了解CZE分离的基本原理。

2.了解毛细管电泳仪的基本构造,掌握其基本操作技术。

3.学会计算CZE的重要参数。

4.运用CZE分离硝基苯酚异构体。

二、基本原理

毛细管电泳(capillary electrophoresis, CE):以高压电场为驱动力,以电解质为电泳介质,以毛细管为分离通道,样品组分依据淌度和分配行为的差异而实现分离的一种色谱方法。由于毛细管内径小,表面积和体积的比值大,易于散热,因此毛细管电泳可以减少焦耳热的产生,这是CE和传统电泳技术的根本区别。它有多种分离模式,可以采用液相色谱中的各种检测方法。CE既可以分离带电荷的溶质,也可以通过毛细管胶束电动色谱等分离模式分析中性溶质,CE的高分离效率、高检测灵敏度,样品用量极少等特点使它在生物医药样品的分析中显示出突出的优越性。

图8-1,毛细管电泳仪基本原理示

CE所用的石英毛细管柱,在pH>3.0情况下,其内表面带负电,和溶液接触时形成了一双电层。在高电压作用下,一定介质中的带电离子在直流电场作用下的定向运动称为电泳。单位电场下的电泳速度称为电泳淌度或电泳迁移率。电泳速度的大小与电场强度、介质特性、粒子的有效电荷及其大小和形状有关。而双电层中的水合阳离子引起流体整体地朝负极方向移动的现象叫电渗,单位电场下的电渗速度称为电渗淌度。电渗速度与毛细管中电解质溶液的介电常数和粘度、双电层的ζ电势以及外加直流电场强度有关。粒子在毛细管内电解质中的迁移速度等于电泳和电渗流(EOF)两种速度的矢量和,正离子的运动方向和电渗流一致,故最先流出;中性粒子的电泳流速度为“零”,故其迁移速度相当于电渗流速度;负离子的运动方向和电渗流方向相反,但因电渗流速度一般都大于电泳流速度,故它将在中性粒子之后流出,从而因各种粒子迁移速度不同而实现分离。

电渗是CE中推动流体前进的驱动力,它使整个流体像一个塞子一样以均匀速度向前运动,使整个流型呈近似扁平型的“塞式流”。它使溶质区带在毛细管内原则上不会扩张。但在HPLC中,采用的压力驱动方式使柱中流体呈抛物线型,其中心处速度是平均速度的两倍,导致溶质区带本身扩张,引起柱效下降,使其分离效率不如CE。

硝基苯酚是弱酸性物质,其邻、间、对位异构体由于pKa值不同,在一定pH值的缓冲溶液中电离程度不同。因此,它们在毛细管电泳分离过程中表现出不同的迁移速度,从而实现分离。

图8-2:样品组分在毛细管中的迁移情况

三、实验方法

1.打开毛细管电泳仪,预热至检测器输出信号稳定。

2.准确测量毛细管长度。距毛细管一端约15cm处去除约2mm的毛细管聚合物保护

层,作为检测窗口,并测量毛细管进样端到检测窗的长度。

3.将毛细管的检测窗口对准检测器光路,并安装好毛细管。

4.依次用氢氧化钠溶液(1.0mol·L-1)、二次蒸馏水、盐酸溶液(0.1mol·L-1)、二次蒸

馏水冲洗毛细管各5min,最后在毛细管注入缓冲溶液,并将毛细管的两端分别插

入位于电极处的缓冲溶液瓶中。将直流电压调至20kV。

5.待记录仪基线稳定后,关闭高压电源,用压力进样方式进样,并设定进样时间,待

样品峰出现后记录其迁移时间,混合样按同样步骤进行操作,并记录图谱。

6.改变外加电压(如15kV或25kV)重复步骤4、5。

7.实验完毕后,关闭仪器电源,并用二次蒸馏水冲洗毛细管。

四、结果处理

1.根据所得到的实验数据,计算电渗速度、电渗淌度、各组分的电泳淌度、间硝基苯

酚的理论塔板数。根据分离图计算各组分之间的分离度。

2.绘制外加电压与电渗速度的关系图,并给予解释。

五、思考题

1.为什么本实验采用pH为7.0左右的缓冲溶液分离硝基苯酚异构体?用别的pH值

比如2.0或者8.0的缓冲液可以吗?

2.如何实现电渗流方向的改变?

泛函分析讲义

第三章赋范空间 3.1. 范数的概念 “线性空间”强调元素之间的运算关系,“度量空间”则强调元素之间的距离关系,两者的共性在于:只研究元素之间的关系,不研究元素本身的属性。 为了求解算子方程,需要深入地了解函数空间的结构与性质,为此,我们不仅希望了解函数之间的运算关系和距离关系,还希望了解函数本身的属性。那么,究竟需要了解函数的什么属性呢? 3.1.1. 向量的长度 为了回答上述问题,我们需要从最简单的函数空间——欧氏空间——中寻找灵感。回想一下,三维欧氏空间中的元素被称为“向量”,向量最重要的两大属性是:长度和方向,向量的许多重要性质都是由其长度和方向所决定的。这一章的任务就是将欧氏空间中向量的长度推广为(以函数空间为原型的)一般线性空间中元素的广义长度,下一章的任务就是将欧氏空间中向量的方向推广为(以函数空间为原型的)一般线性空间中元素的广义方向。可以想象:其元素具有广义长度和广义方向的线性空间必将像欧氏空间那样,呈现出丰富多彩的性质,并且这些性质必将有助于求解算子方程。

图3.1.1. 三维欧氏空间中向量的大小和方向 矩阵论知识告诉我们:可以为欧氏空间中的向量赋予各种各样的长度,并且可以根据问题需要来选择最合适的向量长度。实际上,可以在数域F 上的n 维欧式空间n F 上定义向量12(,, ,)n x x x x =的如下三种长度(称为“范数”): ● 2-范数(也称为欧氏范数) :2x = ● 1-范数:11 n k k x x ==∑; ● ∞-范数:1max k k n x x ∞ ≤≤=。 图3.1.2. 三种向量范数对应的“单位圆” 图3.1.3. “单位圆”集合的艺术形式 下一节将谈到:就分析性质而言,这三种向量范数没有任何区别。 我们注意到:通常将 2 或 3 中两个向量之间的距离定义为两者的差向量的 长度。由此可知:如果有了长度的概念,就可以诱导出距离;反之则不然。因此,

武汉大学版仪器分析知识点总结(适用考中科院的同学)

第一部分:AES,AAS,AFS AES原子发射光谱法是根据待测元素的激发态原子所辐射的特征谱线的波长和强度,对元素进行定性和定量测定的分析方法。 特点: 1.灵敏度和准确度较高 2.选择性好,分析速度快 3.试样用量少,测定元素范围广 4.局限性 (1)样品的组成对分析结果的影响比较显著。因此,进行定量分析时,常常需要配制一套与试样组成相仿的标准样品,这就限制了该分析方法的灵敏度、准确度和分析速度等的提高。 (2)发射光谱法,一般只用于元素分析,而不能用来确定元素在样品中存在的化合物状态,更不能用来测定有机化合物的基团;对一些非金属,如惰性气体、卤素等元素几乎无法分析。 (3)仪器设备比较复杂、昂贵。 术语: 自吸 自蚀 ?击穿电压:使电极间击穿而发生自持放电的最小电压。 ?自持放电:电极间的气体被击穿后,即使没有外界的电离作用,仍能继续保持电离,使放电持续。 ?燃烧电压:自持放电发生后,为了维持放电所必需的电压。 由激发态直接跃迁至基态所辐射的谱线称为共振线。由较低级的激发态(第一激发态)直接跃迁至基态的谱线称为第一共振线,一般也是元素的最灵敏线。当该元素在被测物质里降低到一定含量时,出现的最后一条谱线,这是最后线,也是最灵敏线。用来测量该元素的谱线称分析线。 仪器: 光源的作用: 蒸发、解离、原子化、激发、跃迁。 光源的影响:检出限、精密度和准确度。 光源的类型: 直流电弧 交流电弧 电火花 电感耦合等离子体(ICP)

ICP 原理 当高频发生器接通电源后,高频电流I 通过感应线圈产生交变磁场(绿色)。 开始时,管内为Ar 气,不导电,需要用高压电火花触发,使气体电离后,在高频交流电场的作用下,带电粒子高速运动,碰撞,形成“雪崩”式放电,产生等离子体气流。在垂直于磁场方向将产生感应电流(涡电流,粉色),其电阻很小,电流很大(数百安),产生高温。又将气体加热、电离,在管口形成稳定的等离子体焰炬。 ICP-AES 法特点 1.具有好的检出限。溶液光谱分析一般列素检出限都有很低。 2.ICP 稳定性好,精密度高,相对标准偏差约1%。 3.基体效应小。 4.光谱背景小。 5.准确度高,相对误差为1%,干扰少。 6.自吸效应小 进样: 溶液试样 气动雾化器 超声雾化器 超声雾化器:不连续的信号 气体试样可直接引入激发源进行分析。有些元素可以转变成其相应的挥发性化合物而采用气体发生进样(如氢化物发生法)。 例如砷、锑、铋、锗、锡、铅、硒和碲等元素。 固体试样 (1). 试样直接插入进样 (2). 电弧和火花熔融法 (3). 电热蒸发进样 (4). 激光熔融法 分光仪棱镜和光栅 检测器:目视法,摄谱法,光电法 干扰: 光源 蒸发温度 激发温度/K 放电稳定性 应用范围 直流电弧 高 4000~7000 较差 定性分析,矿物、纯物质、 难挥发元素的定量分析 交流电弧 中 4000~7000 较好 试样中低含量组分的定量分析 火花 低 瞬间10000 好 金属与合金、难激发元素的定量分析 ICP 很高 6000~8000 最好 溶液的定量分析

《仪器分析》实验讲义,

《仪器分析》实验讲义 中国矿业大学环境与测绘学院环境科学系 2010年9月

前言 仪器分析实验课是化学类各专业本科生的基础课之一,也是非化学类各专业本科生的选修课之一。仪器分析实验课教学应该使学生尽量涉及较新和较多的仪器分析方法、尽量有效地利用每个实验单元的时间和尽量做一些设计性实验。教学过程中不仅要巩固和提高学生仪器分析方法的理论知识水平和实验操作技能,而且要着重培养学生分析问题和解决问题的能力。通过仪器分析实验课的教学,应基本达到: (1)巩固和加深对各类常用仪器分析方法基本原理的理解 (2)了解各类常用仪器的基本结构、测试原理与重要部件的功能 (3)学会各类常用仪器使用方法和定性、定量测试方法 (4)掌握与各类常用仪器分析方法相关联的实验操作技术 (5)了解各类常用仪器分析方法的分析对象、应用与检测范围 (6)培养对实验中所产生的各种误差的分析与判断能力 (7)掌握实验数据的正确处理方法与各类图谱的解析方法。

实验一水中氟化物的测定(氟离子选择电极法) 一、实验目的 (1)掌握电位法的基本原理。 (2)学会使用离子选择电极的测量方法和数据处理方法 一、原理 将氟离子选择电极和参比电极(如甘汞电极)浸入预测含氟溶液,构成原电池。该原电池的电动势与氟离子活度的对数呈线形关系,故通过测量电极与已知氟离子浓度溶液组成的原电池电动势和电极与待测氟离子浓度溶液组成的原电池电动势,即可计算出待测水样中氟离子浓度。常用定量方法是标准曲线法和标准加入法。 对于污染严重的生活污水和工业废水,以及含氟硼酸盐的水样均要进行预蒸馏。 三、仪器 1. 氟离子选择性电极。 2. 饱和甘汞电极或银—氯化银电极。 3. 离子活度计或pH计,精确到0.1mV。 4. 磁力搅拌器、聚乙烯或聚四氟乙烯包裹的搅拌子。 5. 聚乙烯杯:100 mL,150 mL。 6. 其他通常用的实验室设备。 四、试剂 所用水为去离子水或无氟蒸馏水。 1. 氟化物标准储备液:称取0.2210g标准氟化钠(NaF)(预先于105—110℃烘干2h,或者于500—650℃烘干约40min,冷却),用水溶解后转入1000mL容量瓶中,稀释至标线,摇匀。贮存在聚乙烯瓶中。此溶液每毫升含氟离子100μg。 2. 氟化物标准溶液:用无分度吸管吸取氯化钠标准储备液10.00mL,注入1000mL容量瓶中,稀释至标线,摇匀。此溶液每毫升含氟离子10μg。 3. 乙酸钠溶液:称取15g乙酸钠(CH3COONa)溶于水,并稀释至100mL。 4. 总离子强度调节缓冲溶液(TISAB):称取58.8g二水合柠檬酸钠和85g硝酸

博士生入学考试泛函分析考试大纲

博士生入学考试《泛函分析》考试大纲 第一章度量空间 §1 压缩映象原理 §2 完备化 §3 列紧集 §4 线性赋范空间 4.1 线性空间 4.2 线性空间上的距离 4.3 范数与Banach空间 4.4 线性赋范空间上的模等价 4.5 应用(最佳逼近问题) 4.6 有穷维* B空间的刻划 §5 凸集与不动点 5.1 定义与基本性质 5.2 Brouwer与Schauder不动点原理* 5.3 应用* §6 内积空间 6.1 定义与基本性质 6.2 正交与正交基 6.3 正交化与Hilbert空间的同构 6.4 再论最佳逼近问题 第二章线性算子与线性泛函 §1 线性算子的概念 1.1 线性算子和线性泛函的定义 1.2线性算子的连续性和有界性 §2 Riesz定理及其应用 Laplace方程f ? -狄氏边值问题的弱解 u= 变分不等到式 §3 纲与开映象定理 3.1 纲与纲推理 3.2 开映象定理 3.3 闭图象定理 3.4 共鸣定理 3.5应用 Lax-Milgram定理 Lax等价定理 §4 Hahn-Banach定理

4.1线性泛函的延拓定理 4.2几何形式----凸集分离定理 §5 共轭空间·弱收敛·自反空间 5.1 共轭空间的表示及应用(Runge) 5.2 共轭算子 5.3弱收敛及*弱收敛 5.4弱列紧性与*弱列紧性 §6 线性算子的谱 6.1 定义与例 6.2 Γелbφaнд定理 第三章紧算子与Fredholm算子 §1 紧算子的定义和基本性质 §2 Riesz-Fredholm 理论 §3 Riesz-Schauder理论 §4 Hilbert-Schmidt定理 §5 对椭圆方程的应用 §6 Fredholm算子 参考文献 1.张恭庆林源渠,“泛函分析讲义”,北京大学出版社,1987。 2.黄振友杨建新华踏红刘景麟《泛函分析》,科学出版社, 2003。

武汉大学仪器分析试题

武汉大学2005-2006学年度第一学期《仪器分析》期末考试试卷(A) 一、选择题(每题1分,共15分) 1.下列说法哪一种正确? ( ) a. 阳极电位越正、析出电位越正者越易在阳极上氧化 b. 阳极电位越正、析出电位越负者越易在阳极上氧化 c. 阳极电位越负、析出电位越正者越易在阳极上氧化 d. 阳极电位越负、析出电位越负者越易在阳极上氧化 2. 用色谱法对复杂未知物进行定性分析的最有效方法是 ( ) a. 利用检测器的选择性定性 b. 利用已知物对照法定性 c. 利用文献保留数据定性 3.某同学将装入电解池准备做极谱分析的溶液洒掉了一部分, 若用标准比较法进 行测定, 他应 ( ) a.重新配制溶液 b. 取一定量的溶液, 记下体积, 再测定 c.继续做 d..取一定量的溶液, 加入标准溶液, 作测定校正 4.在气-液色谱分析中, 当两组分的保留值很接近, 且峰很窄, 但只能部分分离,其原因是( ) a. 柱效能太低 b. 容量因子太大 c. 柱子太长 d. 固定相选择性不好 5.在GC和LC中, 影响柱的选择性不同的因素是 ( ) a.固定相的种类 b.柱温 c.流动相的种类 (4)分配比 6.先电解富集,后电解溶出的电分析方法是() a. 电导分析法 b. 电重量分析法 c. 电位分析法 d. 溶出伏安法 7.分离有机胺时,最好选用的色谱柱为 ( )

a 非极性固定液柱 b. 低沸点固定液柱 c. 空间排阻色谱柱 d 氢键型固定液柱 8.影响谱线变宽的最主要因素是以下哪种? () a. 自然变宽 b. 热变宽 c. 碰撞变宽 d. 自吸变宽 9. 空心阴极灯中对发射线宽度影响最大的因素是() a. 阴极材料 b. 填充材料 c. 灯电流 d. 阳极材料 10.适合于植物中挥发油成分分析的方法是() a. 原子吸收光谱 b. 原子发射光谱 c. 离子交换色谱 d. 气相色谱 11. 原子发射光谱的产生是由于() a.原子次外层电子在不同能态间的跃迁 b.原子外层电子在不同能态间的跃迁 c.原子外层电子的振动和转动 d.原子核的振动 12. 矿石粉末的定性分析,一般选择下列哪种光源为好:() a.交流电弧 b.直流电弧 c.高压火花 d.等离子体光源 13. 原子吸收法测定NaCl中微量K时,用纯KCl配制标准系列制作工作曲线,分析结果偏高,原因 是() a.电离干扰 b.物理干扰 c.化学干扰 d.背景干扰 14. 下列化合物中,同时有n→π*,π→π*,σ→σ*跃迁的化合物是() a.一氯甲烷 b.丙酮 c. 1,3-丁二醇 d. 甲醇 15. 随着氢核的酸性增加,其化学位移值ppm将() a. 增大 b. 减小 c. 不变 二、填空(每空1分,共30分) 1.由LaF3单晶片制成的氟离子选择电极, 晶体中__ __是电荷的传递者, _ _____是固定在膜相中不参与电荷的传递, 内参比电极是_ _________, 内参比溶液由_ _ ________组成。

仪器分析实验整理讲义

仪器分析实验讲义 2016年3月

实验目录 实验一、核磁共振氢谱确定有机物结构 实验二、X射线衍射的物相分析 实验三、电感耦合等离子体发射光谱法测定茶叶中的金属元素火焰原子吸收法测定自来水中的钙、镁硬度 实验四、常规样品的红外光谱分析 实验五、苯丙氨酸和酪氨酸的紫外可见光谱分析 实验六、苯丙氨酸和酪氨酸的分子荧光光谱分析 实验七、内标法测定奶茶中的香兰素含量 实验八、毛细管电泳仪分离测定雪碧、芬达中的苯甲酸钠 实验九、液相色谱仪分离测定奶茶、可乐中的咖啡因 实验十、循环伏安法观察Fe(CN)6及抗坏血酸的电极反应过程实验十一、氟离子选择性电极法测定湖水中F-含量 实验十二、差热与热重分析研究Cu2SO4.5H2O脱水过程

实验1 根据1HNMR推出有机化合物C9H10O2的分子结构式 一、实验目的 (1)了解核磁共振谱的发展过程,仪器特点和流程。 (2)了解核磁共振波谱法的基本原理及脉冲傅里叶变换核磁共振谱仪的工作原理。 (3)掌握A V300MHz核磁共振谱仪的操作技术。 (4)熟练掌握液体脉冲傅里叶变换核磁共振谱仪的制样技术。 (5) 学会用1HNMR谱图鉴定有机化合物的结构。 二、实验原理 1HNMR的基本原理遵循的是核磁共振波谱法的基本原理。化学位移是核磁共振波谱法直接获取的首要信息。由于受到诱导效应、磁各向异性效应、共轭效应、范德华效应、浓度、温度以及溶剂效应等影响,化合物分子中各种基团都有各自的化学位移值的范围,因此可以根据化学位移值粗略判断谱峰所属的基团。1HNMR中各峰的面积比与所含的氢的原子个数成正比,因此可以推断各基团所对应氢原子的相对数目,还可以作为核磁共振定量分析的依据。偶合常数与峰形也是核磁共振波谱法可以直接得到的另外两个重要的信息。它们可以提供分子内各基团之间的位置和相互连接的信息。根据以上的信息和已知的化合物分子式就可推出化合物的分子结。图1是1H-NMR所用的脉冲序列。 图1:zg脉冲序列 三、仪器与试剂 1. 仪器 瑞士bruker公司生产的A V ANCE300NMR谱仪;?5mm的标准样品管1支。滴管1个。 2. 试剂 TMS(内标);CDCL3(氘代氯)仿;未知样品:C9H10O2。 四、操作步骤 1. 样品的配制 取2mg的:C9H10O2)放入? 5mm核磁共振标准样品管中,再将0.5ml氘代氯仿也加入此样品管中(溶液高度最好在3.5—4.0cm之间),轻轻摇匀,等完全溶解后,方可测试。若样品无法完全溶解,也可适当加热或用微波震荡等致其完全溶解。 2. 测谱 (1)样品管外部用天然真丝布擦拭干净后再插入转子中,放在深度规中量好高度。 严格按照操作规程(此处操作失误有可能摔碎样品管损害探头!)。按下“Lift on/off”键,

《仪器分析》期末考试试卷答案

武汉大学2006-2007学年度第一学期《仪器分析》期末考试试 卷答案(B) 学号姓名院(系)分数 一、填空(每空1分,共9分,答在试卷上) 1.在测定AsO33-浓度的库仑滴定中, 滴定剂是_I2_。实验中, 将阴极在套管中保护起来, 其原因是防止阴极产物干扰, 在套管中应加足Na2SO4_溶液, 其作用是_导电。 2.液相色谱分析法常使用的化学键合反相色谱填充柱是十八烷基键合硅胶填充柱或 ODS(C18) ,分离原理是疏水作用,常使用极性溶剂(如水-甲醇)流动相,分析分离难挥发弱极性类化合物。 二、选择题(每小题2分,共20分,答在试卷上) 1. 空心阴极灯的构造 是: ( 4 ) (1) 待测元素作阴极,铂棒作阳极,内充氮气; (2) 待测元素作阳极,铂棒作阴极,内充氩气; (3) 待测元素作阴极,钨棒作阳极,灯内抽真空; (4) 待测元素作阴极,钨棒作阳极,内充惰性气体。 2 关于直流电弧,下列说法正确的是: ( 1 ) (1) 直流电弧是一种自吸性很强、不稳定的光源; (2) 直流电弧的检出限比交流电弧差; (3) 直流电弧的电极头温度比交流电弧低; (4) 直流电弧只能进行定性、半定量分析,不能进行准确的定量分析。

3. 等离子体是一种电离的气体,它的组成是: (4 ) (1) 正离子和负离子; (2) 离子和电子; (3) 离子和中性原子; (4) 离子,电子和中性原子。 4. 极谱分析中,氧波的干扰可通过向试液中__(1)___而得到消除。 (1). 通入氮气; (2). 通入氧气; (3). 加入硫酸钠固体;(4). 加入动物胶。 5. 在化合物 R-CO-H(Ⅰ),R-CO-Cl(Ⅱ),R-CO-F(Ⅲ)和R-CO-NH2(Ⅳ)中,羧 基伸缩振动频率大小顺序为: ( 3 ) (1) Ⅳ>Ⅲ>Ⅱ>Ⅰ; (2) Ⅲ>Ⅱ>Ⅳ>Ⅰ; (3) Ⅲ>Ⅱ>Ⅰ>Ⅳ; (4) Ⅰ>Ⅱ>Ⅲ>Ⅳ. 6.. 在色谱流出曲线上, 两峰间距离决定于相应两组分在两相间的 ( 2 ) (1)保留值; (2)分配系数; (3)扩散速度; (4)传质速率。 7. 单扫描极谱的灵敏度为 10-7mol/L 左右,和经典极谱法相比,其灵敏度高的主要原 因是; ( 2 ) (1) 在电解过程中滴汞速度比较慢; (2) 快速加电压方式,单滴汞周期末取样; (3) 氧波和迁移电流变小不干扰; (4) 电压变化速度满足电极反应速度。

仪器分析实验讲义

1. 阳极溶出伏安法测定水中微量镉 1.1 实验目的 1. 了解阳极溶出伏安法的基本原理。 2. 掌握汞膜电极的制备方法。 3. 学习阳极溶出伏安法测定镉的实验技术。 1.2 基本原理 溶出伏安法是一种灵敏度高的电化学分析方法,一般可达10-8~10-9 mol/L,有时可达10-12mol/L,因此在痕量成分分析中相当重要。 溶出伏安法的操作分两步。第一步是预电解过程,第二步是溶出过程。预电解是在恒电位和溶液搅拌的条件下进行,其目的是富集痕量组分。富集后,让溶液静止30s 或1min,再用各种极谱分析方法(如单扫描极谱法) 溶出。 阳极溶出伏安法,通常用小体积悬汞电极或汞膜电极作为工作电极,使能生成汞齐的被测金属离子电解还原,富集在电极汞中,然后将电压从负电位扫描到较正的电位,使汞齐中的金属重新氧化溶出,产生比富集时的还原电流大得多的氧化峰电流。 本实验采用镀一薄层汞的玻碳电极作汞膜电极,由于电极面积大而体积小,有利于富集。先在-1.0 V (vs.SCE) 电解富集镉,然后使电极电位由-1.0 V 线性地扫描至-0.2 V,当电位达到镉的氧化电位时,镉氧化溶出,产生氧化电流,电流迅速增加。当电位继续正移时,由于富集在电极上的镉已大部分溶出,汞齐浓度迅速降低,电流减小,因此得到尖峰形的溶出曲线。 此峰电流与溶液中金属离子的浓度、电解富集时间、富集时的搅拌速度、电极的面积和扫描速度等因素有关。当其它条件一定时,峰电流i p只与溶液中金属离子的浓度c 成正比: i p=Kc 用标准曲线法或标准加入法均可进行定量测定。标准加入法的计算公式为: 式中c x、Vx、h 分别为试液中被测组分的浓度、试液的体积和溶出峰的峰高;c s、Vs 为加入标准溶液的浓度和体积;H 为试液中加入标准溶液后溶出峰

(精)仪器分析实验讲义

实验一722 型分光光度计的性能检测 一、目的 1、学会使用分光光度计 2、掌握分光光度计的性能检验方法 二、提要 1、分光光度计的性能好坏,直接影响到测定结果的准确性,因此新购仪器及使用一定时间后,均需进行检验调整。 2、利用KMnO4溶液的最大吸收峰值来检验波长的精度。 3、用同种厚度的比色皿,由于材料及工艺等原因,往往造成透光率的不一致,从而影响测定 结果,故在使用时须加以选择配对。 三、仪器与试剂 1、722 型分光光度计; 2、小烧杯; 3、坐标纸; 4、滴管; 5、擦镜纸; 6、KMnO4溶液; 四、操作步骤 1、吸收池透光率的检查(测定透光率) 吸收池透光面玻璃应无色透明,并应无水、干燥。 检查方法如下:以空气的透光率为100%,则比色皿的透光率应不低于84%,同时在450nm、650nm 处测其透光率,各透吸收池透光率差值应小于5%。 2、吸收池的配对性(测定透光率) 同种厚度的吸收池之间,透光率误差应小于0.5%。 检查方法如下:将蒸馏水分别注入厚度相同的几个吸收池中。以其中任一个比色皿的溶液做空白,在440nm 波长处分别测定其它各比色皿中溶液的透光率,然后选择相差小于0.5% 的吸收池使用。 3、重现性(光度重复性)(测定透光率) 仪器在同一工作条件下,用同种溶液连续测定7 次,其透光率最大读数与最小读数之差(极差)应小于0.5%。 检查方法如下:以蒸馏水的透光率为100%,用同一KMnO4溶液连续测定7 次,求出极差,如小于0.5%,则符合要求。 4、波长精度的检查(测定A) 为了检查分光系统的质量,可用KMnO4溶液的最大吸收波长525nm 为标准,在待检查仪器上测绘KMnO4溶液的吸收曲线。 检查方法如下:取3.0×10-5mol/L 的KMnO4溶液,以蒸馏水为空白,在460nm~580nm 范围内,分别测定460、480、500、510、520、522、524、525、526、528、530、540、550、560、570、580nm 波长处的吸光度,在坐标纸上绘出吸收曲线。若测得的最大吸收波长在525±10nm 以内,说明该仪器符合要求。

仪器分析实验内容(一)-推荐下载

邻二氮菲分光光度法测定试样中的微量铁 一、实验目的 1.掌握邻二氮菲分光光度法测定微量铁的方法原理2.熟悉绘制吸收曲线的方法,正确选择测定波长3.学会制作标准曲线的方法 4.通过邻二氮菲分光光度法测定微量铁,掌握721型分光光度计的正确使用方法,并了解此仪器的主要构造。 二、实验原理 邻二氮菲(phen )和Fe 2+在pH3~9的溶液中,生成一种稳定的橙红色络合物Fe(phen) ,其lg K =21.3,ε508=1.1×104 L·mol -1·cm -1,铁含量在0.1~6μg·mL -1范围内遵守比尔定律。显色前需用盐酸羟胺或抗坏血酸将Fe 3+全部还原为Fe 2+,然后再加入邻二氮菲,并调节溶 液酸度至适宜的显色酸度范围。有关反应如下: ==== ↑+ 2H 2O + 4H + + 2Cl -HCl OH NH 2Fe 223?++22N Fe 2++N N Fe 2+ + 3 Fe 3 2+ 用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度A ,以溶液的浓度C 为横坐标,相应的吸光度A 为纵坐标,绘制标准曲线。在同样实验条件下,测定待测溶液的吸光度Ax ,根据测得吸光度值Ax 从标准曲线上查出相应的浓度值Cx ,即可计算试样中被测物质的质量浓度。 三、仪器和试剂 1.仪器 721型分光光度计,1 cm 比色皿。2.试剂 (1)100 μg·mL -1铁标准储备溶液。 (2)100 g·L -1盐酸羟胺水溶液。用时现配。 (3)0.1% 邻二氮菲水溶液。避光保存,溶液颜色变暗时即不能使用。(4)pH=5.0的乙酸-乙酸钠溶液。四、实验步骤 1.显色标准溶液的配制 在序号为1~6的6只50 mL 容量瓶中,用吸量管分别加入0,0.4,0.8,1.2,1.6,2.0 mL 铁标准使用液(含铁约100μg·mL -1),分别加入1.00 mL 100 g·L -1盐酸羟胺溶液,摇匀后放置2 min ,再各加入5.0 mL 乙酸-乙酸钠溶液,3.00 mL 0.1% 邻二氮菲溶液,以水稀释至刻度,摇匀。 2.吸收曲线的绘制 在分光光度计上,用1 cm 吸收池,以试剂空白溶液(1号)为参比,在480~540 nm 之间进行扫描,测定待测溶液(如5号)的吸光度A ,得到以波长为横坐标,吸光度为纵坐标的吸收曲线,从而选择测定铁的最大吸收波长λmax。 3.标准曲线的测绘 以步骤1中试剂空白溶液(1号)为参比,用1 cm 吸收池,在 严等问题,合理调试工作并且保护装置调试技

数学专业参考材料书汇总整编推荐

学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理: 从数学分析开始讲起: 数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。 记住以下几点: 1,对于数学分析的学习,勤奋永远比天分重要。 2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。 3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。 4,看得懂的仔细看,看不懂的硬着头皮看。 5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。 6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。 7,经常回头看看自己走过的路 以上几点请在学其他课程时参考。 数学分析书: 初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。 中国人自己写的:

1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒) 应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。 2《数学分析》华东师范大学数学系著 师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。3《数学分析》陈纪修等著 以上三本是考研用的最多的三本书。 4《数学分析》李成章,黄玉民 是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。 5《数学分析讲义》刘玉链 我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。细说就远了,总之可以看看。 6《数学分析》曹之江等著 内蒙古大学数理基地的教材,偏重于物理的实现,会打一个很好的基础,不会盲目的向n 维扩展。适合初学者。国家精品课程的课本。

仪器分析课后习题答案解析(武大版)

仪器分析课后习题(参考) (部分) 第一章绪论 1、仪器分析有哪些分析方法?请加以简述。 答:a、光学分析法 b、电化学分析法 c、分离分析法 d、其它分析方法。 光学分析法:分为非光谱法与光谱法。非光谱法就是不涉及物质内部能级跃迁,通过测量光与物质相互作用时其散射、折射等性质变化,从而建立起分析方法的一类光学测定法。光谱法就是物质与光相互作用时,物质内部发生的量子化的能级间的跃迁,从而测定光谱的波长与强度而进行的分析方法。 电化学分析方法:利用待测组分的电化学性质进行测定的一类分析方法。 分离分析方法:利用样品中共存组分间溶解能力、亲与能力、吸附与解析能力、迁移速率等方面的差异,先分离,后按顺序进行测定的一类分析方法。 其它仪器分析方法与技术:利用生物学、动力学、热学、声学、力学等性质测定的一类分析方法。 3、仪器分析的联用技术有何显著优点? 答:多种现代分析技术的联用,优化组合,使各自的优点得到发挥,缺点得到克服,尤其就是仪器与现代计算机技术智能融合,实现人机对话,不断开拓了一个又一个的研究领域。 第二章分子分析方法 2、为什么分子光谱总就是带状光谱? 答:因为当分子发生电子能级跃迁时,必须伴随着振动能级与转动能级的跃迁,而这些振动的能级与转动的能级跃迁时叠加在电子跃迁之上的,所以就是带状光谱。 4、有机化合物分子电子跃迁有哪几种类型?那些类型的跃迁可以在紫外可见光区吸收光谱中反映出来? 答:б→б*、П→б*、n→б*、n→б*、n→П*、П→П*。其中n→б*、n→П*、П→П*类型的跃迁可以在紫外可见光区吸收光谱中反映出。 5、何谓生色团、助色团、长移、短移、峰、吸收曲线、浓色效应,淡色效应、向红基团、向蓝基团? 答:深色团:分子中能吸收特定波长的光的原子团或化学键。 助色团:与生色团与饱与烃相连且使吸收峰向长波方向移动,并使吸收强度增强的原子或原子团,如:-OH、-NH2。 长移:某些有机物因反应引入含有未珙县电子对的基团,使吸收峰向长波长的移动的现象。 短移:某些有机物因反应引入含有未珙县电子对的基团,使吸收峰向短波长的移动的现象。 峰:吸收曲线的峰称为吸收峰,吸收程度最大的峰称为最大吸收峰。 吸收曲线:又称吸收光谱,通常以入射光的波长为横坐标,以物质不同波长光的吸收A 为纵坐标,在200-800nm波长范围内所绘制的A-Λ曲线。 浓色效应:使吸收强度增强的现象。 淡色效应:使吸收强度减弱的现象。 向红基团:使吸收峰向长波长移动的基团。 向蓝基团:使吸收峰向短波长移动的基团。

仪器分析课后习题答案解析(武大版)

仪器分析课后习题答案解析(武大版) 仪器分析课后习题(参考) (部分) 第一章绪论 1、仪器分析有哪些分析方法?请加以简述。 答:a光学分析法b、电化学分析法c、分离分析法d、其它分析方法。 光学分析法 : 分为非光谱法与光谱法。非光谱法就是不涉及物质内部能级跃迁 , 通过测量光与物质相互作用时其散射、折射等性质变化 , 从而建立起分析方法的一类光学测定法。光谱法就是物质与光相互作用时 , 物质内部发生的量子化的能级间的跃迁 , 从而测定光谱的波长与强度而进行的分析方法。 电化学分析方法:利用待测组分的电化学性质进行测定的一类分析方法。 分离分析方法:利用样品中共存组分间溶解能力、亲与能力、吸附与解析能力、迁移速率等方面的差异 ,先分离,后按顺序进行测定的一类分析方法。 其它仪器分析方法与技术:利用生物学、动力学、热学、声学、力学等性质测定的一类分析方法。 3、仪器分析的联用技术有何显著优点? 答:多种现代分析技术的联用 ,优化组合 ,使各自的优点得到发挥 ,缺点得到克服 ,尤其就是仪器与现代计算机技术智能融合 , 实现人机对话 , 不断开拓了一个又一个的研究领域。 第二章分子分析方法 2、为什么分子光谱总就是带状光谱? 答:因为当分子发生电子能级跃迁时 ,必须伴随着振动能级与转动能级的跃迁 , 而这些振动的能级与转动的能级跃迁时叠加在电子跃迁之上的 , 所以就是带状光谱。 4、有机化合物分子电子跃迁有哪几种类型?那些类型的跃迁可以在紫外可见光区吸收光谱中反映出来? 答:6 — 6 *、口76 *、n7 6 *、n7 6 *、n—n *□ *。其中 n7 6 *、n—n *、n-n *类型的跃迁可以在紫外可见光区吸收光谱中反映出。 5、何谓生色团、助色团、长移、短移、峰、吸收曲线、浓色效应, 淡色效应、向红基团、向蓝基团? 答:深色团:分子中能吸收特定波长的光的原子团或化学键。 助色团:与生色团与饱与烃相连且使吸收峰向长波方向移动 , 并使吸收强度增强的原子或原子团 , 如:-OH 、 -NH2。 长移:某些有机物因反应引入含有未珙县电子对的基团 , 使吸收峰向长波长的移动的现象。 短移:某些有机物因反应引入含有未珙县电子对的基团 , 使吸收峰向短波长的移动的现象。 峰:吸收曲线的峰称为吸收峰 , 吸收程度最大的峰称为最大吸收峰。 吸收曲线:又称吸收光谱 , 通常以入射光的波长为横坐标 , 以物质不同波长光的吸收 A 为纵坐标,在200-800nm波长范围内所绘制的A- A曲线。 浓色效应淡色效应向红基团向蓝基团使吸收强度增强的现象。使吸收强度减弱的现象。使吸收峰向长波长移动的基团。使吸收峰向短波长移动的基团。

仪器分析实验内容

1 邻二氮菲分光光度法测定试样中的微量铁 一、实验目的 1.掌握邻二氮菲分光光度法测定微量铁的方法原理 2.熟悉绘制吸收曲线的方法,正确选择测定波长 3.学会制作标准曲线的方法 4.通过邻二氮菲分光光度法测定微量铁,掌握721型分光光度计的正确使用方法,并了解此仪器的主要构造。 二、实验原理 邻二氮菲(phen )和Fe 2+在pH3~9的溶液中,生成一种稳定的橙红色络合物Fe(phen)2+3 ,其lg K =21.3,κ508=1.1×104 L ·mol -1·cm -1,铁含量在0.1~6μg ·mL -1 范围内遵守比尔定律。 显色前需用盐酸羟胺或抗坏血酸将Fe 3+全部还原为Fe 2+,然后再加入邻二氮菲,并调节溶液 酸度至适宜的显色酸度范围。有关反应如下: HCl OH NH 2Fe 223?++ ==== 22N Fe 2++↑+ 2H 2O + 4H + + 2Cl - N N Fe 2++ 3 N N Fe 3 2+ 用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度A ,以溶液的浓度C 为横坐标,相应的吸光度A 为纵坐标,绘制标准曲线。在同样实验条件下,测定待测溶液的吸光度Ax ,根据测得吸光度值Ax 从标准曲线上查出相应的浓度值Cx ,即可计算试样中被测物质的质量浓度。 三、仪器和试剂 1.仪器 721型分光光度计,1 cm 比色皿。 2.试剂 (1)100 μg·mL -1铁标准储备溶液,10 μg·mL -1铁标准使用液。 (2)100 g ·L -1盐酸羟胺水溶液。用时现配。 (3)0.1% 邻二氮菲水溶液。避光保存,溶液颜色变暗时即不能使用。 (4)1.0 mol ·L -1乙酸钠溶液。 四、实验步骤 1.显色标准溶液的配制 在序号为1~6的6只50 mL 容量瓶中,用吸量管分别加入0, 2.0,4.0,6.0,8.0,10.0 mL 铁标准使用液(含铁10μg·mL -1),分别加入1.00 mL 100 g ·L -1盐酸羟胺溶液,摇匀后放置2 min ,再各加入5.0 mL 1.0 mol ·L -1乙酸钠溶液,3.00 mL 0.1% 邻二氮菲溶液,以水稀释至刻度,摇匀。 2.吸收曲线的绘制 在分光光度计上,用1 cm 吸收池,以试剂空白溶液(1号)为参比,在460~560 nm 之间进行扫描,测定待测溶液(5号)的吸光度A ,得到以波长为横坐标,吸光度为纵坐标的吸收曲线,从而选择测定铁的最大吸收波长λmax 。 3.标准曲线的测绘 以步骤1中试剂空白溶液(1号)为参比,用1 cm 吸收池,在选 定波长下测定2~6号各显色标准溶液的吸光度。以铁的浓度(μg.mL -1)为横坐标,相应的吸

仪器分析实验目录和讲义(2015)

实验讲义 实验65火焰原子吸收光谱法测定钙 实验目的 掌握原子吸收分光光度法的基本原理,了解原子吸收分光光度计的基本结构;了解原子吸收分光光度法实验条件的优化方法,了解与火焰性质有关的一些条件参数及其对钙测定灵敏度的影响;掌握火焰原子吸收光谱分析的基本操作;加深对灵敏度、准确度、空白等概念的认识。 实验原理 原子吸收光谱法是基于被测元素基态原子在蒸气状态对其原子共振辐射的吸收进行元素定量分析的方法。每种元素有不同的核外电子能级,因而有不同的特征吸收波长,其中吸收强度最大的一般为共振线,如Ca的共振线位于422.7 nm。溶液中的钙离子在火焰温度下变成钙原子,由空心阴极灯辐射出的钙原子光谱锐线在通过钙原子蒸汽时被强烈吸收,其吸收的程度与火焰中钙原子蒸汽浓度符合郎伯-比耳定律,即:A=log(1/T)=KNL(其中:A—吸光度,T —透光度,L—钙原子蒸汽的厚度,K—吸光系数,N—单位体积钙原子蒸汽中吸收辐射共振线的基态原子数)。在一定条件下,基态原子数N与待测溶液中钙离子的浓度成正比,通过测定一系列不同钙离子含量标准溶液的A值,可获得标准曲线,再根据未知溶液的吸光度值,即可求出未知液中钙离子的含量。 原子化效率是指原子化器中被测元素的基态原子数目与被测元素所有可能存在状态的原子总数之比,它直接影响到原子化器中被测元素的基态原子数目,进而对吸光度产生影响。测定条件的变化(如燃助比、测光高度或者称燃烧器高度)和基体干扰等因素都会严重影响钙在火焰中的原子化效率,从而影响钙测定灵敏度。因此在测定样品之前都应对测定条件进行优化,基体干扰则通常采用标准加入法来消除。 仪器和试剂 AA-300型原子吸收分光光度计(美国PE公司);比色管(10 mL 6支);比色管(25 mL 1支);容量瓶(100 mL 1个);移液管(5 mL 2支)。 钙标准溶液(100 μg·mL-1);镧溶液:(10 mg·mL-1)。 本实验以乙炔气为燃气,空气为助燃气。 实验内容 1. 测试溶液的制备 (1)条件试验溶液的配制:将100 μg·mL-1的Ca2+标液稀释成浓度约为2-3 μg·mL-1的Ca2+试液100 mL,摇匀。此溶液用于分析条件选择实验。

《泛函分析》课程教学大纲-黎永锦

《泛函分析》教学大纲 Functional Analysis 课程编号: 适用专业:数学与应用数学 总学时数:学分: 一、本课程简介 《泛函分析》是现代数学中的的主要数学分支之一,它综合地运用分析、代数和拓扑的观点、方法,来研究数学中的许多问题,它在抽象空间上研究类似于实数上的分析问题,形成了综合运用代数和拓扑来分析处理问题的方法.通过这一课程,能使学生了解泛函分析的基本思想、原理及在各门学科中的应用,掌握泛函分析中主要的基本概念和重要的基本理论,学会用代数、分析和拓扑综合处理问题的新方法,弄清有限维空间与无穷维空间的差别,学会无穷维空间中处理线性问题的分析方法,该课程是学习其他数学分支与科研工作的重要基础. 二、本课程与其他课程的关系 《泛函分析》、《抽象代数》、《拓扑学》是现代数学的重要课程,它综合了分析、代数和拓扑的研究方法,因此学生最好有数学分析、线性代数、空间解析几何及点集拓扑学的基础. 三、教学内容、学时安排和基本要求 本课程主要是线性泛函分析的基本理论,重点介绍距离空间和赋范空间的基础,Banach空间最重要的定理,如Hahn-Banach保范延拓定理、逆算子定理、一致有界原理和Riesz表示定理等.

本课程学时为54学时. (一)度量空间(12学时) 1、具体内容 度量空间的基本概念,度量空间中开集、闭集、完备性与可分性、连续映照的概念、距离空间中列紧集、紧集上连续映照的性质、不动点定理. 2、基本要求 (1)正确理解度量空间基本概念、度量空间点列收敛等概念. (2)理解并掌握度量空间中的内点,极限点,开集闭集,闭包等. (3)理解并掌握列紧集及紧集的概念,紧集、列紧集上的连续映射的性质. (5)熟练掌握压缩映照原理及其应用. 3、重点、难点 重点:度量空间的紧性、不动点定理. 难点:具体度量空间上紧性的判别、压缩映射的构造及不动点定理的具体应用. (二)赋范线性空间(10学时) 1、具体内容 赋范空间的定义,范数的等价性,有限维赋范空间, Schauder基等. 2、基本要求 (1)理解线性空间和范数的概念以及相关的例子. (2)掌握范数的等价性及判别方法. (3)掌握具有基的Banach空间、有限维赋范线性空间的性质. (4)线性连续泛函与Hahn-Banach保范延扩定理. 3、重点、难点 重点:有限维赋范空间的性质和Hahn-Banach保范延扩定理. 难点:Hahn-Banach保范延扩定理及其推论的应用. (三) 有界线性算子(10学时) 1、具体内容

大一仪器分析实验讲义(2014修订)

实验65火焰原子吸收光谱法测定钙 实验目的 掌握原子吸收分光光度法的基本原理,了解原子吸收分光光度计的基本结构;了解原子吸收分光光度法实验条件的优化方法,了解与火焰性质有关的一些条件参数及其对钙测定灵敏度的影响;掌握火焰原子吸收光谱分析的基本操作;加深对灵敏度、准确度、空白等概念的认识。 实验原理 原子吸收光谱法是基于被测元素基态原子在蒸气状态对其原子共振辐射的吸收进行元素定量分析的方法。每种元素有不同的核外电子能级,因而有不同的特征吸收波长,其中吸收强度最大的一般为共振线,如Ca的共振线位于422.7 nm。溶液中的钙离子在火焰温度下变成钙原子,由空心阴极灯辐射出的钙原子光谱锐线在通过钙原子蒸汽时被强烈吸收,其吸收的程度与火焰中钙原子蒸汽浓度符合郎伯-比耳定律,即:A=log(1/T)=KNL(其中:A—吸光度,T —透光度,L—钙原子蒸汽的厚度,K—吸光系数,N—单位体积钙原子蒸汽中吸收辐射共振线的基态原子数)。在一定条件下,基态原子数N与待测溶液中钙离子的浓度成正比,通过测定一系列不同钙离子含量标准溶液的A值,可获得标准曲线,再根据未知溶液的吸光度值,即可求出未知液中钙离子的含量。 原子化效率是指原子化器中被测元素的基态原子数目与被测元素所有可能存在状态的原子总数之比,它直接影响到原子化器中被测元素的基态原子数目,进而对吸光度产生影响。测定条件的变化(如燃助比、测光高度或者称燃烧器高度)和基体干扰等因素都会严重影响钙在火焰中的原子化效率,从而影响钙测定灵敏度。因此在测定样品之前都应对测定条件进行优化,基体干扰则通常采用标准加入法来消除。 仪器和试剂 AA-300型原子吸收分光光度计(美国PE公司);比色管(10 mL 6支);比色管(25 mL 1支);容量瓶(100 mL 1个);移液管(5 mL 2支)。 钙标准溶液(100 μg·mL-1);镧溶液:(10 mg·mL-1)。 本实验以乙炔气为燃气,空气为助燃气。 实验内容 1. 测试溶液的制备 (1)条件试验溶液的配制:将100 μg·mL-1的Ca2+标液稀释成浓度约为2-3 μg·mL-1的Ca2+试液100 mL,摇匀。此溶液用于分析条件选择实验。 (2)标准溶液的配制:用分度吸量管取一定体积的100 μg·mL-1 Ca2+标液于25 mL比色管中,用去离子水稀释至25 mL刻度处(若去离子水的水质不好,会影响钙的测定灵敏度和校

哲学家Strongart自学数学的非常故事的真实经历

女士们先生们,我是Strongart。记得在我24岁生日那天,曾经写过一段自学数学的小故事。现在又是一年多过去了,就再介绍一点回到家之后的情况吧,顺便把以前的故事精简一下。 其实我从小启蒙教育就比较好,倒不是有什么专门的培训,只是上小学之前都在家里,有意无意地从爷爷那里学了很多东西。到上小学的时候,我就已经能熟练掌握四则运算,可惜后来进了学校就停滞了,对数字的感觉明明已经非常敏锐了,还得跟他们一起背什么乘法口诀表!直到四年级的时候为准备竞赛,数学老师给我们几个数学好的学生开小灶。在不到一个学期的时间里学完了五六年级的数学,一点都不觉得有什么困难。 此后又是一段长期的停滞,直到一天我偶然发现一本书,是讲如何教育孩子成材的,其中有许多天才成长的故事深深打动了我。记得里面有一句大意是这样的:在孩子成熟之前,只要有一个小小的起点,让他体会到自己独特的价值并为之努力,那么他成年后将远远超过其他一般的人。那时我不知是初一还是初二,只是对这样的语句有一种模糊的体验。 后来,在放假前无意间有个顽皮的同学送了我一本高中的《立体几何》,促使我真正走上了自学数学的道路,再结合家里一些已经发黄了的中等数学教辅,到中考前已经完成相当于高中的数学课程。幸好当时能在大学附近的一个临时的小书店里买到了两本《数学分析》,然后就开始为按定义证明极限苦恼,能问老师吗?我不敢,因为直觉告诉我这是犯规的,可能这就是“潜规则”的压力了。 刚开始看《数学分析》真的很困难,手头只有一本教科书,习题只能做开头的几道。特别是极限初论讲完之后直接进入极限绪论,像有限覆盖定理之类的东西直到后来看到拓扑才真正明白。直到后来看到微分学,又在一堆中高考的辅导书里挖掘到一本微积分词典,才算是稍微送了口气。记得当时“违规”用导数做出道难题,反倒没办法讲给别人听,只轻轻说了“导数”两个字(据说现在高中数学讲导数了,很人性啊!那时的标准答案是用了一个BT的不等式的技巧),惹得他们看外星人一样的看我! 回顾高中以前的经历,运气要占了很大的因素,可后来就没那么巧了。第一年没考上大学,又买不到合适的数学书,就这样看了大半年像什么概率统计、数学物理

相关主题
文本预览
相关文档 最新文档