当前位置:文档之家› 车辆工程毕业设计62轻型载货汽车车架有限元静力学分析

车辆工程毕业设计62轻型载货汽车车架有限元静力学分析

车辆工程毕业设计62轻型载货汽车车架有限元静力学分析
车辆工程毕业设计62轻型载货汽车车架有限元静力学分析

摘要

汽车车架作为汽车总成重要的一部分,车辆受到来自道路和装载的各种复杂载荷最终都会传递给车架,并且汽车上许多重要总成都是以车架为载体,因而车架的强度和刚度在汽车总体设计中起了非常重要的作用。因此,车架结构性能的好坏关乎这整车设计的成败。若用传统经典力学方法计算,结果失真太大;而用试验法进行测试,成本高,周期长。为此本文采用了有限元分析技术,来实现车架结构设计合理化和轻量化的目的从而大大减少设计费用,缩短设计周期,同时提高设计工作的效率。因为,ANSYS在对实体模型分析上具有强大的功能,在结构静力学分析以及优化设计方面相比很多其他软件拥有十分明显的优越性。本文利用三维建模软件Pro/E和有限元分析软件ANSYS对某轻型载货汽车车架进行了Pro/E建模和ANSYS分析。

通过对Pro/E和ANSYS软件的的了解和学习,采用Pro/E实体建模,导入ANSYS 进行网格划分,应力加载,求解得出经动态分析结果,得出结论,之后可根据需要对已设计的实体单元为基础的车架结构进行拓扑优化模型和简单的尺寸优化模型,以车架的纵梁截面尺寸为设计变量,以车架结构的总体积最下为优化目标,对车架纵梁截面尺寸进行优化并分析优化结果。通过对初步设计出的轻型车架结构的实体建模及有限元分析,得到一些对车架设计有所帮助的结论,为今后车架的设计工作提供一定的指导作用。

关键词:轻型货车车架;三维建模;载荷;有限元静力学分析;模态分析

I

ABSTRACT

Automobile frame, as an important part of the vehicle, the vehicle being loaded from the road and the complex will eventually be passed to the load frame, and the car is the frame number of important general in Chengdu as the carrier, and thus the strength and the framestiffness of the overall design of the car plays a very important role.Therefore, the performance is good or bad frame structure about the success of this vehicle design.If the traditional method of classical mechanics, the result is too large distortion; and tested using test method, high cost and long period.To this end this paper, the finite element analysis, design of the frame structure to achieve the purpose of rationalization and lightweight thus reducing design costs and shorten design cycles, while improving the efficiency of design work.Because, ANSYS solid model in the analysis of powerful features in the structure of static analysis and design optimization software, compared with many other obvious advantages.In this paper, three-dimensional modeling software Pro / E and the finite element analysis software ANSYS, a light truck chassis is a Pro / E modeling and ANSYS.

On Pro / E and ANSYS software, understanding and learning, the use of Pro / E solid modeling, meshing into ANSYS, the stress load, obtained by solving the dynamic analysis of the results, draw conclusions, and then as needed for. The solid element has been designed based on the topology optimization of frame structure model and the size of a simple optimization model to frame the longitudinal cross-section dimensions of design variables, the total volume of the frame structure to optimize the next goal, on the framelongitudinal section size optimization and analysis of optimization results.The preliminary design by a light frame structure of solid modeling and finite element analysis, get some help on the conclusions of the frame design, frame design for the future to provide some guidance.

Key words:Frame of track; Three-dimensional modeling; loads; Finite element static analysis; Modal analysis

II

目录

摘要.........................................................................................................................................I Abstract ................................................................................................................................ II 第1章绪论 .. (1)

1.1 研究目的和意义 (1)

1.2 车架国内外研究现状 (2)

1.3 主要设计内容 (4)

1.4 拟解决的主要问题 (5)

第2章轻型货车的车架设计 (6)

2.1 车架的概述 (6)

2.1.1 车架的设计要求 (6)

2.1.2 车架的结构型式 (6)

2.1.3 纵梁、横梁及其联接 (10)

2.1.4 车架的制造工艺及材料 (11)

2.2 车架的结构设计 (12)

2.2.1 车架设计参考 (12)

2.2.2 车架参数的确定 (13)

2.2.3 车架的弯矩及弯曲应力计算 (14)

2.2.4 车架的挠度计算 (17)

2.3 本章小结 (19)

第3章车架三维模型的建立 (20)

3.1 Pro/E软件介绍 (20)

3.2 三维模型的建立 (21)

3.3 本章小结 (25)

第4章车架有限元分析 (26)

4.1 ANSYS的特点 (25)

4.2 ANSYS的基本组成和功能 (26)

4.3 Pro/E与ANSYS接口的创建 (29)

4.4 车架有限元的静力分析 (30)

4.4.1 三维实体模型的网格划分 (31)

4.4.2 施加约束条件 (32)

4.4.3 车架4种工况分析 (33)

4.5 车架有限元的模态分析 (42)

4.6 本章小结 (48)

结论 (49)

参考文献 (50)

致谢 (51)

附录 (52)

附录A 外文文献 (52)

附录B 外文文献翻译 (58)

附录C ANSYS分析程序命令流 (63)

附C1 车架4工况分析前准备程序 (63)

附C2 车架弯曲工况ANSYS分析程序 (70)

附C3 车架扭转工况ANSYS分析程序 (75)

附C4 车架急刹车工况ANSYS分析程序 (79)

附C5 车架转弯工况ANSYS分析程序 (85)

附C6 车架模态分析程序 (90)

1

第1章绪论

1.1 研究目的和意义

在汽车制造市场竞争日益激烈的今天,汽车制造技术越来越先进,作为载货车主要承载结构的车架,它们的质量和结构形式直接影响车身的寿命和整车性能,如动力性、经济性、操纵稳定性。汽车的轻量化,就是在保证汽车的强度和安全性能的前提下,尽可能地降低汽车的整备质量,从而提高汽车的动力性,减少燃料消耗,降低排气污染。实验证明,汽车质量降低一半,燃料消耗也会降低将近一半。当前,由于环保和节能的需要,汽车的轻量化已经成为世界汽车发展的潮流。轻量化是21世纪整车发展趋势之一,减轻汽车质量意味着节约了能源和材料。车辆设计中,在满足载货车运营中对车架的刚度、强度及工艺改造等因素要求的同时,应当尽可能减轻它们的质量和降低制造成本。

车架结构设计的主要目的在于确保车架强度、刚度和动态性能的前提下,减轻车架的质量,由此不仅可以减少钢材和燃油的消耗,减少污染排放,提高车速,改善汽车起动和制动性能,而且可有效减少振动和噪声,增加汽车和公路使用寿命。但我国的汽车工业存在自己的特殊性:一是引进国外设计,国产化生产:二是仿制或改装设计,自己独立开发设计的新产品很少。国内许多厂家在载货车的设计、制造和改进过程中仍主要依靠和沿用传统的手工设计方法和设计理念,从而造成产品存在缺陷或结构设计的不合理,目前国产载货车普遍存在的闯题是整车协调性较差;局部材料强度余量较大,无法预先判断,造成材料的浪费;在车辆实际使用过程中出现局部强度不足。所以,产品国产化或改装后,在使用过程中往往会出现强度、寿命、振动、噪声等方面的问题。这些问题影响了我国载货车产品质量,造成了使用中的安全隐患。由于缺乏必要的理论分析,我国载货车制造厂家对有问题的区域往往采取局部加强的方法,这不但需要进行多次全面的实车试验才能确定其有效性,而且会导致整车整备质量的不断增加;另外,对一些结构上的改进和优化,由于缺少一定的理论依据,往往得不到很好的实施,因此开展载货车车架结构强度的计算工作,在满足结构强度和刚度的前提下,合理地进行结构设计,以达到轻量化的目的、对车架结构设计具有重要意义。此外,为了加速企业的新产品开发,进一步提高产品的性能和科技含量,必须对现有的车型进行结构强度、刚度分析计算和动态特性分析研究工作,为新车型的研制开发提供借鉴和校核方法。随着经济全球化进程的加快,汽车工业的竞争日益加剧,

1

汽车巨头们都在加紧新车型的设计开发,由于发动机、底盘设计制造技术基本成熟,新车型便主要体现在电子设备和车架造型的更新上。同时,为减少新车型的开发成本、缩短新车型的开发周期、提高新产品的市场竞争力,全球各大汽车公司普遍实施了“平台战略,车架的开发便是该战略的主要组成部分。

载货车车架是载货车的基体,一般由两根纵梁和几根横梁组成,经由悬挂装置、前桥、后桥支承在车轮上,具有足够的强度和剐度以承受汽车的载荷和从车轮传来的冲击。要评价车架设计和结构的好坏,首先应该清楚了解的是车辆在行驶时车架所要承受的各种不同的力。然而对车架进行静、动态性能的研究,用经典力学方法很难得到精确的优化解,为了能够计算出车架的刚度和强度,往往对车架结构进行较多的假设和简化,计算模型只能构造的比较简单,与实际的结构形状相差很大。在计算机和计算机技术飞速发展并广泛应用的今天,采用近似的数值解己成为较为现实又非常有效的选择。实践和实验证明,在众多近似分析方法中,有限单元法是运用最为成功、最为有效的数值计算方法。在汽车结构设计中采用有限元法进行分析,是近几十年来发展起来的计算方法和技术。有限元法的独特优点是能够解决结构形状和边界条件都非常任意的力学问题。早期由于有限元法所要求解的问题计算规模都比较大,而计算机的速度和容量有限,所以造成有限元法在使用上的局限性。现在这些闯题已经解决,只要注意所建有限元模型中各种支承、连接关系尽量与实际结构相符,载荷和动态分析中的激励能反映实际情况,特别是动态载荷的变化曲线的精确获得以及在计算中如何加载,行驶、制动、转弯工况的载荷和约束如何正确选择等问题,就可以得到满足精度要求的有限元分析结果。汽车车架结构的静、动态分析的主要目的是查明车架内部各点的应力、形变和相对位移,找出其固有频率及振型,从静、动两个方面检验车架结构的合理性。

随着有限元技术的成熟和高速计算机的出现,各种通用程序、专用程序的求解功能都很齐全,前后处理也很方便,汽车结构中绝大部分部件甚至整车的有限元静、动态分析和固有特性分析等都可应用这些通用程序或专用程序来分析计算,利用有限元法进行汽车结构的静、动态特性分析已经成为一种趋势。在西方发达国家的汽车企业中,有限元分柝已经成为其产品设计链中必须的常规。基于我国载货车工业的总体水平仍然落后的现实,在载货车的设计、制造和改进过程中,引入有限元分析是必要而有意义的。

1.2 车架国内外研究现状

(1)从车架的设计方法来讲,早期车架设计采用设计和试验交叉进行。在车架结构定型之前往往经过多轮设计,设计面对的对象是实物,需要经过样品制造一试验

2

一修改一再设计的往复,这种方式不可避免地导致整个设计过程周期长,以及人力、物力和财力资源的严重浪费。随着设计验的积累,人们将计算技术应用于汽车车架结构性能的分析及设计中。初期的车架结构性能计算是通过将车架简化成单根纵梁,进行弯曲强度校核。这种计算方法至今还在沿用,但它显然满足不了汽车车架结构性能的设计要求。后来提出的车架结构扭转强度计算方法,只能计算纯扭转工况,不能考虑车架的实际工况,并且,计算比较复杂,工作量大,在实际运用中存在着很大的困难。再后来,人们将比较设计的思想应用于车架设计中。这种设计方法是以同一类型的成熟样车为参考来进行车架的设计,目前依然是车架结构初步设计的主要方法。但是,这种方法可能造成车架各处强度不均匀,某些局部强度富裕较大,产生材料浪费等现象。

20世纪60年代以来,由于电子计算机的迅速发展,有限元法在工程上获得了广泛应用。有限元法不需要对所分析的结构进行严格的简化,既可以考虑各种计算要求和条件,也可以计算各种工况,而且计算精度高。有限元法将具有无限个自由度的连续体离散为有限个自由度的单元集合体,使问题简化为适合于数值解法的问题。只要确定了单元的力学特性,就可以按照结构分析的方法求解,使分析过程大为简化,配以计算机就可以解决许多解析法无法解决的复杂工程问题。目前,有限元法已经成为求解数学、物理、力学以及工程问题的一种有效的数值方法。

(2)在国外,从60年代起就开始运用有限元法进行汽车车架结构强度和刚度的计算。1970年美国宇航员将NASTRAN有限元分析程序引入汽车结构分析中,对车架结构进行了静强度有限元分析,减轻了车架的自重,是最早进行车架轻量化的分析。当前,国外各大汽车公司利用有限元软件进行车架结构静态分析、模态分析的技术已非常成熟,其工作重心已转向瞬态响应分析、噪声分析、碰撞分析等领域。特别是随机激励响应分析备受亲睐,主要是因为它可用来进行车辆的强度、刚度、振动舒适性和噪声等方面的分析。

国外将有限元法引入到车架强度计算比较早,而我国大约是在七十年代末才把有限元法应用于车架的结构强度设计分析中。在有限元法对汽车车架结构的分析中,早期多采用梁单元进行结构离散化。分析的初步结果是令人满意的,但由于梁单元本身的缺陷,例如梁单元不能很好的描述结构较为复杂的车架结构,不能很好的反映车架衡量与纵梁接头区域的应力分布,而且它还忽略了扭转时截面的翘曲变形,因此梁单元分析的结果是比较粗糙的。而板壳单元克服了梁单元在车架建模和应力分析时的局限,基本上可以作为一种完全的强度预测手段。近十年来,由于计算机软件和硬件的飞速发展,板壳单元逐渐被应用到汽车车架结构分析中,使分析精度大为提高,有过

3

去的定性或半定量的分析过度到定量阶段。随着计算机软、硬件技术的发展,特别是微机性能的大幅度提高及普及,在微机上进行有限元分析已不再是很苦难的事情,同时有限元分析的应用得以向广度和深度发展。

(3)目前,国内在进行汽车车架设计时,设计人员主要采用的还是传统的办法对车架进行简化的计算,或者由其它部门进行有限元分析计算。车架的这种设计模式导致的问题包括两个方面:一是车架简化计算精度不够,为保证强度及刚度要求而使车架的设计过于安全,造成设计出的车架结构过重,增加了设计成本;二是造成车架的设计与计算分离,不利于提高车架设计人员的设计水平。为了促进车架设计水平的提高,保证整车在市场上的竞争能力,必须将车架有限元分析技术提高到战略的高度上来。

综合分析这些文献可知,当前国内对于有限元法应用于车架结构分析的研究只是限于对车架和车架结构在静态扭转、弯曲载荷以及几种极限工况载荷作用下的分析,得出车架结构的静态应力分布,并对其进行了局部的修改,由于软硬件对计算模型规模的限制,模型的细化程度不够,因而结构的刚度、强度分析的结构还比较粗略,计算结构多用来进行结构的方案比较,离虚拟实验的要求还有相当大的差距。

1.3 主要设计内容

本课题通过参考国内外轻型载货车车架的结构及工作原理的基础上,对车架进行设计计算和校核,利用Pro/E建模并应用ANSYS软件对的车架进行有限元分析,具体工作如下。

结合某汽车公司生产实际要求,在参考以往的研究成果以及国内外发展的现状,确定主要研究内容。

(1)研究应用弹性力学、有限元、静态分析、模态分析理论以及所有软件基础。

(2)车架设计方法以及设计步骤的研究。

(3)以某轻型货车车架为参考设计车架并对其进行PROE建模,将建成的PROE 车架模型导入到ANSYS中准备进行有限元分析。

(4)分析研究建立有限元模型要考虑的问题,比如结构的简化,单元的选取,单元数量的控制,单元质量的检查,网格的布局以及连接方式的模拟。

(5)研究影响有限元分析结果的因素,比如单元厚度,单元大小,加强筋以及部件连接的模拟方法。

(6)对车架有限元模型进行刚度强度分析、模态分析;找出车架结构中需要改进的部位,并依据分析结果提车改进方案。

(7)对研究的车架进行惊呆性能评价。建立优化分析模型进行优化设计提出科学

4

的改进方案。

1.4 拟解决的主要问题

(1)如何设计车架基本结构

(2)车架载荷及其约束的处理

(3)静态工况下弯曲工况的分析处理

(4)计算结果的处理

(5)有限元模型的创建方法

(6)对模型进行加载及求解的方法

(7)对分析出的图形、数据的处理以及如何对车架进行优化

5

第2章轻型载货汽车的车架设计

2.1 车架的概述

2.1.1 车架的设计要求

车架作为汽车的承载基体,为货车、中型及以下的客车、中高级和高级轿车所采用,支承着发动机、离合器、变速器、转向器、非承载式车身和货箱等所用簧上质量的有关机件,承受着传给它的各种力和力矩。为此,车架应有足够的弯曲刚度,以使装在其上的有关机构之间的相对位置在汽车行驶过程中保持不变并使车身的变形最小;车架也应有足够的强度,以保证其有足够的可靠性与寿命,纵梁等主要零件在使用期内不应有严重的变形和开裂。车架刚度不足会引起振动和噪声,也使汽车的乘坐舒适性、操纵稳定性及某些机件的可靠性下降。货车车架的最大弯曲挠度通常应小于10mm。但车架扭转刚度又不宜过大,否则将使车架和悬架系统的载荷增大并使汽车轮胎的接地性变差,使通过性变坏。通常在使用中其轴间扭角约为1°/m。在保证强度、刚度的前提下车架的自身质量应该尽可能减小,以减小车身质量。货车车架质量一般约为整车整备质量的1/10。此外,车架设计时还应考虑车型系列化及改装车等方面的要求。

2.1.2 车架的结构型式

根据纵梁的结构特点,车架可分为以下几种结构型式:

1、周边式车架

周边式车架用于中级以上的轿车。如图2.1(a)所示,在俯视图上车架的中部宽、两端窄。中部宽度取决于车身门槛梁的内壁宽;前端宽度取决于前轮距及前轮最大转角;后端宽度则有后轮距确定。左右相关纵梁由横梁连接。其最大特点是前后两段纵梁系经所谓的缓冲臂或抗扭盒与中部纵梁焊接相连。前缓冲臂位于车厢前围板下部倾斜踏板前方;后缓冲臂位于后座下方。其结构形状容许缓冲臂有一定的弹性变形,可吸收来自不平路面的冲击和降低车内噪声。此外,车架中部加宽既有利于提高汽车的横向稳定性,又减短了车架纵梁外侧装置件的悬伸长度。在侧视图上,与其他型式的轿车车架类似,在前方车轮处纵梁向上弯曲以让出前后独立悬架或非断开式后桥的运动空间。采用这种车架时车身地板上的传动轴通道所形成的鼓包不大,但门槛较宽,见图2.2(a)。

2、X形车架

6

如图2.1(b)所示,这种车架为一些轿车所采用。车架的中部为位于汽车纵向对

形状。

称平面上的一根矩形断面的空心脊梁,其前后端焊以叉形梁,形成俯视图上的X

(a)周边式车架;(b)X形车架;(c)梯形车架

图2.1 轿车车架

7

前端的叉形梁用于支承动力-传动总成,而后端则用于安装后桥。传动轴经中部管梁通向后方。中部管梁的扭转刚度大。前后叉形边梁由一些横梁相连,后者还用于加强前、

后悬架的支承。管梁部分位于后座乘客的脚下位置且在车宽的中间,因此不妨碍在其两侧的车身地板的降低,但地板中间会有较大的纵向鼓包。门槛的宽度不大,见图2.2(b),虽然从被动安全性考虑,要求门槛有足够的强度和刚度。

3、梯形车架

梯形车架又称边梁式车架,是由两根相互平行的纵梁和若干根横梁组成。其弯曲刚度较大,而当承受扭矩时,各部分同时产生弯曲和扭转。其优点是便于安装车身、车厢和布置其他总成,易于汽车的改装和变型,因此被广泛的采用在载货汽车、越野汽车、特种车辆和用货车底盘改装的大客车上。在中、轻型客车上也有所采用,轿车则较少采用。用于轿车的梯形车架,见图2.1(c),为了降低地板高度,可局部减小纵梁及横梁的断面高度并相应地加大其宽度,但这使纵梁的制造工艺复杂化且其车身地板仍比采用其他车架时为高,当然地板上的传动轴通道鼓包也就不大了,见图2.2(c)。

如果也包括固定车身的支架,则上述三种轿车车架的自身质量差别不大。无论哪一种轿车车架,在前、后桥处均要求有较大的扭转刚度,为此,相关的纵、横梁可采用封闭式断面,这种封闭式断面可由相配的一对且以垂向面为开口的冲压成型的槽型梁相互插入并用电弧焊焊接而成。对于不承受扭矩的车架元件、用于固定动力总成的横梁以及车架两端位于基本横梁以外的纵梁,均采用冲压成型且具有开口的槽型断面。

载货汽车的梯形车架如图2.3所示,由两根相互平行且开口朝内、冲压制成的槽型纵梁及一些冲压制成的开口槽型横梁组合而成。通常,纵梁的上表面沿全长不变或局部降低,而两端的下表面则可根据应力情况,适当地向上收缩。既纵梁中部相当长的范围内具有最大高度和宽度,而两端可根据应力情况相应的缩小。车架宽度多为全长等宽。车架宽度的标准化有利于产品的三化,例如可使车架横梁、前后桥及驾驶室、货箱等进行互换。车架等宽也简化了纵梁的冲压工艺且在纵梁上不会产生附加扭矩。有时根据设计要求需将车架前、后端的宽度做得窄些或宽些,但其尺寸与限定的汽车轮廓宽2.5m相适应。车架的长度大致接近整车长度,约为轴距的1.4-1.7倍。

4、脊梁式车架

如图2.4所示脊梁式车技由一根位于汽车左右对称中心的大断面管形梁和某些悬伸托架构成,犹如一根脊梁。管梁将动力-传动系连成一体,传动轴从其中间通过,故采用这种结构时驱动桥必须是断开式的并与独立悬架相匹配。与其他类型的车架比较,其扭转刚度最大。容许车轮有较大的跳动空间,使汽车有较好的平顺性和通过性。但

8

车架的制造工艺复杂,维修不便,仅用于某些平顺性、通过性要求较高的汽车上。

5、综合式车架

系综合上述脊梁式和边梁式两种型式而成,如图2.5所示。这时,主减速器与脊梁相固定,该驱动桥应为断开式的且独立悬架相匹配。其实,图2.1(b)所示的X形车架也应归于这一类型,但该车架可与非断开式驱动桥及非独立悬架相匹配。

(a)采用周边式车架时;(b)采用X形车架时;(c)采用梯形车架时

1.传动轴通道;

2.地板;

3.门槛;

4.车架

图2.2 采用不同车架时的车身底板

图2.3 载货汽车的梯形车架

9

图2.4 具有脊梁式车架的汽车底盘

图2.5 综合式车架

2.1.3 纵梁、横梁及其联接

纵梁是车架的主要承载元件,也是车架中最大的加工件,其形状应力求简单。载货汽车的车架纵梁沿全长多取平直且断面也不变或少变,以简化工艺;为使纵梁各断面的应力接近,可通过改变其断面高度即使其中部断面高、两端较低来达到。载货汽车纵梁的断面形状多为开口朝内的槽形,也有Z形、工字形的;脊梁式车架的纵梁则多为管状的;轿车车架的纵梁则为箱形断面。槽型断面梁的扭转刚度及强度均好。纵梁多为冲压件,超重型汽车的纵梁则常采用焊接结构或轧制的成型材。

横梁将左右纵梁联接在一起,构成一完整的车架,并保证车架有足够的扭转刚度,限制其变形和降低某些部位的应力。横梁还起着支承某些总成的作用。汽车车架常有4~6根横梁,其分布于有关总成、驾驶室、货箱或车身的支承位置有关。当发动机的前支点位于左右纵梁上时,前横梁则可减小宽度并采用槽型或Z形断面。中横梁常做成拱形以留出传动轴的跳动空间。货车在后钢板弹簧前、后支承附近也分别设置一根横梁。

横梁的断面形状与纵梁的联接形式如图2.6和图2.7所示。选择横梁的断面形状时既要考虑其受载情况又要考虑受其支承总成的支承方便。腹板直立的槽形断面横梁和由两槽形组成的工字形断面横梁的弯曲刚度及强度均好,常用于后钢板弹簧的支架处;帽形断面梁因其断面高度较小,较易做成大弯度梁,宜于用于需向下凹的前横梁和拱形的中横梁;封闭形断面梁和管梁的扭转刚度大,宜用于需加强扭转刚度处,但货车多采用扭转刚度不大的非封闭形断面的钢板冲压横梁。

轿车车架的纵、横梁采用焊接方式联接,而货车则多以铆钉联接(见图2.7)。铆钉联接具有一定弹性,有利于消除峰值应力,改善应力状况,这对于要求有一定扭转弹性的货车车架具有重要意义。

当纵、横梁以它们的上、下翼缘均分别联接时,由于联接跨度大,刚度亦较大,

10

这时其扭转刚度及扭转应力均较大。当横梁与纵梁的腹板相连接时则情况会相反,这时应注意不使其联接跨度和联接刚度太小,以免影响对纵梁的局部扭转的必要约束。横梁在与纵梁的连接处往往应力较高,故常将其端部翼缘加宽或采用较厚及尺寸较大的联接板;也可使其中部的断面尺寸适当缩小,或在其腹板上加设一些较大的孔,以降低横梁连接处的应力。

图2.6 横梁的断面形状及其与纵梁的联接

1.横梁;

2.纵梁

图2.7 纵、横梁的铆钉联接方式

2.1.4 车架的制造工艺及材料

车架纵梁和其他零件的制造,多采用钢板的冷冲压工艺在大型压力机上冲孔及成形;也有采用槽型钢、工字钢、管料等型材制造的。轿车车架的组装多采用二氧化碳保护焊、塞焊和点焊,设计时应注意对焊接规范、焊缝布置及焊接顺序的选择;货车

11

车架的组装多采用冷铆工艺,必要时也可采用特制的放松螺栓联接。为保证车架的装配尺寸,组装时必须有可靠的定位和加紧,特别应保证有关总成在车架上的定位尺寸及支承点的相对位置精度。

车架材料应具有足够高的屈服极限和疲劳极限,低的应力集中敏感性,良好的冷冲压性能和焊接性能。低碳和中碳合金钢能满足这些要求。车架材料与所选定的制造工艺密切相关。拉伸尺寸较大或形状复杂的冲压件需采用冲压性能好的低碳钢或低碳合金钢08、09MnL、09MnREL等钢板制造;拉伸尺寸不大、形状又不复杂的冲压件常采用强度稍高的20、25、16Mn、09SiVL、10TiL等钢板制造。强度更高的钢板在冷冲时易开裂且冲压回弹较大,故不宜采用。有的重型货车、自卸车、越野车为了提高车架强度,减小质量而采用中碳合金钢板热压成形,再经热处理,例如采用30Ti钢板的纵梁经正火后抗拉强度即由450MPa(HB156)提高到480~620MPa(HB170)。用30Ti钢板制造纵横梁也可采用冷冲压工艺。

钢板经冷冲成形后,其疲劳强度要降低,静强度提高、延伸率小的材料的降低幅度更大。常用车架材料在冲压成形后的疲劳强度约为140~160MPa。

轿车车架纵梁、横梁的钢板厚度约为3.0~4.0mm,货车根据其装载质量的不同,轻、中型货车冲压纵梁的钢板厚度为 5.0~7.0mm,重型货车冲压纵梁的钢板厚度为7.0~9.0mm。且槽形断面纵梁上、下翼缘的宽度尺寸约为其腹板高度尺寸的35%~40%[1]。

2.2 车架的结构设计

2.2.1 车架设计参考

以下数据均为参照解放CA1040的参数进行设计[10-11],主要参数如表所示。

1、车辆主要参数

表2.1车辆参数表

车总长/mm 5100 轴距/mm 2500

载重量/kg 1850 空车质量/kg 1960

满载质量/kg 4010 驾驶室长/mm 1765

货箱长/mm 3335 乘员满油油箱/kg 220

2、安装在车架上的主要部件的选择

(1)发动机参数

型号:CA488型汽油机;

形式:四冲程、水冷、化油器;

12

最大功率:65kw;

最大扭矩:157N·m;

外形尺寸(长?宽?高):659?602?671.5(mm);

质量:135kg。

(2)变速器参数

型号:CAS5-20A机械变速器;

中心距:85mm;

最大输出转矩:196N·m;

壳体长度:285mm;

静质量:铸铁壳体56kg。

(3)货箱车头参数

货箱:钢板冲压货箱800kg;

车头:车头以及内部部件450kg。

(4)钢板弹簧参数

车架上加装钢板弹簧,参数如表2.2所示。

表2.2钢板弹簧

前钢板弹簧后钢板弹簧作用长度/mm 1200 1300 片厚12-6 12-8 片宽/mm 70 70

片数 3 6

2.2.2 车架参数的确定

1、选取梯形车架,由两个纵梁与5根横梁铆接而成。其弯曲刚度较大,而当受扭矩时,各部分同时产生弯曲和扭转。其优点是便于安装车身、车箱和布置其他总成,易于汽车的改装和变形因此被广泛地用在载货汽车。车架全长等宽,取750mm。车架长度大致接近整车长度,约为轴距的1.4~1.7倍,取车架长度为4500mm,在纵梁的全长范围内具有相等的高度和宽度。纵、横梁均由5mm厚的16Mn钢板冲压而成(轻、中型货车冲压纵梁的钢板厚度为5~7mm。槽型断面纵梁上、下翼缘的宽度尺寸约为其腹板高度尺寸的35%~40%,纵梁槽形断面如图2.8所示。

13

14

图2.8 纵梁断面

2、铆钉的选择[12-13]

根据GB/T 867-1986 选择半圆头铆钉,如图2.9所示。

其中d=6mm ; k d =11.35mm ; k=3.84mm ; R ≈6mm ; L =8~60mm 。

图2.9 铆钉

2.2.3 车架的弯矩及弯曲应力计算

当车架纵梁承受的是均匀分布的载荷(见图2.8)时,车架的简化计算可按下述进行,但需要一定的假设。即认为纵梁为支承在前、后轴上的简支梁;空车是簧上负荷s G (24?货车可取3/20g m G s =,0m 为汽车整备质量)均布在左、右纵梁的全长上,满载时有效载荷e G 则均布在车厢长度范围内的纵梁上;忽略不计局部扭矩的影响[8]。

15

图2.10 货车车架上均布载荷的分布情况

在图2.10中,f R 为一根纵梁的前支承反力,由该图可求得:

)]2()2([412c c Ge b L G l

R s f -+-= (2.1) 在驾驶室的长度范围内这一段纵梁的弯矩为

2)(4a x L

G R M s f x +-= (2.2) 驾驶室后端至后周这一段纵梁的弯矩为:

212/)]([4)(4x l c c

G a x L G x R M e s f x ---+-= (2.3) 显然,最大弯矩就发生在这一段纵梁内,可用对上式中)(/

x f M x =求导数并令其为零的方法求出最大弯矩发生的位置x ,即:

0)(2)(21/=+--+-=c l x c G a x L G R dx dM e s f x 由此求得:

)/(])(2[1c

G L G c c l G L a G R x e s e s f +-+?-= (2.4) 将上式代入公式(2.3),即可求出纵梁承受的最大弯矩max M 。

已知=L 4500mm ,=l 2660mm ,a =875mm ,=b 1025mm ,c =3335 mm ,1c =1857mm ,2c =1478mm 。

16

3/20g m G s ==33.128058.919603

2=??N 181308.9)19603810(=?-=e G N

39.3594)]147823335(18130)102524500(33.12805[2660

41=?-+?-?=f R N 3335

181********.128053335)18572660(18130450087533.1280539.35942+-+?-?=x x =1094.44mm

2

2/])44.10942660(1857[3335

418130)87544.1094(4500433.1280544.109439.3594--?-+?-?=x M

/

x M =1289949.07mm N ? 如果考虑到动载荷系数0.45.2-=d k 及疲劳安全系数40.115.1-=n ,并将它们代入式(2.5),则可求出纵梁的最大弯矩为:

max max M nk M d d = (2.5)

取n=1.40,d k =4.0

求得:

792.722371407.1289949440.1max =??=d M mm N ?

则弯曲应力可按下式求得:

W

M d w max =σ (2.6) 式中:W ——纵梁在计算断面处的弯曲截面系数,对于槽型断面系数,对于槽型断面纵梁有:

6

)6(th b h W += (2.7) 式中:h —— 槽型断面的腹板高,mm ;

b —— 翼缘宽,mm ;

t —— 梁断面的厚度,mm 。

式(2.7)中,h=120mm ,b=45mm ,t=5mm 。

600006

1505)556150(=??+=W mm 3

有限元法在汽车行业中的应用

有限元法在汽车行业中的应用 【摘要】:汽车车身结构主要是由薄板冲压的覆盖件、承载骨架和各种加强件组成的。在有限元分析中可将它看成是由许多单元所组成的整体, 或起承载作用, 或承受、传递外部载荷, 以保证整个汽车的正常工作。 【关键词】:汽车;技术;应用 在当前的工程技术领域中有越来越多的复杂结构,包括复杂的几何形状、复杂的载荷作用和复杂的支撑约束等。当对这些复杂问题进行静、动态力学性能分析时, 往往可以很方便地写出基本方程和边界条件, 但却求不出解析解。这是因为大量的工程实际问题非常复杂, 有些构件的形状甚至不可能用简单的数学表达式表达, 所以就更谈不上解析解了。 对于这类工程实际问题, 通常有两种分析和研究途径: 一是对复杂问题进行简化, 提出种种假设, 最终简化为一个能够处理的问题。这种方法由于太多的假设和简化, 将导致不准确乃至错误的答案。另一种方法是尽可能保留问题的各种实际工况, 寻求近似的数值解。在众多的近似分析方法中, 有限元法是最为成功和运用最广的方法。 1. 汽车结构有限元分析 汽车车身结构主要是由薄板冲压的覆盖件、承载骨架和各种加强件组成的。在有限元分析中可将它看成是由许多单元所组成的整体, 或起承载作用, 或承受、传递外部载荷, 以保证整个汽车的正常工作。由于要完成各自独特的功能, 它们的结构各不相同, 并且都比较复杂。一些结构件的工作条件比较恶劣, 长期在振动和冲击载荷下工作。寻求有关这些结构件正确而可靠的设计和计算方法, 是提高汽车的工作性能及可靠性的主要途径之一。 在汽车结构分析中, 有限元法由于其能够解决结构形状和边界条件都非常任意的力学问题的独特优点而被广泛使用。各种汽车结构件都可应用有限元法进行静态分析、固有特性分析和动态分析; 并且从原来对工程实际问题的静态分析为主转化为要求以模态分析和动态分析为主。也可根据工程实际结构的特点要求进行非线性分析。具体地说, 汽车结构有限元分析的应用体现于: 一是在汽车设计中对所有的结构件、主要机械零部件的刚度、强度、稳定性分析; 二是在汽车的计算机辅助设计和优化设计中, 用有限元法作为结构分析的工具; 三是在汽车结构分析中普遍采用有限元法来进行各构件的模态分析,同时在计算机屏幕上直观形象地再现各构件的振动模态, 进一步计算出各构件的动态响应, 较真实地描绘出动态过程, 为结构的动态设计提供方便有效的工具。 有限元法分析汽车结构的一般过程如下:

有限元分析-最新法兰算例

题目: 成都石化设计院用于某容器上的带增强法兰的球封头,结构尺寸如图, 工作载荷为内压0.8Mpa,螺栓载荷为535574N,材料为 20R。请按照分析设计的要求分析该结构在上述工况下操作时的各类应力并进行强度校核。 带增强法兰的球封头 载荷分析 1. 用户数据 根据设计图,计算基础数据如下: 2. 结构参数 以下所有厚度均为有效厚度,长度单位:mm

中心接管参数 图1:带增强法兰的椭圆封头-中心接管参数示意图 封头参数 法兰参数

图3: 带增强法兰的椭圆封头-法兰参数示意图 外直径di 960 内直径d2 780 厚度t 66 螺栓数目 24 螺栓中心圆直径d3 915 螺栓孔直径d4 27 垫片内直径d5 800 垫片外直径d6 866 倒角内半径r1 40 倒角外半径r2 15 材料参数 部位 材料 弹性模量 (MPa) 泊松比 比重 (g/cm ) S m (MPa) t 接管 碳素钢锻件 20 190200 0.3 7.84 3 124.6 封头 碳素钢钢板 20R 194600 0.3 7.824 144.2 法兰 碳素钢钢板 20R 190200 0.3 7.84 114.6 载荷条件 内压(MPa) 0.8 螺栓力(N) 535574 二、结构分析 根据法兰结构特点,应进行带增强法兰的椭圆封头的应力分析, 建立力学模型如下: (1) 力学模型

根据带增强法兰的椭圆封头的结构特点和载荷特性,采用了三维力学模型。 图4:带增强法兰的椭圆封头网格图 (2) 边界条件 位移边界条件

节.口总0 0091000 Q00H?n o.ooMon 000(40)0 OCCrHJO O 0EEt44m fl OOa+DM 血伽 OCOeHnO QQQe^W enorHnn novtdoo ■3 00a4?M flOCtHHO OOO H WD QCXnflM OEUrtffiE OCfia^? OoOc^P OOXIJO OOQHOKi aflOrtujo OKftOOO OO^tOOO OIMb^W □ (Kr-KTO 0£Xfe4QO O S0k*lflJD owxwo 0Kr*?C OQC^nKX B OWHODC QUlXlJO OOCc*{M0 DIHrtOOCi 00^*000 ojnrxin DDOr'HKEI □OC HT KI JO Offl>*aoO 图5:带增强法兰的椭圆封头X方向约束 OnOHOQO^H :-■: I —111 -厂-'I「P I? OOQr^nol □ OLf "J:D OD lr*JDO J OOTtafOOO^- □OOMKKI o込希io PQDZJQ DJO .f*JJO 磁砒 one*aoD OXrtWO otr* 曲io OOCmJjO 图6:带增强法兰的椭圆封头丫方向约束JdJ K U节貞血 ? OOte+COG 0GOHWB tl tJ>+€rt) dOOd-HNO OCCHOff) 力如姻 OCOtrHMO 0EDe4?D 皿 咄M OOQKXn UDOHWO 皿畑 QCQl^QQ OLUrtWO QOOa^nO 0 00*4000 CiCbrHMO QQDrKm OCOa-iOn OOfriMW

有限元ansys静力分析的一个小例子

有限元 学院:机电学院 专业: 姓名: 学号:

一、问题描述 如图所示的平面,板厚为0.01m,左端固定,右端作用50kg的均布载荷,对其进行静力分析。弹性模量为210GPa,泊松比为0.25. 二、分析步骤 1.启动ansys,进入ansys界面。 2.定义工作文件名 进入ANSYS/Multiphsics的的程序界面后,单击Utility Menu菜单下File中Change Jobname的按钮,会弹出Change Jobname对话框,输入gangban为工作文件名,点击ok。 3.定义分析标题 选择菜单File-Change Title在弹出的对话框中,输入Plane Model作为分析标题,单击ok。 4.重新显示 选择菜单Plot-Replot单击该按钮后,所命令的分析标题工作文件名出现在ANSYS 中。 5.选择分析类型 在弹出的对话框中,选择分析类型,由于此例属于结构分析,选择菜单Main Menu:Preferences,故选择Structural这一项,单击ok。 6.定义单元类型 选择菜单Main Menu-Preprocessor-Element Type-Add/Edit/Delete单击弹出对话框中的Add按钮,弹出单元库对话框,在材料的单元库中选Plane82单元。即在左侧的窗口中选取Solid单元,在右侧选择8节点的82单元。然后单击ok。 7.选择分析类型 定义完单元类型后,Element Type对话框中的Option按钮被激活,单击后弹出一个对话框,在Elenment behavior中选择Plane strs w/ thk,在Extra Element output 中,选择Nodal stress,单击close,关闭单元类型对话框。 8.定义实常数 选择菜单Main Menu-Preprocessor-Real Constants Add/Edit/Delete执行该命令后,在弹出Real Constants对话框中单击Add按钮,确认单元无误后,单击ok,弹出Real Constants Set Number 1,for Plane 82对话框,在thickness后面输入板的厚度0.01单击ok,单击close。 9.定义力学参数 选择菜单Main Menu-Preprocessor-Material Props-Material Model 在弹出的对

静力学分析报告

静力学分析报告 一、制作人员: 二、模型名称:桁架 三、创意来源: 四、模型视图: 五、模型简化

因为桁架本身由硬杆组成,所以简化结构 如下图所示,并求各点的受力情况。 假设桁架受到集中力G的影响 1以节点A为探究对象 m A F=0 F B Y?4?F?3=0 F B Y=0.75F F Y=0 F A Y+F B Y=0 F A Y=0.25F 2以节点B为探究对象 F12F13 B F B Y F Y=0 F13cos45°+F B Y=0 F13=?32 4 F F X=0 ?F13cos45°?F12=0 F12=?3 4 F

3以节点G为探究对象 F F10 G F11F13′ F Y=0 ?F13′cos45°?F?F11=0 F11=?0.25F F X=0 F13′cos45°?F10=0 F8=?0.75F 4以节点H为探究对象 F9F11′ F8 H F12′ F Y=0 F9cos45°+F11′=0 F9= 2 4 F F X=0 ?F9cos45°?F8+F12′=0 F8=0.5F 5以节点I为探究对象 F7 F6I F8′ F Y=0 F7=0

F X=0 ?F6+F8′=0 F6=0.5F 6以节点E为探究对象 F4E F10′ F5F7′F9′ F Y=0 F9′cos45°?F5cos45°=0 F5=2 F F X=0 ?F5cos45°+F9′cos45°?F4+F10′=0 F4=?0.25F 7以节点D为探究对象 F3F5′ F2 D F6′ F Y=0 F3+F5′cos45°=0 F3=1 4 F F X=0 F5′cos45°?F2+F6′=0 F4=0.25F 8以节点C为探究对象 C F4′

如何简单的区分ANSYS Workbench有限元分析中的静力学与动力学问题

如何简单的区分ANSYS Workbench 有限元分析中的静力学与动力 学问题 四川 曹文强 “力”是一个很神秘的字,是个象形字,形体极像古代的犁形,上部为犁把,下部为耕地的犁头,也形象的解释“力”含义 ,将无形不可见,不可描述的现象充分的表达了出来。 从初中物理我们就学习过,力是物体之间的相互作用,是使物体获得加速度和发生形变的外因,单独就力而言,有三个要素力的大小、方向和作用点。力学是研究物体的机械运动和平衡规律及其应用的,力学可分为静力学、运动学和动力学三部分。而今天主要是简单介绍一个静力学与动力学。 首先,静力学与动力学区别是什么? 答案很简单,一个是“静”,一个是“动”,动静的含义就是时间的问题。故,静力学实际是在研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题,其中的静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。当然 “静”动力学 静力学

实际上只是相对而言,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态,也就是平衡的状态。 对于平衡的状态阐述,牛顿第一运动定律(牛顿第一定律,又称惯性定律、惰性定律)就有一个完整表述:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。 此外,静力学的有五大公理 公理一 力的平行四边形法则:作用在物体上同一点的两个力,可合成一个合力,合力的作用点仍在该点,其大小和方向由以此两力为边构成的平行四边形的对角线确定,即合力等于分力的矢量和。 公理二 二力平衡公理:作用在物体上的两个力,使物体平衡的必要和充分条件是:两个力的大小相等,方向相反,作用线沿同一直线。 公理三 加减平衡力系公理:在已知力系上加或减去任意平衡力系,并不改变原力系对刚体的作用。 公理四 牛顿第三定律:两物体间的相互作用力,大小相等,方向相反,作用线沿同一直线。 此公理概括了物体间相互作用的关系,表明作用力与反作用力成对出现,并分别作用在不同的物体上。 公理五 刚化公理:变形体在某一力系作用下处于平衡时,如将其刚化为刚体,其平衡状态保持不变。 在有限元结构仿真里面,可简化为下流程图。 静荷载 大小、方向、作用点 输入 刚度、约束、尺寸、材料输出 位移、内力、应力

矩形板静力有限元分析

现代设计方法实验报告 题目_矩形板静力有限元分析____ 编号______10、11、12_________ 姓名_______杨操__________ 班级_______2 班__________ 学号_______20092503__________

1.题目概况 矩形板尺寸如下图1,板厚为5mm。材料弹性模量为52 E=?,泊松 210N/mm μ。根据以下情况进行讨论: 比27 .0 = 图1 计算简图 (1)试按下表的载荷约束组合,任选二种进行计算,并分析其位移、应力分布的异同。 (2)如下图,讨论板上开孔、切槽等对于应力分布的影响。 提示:各种圆孔,椭圆孔随大小、形状、数量,分布位置变化引起的应力分布变化;各种形状,大小的切槽及不同位置引起应力分布的变化等,选择二至三种情况讨论,并思考其与机械零部件的构型的相对应关系。

图2 开孔/切槽示例 1.1基本数据 对第(1)题中矩形板按照三种边界约束条件分别进行位移、应力分析; 对第(2)题矩形板开槽情况按照三种边界约束条件分别进行位移、应力分析;对第(2)题矩形板开槽位置不同的情况按照三种边界约束条件分别进行位移、应力分析; 对第(2)题矩形板开槽形状的不同按照三种边界约束条件分别进行位移、应力分析。 1.2 分析任务/分析工况 由于矩形板的板厚远小于长宽,且沿薄板周围边界承受着平行于薄板平面并沿厚度均匀分布的外力,因此该问题属于平面应力问题。 2.模型建立 2.1单元选择及其分析 在进行有限元分析时,应根据分析问题的几何结构,分析类型和所分析的问题精度等要求,选择适合暗送秋波分析的单元类型,本次上机实验选择四节点四

轿车盘式制动器结构设计及有限元分析(含CAD图纸)

毕业设计说明书 题目:轿车盘式制动器结构 设计及有限元分析 学院: 年级专业: 姓名: 学号: 指导教师: 完成时间:

目 录 摘要 (1) Abstract (1) 1前言 (2) 2制动器的结构形式及分类 (3) 2.1制动器的结构形式 (3) 2.2制动器分类 (3) 3制动器的主要参数及其选择 (8) 3.1基本参数 (8) 3.2制动力与制动力分配系数 (8) 3.3同步附着系数 (8) 3.4制动强度与附着系数利用率 (9) 3.5同步附着系数 (8) 3.6制动器的最大制动力矩 (10) 3.7盘式制动器主要参数的确定 (11) 3.7.1制动盘直径D (11) 3.7.2制动盘厚度h (11) 3.7.3摩擦衬块内半径1R 和外半径2R (11) 3.7.4摩擦衬块工作面积A (12) 3.7.5有效半径e R 的确定 (12) 4盘式制动器的设计计算 (14) 4.1摩擦衬片的磨损特性计算 (14) 4.2驻车制动计算 (15) 4.3制动器温升核算 (16) 4.4制动力矩与盘的压力 (17) 5盘式制动器的主要元件 (18) 5.1制动盘 (18) 5.2制动钳 (18)

5.3制动块18 5.4摩擦材料 (19) 5.5制动器间隙的调整方法及相应机构 (19) 5.6制动盘的安装 (20) 5.7制动盘的修理 (20) 6盘式制动器的三维设计 (21) 6.1制动盘的三维建模 (21) 6.2制动钳体和支架的三维建模 (21) 6.3制动衬块和背板的三维建模 (22) 6.4其他小零件的三维建模 (23) 6.5装配图的展示 (24) 7有限元分析 (27) 7.1有限元法概述 (27) 7.1.1有限元法介绍 (27) 7.2有限元软件ANSYS介绍 (27) 8盘式制动器有限元模型的建立 (29) 8.1 制动盘的模态分析 (29) 8.2 摩擦衬块的静态分析 (35) 9结论 (41) 总结与体会 (42) 谢辞 (43) 参考文献 (44)

111ANSYS进行有限元静力学分析

经典理论 一、设计大纲概述 1、设计目的 (1)熟悉有限元分析的基本原理和基本方法; (2)掌握有限元软件ANSYS的基本操作; (3)对有限元分析结果进行正确评价。 2、设计原理 利用ANSYS进行有限元静力学分析。 3、设计仪器设备 1)安装windows 2000以上版本的微机; 2)ANSYS 8.0以上版本软件。 4、实验内容与步骤 1)熟悉ANSYS的界面和分析步骤; 2)掌握ANSYS前处理方法,包括平面建模、单元设置、网格划分和约束设置; 3)掌握ANSYS求解和后处理的一般方法; 4)实际应用ANSYS软件对平板结构进行有限元分析。 二、题目: 如图试样期尺寸为100mm*5mm*5mm,下端固定,上端受拉 力10000N作用。已知该试样材料的应力-应变曲线如图 所示。计算试样的位移分布。

三、分析步骤: 分析:从应力-应变关系可以看出该材料的屈服极限是225MPa 左右,弹性部分曲线的斜率为常数75GPa。之后材料进入塑性变形阶段,应力-应变关系为非线性的。估计本题应力10000/(0.05*.005)=400MPa,因此材料屈服进入塑性,必须考虑材料非线性影响。 (1)建立关键点。单击菜单Main Menu>Preprocessor>Modeling>Create>Keypoints>In ActiveCS,建立两个关键点(0,0,0)和(0,100, 0)。 (2)建立直线。单击菜单Main Menu>Preprocessor>Modeling>Create>Lines>Staight Line,在关键点1、2之间建立直线。 (3)定义单元类型。单击菜单Main Menu>Preprocessor>ElementType>Add/Edit/Delete, 定义单元Structural>Link>2D spar1(LINK1) (4)定义单元常数。单击菜单Main Menu>Preprocessor>RealConstants>Add/Edit/Delete,

线性静力学分析实例

学号:p1******* 姓名:朱四海 线性静力学分析实例 1.1 问题的描述 一部件结构如图1-1所示,一端面受固定约束,另一端A、B两点受相反方向切向力,求受载后的Mises应力、位移分布。 ν 材料性质:弹性模量E=2e5,泊松比3.0 = 图1-1 部件模型 1.2 启动ABAQUS 启动ABAQUS有两种方法,用户可以任选一种。 (1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 -- ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 1.3 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建部件的几何模型。 (1)创建部件。对于如上图1-1所示的部件模型,可以先画出二维截面,再通过拉伸得到。步骤如下:

单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。 图1-2 Create Part对话框 在Name(部件名称)后面输入ep2,Modeling Space(模型所在空间)设为3D,Shape选择Solid(实体),Type采用默认的Extrusion,在Approximate size里面输入600。单击Continue...按钮。 (2)绘制部件二维截面图。ABAQUS/CAE自动进入绘图环境,左侧的工具区显示出绘图工具按钮,视图区内显示栅格,视图区正中两条相互垂直的点划线即当前二维区域的X轴和Y轴。二者相交于坐标原点。 选择绘图工具箱中的工具,窗口提示区显示Pick a center point for the circle--or enter X,Y(选择一个中心点的圆,或输入X,Y的坐标),如图1-3所示。 图1-3 输入圆心坐标 输入圆上任意点坐标为(0,50),回车,第一个圆形就画出来了。继续画第二个圆,圆心坐标为(0,0),圆上任意一点(0,40)。

车架有限元分析

1前言 车架是汽车的主要部件。深人解车架的承载特性是车架结构设计改进和优化的基础。过去汽车设计多用样车作参考,这种方法不仅费用大,试制周于精确解。因此,正确建立结构的力学模型,是分析期长,而且也不可能对多种方案进行评价。现代车架设计已发展到包括有限元法、优化、动态设计等在内的计算机分析、预测和模拟阶段。计算机技术与现代电子测试技术相结合已成为汽车车架研究中十分行之有效的方法。实践证明,有限元法是一种有效的数值计算方法,利用有限元法计算得到的结构位移场、应力场和低阶振动频率可作为结构设计的原始判据或作为结构改进设计的基础。 2车架的静态分析 力学模型的选择 有限元分析的基本思想,是用一组离散化的单元组集,来代替连续体机构进行分析,这种单元组集体称之为结构的力学模型;如果已知各个单元体的力和位移(单元的刚度特性),只需根据节点的变形连续条件与节点的平衡条件,来推导集成结构的特性并研究其性能。有限元的特点是始终以矩阵形式来作为数学表达式,便于程序设计,大量工作是由电子计算机来完成,只要计算机容量足够,单元的剖分可以是任意的,对于任何复杂的几何形状,多样化的载荷和任意的边界条件都能适应。然而,由于有限元是一种数值分析方法,计算结果是近似解,其精度主要取决于离散化误差。如果结构离散化恰当,单元位移函数选取合理,随着单元逐步缩小,近似解将收敛于精确解。因此,正确建立结构的力学模型,是分析工作的第一步目前采用有限元分析模型一般有如下两种:梁单元模型和组合模型等。梁单元模型是将车架结构简化为由一组两节点的梁单元组成的框架结构,以梁单元的截面特性来反映车架的实际结构特性。其优点是:划分的单元数目和节点数目少,计算速度快而且模型前处理工作量不大,适合初选方案。其缺点是:无法仔细分析车架应力集中问题,因而不能为车架纵、横梁连接方案提供实用的帮助。组合单元模型则是既采用梁单元也采用板壳单元进行离散。在实际工程运用中,由于车架是由一系列薄壁件组成的结构,且形状复杂,宜离散为许多板壳单元的组集,其缺点是前处理工作量大,计算时间长,然而随着计算机技术的不断发展,这个问题已得到了较好的解决,而且由于有大型有限元软件支撑,巨大的前处理工作量绝大部分可由计算机完成,也不是制约板壳元模型实际运用的困难了。这种模型使得对车架的分析计算更为精确,能为车架设计提供更为有利的帮助。 车架的计算方法 汽车车架的主要结构形式为边梁式车架,货车车架纵梁截面多为槽形,横梁截面可为槽

ANSYS进行有限元静力学分析

一、设计大纲概述 1、设计目的 (1)熟悉有限元分析的基本原理和基本方法; (2)掌握有限元软件ANSYS的基本操作; (3)对有限元分析结果进行正确评价。 2、设计原理 利用ANSYS进行有限元静力学分析。 3、设计仪器设备 1)安装windows 2000以上版本的微机; 2)ANSYS 8.0以上版本软件。 4、实验内容与步骤 1)熟悉ANSYS的界面和分析步骤; 2)掌握ANSYS前处理方法,包括平面建模、单元设置、网格划分和约束设置; 3)掌握ANSYS求解和后处理的一般方法; 4)实际应用ANSYS软件对平板结构进行有限元分析。 二、题目: 如图试样期尺寸为100mm*5mm*5mm,下端固定,上端受拉 力10000N作用。已知该试样材料的应力-应变曲线如图 所示。计算试样的位移分布。

三、分析步骤: 分析:从应力-应变关系可以看出该材料的屈服极限是225MPa 左右,弹性部分曲线的斜率为常数75GPa。之后材料进入塑性变形阶段,应力-应变关系为非线性的。估计本题应力10000/(0.05*.005)=400MPa,因此材料屈服进入塑性,必须考虑材料非线性影响。 (1)建立关键点。单击菜单Main Menu>Preprocessor>Modeling>Create>Keypoints>In ActiveCS,建立两个关键点(0,0,0)和(0,100, 0)。 (2)建立直线。单击菜单Main Menu>Preprocessor>Modeling>Create>Lines>Staight Line,在关键点1、2之间建立直线。 (3)定义单元类型。单击菜单Main Menu>Preprocessor>ElementType>Add/Edit/Delete, 定义单元Structural>Link>2D spar1(LINK1) (4)定义单元常数。单击菜单Main Menu>Preprocessor>RealConstants>Add/Edit/Delete, 在弹出的Real Constants for LINK1对话框中,输入 如下的单元几何参数:截面面积AREA=25 出始应 变=0

基于ABAQUS的电梯层门静力学有限元分析

基于ABAQUS的电梯层门静力学有限元分析 摘要根据GB7588-2003《电梯制造与安装安全规范》[1]中7.2项规定了门及其框架的强度;随着经济的发展,电梯也变得越来越重要,电梯事故频发,电梯层门的门机械机构强度也是一个重要的检验项目,关系到特种设备的安全运行。本文针对现场检验中的电梯层门,以Abaqus有限元软件为工具,具体量化其机械结构,建立相关的简化模型并进行网格的划分,基于现场检验提供的数据,设置电梯层门门板的载荷与边界条件,模拟电梯受到静力的物理过程,通过其特定材质厚度的仿真分析,分析特定材质下的门板变形影响情况,为电梯层门门板的设计及检验提供一定的参考。 关键词曳引电梯;层门门板;检验;强度分析 1 电梯层门机械强度的标准要求 根据GB7588-2003《电梯制造与安装安全规范》7.2.3.1规定层门在锁住位置时,所有层门及其门锁应有这样的机械强度: (1)用300 N的静力垂直作用于门扇或门框的任何一个面上的任何位置,且均匀地分布在5 cm2的圆形或方形面积上时,应: ①永久变形不大于1 mm; ②弹性变形不大于15 mm; 试验后,门的安全功能不受影响。 (2)用1000 N的静力从层站方向垂直作用于门扇或门框上的任何位置,且均匀地分布在100 cm2的圆形或方形面积上时,应没有影响功能和安全的明显的永久变形[见7.1(最大10 mm的间隙)和7.7.3.1]。 注:对于(1)和(2),为避免损坏层门的表面,用于提供测试力的测试装置的表面可使用软质材料。 2 现场的检验 2.1 电梯基本技术参数 以现场检验电梯为例,进行层门的测量。结合检规规定的测量方法。该电梯产品制造商为某著名电梯公司,产品型号为TE-Evolution,电梯类别为有机房曳引驱动乘客客梯,额定载重量为1000kg,额定速度为1.75m/s,站/层/门为7/7/7。根据现场的测量,记录下层门相关数据,查阅安装资料,确定层门材质及尺寸。

有限元法在汽车中的应用

有限元法在汽车中的应用 有限元法是随着计算机技术的应用而发展起来的一种先进的技术,广泛应用于各个领域中的科学计算、设计、分析中,成功的解决了许多复杂的设计和分析问题,己成为工程设计和分析中的重要工具。随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法,有限元法在产品设计和研制中所显示出的无可伦比的优越性,使其成为企业在市场竞争中制胜的一个重要工具,有限元法在机电工程中的应用也越来越重要。现代汽车工业技术快速发展,计算机技术不断推陈出新,使分析仿真技术以其快速高效和低成本的强大优势,成为汽车设计的重要手段,各种分析软件成为CAE技术广泛应用的工具。 有限元在机械设计中的优点是有目共睹的,在汽车的设计中这些优势得到了完美的体现,其优点如下: 1、与CAD软件的无缝集成 当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。 2、更为强大的网格处理能力

有限元法求解问题的基本过程主要包括:分析对象的离散化、有限元求解、计算结果的后处理三部分。对于许多工程实际问题,在整个求解过程中,模型的某些区域将会产生很大的应变,引起单元畸变,从而导致求解不能进行下去或求解结果不正确,因此必须进行网格自动重划分。有限元使用的自适应网格往往是许多工程问题如裂纹扩展、薄板成形等大应变分析的必要条件。 3、由求解线性问题发展到求解非线性问题 随着科学技术的发展,线性理论已经远远不能满足设计的要求,许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能解决,必须进行非线性分析求解,为此国外一些公司花费了大量的人力和物力开发非线性求解分析软件,它们的共同特点是具有高效的非线性求解器、丰富而实用的非线性材料库。 4、由单一结构场求解发展到耦合场问题的求解 理论上已经证明,只要用于离散求解对象的单元足够小,所得的解就可足够逼近于精确值。用于求解结构线性问题的有限元方法和软件已经比较成熟,发展方向是结构非线性、流体动力学和耦合场问题的求解。需要对结构场和流场的有限元分析结果交叉迭代求解,即所谓"流固耦合"的问题。由于有限元的应用越来越深入,人们关注的问题越来越复杂,耦合场的求解必定成为CAE软件的发展方向。 5、程序面向用户的开放性 有限元软件允许用户根据自己的实际情况对软件进行设置和扩充,包括用户自定义单元特性、用户自定义材料本构(结构本构、热

基于Ansys的汽车外形风洞试验有限元分析讲解

基于Ansys的汽车外形风洞试验有限元分析 【摘要】汽车空气动力学特性对汽车经济性、驾驶安全性、侧风稳定性等有着较大的影响。通过在catia中建立车身几何造型,基于ANSYS的CFD的有限元仿真环境对车身的空气动力动力学特性进行了数值模拟仿真研究,得出该车体的速度矢量图,压力分布图等,并根据模拟仿真的气动造型提出一些建议,为优化汽车车型及改善汽车空气动力学特性提供参考。 1前言 汽车空气动力学特性是汽车的重要性能,它是指汽车在流场中受到的以阻力为主的包括升力、侧向力的三个气动力及其相应的力矩的作用而产生的车身外部和内部的气流特性、侧风稳定性、气动噪声特性、驾驶室内通风、空气调节等特性。随着汽车技术的提高和高等级公路的发展,汽车速度的不断提高以及汽车在行驶时与空气相互作用的各种气动力也越来越显著,在很大程度上影响着的汽车的经济性、动力性和稳定性。迄今为止,国内外汽车空气动力学的研究一般采取试验法、试验与理论相结合法及数值模拟仿真研究法。试验法主要是指风洞试验,目的是为得到准确反映汽车行驶状态时的空气动力学特性数据,其研究对象主要有汽车空气动力特性和汽车各部位的流场。风洞试验的结果精度高、可靠性好,对研究外部气流干扰件的气动作用大小比较有效,但风洞试验成本高、周期长、需要制作一系列的油泥模型等局限性,这些局限性大大阻碍了其在汽车设计的应用,并且风洞试验只能在有限个截面和其上有限个点处测得速度、压力和温度值,不能获得整个流场中任意点的详细信息。此外风洞试验要精确研究某些复杂的流动现象,如层流向湍流的转变、拖曳涡的形成和发展、尾部涡系结构等,其测量截面的选取在很大程度上主要依靠经验,这样使得精确研究这些复杂流动和机理变得非常困难。而在模型风洞试中,还存在着动力相似和几何相似的影响、试验结果与实车的换算问题,要得到准确的结果还有一定的难度。 数值模拟仿真是借助于计算机将用CFD应用于汽车空气动力学研究的方法,其是在计算机上模拟吹风,运用数值分析的方法计算模拟汽车的空气动力学问题,与风洞试验相比,其有利于CAD/CAM系统的相衔接;不受

汽车结构有限元分析试题及答案(精华)

一 、20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (√)10一维变带宽存储通常比二维等带宽存储更节省存储量。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内; 后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。 3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。 4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。 5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。 6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]e D B σδ=。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u ,v ,w 9.变形体基本变量有位移应变应力基本方程平衡方程物理方程 几何方程 10.实现有限元分析标准化和规范化的载体就是单元 三 选择题(14分) 1 等参变换是指单元坐标变换和函数插值采用__B___的结点和______的插值函数。

汽车结构的常规有限元分析

汽车结构的常规有限元分析

汽车结构的常规有限元分析 作者:唐述斌 本文介绍了与产品研发同步的5个有限元分析阶段,阐述了有限元模型建立过程中应注意的问题,简单介绍了汽车产品的4种常规分析方法,建立汽车设计标准的方法,以及3个强度分析范例。范例1说明了有限元分析应注意的内容,范例2和3介绍了“应力幅值法”在解决汽车车轮轮辐开裂和汽车发动机汽缸体水套底板开裂问题 的应用。 汽车是艺术和技术的结合。一辆好车的主要特点是造型美观、有时代感、结构设计合理、轻量化、材料利用率高,车辆性能先进并且满足国家法规、标准和环保的要求,质量可靠、保养方便、低成本、用户满意、满足市场需求等。在竞争日益激烈的汽车市场,汽车性价比已经成为市场竞争的焦点。采用有限元的常规分析技术,用计算机辅助设计代替经验设计,预测结构性能、实现结构优化,提高产品研发水平、降低产品成本,加快新产品上市。

1. 与产品研发同步的5个有限元分析阶段 在汽车产品研发流程中,一般有如下5个同步的有限元分析阶段: 第0阶段:对样车进行试验和分析; 第1阶段:概念设计阶段的分析; 第2阶段:详细设计阶段的分析; 第3阶段:确认设计阶段的分析; 第4阶段:产品批量生产后改进设计的分析。

有限元分析在产品研发的不同阶段有不同的分析目的和分析内容。有限元分析和试验分析是互相结合和验证的。在详细设计阶段,有些汽车公司对白车身和成品车车身都进行有限元分析,有些汽车公司只对白车身进行有限元分析。 2. 有限元分析的关键环节――建立合理的有限元模型 有限元模型的建立是有限元分析的关键环节。通

过力学分析,把实际工程问题简化为有限元分析的问题,提出建立有限元模型的具体意见和方法,确定载荷和位移边界条件,使得有限元分析有较好的模拟(仿真)效果。 前处理自动生成的网格可能存在问题。建立有限元模型的好坏直接影响计算结果的误差和分析 结论的正确性。在结构的几何图形上,划分有限元网格是建立有限元模型的主要内容之一。在用有限元分析的前处理自动生成网格时,特别是用常应变单元自动生成有限元网格时要非常注意,有可能存在问题,应引起注意,必要时加以改进。要想用有限元分析前处理自动生成出好的有限 元网格也要付出辛勤地劳动。即使在方案比较的情况下,应力和变形的分布规律也不能离谱,计算结果的误差也应在给定的范围之内,建立好的有限元模型与分析经验有关。 在没有有限元分析指南的情况下,用力学分析和试验结果对有限元模型的确认和对计算结果的 验证是非常重要的,以避免不正确的有限元分析结果误导设计。

法兰有限元分析1

法兰有限元分析 1.下法兰计算 1.1 下法兰计算模型 下法兰卡紧方式是通过卡箍将产品法兰与加压端法兰卡紧。经过适当简化,建立如图1所示计算模型。 图1 下法兰计算模型简图 在产品法兰上端面施加全位移约束fix-all;在加压端法兰内表面施加压力F。 1.2 下法兰分析结果 在t 1100压力作用下,产品法兰,加压端法兰以及卡箍的应力分布情况分别如图2,图3,图4所示。 从下图可以看出产品法兰等效应力的最大值为MPa 423,位于Φ199通孔 6. 最薄弱处(如图上Max标示处);最大主应力的最大值为MPa 456,位于Φ199 5. 通孔边的R100圆弧上(如图下左Max标示处);最大剪应力为MPa 184,位于 8. Φ199通孔最薄弱处(如图下右Max标示处)。

图2 产品法兰应力分布图(MPa) 从图3上看,加压端法兰等效应力的最大值位于面上那6个黄点上,但那是由于接触引起的局部应力集中,不予考虑,实际等效应力最大值位置位于中心Φ50通孔上,最大值为MPa 452,同样位于 9. 4. 337,最大主应力的最大值为MPa Φ50通孔上(如图右Max标示处)。

图3 加压端法兰应力分布图(MPa ) 卡箍应力分布如图4所示。其等效应力的最大值位置如图左Max 标示处,最大值为MPa 4.278;最大主应力的最大值位置如图右Max 标示处,最大值为MPa 1.292。 图4 卡箍应力分布图 卡箍的变形用其位移量分布图来表示,卡箍Y 向与Z 向位移量分布如图5。由图看出卡箍在整个装配中向外位移了mm 901.2,自身向外拉伸了 mm mm mm 297.3)396.0(901.2=--。卡箍在整个装配中轴向位移了mm 048.3,卡 箍自身轴向拉伸了mm mm 651 .2)863.2(212.0=---。

悬臂梁—有限元ABAQUS线性静力学分析实例

线性静力学分析实例——以悬臂梁为例 线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在ABAQUS中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 悬臂梁的线性静力学分析 1.1 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises应力、位移分布。 ν 材料性质:弹性模量3 = E=,泊松比3.0 2e 均布载荷:F=103N 图1-1 悬臂梁受均布载荷图 1.2 启动ABAQUS 启动ABAQUS有两种方法,用户可以任选一种。 (1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 --

ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 1.3 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。 图1-2 Create Part对话框 在Name(部件名称)后面输入Beam,Modeling Space(模型所在空间)设

齿轮轴的静力学有限元分析.

课程论文封面 课程名称:结构分析的计算机方法 论文题目:齿轮轴3的静力学有限元分析学生学号: 学生姓名: 任课教师: 学位类别:学硕

目录 1. HyperMesh软件介绍 (1) 1.1 HyperMesh简介 (1) 1.2 HyperMesh的优势 (1) 2. 齿轮轴3的理论分析 (2) 2.1 齿轮轴3的平面简图 (2) 2.2 齿轮轴3的受力分析 (2) 3. 齿轮轴3的三维建模 (4) 3.1 插入斜齿轮 (4) 3.2 绘制轴的三维模型 (5) 4.齿轮轴3的有限元分析 (7) 4.1 几何模型的编辑 (7) 4.2 网格划分 (12) 4.3 材料属性和单元属性的创建 (19) 4.4 施加约束和载荷 (21) 4.5 求解计算和结果分析 (25)

1. HyperMesh软件介绍 1.1 HyperMesh简介 HyperMesh 是一个高质量高效率的有限元前处理器,它提供了高度交互的可视化环境帮助用户建立产品的有限元模型。其开放的架构提供了最广泛的CAD 、CAE 和CFD 软件接口,并且支持用户自定义,从而可以与任何仿真环境无缝集成。HyperMesh 强大的几何清理功能可以用于修正几何模型中的错误,修改几何模型,从而提升建模效率;高质量高效率的网格划分技术可以完成全面的杆梁、板壳、四面体和六面体网格的自动和半自动划分,大大简化了对复杂儿何进行仿真建模的过程:先进的网格变形技术允许用户直接更改现有网格,实现新的设计,无需重构几何模型,提高设计开发效率:功能强大的模型树视图能轻松应对各种大模型的要素显示和分级管理需要,特别适合复杂机械装备的整体精细化建模。HyperMesh 的这些特点,大大提高了CAE 建模的效率和质量,允许工程师把主要精力放在后续的对产品本身性能的研究和改进上,从而大大缩短整个设计周期。 HyperMesh 直接支持目前全球通用的各类主流的三维CAD 平台,用户可以直接读取CAD 模型文件而不需要任何其他数据转换,从而尽可能避免数据丢失或者几何缺陷。HyperMesh 与主流的有限元计算软件都有接口,如Nastran 、Fluent 、ANSYS 和ABAQUS 等,可以在高质量的网格模型基础上为各种有限元求解器生成输入文件,或者读取不同求解器的结果文件。 1.2 HyperMesh的优势 1 .强大的有限元分析建模企业级解决方案 ●通过其广泛的CAD!CAE 接U 能力以及可编程、开放式构架的用户定制接 口能力,HyperMesh 可以在任意工作领域与其他工程程软件进行无缝连接工作。 ●HyperMesh 为用户提供了一个强大的、通用的企业级有限元分析建模平台, 帮助用户降低在建模工具上的投资及培训费用。 2. 无与伦比的网格划分技术一一质量与效率导向 ●依靠全面的梁杆、板壳单元、四面体或六面体单元的自动网格划分或半自动 网格划分能力,HyperMesh 大大降低了复杂有限元模型前处理的工作量。 3. 通过批量处理网恪划分( Batch Mesher ) 及自动化组装功能提高用户效率 ●批处理网格生成技术无需用户进行常规的手工几何清理及网格划分工作,从 而加速了模型的处理工作。 ●高度自动化的模型管理能力,包括模型快速组装以及针对螺栓、定位焊、粘 接和缝焊的连接管理。 4. 交互式的网格变形、自定义设计变量定义功能 ●HyperMesh 提供的网格变形工具可以帮助用户重新修改原有网格即可自动 生成新的有限元模型。 5. 提供了由CAE 向CAD 的逆向接口 ●HyperMesh 为用户提供了由有限元模型生成几何模型的功能。

相关主题
文本预览
相关文档 最新文档