当前位置:文档之家› 二次函数配方法练习

二次函数配方法练习

二次函数配方法练习
二次函数配方法练习

1.抛物线y =2x 2-3x -5配方后的解析式为 顶

点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大.

2.抛物线y =3-2x -x 2的顶点坐标是______,配方后为

它与x 轴的交点坐标是______,与y 轴的交点坐标是______.

3.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______.

4.已知二次函数y =x 2+4x -3,配方后为 当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0.

5.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______.

6.抛物线y =2x 2如何变化得到抛物线y =2(x -3)2+4.请用两种方法变换。

7.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )

A .向下,(0,4)

B .向下,(0,-4)

C .向上,(0,4)

D .向上,(0,-4) 8.抛物线x x y --=221

的顶点坐标是( )

A .)21,1(-

B .)21,1(-

C .)1,21

(- D .(1,0)

《用配方法解二次函数的相关问题》练习教学内容

-1 - 4 资料收集于网络,如有侵权请联系网站删除 用配方法解二次函数的相关问题的导练案一、选择题 1.下列函数中①y=3x+1;②y=4x2-3x;③y=4 x2+x2; ④y=5-2x2,二次函数的 有() A.②B.②③④C.②③D.②④ 2.抛物线y=-3x2-4的开口方向和顶点坐标分别是() A.向下,(0,4)B.向下,(0,-4)C.向上,(0,4)D.向上,(0,-4) 3.抛物线y=-1x2-x的顶点坐标是() 2 A.(1,1) 2B.(-1,)C.(1,1)D.(1,0) 22 4.二次函数y=ax2+x+1的图象必过点() A.(0,a)B.(-1,-a)C.(-1,a)D.(0,-a) 5、已知方程x2-6x+q=0可配方成(x-p)2=7的形式,那么x2-6x+q=2可配方成下列的() A.(x-p)2=5B.(x-p)2=9C.(x-p+2)2=9D.(x-p+2)2=5 6、把方程x2+3x-4=0左边配成一个完全平方式后,所得方程是() 2 A.(x+3)2=-73B.(x+3)2=-15C.(x+3)2=15D.(x+3)2=73 416242416二、填空题 1.把二次函数y=ax2+bx+c(a≠0)配方成y=a(x-h)2+k形式 为,顶点坐标是,对称轴是直线.当x=时,y最值=;当a<0时,x时,y随x增大而减小;x时,y随x 增大而增大.

2.抛物线y=2x2-3x-5的顶点坐标为.当x=时,y有最______值是,与x轴的交点坐标是,与y轴的交点坐标是,当x时,y随x增大而减小,当x时,y随x增大而增大. 3.抛物线y=3-2x-x2的顶点坐标是,它与x轴的交点坐标是,与y轴的交点坐标是. 4.把二次函数y=x2-4x+5配方成y=a(x-h)2+k的形式,得,这个函数的图象有最点,这个点的坐标为. 5.已知二次函数y=x2+4x-3,当x=时,函数y有最值是,当x时,函数y随x的增大而增大,当x=时,y=0.6.抛物线y=ax2+bx+c与y=3-2x2的形状大小完全相同,只是位置不同,则a=. 7.抛物线y=2x2先向平移个单位就得到抛物线y=2(x-3)2,再向平移个单位就得到抛物线y=2(x-3)2+4. 三、解答题 1.已知二次函数y=2x2+4x-6. (1)将其化成y=a(x-h)2+k的形式;

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

二次函数知识点与典型试题

二次函数知识点总结与典型试题 二次函数知识点: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项.二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2 y ax c =+的性质: 结论:上加下减。 总结: 3. y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质:总结:

二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配 方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般 我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对 称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值2 44ac b a -. 六、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都 可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 七、二次函数的图象与各项系数之间的关系 1. 二次项系数a

二次函数配方法练习

二次函数配方法练习 The latest revision on November 22, 2020

1.抛物线y =2x 2-3x -5配方后的解析式为顶点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大 . 2.抛物线y =3-2x -x 2的顶点坐标是______,配方后为 它与x 轴的交点坐标是______,与y 轴的交点坐标是______. 3.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______. 4.已知二次函数y =x 2+4x -3,配方后为当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0. 5.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______. 6.抛物线y =2x 2如何变化得到抛物线y =2(x -3)2+4.请用两种方法变换。 7.抛物线y =-3x 2-4的开口方向和顶点坐标分别是() A .向下,(0,4) B .向下,(0,-4) C .向上,(0,4) D .向上,(0,-4) 8.抛物线x x y --=221 的顶点坐标是() A .)21,1(- B .)21,1(- C .)1,21 (- D .(1,0)

第一讲 二次函数与待定系数法、配方法

第一讲 二次函数的认识与待定系数法、配方法 【问题探索】 某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,多种一棵树,平均每棵树就会少结5个橙子. (1)假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子? (2)如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式. 答案:(1)共有(100)x +棵橙子树,平均每棵树结(6005)x -个橙子; (2)y 与x 之间的关系式为:(100)(6005)y x x =+-化简得:2 510060000y x x =-++。 【新课引入】 提问: 1、在式子2 510060000y x x =-++中,y 是x 的函数吗?若是,与我们以前学过的函数相同吗?若不相同,那是什么函数呢? 答案:根据函数的定义,可知y 是x 的函数,与以前学过的一次函数和反比例函数不同,猜想它是二次函数。 2、请写一个一次函数关系式和一个反比例函数关系式,通过比较三个函数关系式,猜想 2510060000y x x =-++是什么函数,并说出该函数的式子特征。 (其中) 答案:比较结果见上表,由表格可猜想该函数是二次函数,该式子的特征是①含两个变量x (自变量)、y (因变量);②式子右边有三项:二次项、一次项、常数项,最高次项是2次。 总结:一般地,形如2 y ax bx c =++(,,a b c 是常数,0a ≠)的函数叫做x 的二次函数. 注意:定义中只要求二次项系数a 不为零(必须存在二次项),一次项系数b 、常数项c 可以为零。因此,最简单的二次函数形式是2 (0)y ax a =≠ 举例:2 510060000y x x =-++和2 100200100y x x =++都是二次函数.我们以前学过的正方形面积A 与边长a 的关系2A a =,圆面积S 与半径r 的关系2 S r π=等,都是二次函数. 3、(100)(6005)y x x =+-是二次函数吗? 答案:是,因为化简能变成2 y ax bx c =++(0a ≠)的形式。

二次函数之配方法求顶点式以及与一元二次方程的关系

§6.2二次函数的图像与性质⑸ 【课前自习】 1. 根据y 2 2.抛物线y =2(x +2)2+1的开口向 ,对称轴是 ;顶点坐标是 , 说明当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 3.抛物线y =-2(x -2)2-1的开口向 ,对称轴是 ;顶点坐标是 , 说明当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 4.抛物线y =-1 2(x +1)2-3与抛物线 关于x 轴成轴对称; 抛物线y =-1 2(x +1)2-3 与抛物线 关于y 轴成轴对称; 抛物线y =-1 2(x +1)2-3与抛物线 关于原点对称. 5. y =a (x +m )2+n 被我们称为二次函数的 式. 一、探索归纳: 1.问题:你能直接说出函数y =x 2+2x +2 的图像的对称轴和顶点坐标吗? . 2.你有办法解决问题①吗? y =x 2+2x +2的对称轴是 ,顶点坐标是 . 3.像这样我们可以把一个一般形式的二次函数用 的方法转化为 式,从而直接得到它的图像性质. 练习1.用配方法把下列二次函数化成顶点式: ①y =x 2-2x -2 ②y =x 2+3x +2 ③y =2x 2+2x +2

④y =ax 2+bx +c (a ≠0) 4.归纳:二次函数的一般形式y =ax 2+bx +c (a ≠0)可以被整理成顶点式: , 说明它的对称轴是 ,顶点坐标公式是 . 练习2.用公式法把下列二次函数化成顶点式: ①y =2x 2-3x +4 ②y =-3x 2+x +2 ③y =-x 2-2x 二、典型例题: 例1、用描点法画出y =1 2x 2+2x -1的图像. ⑴用 法求顶点坐标: ⑶在下列平面直角坐标系中描出表中各点,并把这些点连成平滑的曲线: ⑷观察图像,该抛物线与y 轴交与点 ,与x 轴有 个交点. 例2、已知抛物线y =x 2-4x +c 的顶点A 在直线y =-4x -1上 ,求抛物线的顶点坐标.

二次函数配方法练习

精品文档 1抛物线y = 2x2—3x—5配方后的解析式为 点坐标为______ .当x= ________ 时,y有最_______ 值是 _____ , 与x轴的交点是_______ ,与y轴的交点是______ ,当x _____ 时,y随x增大而减小,当x ______ 时,y随x增大而增大. 2. ____________________________________ 抛物线y = 3 —2x —x2的顶点坐标是___________________________ ,配方后为它与x轴的交点坐标是_______ ,与y轴的交点坐标是_______ . 3. 把二次函数y=x2—4x+ 5配方成y= a(x —h)2+ k的形式,得 ______ ,这个函数的图象有最________ 点,这个点的坐标为 4. 已知二次函数y = x2+ 4x—3,配方后为当x = ______ 时,函数y有最值____ ,当x 时,函数y随x 的增大而增 大,当x= __________________ 时,y= 0. 5. ____________ 抛物线y = ax2+bx+ c与y= 3—2x2的形状完全相同,只是位置不同,则a= . 6. 抛物线y= 2x2如何变化得到抛物线y = 2( x —3)2+ 4.请用两种 方法变换。 7. 抛物线y= —3x2—4的开口方向和顶点坐标分别是() A. 向下,(0 , 4) B. 向下,(0,—4) C. 向上,(0, 4) D.向 上,(0,—4)

8 .抛物线y -x2x的顶点坐标是() 2 A. (1, 1) B.( 1,2) C. (1, 1) D. (1 , 0)

二次函数配方法练习

二次函数配方法练习 This model paper was revised by the Standardization Office on December 10, 2020

1.抛物线y =2x 2-3x -5配方后的解析式为 顶点坐标为 ______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大. 2.抛物线y =3-2x -x 2的顶点坐标是______,配方后为 它与x 轴的交点坐标是______,与y 轴的交点坐标是______. 3.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______. 4.已知二次函数y =x 2+4x -3,配方后为 当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0. 5.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______. 6.抛物线y =2x 2如何变化得到抛物线y =2(x -3)2+4.请用两种方法变换。 7.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( ) A .向下,(0,4) B .向下,(0,-4) C .向上,(0,4) D .向上,(0,-4) 8.抛物线x x y --=22 1的顶点坐标是( )

配方法求二次函数的对称轴和顶点坐标

配方法求二次函数的对称轴和顶点坐标 提取二次项系数 加上再减去一次项系数一半的平方 例1、试用配方法把二次函数①y =-2x 2+4x -4 ②5632+-=x x y 化为k h x a y +-=2)(的形式并完成下表: 练习;一、填空题: 1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) c bx ax y ++=2??? ? ?++=a c x a b x a 2??? ? ??+??? ??-??? ??++=a c a b a b x a b x a 22222????????-+??? ??+=222442a b ac a b x a .44222a b ac a b x a -+??? ??+=.2:a b x -=它的对称轴是直线.44,22???? ? ?--a b ac a b 它的顶点是

5.已知抛物线y =x 2+(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 6.抛物线y=x 2+2x -3的对称轴是 。 7.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。 8.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线, 且其顶点在原点,此抛物线的开口________. 9.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0. 10.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。 11.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。 二、用配方法求二次函数的对称轴和顶点坐标 1、y=x 2-x-2 2、y=12 1212++-x 3、y=12 1212+--x x 4、y=22++-x x

二次函数—配方法

二次函数图像和性质(5) 学习目标: 1.配方法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 2.熟记二次函数y =ax 2+bx +c 的顶点坐标公式; 3.会画二次函数一般式y =ax 2+bx +c 的图象. 学习重点:配方法或公式法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 学习难点:配方法求二次函数一般式y =ax 2+bx +c 的顶点坐标、对称轴; 学习过程: 一、复习引入 1、()k h x a y +-=2 的图像和性质填表: 2.抛物线()1222 ++=x y 的开口向 ,对称轴是 ;顶点坐标是 , 当x = 时,y 有最 值是 ;无论x 取任何实数,y 的取值范围是 . 是由抛物线2 2x y =先向 平移 个单位,再向 平移 个单位得到的。 二、自主探究 探究一:配方法求顶点坐标、对称轴 (1)问题:你能直接说出函数222++=x x y 的图像的对称轴和顶点坐标吗? (2)你有办法解决问题①吗? 222++=x x y 222++=x x y 的对称轴是 ,顶点坐标是 . (3)像这样我们可以把一个一般形式的二次函数用 的方法转化为 式, 从而直接得到它的图像性质. (4)用配方法把下列二次函数化成顶点式: ①222+-=x x y ②232 ++=x x y ③ y =12 x 2-6x +21 对称轴 对称轴 对称轴 顶点 顶点 顶点 ④4322 +-=x x y ⑤232 ++-=x x y ⑥x x y 22 --= 对称轴 对称轴 对称轴 顶点 顶点 顶点

探究二:用公式法求顶点坐标、对称轴 c bx ax y ++=2 = 对称轴 顶点坐标 用公式法把下列二次函数的顶点坐标、对称轴: ①4322 +-=x x y ②232 ++-=x x y ③x x y 22 --= 三、合作交流 根据c bx ax y ++=2的图象和性质填表: 四、精讲点拨 1、抛物线2 2()y x m n =++(m n ,是常数)的顶点坐标是( ) A .()m n , B .()m n -, C .()m n -, D .()m n --, 2、二次函数2 365y x x =--+的图象的顶点坐标是( ) A .(18)-, B .(18), C .(12)-, D .(14)-, 3、在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为 A .222-=x y B .222+=x y C .2)2(2-=x y D .2)2(2+=x y 4、抛物线3)2(2+-=x y 的顶点坐标是( ) A .(2,3) B .(-2,3) C .(2,-3) D .(-2,-3) 5、二次函数2(1)2y x =++的最小值是( ). A .2 B .1 C .-3 D . 2 3 6、将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .22(1)y x =+ B .22(1)y x =- C .221y x =+ D .221y x =- 7、抛物线1822-+-=x x y 的顶点坐标为 (A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9) 8、把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式 A.()22412+--=x y B. ()42412+-=x y C.()42412++-=x y D. 3212 12 +??? ??-=x y 9、把抛物线2 y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 A .2 (1)3y x =--- B .2 (1)3y x =-+- C .2(1)3y x =--+ D .2 (1)3y x =-++

二次函数配方法练习

二次函数 配方法(练习) 学习目标:能熟练地利用配方法求二次函数图象的对称轴和顶点坐标。 学习重点:利用配方法求二次函数图象的对称轴和顶点坐标。 学习难点:利用配方法求二次函数图象的对称轴和顶点坐标。 学习过程: 一、课前热身 1、写出下列二次函数图象的开口方向、对称轴和顶点坐标: ⑴ y=2x 2 (2) y =-12 x 2-1 (3) y =-12 (x +1)2 ⑷ y =-12 (x -1)2-1 (5) y=12 (x -6)2 +3 2、将二次函数2 (2)3y x =--化成一般形式y =ax 2+bx +c ,结果是 二、新授引入: 当一个二次函数所给的关系式是顶点式的时候,我们都可以很熟练的求出它们的开口方向,对称轴,顶点坐标。那么当一个二次函数所给的关系式是一般形式时,我们又如何求它的开口方向,对称轴,顶点坐标呢? 例如:如何求二次函数241y x x =-+的图象的开口方向、对称轴和顶点坐标? 通过课前热身2我们可以发现,其实241y x x =-+可以转化成2(2)3y x =--。 也就是把一般形式转化成了顶点式。那么如何把一个二次函数的一般式转化成顶点式,这就是本节课所要探索的主要内容。 三、探索过程: 1、用配方法解一元二次方程2 410x x -+= 2222212414212322,2x x x x x x x -=--+=-+=-=∴==+…………………①常数项移到方程右边 ………②两边加上一次项系数一半的平方 (x-2)?………………③写成完全平方形式 ④直接开平方 ……⑤求出结果

在刚才的配方法解方程里其实已经告诉我们如何把一般式转化成顶点式。 2.把下列二次函数化成顶点式,并求出它们的开口方向,对称轴,顶点坐标。 (1)261y x x =+- (2)2 241y x x =-+- 四、巩固练习:求下列二次函数的开口方向,对称轴,顶点坐标。 (1)221y x x =+- (2)2 241y x x =-+ (3)2y 3x 2x?=+ (4)2y x 2x =-- (5)2y 2x 8x 8=-+- (6)21432 y x x = -+

(824)求二次函数的解析式专项练习60题(有答案)ok

求二次函数解析式专项练习60题(有答案) 1.已知二次函数图象的顶点坐标是(1,﹣4),且与y轴交于点(0,﹣3),求此二次函数的解析式. 2.已知二次函数y=x2+bx+c的图象经过点A(﹣1,12),B(2,﹣3). (1)求这个二次函数的解析式. (2)求这个图象的顶点坐标及与x轴的交点坐标. 3.在平面直角坐标系xOy中,直线y=﹣x绕点O顺时针旋转90°得到直线l,直线l与二次函数y=x2+bx+2图象的一个交点为(m,3),试求二次函数的解析式. 4.已知抛物线y=ax2+bx+c与抛物线形状相同,顶点坐标为(﹣2,4),求a,b,c的值. 5.已知二次函数y=ax2+bx+c,其自变量x的部分取值及对应的函数值y如下表所示: (1)求这个二次函数的解析式; (2)写出这个二次函数图象的顶点坐标. x …﹣2 0 2 … y …﹣1 1 11 … 6.已知抛物线y=x2+(m+1)x+m,根据下列条件分别求m的值. (1)若抛物线过原点; (2)若抛物线的顶点在x轴上; (3)若抛物线的对称轴为x=2.

7.已知抛物线经过两点A(1,0)、B(0,3),且对称轴是直线x=2,求其解析式. 8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题: (1)写出y>0时,x的取值范围_________; (2)写出y随x的增大而减小的自变量x的取值范围_________; (3)求函数y=ax2+bx+c的表达式. 9.已知二次函数y=x2+bx+c的图象经过点A(﹣2,5),B(1,﹣4). (1)求这个二次函数解析式; (2)求这个图象的顶点坐标、对称轴、与坐标轴的交点坐标; (3)画出这个函数的图象. 10.已知:抛物线经过点A(﹣1,7)、B(2,1)和点C(0,1). (1)求这条抛物线的解析式; (2)求该抛物线的顶点坐标. 11.若二次函数y=ax2+bx+c的图象与y轴交于点A(0,3),且经过B(1,0)、C(2,﹣1)两点,求此二次函数的解析式.

1、二次函数(最全的中考二次函数知识点总结)

第一部分 二次函数基础知识 ? 相关概念及定义 二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是 2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ? 二次函数各种形式之间的变换 二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2 的形式,其 中a b a c k a b h 4422 -=-=,. 二次函数由特殊到一般,可分为以下几种形式:①2ax y =; ②k ax y +=2;③()2 h x a y -=;④()k h x a y +-=2 ;⑤c bx ax y ++=2. ? 二次函数解析式的表示方法 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐 标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的 二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. ? 二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点 ()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. ? 二次函数2ax y =的性质 y ax c =+

二次函数知识点总结

二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2 y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2 y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2 y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2 y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的 增大而减小;0x =时, y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的 增大而增大;0x =时, y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的 增大而减小;0x =时, y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的 增大而增大;0x =时, y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的 增大而减小;x h =时, y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的 增大而增大;x h =时, y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()h k , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的 增大而减小;x h =时, y 有最小值k .

二次函数的配方问题(一)

二次函数的配方问题(一) 四川崇州:小事让我来做噻! 1、把二次函数:()152x 3y 2 ++=-的图像,先向右平移2个单位长度,再向上平移3个单位长度后,所得新二次函数的表达式为: ; 2、把抛物线:3x 12x 3y 2+=--先向右平移2个单位长度,再向上平移3个单位长度后,所得新抛物线的表达式为: ; 3、阅读下例材料,并解决相关问题: 通过做第1、2题,我们可以感受到:()152x 32++-应该等于3x 12x 32 +--,其实我们可以进行检验:左边=右边。虽然把代数式“()152x 32 ++-”转化成“3x 12x 32+- -”较为容易,但要想把代数式“3x 12x 32 +--”转化成“()152x 32++-”却不太容易。如果一个二次函数形如:()0a c bx ax y 22≠++=,那么我们把这种形式称为这个二次函数的“一般形式”。 如果一个二次函数形如: ()()0a k h x a y 2 ≠++=,那么我们把这种形式称为这个二次函数的“配方形式”。怎样把一般形式:()0a c bx ax y 22≠++=转化为配方形式:()()0a k h x a y 2 ≠++=呢? (1)、小王的做法(程序化配方法): c bx ax y 2++= 第一步:分家;)(→++=c bx ax 2 第二步:提取;→+??? ? ?+=c x a b x a 2 第三步:配方;-→+?? ??????????? ????????????? ??++=c a 2b a 2b x a b x a 222 c a 4b 2a b x a 222+??????? ???? ??+=- c a 4b a 2b x a 22 +??? ? ?+=- 第四步:整理-→+?? ? ??+=a 4b ac 4a 2b x a 22

(完整版)二次函数经典解题技巧

龙文教育学科教师辅导讲义

解:(1)根据题意,得?????+?-?=-+-?--?=. 0405, )1(4)1(02 2c a c a …2分 解得 ? ? ?-==.5, 1c a …………………………3分 ∴二次函数的表达式为542 --=x x y .……4分 (2)令y =0,得二次函数542 --=x x y 的图象与x 轴 的另一个交点坐标C (5, 0).……………5分 由于P 是对称轴2=x 上一点, 连结AB ,由于262 2= +=OB OA AB , 要使△ABP 的周长最小,只要PB PA +最小.…………………………………6分 由于点A 与点C 关于对称轴2=x 对称,连结BC 交对称轴于点P ,则PB PA += BP +PC =BC ,根据两点之间,线段最短,可得PB PA +的最小值为BC . 因而BC 与对称轴2=x 的交点P 就是所求的点.……………………………………8分 设直线BC 的解析式为b kx y +=,根据题意,可得? ? ?+=-=.50,5b k b 解得???-==.5, 1b k 所以直线BC 的解析式为5-=x y .…………………………………………………9分 因此直线BC 与对称轴2=x 的交点坐标是方程组? ? ?-==5,2x y x 的解,解得???-==.3, 2y x 所求的点P 的坐标为(2,-3).……………………………10分 压轴题中求最值 此种题多分类讨论,求出函数关系式,再求各种情况的最值,最后求出最值。 典型例题: 1如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,BC =6,AD =3,∠DCB =30°.点E 、F 同时从B 点出发,沿射线BC 向右匀速移动.已知F 点移动速度是E 点移动速度的2倍,以EF 为一边在CB 的上方作等边△EFG .设E 点移动距离为x (x >0). ⑴△EFG 的边长是____(用含有x 的代数式表示),当x =2时,点G 的位置在_______; ⑵若△EFG 与梯形ABCD 重叠部分面积是y ,求 ①当0<x ≤2时,y 与x 之间的函数关系式; ②当2<x ≤6时,y 与x 之间的函数关系式; ⑶探求⑵中得到的函数y 在x 取含何值时,存在最大值,并求出最大值. A D G

求二次函数的解析式专项练习60题(有答案)ok

创作编号:BG7531400019813488897SX 创作者:别如克* 求二次函数解析式专项练习60题(有答案) 1.已知二次函数图象的顶点坐标是(1,﹣4),且与y轴交于点(0,﹣3),求此二次函数的解析式. 2.已知二次函数y=x2+bx+c的图象经过点A(﹣1,12),B(2,﹣3). (1)求这个二次函数的解析式. (2)求这个图象的顶点坐标及与x轴的交点坐标. 3.在平面直角坐标系xOy中,直线y=﹣x绕点O顺时针旋转90°得到直线l,直线l 与二次函数y=x2+bx+2图象的一个交点为(m,3),试求二次函数的解析式. 4.已知抛物线y=ax2+bx+c与抛物线形状相同,顶点坐标为(﹣2,4),求a,b,c的值. 5.已知二次函数y=ax2+bx+c,其自变量x的部分取值及对应的函数值y如下表所示:(1)求这个二次函数的解析式; (2)写出这个二次函数图象的顶点坐标. x …﹣2 0 2 …

y …﹣1 1 11 … 6.已知抛物线y=x2+(m+1)x+m,根据下列条件分别求m的值. (1)若抛物线过原点; (2)若抛物线的顶点在x轴上; (3)若抛物线的对称轴为x=2. 7.已知抛物线经过两点A(1,0)、B(0,3),且对称轴是直线x=2,求其解析式. 创作编号:BG7531400019813488897SX 创作者:别如克* 8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题: (1)写出y>0时,x的取值范围_________; (2)写出y随x的增大而减小的自变量x的取值范围_________; (3)求函数y=ax2+bx+c的表达式.

二次函数配方

二次函数配方法 知识点结构: 1、二次函数y =ax 2+bx +c 的性质; 2、二次函数解析式的表示方法及其求法。 知识点一 二次函数y =ax 2+bx +c 的性质 1、二次函数y =ax 2 +bx +c (a ≠0)的图象是以(-a b 2,a b ac 442 -)为顶点,以x =-a b 2为对称轴的一条抛物线. 2、在画二次函数的图象时应抓住以下五点:开口方向,对称轴,顶点,与x 轴交点,与y 轴交点. 3、把y ax bx c =++2配方成()y a xh k a =-+≠2 0()的形式. 例题: 例1 函数y=-x 2-4x+3图象顶点坐标是( ) A.(2,-1) B.(-2,1) C.(-2,-1) D.(2, 1) 例2 二次函数2(1)2y x =++的最小值是( ). A .2 B .1 C .-3 D . 23 例3 把二次函数122--=x x y 配方成顶点式为( ) A .2)1(-=x y B . 2)1(2--=x y C .1)1(2++=x y D .2)1(2-+=x y 例4 已知点(-1,3)(3,3)在抛物线y ax bx c =++2上,则抛物线的对称轴是( ) A. x a b =- B. x =2 C. x =3 D. x =1 例5 已知二次函数y=ax2-2x+3的图象如图 ,则一次函数y=ax+3的图象不经过( ) A. 第一象限 B.第二象限 C.第三象限 D.第四象限 例6 二次函数y =ax 2+bx +c 的图象如图所示,则下列结论正确的是( ) A . a ﹥0,b ﹤0,c ﹥0 B . a ﹤0,b ﹤0,c ﹥0 C . a ﹤0,b ﹥0,c ﹤0 D . a ﹤0,b ﹥0,c ﹥0 例7 若抛物线y =x 2-bx +9的顶点在x 轴上,则b 的值为______。 例8 函数y x x =---123522图象沿y 轴向下平移2个单位, 再沿x 轴向右平移3个单位,得到函数____________的图象。 例9 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。 (1)y =3x 2+2x ; (2)y =-x 2-2x (3)y =-2x 2+8x -8 (4)y =12 x 2-4x +3

《用配方法解二次函数的相关问题》练习

用配方法解二次函数的相关问题的导练案 一、选择题 1.下列函数中①y =3x +1;②y =4x 2-3x ;;422 x x y += ③④y =5-2x 2,二次函数的有( ) A .② B .②③④ C .②③ D .②④ 2.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( ) A .向下,(0,4) B .向下,(0,-4) C .向上,(0,4) D .向上,(0,-4) 3.抛物线x x y --=221的顶点坐标是( ) A .)21 1(-, B .)211(,- C .)121(-, D .(1,0) 4.二次函数y =ax 2+x +1的图象必过点( ) A .(0,a ) B .(-1,-a ) C .(-1,a ) D .(0,-a ) 5、已知方程x 2-6x+q=0可配方成(x-p )2=7的形式,那么x 2-6x+q=2可配方成下列的( ) A .(x-p )2=5 B .(x-p )2=9 C .(x-p+2)2=9 D .(x-p+2)2=5 6、把方程x 2+2 3 x-4=0左边配成一个完全平方式后,所得方程是( ) A .(x+43)2=1673- B .(x+23)2=415- C .(x+23)2=415 D .(x+43)2=1673 二、填空题 1.把二次函数y =ax 2+bx +c (a ≠0)配方成y =a (x -h )2+k 形式 为 ,顶点坐标是 ,对称轴是直线 .当x = 时,y 最值= ;当a <0时,x 时,y 随x 增大而减小;x 时,y 随x 增大而增大.

2.抛物线y=2x2-3x-5的顶点坐标为.当x=时,y有最______值是,与x轴的交点坐标是,与y轴的交点坐标是,当x时,y随x增大而减小,当x时,y随x增大而增大. 3.抛物线y=3-2x-x2的顶点坐标是,它与x轴的交点坐标是,与y轴的交点坐标是. 4.把二次函数y=x2-4x+5配方成y=a(x-h)2+k的形式,得,这个函数的图象有最点,这个点的坐标为. 5.已知二次函数y=x2+4x-3,当x=时,函数y有最值是,当x时,函数y随x的增大而增大,当x=时,y=0.6.抛物线y=ax2+bx+c与y=3-2x2的形状大小完全相同,只是位置不同,则a=. 7.抛物线y=2x2先向平移个单位就得到抛物线y=2(x-3)2,再向平移个单位就得到抛物线y=2(x-3)2+4. 三、解答题 1.已知二次函数y=2x2+4x-6. (1)将其化成y=a(x-h)2+k的形式;

相关主题
文本预览
相关文档 最新文档