当前位置:文档之家› 多轴运动控制器和驱动器

多轴运动控制器和驱动器

多轴运动控制器和驱动器
多轴运动控制器和驱动器

多轴运动控制器

1、运动控制器概述

随着现代控制技术的提高,运动控制器的出现在某种意义上满足了新型数控系统的标准化、开放性的要求,为各种工业设备、国防设备以及智能医疗装置的自动化控制系统的研制和改造提供一个统一的硬件平台。整体而言,运动控制器是一种控制装置,其核心为中央逻辑控制单元,敏感元件一般为传感器,控制对象为电机或动力装置和执行单元。目前,大多数的运动控制器是一种基于PC机或工业PC机的上位控制单元,多用于控制步进电机或伺服电机,在控制过程中,控制器可以完成运动控制的所有细节(包括脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等)。一般地,控制器都配有开放的函数库供用户在DOS或Windows系统平台下自行开发,从而构造所需的控制系统。

图1给出典型的PC+运动控制器组成的开放式控制系统的简图:一般地,运动控制器发送运动控制指令到伺服驱动器,由伺服驱动器驱动伺服电机运行,再通过伺服电机上的编码器反馈信号返回至运动控制器,至此,整个运动控制系统实现运动控制器的闭环控制。

图1 典型的Pc+运动控制器组成的开放式控制系统的

2、运动控制器国内外研究现状

在20世纪90年代,国际发达国家就已经相继推出运动控制器产品,包括美国Deltatau公司的PMAC多轴运动控制器,英国TRIO 公司的PCI208多轴运动控制器以及德国MOVTEC公司开发的DEC4T运动控制器等。近年来,运动控制器作为一个独立的工业自动化控制类产品,已经被越来越多的工业领域所接受。目前,由这些发达国家研制的运动控制器已开始在机器人控制、半导体加工、飞行模拟器等新兴行业得到了很大的应用,其在传统的机床控制领域所占的市场份额也在不断的扩大。

我国在运动控制器产品开发方面相对滞后,1999年固高科技有限公司开始开发、生产开放式运动控制器,随后,国内又有其它几家公司进入该领域,但实际上,其大多是在国内推广国外生产的运动控制器产品,真正进行自主开发的公司较少。深圳固高、深圳摩信是国内较早(20世纪90年代晚期)从事独立开放式运动控制器的厂家,推出了一些通用的运动控制器。如固高的GT系列运动控制器、摩信的MCT8000系列运动控制器;长沙力鼎科技有限公司的MC系列3轴模拟电压控制/编码器反馈型运动控制器,4轴有/无反馈脉冲输出型运动控制器;南京顺康数码科技有限公司的MC6014A使用了带插补功能、可以控制4个电机的DSP运动控制芯片,适用于PC机ISA总线的线路板;成都步进机电有限公司的MPC01和MPC02系列3轴步进或数字式伺服控制运动控制器。

目前,我国作为世界上经济发展最快的国家之一,市场上新设备的控制需求、传统设备技术升级和换代对运动控制器的市场需求越来越大,在这样的形势下,研制出具有自主知识产权的高水平、高可靠性的开放式运动控制器,突破发达国家对我国的技术壁垒,实现运动控制器的国产化显得尤为重要。

3、运动控制器分类

目前市场上可以看到的运动控制器依据不同的原则有不同的分类。按照运动控制器的核心技术方案,主要有基于模拟电路型、基于微控制单元型、基于可编程逻辑型、基于数字信号处理(DSP)型等;按照运动控制器的系统结构,可分为基于总线的运动控制器和独立应用的运动控制器以及混合型的运动控制器;按照位置控制原理,可以分为开环、半闭环和闭环三种基本的控制方案;按照被控量的性质和运动控制方式,可以分为位置控制、速度和加速度控制、同步控制、力和力矩控制。

而国内的运动控制器生产厂商提供的产品大致可以分为三类:

(1)以单片机或微处理器作为核心的运动控制器,这类运动控制器速度较慢,精度不高,成本相对较低。在一些只需要低速点位运动控制和对轨迹要求不高的轮廓运动控制场合应用。

(2)以专用芯片(ASIC)作为核心处理器的运动控制器,这类运动控制器结构比较简单,大多数工作于开环控制方式,基本满足于对单轴的点位控制。但对于要求多轴协调运动和高速轨迹插补控制的设备,这类运动控制器不能够提供连续插补功能,很难满足要求。

(3)基于PC总线的以DSP和FPGA为核心处理器的开放式运动控制器。近年来,DSP以其功能强、速度快、编程和开发方便等优点,在多轴运动控制技术领域得到了很大的发展。此类控制器即以DSP作为核心处理器,以PC机作为信息处理平台,以插卡形式嵌入PC机,形成“PC+运动控制器”的模式。功能上,通常都能提供板上的多轴协调运动控制与复杂的运动轨迹规划、实时的插补运算、误差补偿、伺服滤波算法,能够实现闭环控制。

第一类运动控制器由于其性能的限制,主要应用于一些单轴简单运动的场合。第二类运动控制器因其结构简单、成本较低,占有一定的市场份额,但由于其专用芯片(ASIC)仅能提供运动控制的基本功能,限制了这种运动控制器在复杂条件的使用。第三类运动控制器是目前国内运动控制器产品的主流,应用也从传统的机床数控扩展到了如机器人控制、激光加工、纺织、电子加工等多个领域。本课题的研究内容即为设计出一款适应于工业焊接机械人的第三类运动控制器。

4、运动控制器发展趋势

随着控制技术的快速发展,传统的运动控制技术由于其封闭式结构!控制软件兼容性差等原因,已经不能满足现代工业的发展要求。

目前而言,新型的运动控制器有以下几个主要的发展趋势:

现阶段,新型数控系统标准化、柔性化的要求促使了现代控制系统中开放性体系概念的提出。所谓开放性体系即系统应具备使不同应用程序能很好地运行于不同供应商提供的不同平台之上的能力,不同

应用程序之间能够相互操作的能力和一致的用户交互风格。新型运动控制器应该以开放化为目标,能够方便地与机床、机器人等被控设备联接,硬件上能够实现一到多个坐标轴位置、速度和轨迹伺服控制,软件上具有完善的轨迹插补、运动规划和伺服控制。

其次,新型运动控制器应该在结构上应形成模块化,易于实现数控系统的集成化和标准化,可以通过积木方式进行方便的相互组合,以建立适用于不同场合、不同功能需求控制系统,为各种工业设备、国防设备以及智能医疗装置的自动化控制系统的研制和改造提供一个统一的硬件平台。

最后,新型的运动控制器应该紧跟计算机技术的快速发展。随着现代计算机功能的强大,利用运动控制卡和PC机相结合,或者将PC 系统直接嵌入运动控制卡中已经成为一个重要的发展趋势。

驱动器

1、直流无刷电机的优点及其驱动器

直流电机具有最优越的调速性能,主要表现在调速方便(可无级调速),调速范围宽,低速性能好(启动转矩大,启动电流小),运行平稳,噪音低,效率高,应用场合从工业到民用(如家电、汽车等)场合极其广泛。但是由于无刷直流电动机<>功率因数高,又无转子损耗所以效率很高,转子转速严格与电源频率保持同步,转子磁场用永久磁铁产生。目前这种电机广泛应用于数控机床的进给驱动,机器人的伺服驱动以及新一代家用电器的变速驱动中,由于变频调速

方法具有高效率、宽范围和高精度的调速性能,因此应用前景十分看好。

目前无刷直流电动机的定子、转子结构与传统的直流电动机无大的差别,由于电子换相电路的成本高于机械换向器,因而使无刷直流电动机的成本及售价增加,从而限制了它的应用。特别是当前直流电动机的应用已扩展到民用产品的领域,无刷直流电动机的价格是限制其应用的主要因素。

1.1直流无刷电机的优点

⑴电机可以无级调速,工作转速范围很大,可满足各种运行模式下的转速要求。由于采用DSP 芯片将驱动器及控制器集成于一体,用户可方便地在驱动器上编程,从而实现各种变速甚至定位动作。

⑵无刷直流电机可以工作在超低转速,这一点超越了交流变频器的性能,所以新型无刷直流电机完全可以取代小功率交流变频器。

⑶无刷直流电机起动力矩大,几乎不受电网电压波动的影响。

⑷无刷直流电机比交流变频系统效率还要高。

⑸无刷直流电机温升较低,与同功率交流电机相比温升可低30%左右,因而其寿命要大大高于交流电机。

⑹无刷直流电机噪音较低。

1.2直流无刷电机的驱动器

永磁无刷直流电动机调速系统中的驱动器一般采用电压源型脉宽调制(PWM)交-直-交变频器。变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响:谐波造成电机发热,能耗增加,引起电

磁和机械噪声。二要看对电网的谐波污染和输入功率因数。这两方面,对于在量大面广的家用电器中的应用尤为重要,它直接关系到能量的节省、噪音对环境的影响和对电网的污染。由高开关频率自关断器件组成的PWM 交—直—交变频器再加上合理的控制可以达到较高的性能。

2、交流伺服电机的优点及其驱动器

2.1交流伺服电机的优点

(1)无电刷和换向器,因此工作可靠,对维护和保养要求低。(2)定子绕组散热比较方便。

(3)惯量小,易于提高系统的快速性。

(4)适应于高速大力矩工作状态。

2.2交流伺服电机驱动器

交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元及相应的反馈检测器件组成。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。

目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过

热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

伺服驱动器大体可以划分为功能比较独立的功率板和控制板两个模块。如图2所示功率板(驱动板)是强电部,分其中包括两个单元,一是功率驱动单元IPM用于电机的驱动,二是开关电源单元为整个系统提供数字和模拟电源。

控制板是弱电部分,是电机的控制核心也是伺服驱动器技术核心控制算法的运行载体。控制板通过相应的算法输出PWM信号,作为驱动电路的驱动信号,来改逆变器的输出功率,以达到控制三相永磁式同步交流伺服电机的目的。

伺服系统的发展过程

1、直流伺服技术

伺服系统的发展经历了由液压到电气的过程。电气伺服系统根据所驱动的电机类型分为直流(DC)伺服系统和交流(AC)伺服系统。50年代,无刷电机和直流电机实现了产品化,并在计算机外围设备和机械设备上获得了广泛的应用。70年代则是直流伺服电机的应用最为广泛的时代。

2、交流伺服技术

从70年代后期到80年代初期,随着微处理器技术、大功率高性能半导体功率器件技术和电机永磁材料制造工艺的发展及其性能价格比的日益提高,交流伺服技术—交流伺服电机和交流伺服控制系

统逐渐成为主导产品。交流伺服驱动技术已经成为工业领域实现自动化的基础技术之一,并将逐渐取代直流伺服系统。

交流伺服系统按其采用的驱动电动机的类型来分,主要有两大类:永磁同步(SM型)电动机交流伺服系统和感应式异步(IM型)电动机交流伺服系统。其中,永磁同步电动机交流伺服系统在技术上已趋于完全成熟,具备了十分优良的低速性能,并可实现弱磁高速控制,拓宽了系统的调速范围,适应了高性能伺服驱动的要求。并且随着永磁材料性能的大幅度提高和价格的降低,其在工业生产自动化领域中的应用将越来越广泛,目前已成为交流伺服系统的主流。感应式异步电动机交流伺服系统由于感应式异步电动机结构坚固,制造容易,价格低廉,因而具有很好的发展前景,代表了将来伺服技术的方向。但由于该系统采用矢量变换控制,相对永磁同步电动机伺服系统来说控制比较复杂,而且电机低速运行时还存在着效率低,发热严重等有待克服的技术问题,目前并未得到普遍应用。

系统的执行元件一般为普通三相鼠笼型异步电动机,功率变换器件通常采用智能功率模块IPM。为进一步提高系统的动态和静态性能,可采用位置和速度闭环控制。三相交流电流的跟随控制能有效地提高逆变器的电流响应速度,并且能限制暂态电流,从而有利于IPM的安全工作。速度环和位置环可使用单片机控制,以使控制策略获得更高的控制性能。电流调节器若为比例形式,三个交流电流环都用足够大的比例调节器进行控制,其比例系数应该在保证系统不产生振荡的前提下尽量选大些,使被控异步电动机三相交流电流的幅值、相位和

频率紧随给定值快速变化,从而实现电压型逆变器的快速电流控制。电流用比例调节,具有结构简单、电流跟随性能好以及限制电动机起制动电流快速可靠等诸多优点。

3、交直流伺服技术的比较

直流伺服驱动技术受电机本身缺陷的影响,其发展受到了限制。直流伺服电机存在机械结构复杂、维护工作量大等缺点,在运行过程中转子容易发热,影响了与其连接的其他机械设备的精度,难以应用到高速及大容量的场合,机械换向器则成为直流伺服驱动技术发展的瓶颈。

交流伺服电机克服了直流伺服电机存在的电刷、换向器等机械部件所带来的各种缺点,特别是交流伺服电机的过负荷特性和低惯性更体现出交流伺服系统的优越性。所以交流伺服系统在工厂自动化(FA)等各个领域得到了广泛的应用。

从伺服驱动产品当前的应用来看,直流伺服产品正逐渐减少,交流伺服产品则日渐增加,市场占有率逐步扩大。在实际应用中,精度更高、速度更快、使用更方便的交流伺服产品已经成为主流产品。4、伺服控制算法

工业控制中常用的方法是PID调节器,尽管随着现代交流调速技术的发展,出现了各种新型控制算法,如自适应控制、专家系统、智能控制等。从理论分析,许多控制策略都能实现良好的电机动静态特性,但是由于算法本身的复杂性,而且对系统进行模型辨识比较麻烦,因此,在实际系统中实现时困难,对于传统的PID调节器而言,其

最大的优点在于算法简单,参数易于整定,具有较强的鲁棒性,而且适应性强,可靠性高,这些特点使PID控制器在工业控制领域得到广泛的应用。对于数控系统中的控制对象而言并不复杂,用PID调节器更易实现预期效果。

4.1 位置环PID控制算法

在数字PID调节控制系统中,引入积分环节的目的是为了消除静差,提高精度,但在过程的开始、结束或大幅增加设定值时,会产生积分积累,引起系统较大的超调,甚至振荡,这对于伺服电机的运行来说是不利的。为减小电机在运行过程中积分校正对控制系统动态性能的影响,采用积分分离PID控制正当其时,当电机的实阶位置与期望位置的误差小于一定位值时,再恢复积分校正环节,以便消除系统的稳态误差。

积分分离PID控制算法需设定积分分离阀ε,当|e(k)|>ε时,即偏差值较大时,采用PD控制,减少超调量,使系统有较快响应;当|e(k)|≤ε时,即偏差值比较小时,采用PID控制,以保证伺服电机位置控制精度。

离散化PID控制算式为:

其中,k为采样序号,k=0,1,2…;Kp、Ki、Kd分别表示比例、积分、微分系数。在实际中,若执行机构需要的是控制量的增量,根据递堆原理可得增量式PID控制算式为:

4.2 位置环控制算法流程

图2所示为控制算法流程图。

4.3 控制系统参数的整定

主控微机向控制卡发送PID参数,看给定的参数是否符合控制系统的要求,该过程需用参数整定实现。参数整定的主要任务是确定Kp、Ki、Kd及采样周期T,比例系数Kp增大,使伺服驱动系统的

动作灵敏、响应加快,而过大会引起振荡,调节时间加长;积分系数Ki增大,能消除系统稳态误差,但稳定性下降;微分控制可以改善动态特性,使超调量减少,调整时间缩短。通常的方法有扩充临界比例度法和扩充响应曲线法,以及归一参数整定方法。这几种方法源于使用齐格勒-尼柯尔斯(Ziegler-Nichols规则)〔4〕,通常可认为交流伺服系统的模型为一阶带有延迟环节的模型(带滞后的一阶环节):

式中的一阶响应特征参数K、L和T可以由图3所示的S型响应曲线提取出来。求取这些参数对实际系统并不困难,可以通过对系统进行阶跃输入激励,得到响应曲线,再根据曲线求出其特征参数。于是可由Ziegler-Nichols整定规则得到:

数字系统中采样周期的选择与系统的稳定性密切相关。一方面要满足香农定理,即ωs≥2ωmax,实际系统输入及反馈的最大频率

ωmax难以测定,另一方面采样周期并没有一个精确的计算公式,只能根据工程应用按经验规则选取,对于机电控制系统,要求较短采样周期,通常为几十毫秒。

在全数字控制方式下,伺服控制器实现了伺服控制的软件化。现在很多新型的伺服控制器都采用了多种新算法。目前比较常用的算法主要有PID/IPD(比例微分积分/)控制切换、前馈控制、速度实时监控、共振抑制控制、可变增益控制、振动抑制控制、模型规范适应控制、反复控制、预测控制、模型跟踪控制、在线自动修正控制、模糊控制、神经网络控制、H∞控制等。通过采用这些功能算法,可以使伺服控制器的响应速度、稳定性、准确性和可操作性都达到了很高的水平。

EtherCAT总线式多轴运动控制器开发

EtherCAT总线式多轴运动控制器开发 运动控制器是数控系统实现精密运动控制的核心,是数控机床的关键设备。随着电子技术和网络通信技术的快速进步,具有开源性、开放性和快速性的运动控制系统将成为未来的发展趋势。因此,传统的运动控制器已不能满足现代化制造的发展需求。 基于实时以太网的多轴运动控制系统是当前工业应用技术领域的主要研究方向之一。本文针对工业以太网技术进行了研究,以EtherCAT通信技术为基础,设计了一种基于ARM和FPGA双核的EtherCAT总线式多轴运动控制器,并提出了总体设计方案,重点设计运动控制器的硬件和软件。在硬件设计上,本文选用了ST公司推出的ARM芯片-STM32F407ZGT作为核心处理器,以Altera公司的CycloneⅣ系列FPGA芯片-EP4CE10E22C8为协处理器。 采用倍福公司的ET1200芯片作为从站EtherCAT总线通信链路层,实现PC 机主站与从站运动控制器的通信功能。此外,本文详细分析和设计了各个主芯片的外围接口电路、运动控制模块和电源模块等电路。基于本系统的硬件架构,设计了运动控制器的控制程序软件结构。 采用C语言,在ARM芯片中嵌入了μ/OS-Ⅱ操作系统,开发了EtherCAT从站驱动,并设计了相应的指令解析程序。在QuartusⅡ开发环境下,使用Verilog HDL 编程语言,对位置控制模块、S型速度规划模块和插补模块等运动控制技术进行了研究和开发。在硬件设计基础上,完成了PCB板的绘制和加工,制作了控制器样机。 搭建多轴运动控制实验仿真平台,开发上位机硬件调试软件并验证了硬件各个模块功能。设计了PC机主站,完成了EtherCAT通信、点到点运动控制、多轴

题目悬挂运动控制系统

题目一、悬挂运动控制系统 一、任务 设计一个电机控制系统,控制滑块竖板上运动。 在一个白色的底板上固定2个滑轮,2只电机(固定在板上)通过穿过滑轮的吊绳控制一个滑块在板上运动,运动范围为50cm×50cm。滑块的形状不限,质量大于100克。滑块上固定有浅色画笔,以便运动时能在板上画出运动轨迹。板上标有间距为1cm的浅色坐标线(不同于画笔颜色),左下角为直角坐标原点, 示意图1所示。 图1 电机控制系统 二、要求 1、基本要求: (1)控制系统能够通过键盘或其他方式任意设定坐标点参数; (2)控制滑块在50cm×50cm的范围内作自行设定的运动,运动轨迹长度不小于50cm,滑块在运动时能够在板上画出运动轨迹,限150秒内完成; (3)控制滑块作圆心可任意设定、直径为30cm的圆周运动,限200秒内完

成; (4)滑块从左下角坐标原点出发,在100秒内到达设定的一个坐标点(两点间直线距离不小于40cm)。 2、发挥部分 (1)能够显示滑块中画笔所在位置的坐标; (2)控制滑块沿板上标出的任意曲线运动(见示意图),曲线在测试时现场标出,线宽1.5cm~1.8cm,总长度约50cm,颜色为黑色;曲线的前一部分是连续的,长约30cm;后一部分是两段总长约20cm的间断线段,间断距离不大于1cm;沿连续曲线运动限定在150秒内完成,沿间断曲线运动限定在300秒内完成;(3)控制滑块在板上绘出一个数字字符,如“2”、“3”、“5”“6”、“8”、“9”等,限定在300秒内完成; (4)其他。 三、评分标准 四、说明 (1)滑块的运动轨迹以画笔画出的痕迹为准,应尽量使滑块运动轨迹与预期轨迹吻合,同时尽量缩短运动时间; (2)若在某项测试中运动超过限定的时间,该项目不得分; (3)运动轨迹与预期轨迹之间的偏差超过4cm时,该项目不得分; (4)在基本要求(3)、(4)和发挥部分(2)、(3)中,滑块开始运动前,允许手动将滑块定位;开始运动后,不能再人为干预滑块运动。

基于ZYNQSoC的多轴运动控制系统资料

OpenHW12项目申请 基于ZYNQ SoC的多轴运动控制系统 安富利特别题目 基于Zynq平台的伺服控制或运动控制系统 项目成员:顾强牛盼情孙佳将马浩 华中科技大学 二〇一二年十一月

目录 1项目概述 (1) 1.1工业应用 (1) 1.2系统方案 (3) 2工作原理介绍 (6) 3项目系统框架图 (8) 3.1ZYNQ硬件系统框架图 (8) 3.2软件系统框架图 (9) 3.3多轴控制器实现 (10) 4项目设计预计效果 (11) 5附录一:项目技术基础 (13) 5.1软硬件协同设计架构 (13) 5.2软件设计 (14) 5.3总结 (16) 6附录二:ZYNQ基础 (16)

1项目概述 1.1 工业应用 运动控制系统广泛应用于工业自动化领域,包括机器人手臂、装配生产线、起重设备、数控加工机床等等。并且随着高性能永磁材料的发展、电力电子技术的发展以及大规模集成电路和计算机技术的发展使得永磁同步电机(PMSM,Permanent Magnet Synchronous Motor)控制系统的设计开发难度降低、成本降低,同时PMSM在运动控制系统中作为执行器件的应用也越来越广泛。大量运动控制器的设计与实现都是基于通用嵌入式处理器。在此基础上,很多学者和研究人员对运动控制系统进行了大量的研究。 多轴控制的发展是为了满足工业机器人、工业传动等应用需求。其主要包括两大方面,多轴串联控制和多轴同步控制。当系统负载较大、传动精度要求很高、运行环境比较复杂的情况下,经常使用多轴串联的方式来解决,如图1.1所示。 (1)双电机齿条传动(2)NASA 70-m天线设备 图1.1 多轴串联控制系统应用

运动控制器知识

运动控制器知识

运动控制是指对机械运动部件的位置、速度、方向等进行实时控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。运动控制行业是工业自动化行业的一个分支,其产品主要是解决自动化装置精确位置控制和严格的速度同步问题。 运动控制系统是通过对电机电压、电流、频率等输入变量的控制,来改变工作机械的转矩、速度、位移等机械量,使工作机械按照人们期望的要求运行,以满足生产工艺及其他应用的需要。典型的运动控制系统如下图所示: 控制器接收操作员发出的指令后,向驱动器发送控制信号,驱动器接收后,转变为电流和电压信号,通过该信号驱动电机,电机开始按所设定的力矩、速度、位置等指令信号完成相应的运

动、测量反馈装置将检测到的移动部件和实际位移量进行位置反馈,以纠正电机执行动作的偏差。其中,控制器相当于运动控制系统的“大脑”,驱动器和电机构成的伺服系统则负责具体的执行动作,其中,驱动器相当于“心脏”,电机则充当了“手脚”的角色。 (2)控制器的基本概况 ①控制器的概念 控制器起连接操作人员与伺服系统的作用,其主要任务是通过计算每个预定运动的轨迹,形成控制参数,向伺服系统发出运动指令,同时监测传感器传输的反馈信号并及时调整,保证运动控制系统能够正确运行。 ②控制器的发展历程 最初的控制器是独立运行的专用控制器,无需处理器和操作系统支持,可以独立完成运动控制功能、人机交互功能和工艺技术要求的其他功

能,这类控制器主要针对专门的数控机械和其他自动化设备而设计,不能离开特定的工艺要求二跨行业应用,用户不能根据应用需求而重组自己的运动控制系统,所以通用运动控制器的发展成为市场必然需求。 通用运动控制技术作为自动化技术的一个重要分支,1990年开始在发达国家进入快速发展的阶段,由于有强劲的市场需求的推动,通用运动控制技术发展迅速并得到广泛应用。近年来,随着通用运动控制技术的不断进步和完善,通用运动控制器作为一个独立的运动控制类产品,已经被越来越多的行业领域所接受。 运动控制器也从以单片机、微处理器或专用芯片作为核心处理器,发展到了基于PC总线、以DSP和FPGA作为核心处理器的开放式运动控制器。运动控制技术也由面向传统的数控加工行业的专用运动控制技术而发展为具有开放结构、能结合具体应用要求而快速重组的现金运动控制技术。

E悬挂运动控制系统(E题)

悬挂运动控制系统(E题) 一、任务 设计一电机控制系统,控制物体在倾斜(仰角≤100度)的板上运动。 在一白色底板上固定两个滑轮,两只电机(固定在板上)通过穿过滑轮的吊绳控制一物体在板上运动,运动范围为80cm×100cm。物体的形状不限,质量大于100克。物体上固定有浅色画笔,以便运动时能在板上画出运动轨迹。板上标有间距为1cm的浅色坐标线(不同于画笔颜色),左下角为直角坐标原点, 示意图如下。 二、要求 1、基本要求: (1)控制系统能够通过键盘或其他方式任意设定坐标点参数; (2)控制物体在80cm×100cm的范围内作自行设定的运动,运动轨迹长度不小于100cm,物体在运动时能够在板上画出运动轨迹,限300秒内完成; (3)控制物体作圆心可任意设定、直径为50cm的圆周运动,限300秒内完成;

(4)物体从左下角坐标原点出发,在150秒内到达设定的一个坐标点(两点间直线距离不小于40cm)。 2、发挥部分 (1)能够显示物体中画笔所在位置的坐标; (2)控制物体沿板上标出的任意曲线运动(见示意图),曲线在测试时现场标出,线宽 1.5cm~1.8cm,总长度约50cm,颜色为黑色;曲线的前一部分是连续的,长约 30cm;后一部分是两段总长约20cm的间断线段,间断距离不大于1cm;沿连 续曲线运动限定在200秒内完成,沿间断曲线运动限定在300秒内完成;(3)其他。 三、评分标准 四、说明 1、物体的运动轨迹以画笔画出的痕迹为准,应尽量使物体运动轨迹与预期轨迹吻合, 同时尽量缩短运动时间; 2、若在某项测试中运动超过限定的时间,该项目不得分; 3、运动轨迹与预期轨迹之间的偏差超过4cm时,该项目不得分; 4、在基本要求(3)、(4)和发挥部分(2)中,物体开始运动前,允许手动将物体定位;开 始运动后,不能再人为干预物体运动; 5、竞赛结束时,控制系统封存上交赛区组委会,测试用板(板上含空白坐标纸) 测试 时自带。

通用运动控制器目前主要分类浅谈

通用运动控制器目前主要分类浅谈 目前,我国是世界上经济发展最快的国家,市场上新设备的控制需求、 传统设备技术升级、换代对运动控制器的市场需求越来越大。另外由于市场日 益竞争的压力,系统集成商和设备制造商要求运动控制系统向开放式方向发展。同时,经济型数控市场占有率正在逐渐减小。在这样的形势下,我国可以抓住 这一机遇,研制出具有自主知识产权,具有高水平、高质量、高可靠性的开放 式运动控制器产品。 (1)基于计算机标准总线的运动控制器,它是把具有开放体系结构,独立 于计算机的运动控制器与计算机相结合构成。这种运动控制器大都采用DSP 或微机芯片作为CPU,可完成运动规划、高速实时插补、伺服滤波控制和伺服驱动、外部I/O 之间的标准化通用接口功能,它开放的函数库可供用户根据不同的需求,在DOS 或WINDOWS 等平台下自行开发应用软件,组成各种控制系统。如美国Deltatau 公司的PMAC 多轴运动控制器和固高科技(深圳)有限公司的GT 系列运动控制器产品等。目前这种运动控制器是市场上的主流产品。 (2)Soft 型开放式运动控制器,它提供给用户最大的灵活性,它的运动控制软件全部装在计算机中,而硬件部分仅是计算机与伺服驱动和外部I/O 之间的标准化通用接口。就像计算机中可以安装各种品牌的声卡、CDROM 和相应的驱动程序一样。用户可以在WINDOWS 平台和其他操作系统的支持下,利用开放的运动控制内核,开发所需的控制功能,构成各种类型的高性能运动控 制系统,从而提供给用户更多的选择和灵活性。基于Soft 型开放式运动控制器开发的典型产品有美国MDSI 公司的Open CNC、德国PA(Power Automation)公司的PA8000NT。美国Soft SERVO 公司的基于网络的运动控制

PMAC多轴运动控制卡学习(硬件)

目录

PMAC控制卡学习(硬件) 第一章PMAC简介 PMAC的含义和特点 1.PMAC的含义: PMAC是program multiple axis controller 可编程的多轴运动控制卡。 的特点: PMAC卡是美国Delta Tau公司九十年代推出的多功能运动控制器,能够提供运动轴控制,PLC控制和数据采集等多种功能。 PMAC的分类及区别 PMAC的分类 1. PMAC卡按控制电机的来分:有1型卡和2型卡。1型卡控制信号为±10V 模拟量,主要用速度方式控制伺服电。2型卡输出PWM数字量信号,可直接变为PULSE+DIR信号,来控制步进电机和位置控制方式的伺服电机。 2. PMAC卡按控制轴数来分:有2轴卡(MINI PMAC PCI),4轴卡(PMAC PCI Lite,PMAC2 PCI Lite,PMAC2A-PC/104及Clipper),8轴卡:(PMAC-PCI,PMAC2-PCI,PMAC2A-PC/104及Clipper),32轴卡:(TURBO PMAC和TURBO PMAC2)。 3. PMAC卡按通讯总线形式分:有ISA总线,PCI总线,PCI04总线,网口和VME总线。PMAC各种轴数的1型和2型卡,都有上述的计算机总线方式供选择。PMAC除上述形式外,还可以提供集成的系统级产品.有:UMAC,IMAC400,IMAC800 ,IMAC flexADVANTAGE400 ,ADVANTAGE900等。 PMAC 1型卡与2型卡的主要区别 PMAC 1 PMAC2 CPU时钟(缺省)20MHZ 40MHZ

控制信号形式DAC模拟量PWM数字量 双端口RAM选项只有8轴卡不在板在板 在板I/O点数16IN 16OUT 32IN/OUT +8IN 8 OUT 常用接线板ACC8D ACCP ACC8F ACC8S ACC8E 第二章Turbo PMAC Clipper控制器硬件配置Turbo PMAC Clipper控制器简介 Turbo PMAC Clipper控制器(Turbo PMAC2 Eth-Lite) 是一款具备全部Turbo PMAC 特征的,用于对成本极端敏感的应用的多轴运动控制器。这种功能强大的,但是又同时具备结构紧凑和超高性价比优点的多轴运动控制器,标准版本即带有Ethernet 以太网和 RS232 通讯接口以及内置 I/O。 Clipper 控制器不仅采用了一颗完整的Turbo PMAC2-CPU 而且提供了一个四轴伺服或步进控制加32个数字I/O 点的最小配置,控制轴数和I/O还可以扩展。 Turbo PMAC Clipper硬件配置 Turbo PMAC Clipper硬件标准配置为: ●电路板尺寸是110mm×220mm; ●80 MHz DSP56303 Turbo PMAC CPU(CPU时钟频率为80MHZ); ●256k x 24用户SRAM(即静态随机存储器,是一种具有静止存取功能的,不需 要刷新电路即能保存它内部存储的数据。存储容量为256K,地址线有24条。); ●1M x 8 flash mermory用于备份及固件存储;(闪存是一种非易失性,即断 电数据也不会丢失。内存为1M,8条I/O接口。); ●RS-232串行接口;(上的之一,通常 RS-232 接口以9个(DB-9)的型态出现, 一般个人上会有两组 RS-232 接口,分别称为 COM1 和 COM2。); ●100 Mbps以太网接口;(传输速率100Mbps=100/8=s) ●480 Mbps USB 接口;

悬挂运动控制系统

2015年全国大学生电子设计竞赛 论文 X题:悬挂运动控制系统 2015年8月15日

悬挂运动控制系统(E题) 摘要 本设计使用AT89S52单片机作为悬挂运动控制系统的核心,硬件电路包含液晶显示和键盘处理模块,步进电机驱动模块,黑线循迹检测模块,数据传输模块等几部分。液晶显示屏负责显示系统状态和控制命令,调试时还可以方便的显示每个红外传感器的状态;键盘接收输入的控制指令;电机驱动采用脉宽调制技术,可灵活方便地控制两个步进电机;反射式红外传感器模块在循迹时检测引导黑线;数据传输模块上的AT89C2051单片机将红外传感器状态信息通过串行口传送至AT89S52控制核心,使之能根据程序算法驱动两个步进电机带动悬挂物按要求运动并同时显示各种状态数据。 关键词:步进电机,脉宽调制,红外传感器,循迹,算法 Abstract In this design,the control kernel of this hanging movement system is based on a MCU chip AT89S52.The hole hardware circuit is composed of the following modules:LCD display and keyboard module,step motors drive module,track detecting module and data transfer module.The LCD displays system status,command and also the status of infrared sensors when debugging.The keyboard receives user’s command.The motors drive module adopts PWM technology to control motors’ status flexibly and conveniently.The reflecting infrared sensors detect black lines when tracking.The AT89C2051 on the data transfer module transfers data to AT89S52 through UART so as to make motors work properly according to program algorithm and display status data needed. Keywords: step motor,PWM,infrared sensor,tracking,algorithm

MC多轴运动控制卡学习硬件

目录 PMAC控制卡学习(硬件) (3) 第一章 PMAC简介 (3) 1.1 PMAC的含义和特点 (3) 1.2 PMAC的分类及区别 (4) 1.2.1 PMAC的分类 (4) 1.2.2 PMAC 1型卡与2型卡的主要区别 (4) 第二章Turbo PMAC Clipper控制器硬件配置 (5) 2.1 Turbo PMAC Clipper控制器简介 (5) 2.2 Turbo PMAC Clipper硬件配置 (5) 2.2.1 Turbo PMAC Clipper硬件标准配置为: (5) 2.2.2 Turbo PMAC Clipper控制器可选附件 (8) 2.2.2.1 轴接口板 (8) 2.2.2.2 反馈接口板 (9) 2.2.2.3 数字I/O接口板 (9)

第三章 Turbo PMAC Clipper设备连接 (9) 3.1 板卡安装 (9) 3.2 控制卡供电 (10) 3.2.1 数字电源供电 (10) 3.2.2 DAC(数字/模拟转换)输出电路供电 (10) 3.2.3 标志位供电 (10) 3.3 限位及回零开关 (10) 3.3.1 限位类型 (11) 3.3.2 回零开关 (11) 3.4电机信号连接 (11) 3.4.1增量式编码器连接 (11) 3.4.2 DAC 输出信号 (12) 3.4.3 脉冲&方向(步进)驱动 (12) 3.4.4 放大器使能信号(AENAn/DIRn) (13) 3.4.5 放大器错误信号(FAULT-) (13)

3.4.6 可选模拟量输入 (13) 3.4.7 位置比较输出 (14) 3.4.8 串行接口(JRS232) (14) 3.5 设备连接示例 (14) 3.6 接口及指示灯定义 (16) 3.7 跳线定义 (19) 3.8 Turbo PMAC Clipper端口布置及控制结构图 (23) 附件 (26) 1.接口各针脚定义 (26) 2. 电路板尺寸及孔位置 (35) PMAC控制卡学习(硬件) 第一章 PMAC简介 1.1 PMAC的含义和特点 1.PMAC的含义:

机器人运动控制器

TB04-2372.jtdc-1 机器人控制标准包 机器人运动控制器 我们在机器人控制上拥有丰富的经验。除了标量机器人和2维并行机构的机器人是做为选项。其他机械机构的机器人我们提供了特殊控制技术。链接型和并行机构的机器人可以像自动机械一样运行。■优点 ◆有效运用于内部研发能够短期内使自己研发的产品稳定动作。 ◆追求独特的技术能够用于研发特殊组装和动作的机器人,并投入生产现场。◆技术知识保密自己开发技术知识的保密 ◆应用于自动机械可以应用于加工机械以及装配机械之类的生产机械的操作和运转 ■机构变换 ◆直交系列机器人◆标量机器人◆2维并行机构机器人◆垂直多关节机器人◆6维并行机构机器人 〈标准〉〈选项〉〈选项〉〈独特〉〈独特〉 ■正确的轮廓控制■按控制周期变换机构■正确的轨迹 按控制周期执行机构变换,实现插补之间的接合部的圆滑轨迹控制。可应用于精密加工。 ■运行程序(技术语言?G语言) 像去除加工毛刺及钻孔机械,使用输出CAM的G语言文件来实现DNC运行。 ■拥有丰富技能对应实际生产中的作业 通过可选项,能够用于搬运,加工,熔接,去除毛刺,装配等生产机械的操作和运行。◆可选项机能例 宏机能,多任务,扭矩指令(贴接?控制力度)DNC运行触摸屏 插补前的加减速S字加减速手动脉冲发动器,高精度制动开关(接触开关)接线?法线控制 同频同步平行轴控制■触摸屏及专用PC软件 ■触摸屏例 ■专用PC画面例 使用触摸屏或PC也可以操作。■动作机构计算的可2次开发 我们的经验可以对应您的特殊需求。 另外,你也可以自行开发动作机构变换软件。■应用于机器人控制的运动控制器◆SLM4000机器人规格 单板独立单机工作4轴脉冲列输入32 输出32RS232/USB ◆PLMC40机器人规格PLC动作 4轴脉冲列输入16输出16RS232可使用通用PLC扩展(梯形 ?IO? 模拟等) ◆PLMC-MⅡEX机器人规格MECHATROLINK-Ⅱ 标准4/9/16轴最大30轴可使用通用PLC扩展(梯形?IO?模拟等) ◆多軸运动功率放大器机器人规格多轴伺服功放一体型最大7轴输入42输出42可节省配线节省成本 A B a1 a2a3Accurate contour Uncontrolled path by simple positioning Calculation at each sampling time

基于单片机的悬挂运动控制系统毕业设计开题报告

吉林建筑大学城建学院 毕业设计开题报告 所学专业:电气信息工程及其自动化 学生姓名: 指导教师: 论文题目:基于单片机的悬挂运动控制系统设计开题报告日期:2015.3.30

说明 1、开题报告由毕业生本人在完成文献阅读、科研调查的基础上,并通过开题报 告评议后填写。 2、本报告一式两份。一份交学院作为论文检查的依据;一份答辩后作为档案材 料归入学位档案。 3、开题报告用A4纸打印,不需标注页码。报告内容字体一律使用宋体小四, 行间距为1.25倍。

一、课题来源及研究的目的和意义 课题来源:生产 研究的目的: 科技的进步以及人们生活水平的逐步提高,各种方便于生活的自动控制开始进入了人们的生活,以单片机为核心的悬挂运动自动控制系统就是其中之一。在现代的工业控制、车辆运动和医疗设备等系统中,悬挂运动系统的应用越来越多,在这些系统中悬运动部件通常是具体的执行机构,因而悬挂部件的运动精确性是整个系统工作效能的决定因素,而在实际中实现悬挂运动控制系统的精确控制是非常困难的。靠改变悬挂被控对象的绳索长短来控制被控对象运动轨迹的悬挂运动控制系统,在生产控制等领域有很广的应用范围,但受技术上的制约,使用也有一定限制。采用单片机作为系统控制器。单片机可以实现各种复杂的逻辑功能,规模大,集成度高,体积小,稳定性好,并且可利用单片机软件进行仿真和调试。单片机采用并行工作方式,提高了系统的处理速度,常用于大规模实时性要求较高的系统。 研究的意义: 运动控制是自动化技术的重要组成部分,是机器人等高技术领域的技术基础,已取得了广泛的工程应用。运动控制集成了电子技术、电机拖动、计算机控制技术等内容。自二十世纪八十年代初期,运动控制器已经开始在国外多个行业应用,尤其是在微电子行业的应用更加广泛。而当时运动控制器在我国的应用规模和行业面很小,国内也没有厂商开发出通用的运动控制器产品。在现代的工业控制、车辆运动和医疗设备等系统中,悬挂运动控制系统的应用越来越多,在这些系统中悬挂运动部件通常是具体的执行机构,因此悬挂部件的运动精确性是整个系统工作效能的决定因素。靠改变悬挂被控对象的绳索长短来控制被控对象运动轨迹的悬挂运动控制系统,在生产控制等领域有很广的应用范围。

运动控制器常见规格问题(强烈推荐)

1. C200HW-NC模块使用的软件是什么? (1) 2. C200H的NC模块订购的时候带不带连接器? (1) 3. CS1W-NC/CJ1W-NC和C200HW-NC有什么区别? (1) 4.CJ1W-NC模块的型号是怎样命名的? (2) 5.CJ1W-NC、CS1W-NC系列模块使用的软件是什么? (2) 6.CJ/CS/的NC模块订购的时候带不带连接器? (2) 7. CS1W-NC/CJ1W-NC模块输出的最大频率为多少? (2) 1. C200HW-NC模块使用的软件是什么? 使用的软件是SYSMAC-NCT的软件。 2. C200H的NC模块订购的时候带不带连接器? 订购时都带了连接器,不需客户另外购买。 如果需要再购买, C200H的NC模块的连接器的型号是FCN-361J048-AU(焊接类型)和FCN-360C048-D(连接器封套)。 3. CS1W-NC/CJ1W-NC和C200HW-NC有什么区别?

4.CJ1W-NC模块的型号是怎样命名的? 型号命名规则如下: 5.CJ1W-NC、CS1W-NC系列模块使用的软件是什么? CJ1W-NC、CS1W-NC系列模块使用的软件是CX-position软件或CX-ONE软件包(内含CX-position软件)。这些模块也可以不用以上软件,可以通过设置DM区的数值来设置NC模块的参数。 6.CJ/CS/的NC模块订购的时候带不带连接器? 订购时都带了连接器,不需客户另外购买。 如果需要再购买,CJ的NC模块的连接器的型号是FCN-361J040-AU(焊接类型)和FCN-360C040-J2(连接器封套)。 7. CS1W-NC/CJ1W-NC模块输出的最大频率为多少? CS1W-NC/CJ1W-NC模块输出频率最大可以达到500KHz。

多轴运动控制器开题报告

毕业设计(论文)开题报告 1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2000字左右的文献综述: 多轴运动控制器文献综述 摘要:运动控制是20世纪90年代在国际上兴起的结合现代电力电子技术、计算机 技术、传感器技术等进行控制系统设计的一门多学科交叉的技术,在数控机床、 汽车、轻工、纺织和军事等领域应用广泛,其中的数控技术、机器人技术更是一个 国家运动控制技术发展水平的重要标志。 Abstract:Motion control is a interdisciplinary technology in the nineteen nineties,as the combination of modern power electronics technology, computer Technology, sensor technology, control system design . In the NC machine tool,Auto, light industry, textile and military and other fields are widely used, in which the numerical control technology, robotic technology are the symbol of a state's level of development of motion control technology. 1.运动控制器的概念: 运动控制起源于早期的伺服控制。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。早期的运动控制技术主要是伴随着数控技术、机器人技术和工厂自动化技术的发展而发展的。早期的运动控制器实际上是可以独立运行的专用的控制器,往往无需另外的处理器和操作系统支持,可以独立完成运动控制功能、工艺技术要求的其他功能和人机交互功能。这类控制器可以成为独立运行的运动控制器。这类控制器主要针对专门的数控机械和其他自动化设备而设计,往往已根据应用行业的工艺要求设计了相关的功能,用户只需要按照其协议要求编写应用加工代码文件,然后传输到控制器,控制器即可完成相关的动作。这类控制器往往不能离开其特定的工艺要求而跨行业应用,控制器的开放性仅仅依赖于控制器的加工代码协议,用户不能根据应用要求而重组自己的运动控制系统2.运动控制需求:

四轴控制器使用说明书

四轴控制器使用说明书

目录 版权申明 .................................................................................................... 错误!未定义书签。第一章概述 .. (5) 1.1 产品简介 (4) 1.2应用领域 (4) 1.3图片展示 (4) 第二章PCB结构及功能 (6) 2.1 MCU简述 (5) 2.2 PCD4641简述 (6) 2.2.1PCD4641概要 (6) 2.2.2特长 (6) 2.2.3主要功能介绍 (6) 2.3 MCU控制芯片方式说明 (8) 2.4 调试接口接线线序说明 (10) 2.5 BOOT接头说明 (11) 2.6启动开关 (11) 2.7电气接口 (12) 2.7.1驱动器接头 (12) 2.7.2运动反馈信号接头 (14) 2.7.3励磁时序信号和通用IO口接头 (13) 第三章FSMC简介及接线说明 (15) 3.1 FSMC简述 (15) 3.1.1 FSMC概要 (15) 3.1.2 FSMC映射地址空间 (17) 3.1.3 技术优势 (16) 3.2 MCU访问PCD4641线序说明 (17) 第四章MCU使用FSMC访问PCD4641的具体实现 (18) 4.1 PCD4641A并行接口方法 (20) 4.2 命令 (19) 4.2.1 启动方式命令 (19) 4.2.2 控制方式命令 (20)

4.2.3 寄存器选择命令 (23) 4.2.4 输出模式命令 (24) 4.2.5状态寄存器 (26) 4.3 具体的C语言实现 (24) 第五章上位机通信 (28) 5.1 上位机与四轴控制器的硬件连接 (28) 5.2 上位机与四轴控制器的通信连接 (29) 5.3 如何控制四轴控制器 (30) 第六章四轴控制器开发环境使用说明 (36) 6.1 与PCB板的硬件连接 (36) 6.2 驱动的安装 (32) 6.3 IAR开发环境的安装 (34) 6.4 IDE相关设置 (35) 6.5 程序的开发设计 (42) 第七章下载程序 (43) 7.1 用USB串口线连接四轴控制器 (39) 7.2 下载程序 (44) 第八章使用安全注意事项 (43)

运动控制器的应用现状及其发展趋势【不可外传】

运动控制器的应用现状及其发展趋势 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 1运动控制器的应用现状 运动控制器越来越广泛地应用于各个行业的自动化设备,如数控机床、雕刻机、切割机、钻孔机、印刷机、冲孔机、激光雕刻、激光切割、包装机、纺织机、食品加工、绘图机、点胶机、焊接机、电子装配白动检测等,甚至在航空航天和国防领域也得到广泛应用。根据所用的CPU不同,运动控制器产品主要有以下五种类型: (1)以单片机(MCU)为核心的运动控制器,低端采用8位或16位的单片机作为处理器,其主要优点是价格比较低廉,缺点是运行速度较慢,控制精度较低。因此这种运动控制器适用于一些低速或运动控制精度要求不高的点位运动或轮廓运动控制的自动化设备。 (2)以专用芯片为核心的运动控制器,美国国家半导体公司生产的LM628和LM629专用运动控制芯片,日本的NOVA生产的MCX304、MCX501等运动控制芯片是专门为精密控制步进电机和伺服电机而设计的专用处理器,产品应用于数控机床、雕刻机、工业机器人、医用设备、绕线机、自动仓库、绘图仪、点胶机、IC制造设备等领域。 (3)以数字信号处理器(DS)为核心的运动控制器,美国DeltaTau公司生产的PMAC 运动控制器,采用Motorola的DSP56003作为处理器。国内的基于DSP的运动控制器,通常以美国TI公司推出的C2000系列,例如TMS320F2812和TMS320F28335作为运动控制器的核心芯片。

悬挂运动控制系统(E题)设计报告之欧阳家百创编

悬挂运动控制系统(E题)设计报告 欧阳家百(2021.03.07) 摘要:本悬挂控制系统是一个电机控制系统,控制物体在80cm×100cm的范围内作直线、圆、寻迹等运动,并且在运动时能显示运动物体的坐标。设计采用AT89S52单片机作为核心控制器件,采用57BYG007-4型步进电机和高细分步进电机驱动器SM-60作为动力装置,采用红外反射式光电传感器实现画板上黑色线寻迹检测,显示部分用液晶显示模块LCD1602实现。 关键词:悬挂控制、单片机、步进电机、红外反射式光电传感器 一、设计要求 1、任务 设计一电机控制系统,控制物体在倾斜(仰角≤100度)的板上运动。 在一白色底板上固定两个滑轮,两只电机(固定在板上)通过穿过滑轮的吊绳控制一物体在板上运动,运动范围为80cm×100cm。物体的形状不限,质量大于100克。物体上固定有浅色画笔,以便运动时能在板上画出运动轨迹。板上标有间距为1cm的浅色坐标线(不同于画笔颜色),左下角为直角坐标原点, 示意图如下。 2、基本要求: (1)控制系统能够通过键盘或其他方式任意设定坐标点参数;(2)控制物体在80cm×100cm的范围内作自行设定的运动,运动轨迹长度不小于100cm,物体在运动时能够在板上画出运动轨迹,限300秒内完成; (3)控制物体作圆心可任意设定、直径为50cm的圆周运动,限300秒内完成; (4)物体从左下角坐标原点出发,在150秒内到达设定的一个坐标点(两点间直线距离不小于40cm)。 3、发挥部分 (1)能够显示物体中画笔所在位置的坐标; (2)控制物体沿板上标出的任意曲线运动(见示意图),曲线在测试时现场标出,线宽 1.5cm~1.8cm,总长度约50cm,颜色为黑色;曲线的前一部分是连续的,长约30cm;后一部分是两段总长

数控插补多轴运动控制实验指导书(学生)重点

数控插补多轴运动控制系统解剖实验 实验学时:8 实验类型:独立授课实验 实验要求:必修 一、实验目的 1、通过本实验使学生掌握数控插补多轴控制装置的基本工作原理; 2、根据常用低压电器原理分析各运动控制电气元件的应用原理,分析数控插补运 动实现的控制原理; 3、根据机电一体化产品的设计要求和设计流程进行运动控制系统的功能分析、机 械结构分析、控制系统分析以及相关传感器选型等方面的设计内容。 本实验以数控插补多轴运动控制系统为具体对象,使学生掌握机电一体化产品设计和开发的技术流程和主要内容,通过运动控制系统的实现过程掌握常用电气元件识别和原理、数控插补原理、位置伺服控制系统等的设计和实现方式。 二、实验内容 1、通过数控插补多轴控制装置及其相关系统的测试和观察,分析数控插补的工作 原理; 2、分析系统的功能、机械结构分析、运动关系以及相关传感器等,分析其相关的 机械结构、电机及其驱动模块和传感反馈环节等; 3、根据常用低压电器原理,分析系统各运动控制电气元件的应用原理,分析数控 插补运动过程实现的控制原理,并绘制相关的控制原理图和系统连接图。 三、实验设备 1、多轴运动控制系统一套(含电控箱) 2、PC机一台 3、GT-400-SG-PCI 卡一块(插在 PC机内部) 四、实验原理

该数控插补多轴运动控制系统是依据开放式数控系统原理构建的,其以通用计算机(PC)的硬件和软件为基础,采用模块化、层次化的体系结构,能通过各种形式向外提供统一应用程序接口的系统。开放式数控系统可分为 3类:(1)CNC 在 PC 中;(2)PC作为前端,CNC作为后端;(3)单 PC,双 CPU平台。 本实验采用第一类,把顾高公司的 GT-400-SG-PCI 多轴运动控制卡插入PC机的插槽中,实现电机的运动控制,完成多轴运动控制系统的控制。其优点如下:(1)成本低,采用标准 PC机;(2)开放性好,用户可自定义软件;(3)界面比传统的 CNC 友好。 图1为该系统的硬件构成图,运动平台机械本体采用模块化拼装,主要由普通PC机、电控箱、运动控制卡、伺服(步进)电机及相关软件组成。其主体由两个直线运动单元(GX系列)组成。每个GX系列直线运动单元主要包括:工作台面、滚珠丝杆、导轨、轴承座、基座等部分,其结构见图2。伺服型电控箱内装有交流伺服驱动器,开关电源,断路器,接触器,运动控制器端子板,按钮开关等。步进型电控箱则装有步进电机驱动器,开关电源,运动控制器端子板,船形开关等。 图1 数控插补多轴控制系统硬件构成

DSP+FPGA四轴运动控制器方案与对策

DSP+FPGA四轴运动控制器设计方案 引言 运动控制技术是制造自动化的关键基础,其水平高低是衡量一个工业现代化的重要标志,研究和开发具有开放式结构的运动控制器是当前运动控制领域的一个重要发展方向。设计了一种基于DSP与FPGA的运动控制器。该控制器以DSP和FPGA为核心器件,针对运动控制中的实时控制、高精度等具体问题,规划了DSP的功能扩展,并在FPGA上扩展了功能相互独立的四轴运动控制电路。该电路实现了四路控制信号输出,四路编码信号的接收和处理,以及原点信号,正负限位信号等数字量的接收和处理。具有结构简单、开放性、模块化等特点,能够较好的满足运动控制器的实时性和精确性。 1 系统概述 该四轴运动控制器系统以TI公司C2000系列DSP芯片TMS320F2812和ALTERA公司CycloneⅡ系列FPGA芯片EP2C8F256C6为核心,DSP通过网口接收上位机的控制参数,完成系统位置、速度控制及运动轨迹规划;FPGA完成运动控制器的精确插补功能和外围电路的扩展,系统总体框图如图1所示。 运动控制器的主要功能包括:4路模拟电压输出,电压围为-10~+10V,分辨率为16b;4路脉冲量信号输出;4路脉冲方向信号输出;4路驱动复位信号输出;4路驱动使能信号输出;4路差分编码信号输入;4路驱动报警信号输入;8路正负限位信号输入;4路原点信号输入;16路通用数字量。I/O。 2 DSP模块设计 DSP根据从上位机接收的运动模式和运动参数实时计算规划位置和规划速度,生成所需的速度曲线,实时的输出规划位置。TMS320F2812是TI推出的一款专门用于电机控制的32位定点DSP芯片,采用高性能静态CMOS技术,主频高达150MHz(指令周期6.67ns),低功耗,核心电压为1.8V,I/O电压3.3V,支持JTAG边界扫描,128K×16b的片FLASH。有两个事件管理器(EVA和EVB),它们都是特定的外围设备,为多轴运动控制器而设计的。可通过外部存储器接口XINTF扩展外部存储器。DSP外围模块设计如图2所示。

维宏维鸿四轴真四轴联动雕刻机运动控制卡说明书

维宏维鸿四轴真四轴联动雕刻机运动控制卡说明书 1.1 维鸿系统的安装 在安装新的维鸿前~请删除旧版本的维鸿。删除的方法请参考程序卸载一节。维鸿系统包括软件和运动控制卡两部分。所以~系统的安装也分为两个阶段: 软件安装和运动控制卡的安装。 总体上~请您在安装完软件之后再安装运动控制卡~这样运动控制卡的驱动程序就不需要单独安装。所以简单以说~可以分为这样几个步骤: (1) 安装维鸿软件~待安装程序提示关闭计算机后~关闭计算机。 (2) 关闭计算机后~安装运动控制卡。 (3) 重新启动计算机~进入Windows操作系统后~略微等待一会~待Windows 自动完成配置~整个安装工作就算完成了。 (4) 运行维鸿系统。 下面详细介绍其中的关键步骤。 维鸿软件安装 请按照下面的步骤安装软件: (1) 打开计算机电源~启动计算机~系统自动运行进入Windows操作系统。 如果你还没有安装Windows操作系统~请首先安装该操作系统。 (2) Windows 操作系统启动后~注意请关闭其他正在运行的程序。 (3) 解压维鸿V2.0免安装包,打开里面的dotNetFrameWork文件夹~安装 dotNetFx40_Full_x86_x64.exe (4) 打开维鸿V2.0文件夹~右键创建桌面快 捷方式

(5) 双击打开桌面快捷键方式~运行维鸿。 维鸿软件驱动安装 USB设备驱动支持XP、win7或win8等32位操作系统~任何一个小的错误都有可能安装驱动失败。 1. 将USB数据线连接到电脑任意USB接口~若出现新硬件向导信息提示中选“是~仅这一次,I,”选项~点击“下一步”。在出现新硬件向导信息提示中选“从列表或指定位置安装,高级,”选项~点击“下一步”。 2. 选择“在搜索中包括这个位置,O,”选项~点击“浏览”。

悬挂运动控制系统论文

悬挂运动控制系统 【摘要】本系统采用凌阳16位单片机SPCE061A作为控制中心,由直流步进电机、红外收发对管、4*4键盘及中文液晶显示屏构成的悬挂运动控制系统。该系统能自由控制悬挂物体完成自行设定运动、画圆运动、沿黑线运动等,并能正确显示物体到达的坐标位置。 【关键词】SPCE061A单片机中文液晶显示屏逼近画圆算法 A Control System For Suspension Movement [Abstract]This design uses SPCE061A as the control core to build a suspension movement control system which consists of a DC step motor, infrared emitting tube, 4X4 keyboard and an LCD display screen for Chinese characters. The system can control the suspended objects to complete the movements set by itself, such as drawing the circles, moving along the black lines and doing other movements. It also can display the correct location of the coordinate where the object reaches. Key words: SPCE061A Single chip, Chinese characters LCD, Closing Algorithm for circle drawing 一、方案的选择与论证

相关主题
文本预览
相关文档 最新文档