当前位置:文档之家› 解二元一次方程的步骤.doc

解二元一次方程的步骤.doc

解二元一次方程的步骤.doc
解二元一次方程的步骤.doc

解二元一次方程的步骤_99

第1篇:列一元二次方程解题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;

一元二次方程

(2)设未知数,并用所设的未知数的代数式表示其余的未知数;

(3)找出相等关系,并用它列出方程;

(4)解方程求出题中未知数的值;

(5)检验所求的答案是否符合题意,并做答.

经典例题精讲

1.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.

2.解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.3.一元二次方程(a≠0)的根的判别式正反都成立.利用其可以(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.

4.一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.

韦达定理

韦达(Vieta's,Francois,seigneurdeLaBigotiere)1540年出生于法国普瓦捷,1603年12月13日卒于巴黎。早年在普法捷学习法律,后任律师,1567年成为议会的议员。在对西班牙的战争中曾为政府破译敌军的密码,赢得很高声誉。法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,并对方程论做了改进。

他1540年生于法国的普瓦图。1603年12月13日卒于巴黎。年青时学习法律当过律师,后从事政治活动,当过议会的议员,在对西班牙的战争中曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数

及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。韦达定理实质上就是一元二次方程中的根与系数关系

韦达定理(Viete'sTheorem)的内容

一元二次方程ax +bx+c=0(a≠0且△=b -4ac≥0)中

设两个根为X1和X2

则X1+X2=-ba

X1*X2=ca

韦达定理的推广

韦达定理在更高次方程中也定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。

由代数基本定理可推得:任何一元n次方程

在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:

其中是该方程的个根。两端比较系数即得韦达定理。

韦达定理在方程论中有着广泛的应用。

韦达定理的证明

设x1,x2是一元二次方程ax +bx+c=0的两个解。

有:a(x-x1)(x-x2)=0

所以ax -a(x1+x2)x+ax1x2=0

通过对比系数可得:

-a(xn*ΠXi

所以:∑Xi=(-1) *A(n-1)A(n)

∑XiXj=(-1) *A(n-2)A(n)

?

ΠXi=(-1)

*A(0)A(n)

其中∑是求和,Π是求积。

本段计算机解一元二次方程

VB实现方法

'该代码仅可实现一般形式的求值,并以对话框形式显示。dima,b,c,i

'在这里添加a、b、c的赋值过程

'例如:a=text1.text

'b=text2.text

'c=text3.text

'以上代码为赋值

ifa0andb0andc0then

ifa*20then

i=((0-b)+Sqr(b -4*a*c))2

msgboxi

i=((0-b)-Sqr(b -4*a*c))2

msgboxi

else

msgbox(

endif(1)分析题意,找到题中未知数和题给条件的相等关系;

一元二次方程

(2)设未知数,并用所设的未知数的代数式表示其余的未知数;

(3)找出相等关系,并用它列出方程;

(4)解方程求出题中未知数的值;

(5)检验所求的答案是否符合题意,并做答.

经典例题精讲

1.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.

2.解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解法,再考虑用公式法.3.一元二次方程(a≠0)的根的判别式正反都成立.利用其可以(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.

4.一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的

代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.

韦达定理

韦达(Vieta's,Francois,seigneurdeLaBigotiere)1540年出生于法国普瓦捷,1603年12月13日卒于巴黎。早年在普法捷学习法律,后任律师,1567年成为议会的议员。在对西班牙的战争中曾为政府破译敌军的密码,赢得很高声誉。法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,并对方程论做了改进。

他1540年生于法国的普瓦图。1603年12月13日卒于巴黎。年青时学习法律当过律师,后从事政治活动,当过议会的议员,在对西班牙的战争中曾为政府破译敌军的密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数学理论研究的重大进步。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系(所以人们把叙述一元二次方程根与系数关系的结论称为“韦达定理”)。韦达定理实质上就是一元二次方程中的根与系数关系

韦达n)

其中∑是求和,Π是求积。

如果一元二次方程

在复数集中的根是,那么

法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。

由代数基本定理可推得:任何一元n次方程

在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积:

其中是该方程的个根。两端比较系数即得韦达定理。

'该代码仅可实现一般形式的求值,并以对话框形式显示。dima,b,c,i

'在这里添加a、b、c的赋值过程

'例如:a=text1.text

'b=text2.text

'c=text3.text

'以上代码为赋值

ifa0andb0andc0then

ifa*20then

i=((0-b)+Sqr(b -4*a*c))2

msgboxi

i=((0-b)-Sqr(b -4*a*c))2

msgboxi

else

msgbox(

endif

第2篇:解一元一次方程的步骤?解一元一次方程的步骤:

一般解法:

⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);

⒉去括号:一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号)⒊移项:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)(=号的一边移到另一边时变符号)

⒋合并同类项:把含有未知数的项系数进行运算,把已知项进行运运算。(先确定符号,1、加法:同号相加,符号不变,绝对值相加;异号相加,符号随大,大-小。2、减法,减去一个数等于加上这个数的相反数。3、乘除法,同号得正,异号得负)

?⒌系数化为1:在方程两边都除以未知数的系数a,得

到方程的解(系数为分数时,乘系数的倒数;系数为整数时,除以系数)

第3篇:解一元一次方程的步骤教学设计示例

教学目标

1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2.培养学生观察能力,提高他们分析问题和解决问题的能力;3.使学生初步养成正确思考问题的良好习惯.

教学重点和难点

一元一次方程解简单的应用题的方法和步骤.

课堂教学过程设计

一、从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题.

例1某数的3倍减2等于某数与4的和,求某数.

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3.

答:某数为3.

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4.

解之,得x=3.

答:某数为3.

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出

重量=剩余重量)3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42500,

所以x=50000.

答:原来有50000千克面粉.

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿.

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;(4)求出所列方程的解;(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5.

其苹果数为3×5+9=24.

答:第一小组有5名同学,共摘苹果24个.

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.(设第一小组共摘了x个苹果,则依题意,得

三、课堂练习

1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

2.我国城乡居民1988年末的储蓄存款达到3802亿元,比1978年末的储蓄存款的18倍还多4亿元.求1978年末的储蓄存款.3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.

四、师生共同小结

首先,让学生回答如下问题:

1.本节课学习了哪些内容?

2.列一元一次方程解应用题的方法和步骤是什么?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆.

五、作业

1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台.这家工厂前年10月生产电视机多少台?

4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数.

第4篇:消元法解二元一次方程组的概念、步骤与方法消元法解二元一次方程组的概念、步骤与方法

湖南李琳高明生

一、概念步骤与方法:

1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.

2.用代入消元法解二元一次方程组的步骤:

(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.

(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.

(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.

注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.

⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

用加减消元法解二元一次方程组的基本思路仍然是“消元”. 4.用加减法解二元一次方程组的一般步骤:

第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,?可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,?可以直接把两个方程的两边相减,消去这个未知数.

第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值

相等(都等于原系数的最小公倍数),再加减消元.

第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,?合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,?常数项在方程的右边的形式,再作如上加减消元的考虑.

注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.

5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.

6.列二元一次方程组解应用题的一般步骤:⑴设出题中的两个未知数;

⑵找出题中的两个等量关系;

⑶根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;

⑷解这个方程组,求出未知数的值.

⑸检验所得结果的正确性及合理性并写出答案.

注意:对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列

出几个方程.即未知数的个数应与方程组中方程的个数相等.

二、化归思想

所谓转化思想一般是指将新问题向旧问题转化、复杂问题向简单问题转化、未知问题向已知问题转化等等.在解二元一次方程中主要体现在运用“加减”和“代入”等消元的方法,把新问题“二元”或“三元”通过消去一个未知数转化为旧问题“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问题的解决,它也是解二元一次方程最基本的思想.

三、典型例题解析:

类型一:基本概念:

?x?2,?

y??1,

例1、(2005年盐城大纲)若一个二元一次方程的一个解为?则这个方程可以是

________.(只要写出一个)

分析:本题是一道开放型问题,考查方程的概念,满足题意的答案不惟一,解此类题目时,可以先设出系数在代入算出另一边的值。

?x?2,?

y??1,

解:可以先设左边为3x+2y,然后将?代入:3x+2y求得其值为4,则可以得?x?2,

?

y??1,x?yx?y

到符合题意的一个方程:3x+2y=4;也可以先设左边为,然后将?代入:

求得其值为1,则可以得到符合题意的一个方程:x?y?1;

评述:利用概念解题是初中数学的基本要求,注意概念的内涵和外延是解题的关键,本题实质是考查方程组的解与方程的关系,从而转化为代数求值的问题.

类型二:用含一个字母的式子表示另一个字母

1x?

32y?1

例2、已知2

.

⑴用含x的式子表示y;⑵用含y的式子表示x.

分析:用一个字母表示另一个字母时,应该按照解方程的方法步骤,逐步“剥离”出要表示的字母并把它放在等号的左边,其他未知项、常数项则要统统移到等号的右边.

解:⑴去分母,得x?3y?2.移项,得-3y=2-x.

2

系数化为1,得

y

=-3

?

x3.

⑵去分母,得,x?3y?2.

移项,得x?3y+2.

评述:用含一个字母的式子表示另一个字母是代入法消元法的基础,同时也是消元思想的目的,即消去一元化为一元一次方程。

类型三:消元法解二元一次方程组的两种类型

?2x?y?5,①?

x?3y?6.②

例3、(2007年山东青岛)?

分析:当一个未知数前的系数为1时,两种方法都比较简单。方法1.代入消元法解二元一次方程组由②可得x=3y+6③

将③代入①得:2(3y+6)+y=5,解得:y=-1,将y=-1,代入③得:x?3

?x?3,

?

∴原方程组的解是?y??1.

方法2.加减消元法解二元一次方程组①?3,得6x?3y?15.③②?

③,得7x?21,

x?3.

把x?3代入①,得2?3?y?5,

y??1.

?x?3,

?

∴原方程组的解是?y??1.

评述:解二元一次方程组有代入消元法和加减消元法,一般是当可以比较容易的把一个未知数用含有另一个未知数的式子表示的时候,用代入消元法;否则可用加减消元法.用代入消元法时,对用含有一个未知数的式子表示另一个未知数要特别细心.用加减消元法时,当两个方程相减时,要特别注意符号问题,这都是容易出错的地方.另外,解二元一次方程组是“化归”思想的充分体现,要注意体会这种数学思想.

考点四:列二元一次方程组解决实际问题:

例4、为了保护环境,某校环保小组成员收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460克,第二天收集1号电池2节,5号电池3节,总重量为240克,试问1?号电池和5号电池每节分别重多少克?

分析:如果1号电池和5号电池每节分别重x克,y克,则4克1号电池和5节5?号电池总重量为4x+5y克,2节1号电池和3节5号电池总重量为2x+3y克.

解:设1号电池每节重

y克,根据题意可得

?4x?5y?460?

?2x?3y?240

②×2-①,得y=20

把y=20代入②,得2x+3×20=240,x=90

?x?90?

y?20

所以这个方程组的解为?

答:1号电池每节重90克,5号电池每节重20克.

评述:列二元一次方程组解决实际问题一般需要般要遵循如下步骤:

①审题;②确定相等关系;③设出未知数;④解方程;⑤检验、写出答案.四、举一反三:

1、(2007江苏南京)解方程组答案提示:①+②,得把

代入②,得

.解得

原方程组的解是

2、(2007恩施自治州)团体购买公园门票票价如下:

今有甲、人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元.(1)请你判断乙团的人数是否也少于50人.(2)求甲、乙两旅行团各有多少人?答案提示:(1)∵100×13=1300

∴乙团的人数不少于50人,不超过100人(2)设甲、乙两旅行团分别有x人、y人,

则解得:

所以甲、乙两旅行团分别有36人、84人3、(1)(2006·扬州)xy=16,写出满足x与y的值_________________.

(2)(2006·烟台)在横线上,写出一个解为x=1y=2的二元一次方程组:.

答案提示:这两个填空题以发散的形式考查方程(组)的概念和方程(组)解的定义,它们的答案都不唯一.

第(1)题首先可想到42=16;第(2)题列两个含有1和2的等式,然后用x和y分

别代换1和2,并将它们联立起来,即可得到一个解为解:(1)x=4,y=2或x=2,y=4.

的方程组.

(2)∵

1+2=3,2×1-2=0.

∴以为解的一个二元一次方程组是x+y=3,2x-y=0.

4、下图是按一定规律排列的方程组集合和它们解的集合的对应关系图:

若方程组集合中的方程组自上而下依次记作方程组1,方程组2,方程组3,…,方程组n.

(1)将方程组1的解填入上图中;

(2)请依据方程组和它的解变化的规律,将方程组n和它的解直接填入集合图中;

(3)若方程组的解是求a、b的值,并判断该方程组是否符合(2)中的规律?

答案提示:通过两个集合代数式中项的上下数字的对比不难发现方程组和方程组的解

的通式分别为

解:(1)2,-1.

找到这个规律,问题就变的很简单了.

(2)

(3)由题意,得

解之得

该方程组若为

x2-1=0x2+x-2=0x2+2x-3=0……

x2+(n-1)x-n=0

那么它符合(2)中的规律;若为则不符合.

5、已知下列n(n为正整数)个关于x的一元二次方程:

(1)请解上述一元二次方程、、……;

(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.答案提示:(1)(x+1)(x-1)=0,所以x1=-1,x2=1.(x+2)(x-1)=0,所以x1=-2,x2=1.(x+3)(x-1)=0,所以x1=-3,x2=1.……

(x+n)(x-1)=0,所以x1=-n,x2=1.

(2)共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等.6、在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.

(1)求乙工程队单独完成这项工程所需的天数.(2)求两队合作完成这项工程所需的天数.

答案提示:设这项工程的总量为单位“1”,则“乙工程队10天完成的工程量+甲、乙合作20天完成的工程量=总工程量“1”,根据此关系式可列方程求解.解:(1)设乙工程队单独完成这项工程需要x天.根据题意,得

解得x=60.经检验x=60是原方程的解.

答:乙工程队单独完成这项工程所需的天数为60天.(2)设两队合作完成这项工程所需的天数为y天.

根据题意,得

解得y=24.

答:两队合作完成这项工程所需的天数为24天.

第5篇:一元一次方程解题步骤详解一元一次方程的应用(一)1、掌握用一元一次方程解决实际问题的基本思想;2、进一步经历用方程解决实际问题的过程,体会运用方程解决实际问题的一般方法。

2运用一元一次方程解决简单的实际问题是重点;寻找等量关系是难点。

一、目标导入

前面我们通过简单的实际问题研究了一元一次方程的解法,今天我们就来运用一元一次方程解决简单的实际问题。

二、例题

例1有一列数,按一定规律排列成1,-3,9,-27,81,-243,?,其中某三个相邻数的和是-1701,这三个数各是多少?

分析:从符号与绝对值两方面观察,这列数有什么规律?

符号正负相间;后者的绝对值是前者绝对值的3倍。即后一个数是前一个数的-3倍。如果设其中一个数为x,那么后面与它相邻

的两个数你能用x表示出来吗?

后面两数分别是-3x,9x。

问题中的相等关系是什么?

三个相邻数的和=-1701。

由此可得方程x-3x+9x=-1701

解之,得x=-243。

所以这三个数是-243,729,-218。

注意:本题中有三个未知量,由它们之间的关系,我们可以用一个字母来表示,从而列出一元一次方程。这一点要注意学习。例2根据下面的两种移动电话计费方式表,考虑下列问题。

(1)一个月内在本地通话200分和350分,按方式一需交费多少元?按方式二呢?

(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?

分析:(1)按方式一在本地通话200分钟需要交费多少元?350分钟呢?

通话200分钟需要交费:30+200×0.3=90元;

通话350分钟需要交费:30+350×0.3=135元.

按方式二在本地通话200分钟需要交费多少元?350分钟呢?通话200分钟需要交费:200×0.4=80元;

通话350分钟需要交费:350×0.4=140元.

(2)设累计通话t分钟,那么按方式一要收费多少元?按方式二收费多少元?

按方式一要收费(30+0.3t)元;按方式二要收费0.4t元.

问题中的等量关系是什么?

方式一的收费=方式二的收费.

由此可列方程30+0.3t=0.4t

解之,得t=300

所以,当一个月内通话300分钟时,两种计费方式的收费一样多. 引申:你知道怎样选择计费方式更省钱吗?

当t=400时,30+0.3t=30+0.3×400=150元;

0.4t=0.4×400=160元.

当时间大于300分钟时,方式一更省钱.

三、一元一次方程解实际问题的基本过程

将实际问题转化为数学问题即建立数学模型,通过解决数学问题来解决实际问题。

四、课堂练习

学校办了储蓄所,开学时,李英存了200元,王建存了140元,以后李英每月存20元,王建每月存35元,经过几个月,李英、王建的存款数相等?

五、小结

本节课我们研究了通过列一元一次方程,把实际问题抽象成数学问题即建立数学模型,再通过解一元一次方程即解决数学问题来解决实际问题的具体方法,这是解决实际问题的一般思想方法。解一元一次方程-去括号(1)

1、掌握含有括号的一元一次方程的解法;

2、经历运用方程解决实际问题的过程,进一步体会方程模型的作用。

2含有括号的一元一次方程的解法是重点;括号前面是负号时去括号是难点。

一、导入新课

前面我们已经学会了运用移项、合并同类项来解一元一次方程,但当问题中的数量关系较复杂时,列出的方程也会较复杂,解方程的步骤也相应些,如下面的问题。

二、探索去括号解一元一次方程

问题某加工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电150万度,这个工厂去年上半年每月平均用电多少度?

分析:问题中的等量关系是什么?

上半年用电度数+下半年用电度数=1500000。

设去年上半年平均用电x度,那么下半年每月平均用电多少度?上半年共用电多少度?下半年共用电多少度?

下半年每月平均用电(x-2000)度;上半年共用电6x度;下半年共用电6(x-2000)度。

由此可得方程:

6x+6(x-2000)=1500000

这个方程中含有括号,怎样才能转化为我们熟悉的形式呢?

去括号。

去括号,得6x+6x-12000=1500000

解得x=13500

所以这个工厂去年上半年每月平均用电13500度。

思考:你还有其它的解法吗?

设去年下半年平均用电x度,则

6x+6(x+2000)=1500000

解之,得x=11500

所以去年上半年每月平均用电11500+2000=13500度。

三、例题

例1解方程:3x-7(x-1)=3-2(x+3)

解:去括号,得

3x-7x+7=3-2x-6

合并,得-4x+7=-2x-3

移项,得-4x+2x=-3-7

-2x=-10

∴x=5

注意:括号外面是负号时,去括号后,括号内的每一项的积都要变号。

四、课堂练习

1、初一某班同学准备组织去东湖划船,如果减少一条船,每条船正好坐9名同学,如果增加一条船,每条船正好坐6名同学,问这个班共有多少名同学?

五、小结

1、含有括号的一元一次方程的解法。

当括号外面是负号,去掉括号后,要注意变号。

2、解一元一次方程的步骤:

①去括号;②移项;③合并同类项;④系数化为1。

3、例题解法一是求什么设什么,叫直接设元法,方程的解就是问题的答案;解法二不是求什么设什么,叫间接设元法,方程的解并不是问题的答案,需要根据问题中的数量关系求出最后的答案

解一元一次方程——去括号(2)

1、进一步掌握列一元一次方程解应用题;

2、通过分析“顺逆水”和“配套”问题,进一步经历运用方程解决实际问题的过程,体会方程模型的作用。

2分析题意、找等量关系和列方程是重点;找出能够表示问题全部含义的相等关系是难点。

一、复习导入

上节课我们学习了解含有括号的一元一次方程,现在我们来解两道题:

(1)2(x+3)=2.5(x-3);(2)2×1200x=2000(22-x)

怎样运用这样的方程来解决实际问题呢?今天我们就来讨论一下。

二、例题

例1一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。已知水流的速度是3千米时,求船在静水中的平均速度。

分析:顺流行驶的速度、逆流行驶的速度、水流的速度、静水中的速度之间有什么关系?顺流的速度=静水中的速度+水流的速度;

逆流的速度=静水中的速度-水流的速度。

问题中的相等关系是什么?

顺水行驶的路程=逆水行驶的路程。

设船在静水中的平均速度为x千米/时,那么顺流的速度是什么?逆流的速度是什么?顺流的速度是(x+3)千米/时逆流的速度是(x-3)千米/时。

由些可得方程

2(x+3)=2.5(x-3)

由前面的解答,知x=27

所以船在静水中的速度是27千米/时。

注意:要牢牢记住顺流的速度=静水中的速度+水流的速度;逆流的速度=静水中的速度-水流的速度。

例2某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?

分析:当问题中的量比较多,关系比较复杂时,我们可以把量分成两类列表,从而使条件条理化,如下表所示:

请设未知数,填上表。

问题中的等量关系是什么?

螺母的数量=2×螺钉的数量。

由此,可列方程

2×1200x=2000(22-x)

由前面的解答可知x=10

22-x=22-10=12

所以应分配10名工人生产螺钉,12名工人生产螺母。

注意:列表法是列方程解应用题的一种行之有效的方法,有注意学习。

三、课堂练习

在一次美化校园活动中,先安排31人去拔草,18人去植树,后又是增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和植树的人分别有多少人?

四、课堂小结

通过前面的学习讨论,我们进一步体会到列方程解决实际问题的关键是正确地建立方程中的相等关系;同时知道所列方程的解不一定就是问题的答案,必须检验之后才能确定,这是一个要注意的问题。

解一元一次方程——去分母(1)

1、掌握含有分母的一元一次方程的解法;

2、归纳解一元一次方程的步骤,体会转化的思想方法。

2解含有分母的一元一次方程是重点;去分母时适当地添括号是难点。

一、问题导入

英国伦敦博物馆保存着一部极其珍贵的文物——纸莎草文书,其中有如下一道著名的末知数的问题:

一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33。设这个数为x,可得方程

23x+12x+17x+x=33当时埃及人如果把问题写成这种形式,它一定是“最早”的方程。这种方程与我们前面学习的方程有什么不同?有些系数是分数。

今天我们就来学习这种含有分数系数方程的解法。

二、含有分母的一元一次方程的解法和步骤

1、探索方法

请你用自己的方法试着解上答上面的方程。

学生自主解方程,教师收集不同的解法,比较直接合并同类项和先去分母解法的难易。显然,通过先去母把方程转化为我们熟悉的形式来解比较简单。

《二元一次方程和它的解》word版 公开课一等奖教案 (1)

咖的创作经 验,经过创 作、审核、 优化、发布 等环节,最 终形成了本 作品。本作 品为珍贵资 源,如果您 现在不用, 请您收藏一 下吧。因为 下次再搜索 到我的机会 不多哦! 学科 课题北京市窦店中学七年级数学 课型新授日期下册 6.1二元一次方程和它 的解教案北京课改版 学习重点二元一次方程的意义及二元一次方程的解的概念 学习难点二元一次方程的解的不定性和相关性。 教具学具多媒体 教学方法讨论法、类比法

教学过程 教学内容学生活动一、复习引入 提问:1.什么是一元一次方程? 2.一元一次方程的解的定义是什么? (学生回答) 引入: 本节课我们来学习一种新的方程形式——二 元一次方程。首先我们来看一道题。 在新年联欢会上同学们组织了猜谜活动,并 采取积分方法计分,每答对1题要得分,每答错1 题要扣分。在猜谜活动中,王强答对了7道题, 答错了3道题,共获得50分;李翔答对了8道题, 答错了1道题,共获得 教学内容学生活动

教学过程62分。问答对1道题得多少分,答错1道题扣多少分? 从前我们在解应用题的时候都是只设一个未知数就可以列出方程求出解,那么我来看一下这道题如果只设一个未知数的话是否可以列出方程求出解?(让学生思考) 我们发现只用一个未知数是没有办法列出本题的方程的,那我们就再多设一个未知数,看一看能不能对解题有所帮助。 如果设答对1道题得x分,答错1道题扣y分,那么根据x、y之间的关系,我们可以得到下面两个方程: 7x-3y=50, 且8x-y=62 二、探索新知 (一)二元一次方程的定义 1.观察上面这个方程和一元一次方程有什么相同点和不同 点? 2.引导学生总结出二元一次方程的定义 二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数是一次,像这样的方程就叫做二元一次方程。 引导学生总结出以下三个特点: (1)含有两个未知数。 (2)未知数的项的次数都是一次. (3)等号两边的代数式是整式。 下面我们来看一道题。 3.练习:判断下列方程哪些是二元一次方程?哪些不是?(1)3x+y=1 (2)y+2x=3 (3) x+y+z=1(5) 2x-1=7 (4) y= 1 1 x 4.前面我们已经复习了一元一次方程解的概念:使一个一 元一次方程左右两边相等的未知数的值叫一元一次方程的解。 思考一下,和它类似的我们能不能得出二元一次方程 的解的概念?(找学生总结) (二)二元一次方程的解:使一个二元一次方程左右

二元一次方程及其解法

一、问题引入 问题一:如图,已知一个矩形的宽为3,周长为24,求矩形的长。如果我们设长为x ,则可 列方程为:x +3=12 ;如果把问题中矩形的宽改为y ,则可得到什么样的等量关系! 解:x +y =12 问题二:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何? 解:如果设鸡有x 只,兔有y 只,则可列方程为: x +y =35 2x +4y =94 1.二元一次方程的概念:含有两个未知数,且含未知数的项的次数为1的整式方程叫做二元一次方程。 例1.下列方程组中,哪些是二元一次方程组_______________ 判断一个一个方程时候为二元一次方程的三个要素: ①含有两个未知数 ②未知数的次数为1 ③整式方程 (与分式区分开来) 想一想:二元一次方程的解与一元一次方程的解有什么区别? ①二元一次方程的解是成对出现的; ②二元一次方程的解有无数个; ③一元一次方程的解只有一个。 例2 若方程 是二元一次方程,求m 、n 的值. 分析: 变式: 方程 是二元一次方程,试求a 的值. 注意: ①含未知项的次数为1; ②含有未知项的系数不能为0 2.二元一次方程组的解 二元一次方程组的解法,即解二元一次方程的方法;今天我们就一起探究一下有什么方法能解二元一次方程组。 2、把下列各对数代入二元一次方程3x+2y=10,哪些能使方程两边的值相等? (1)X=2,y=2 是 (2)x=3,y=1 否 (3)x=0,y=5 是 (4)x=2/3,y=6 是 2(1)3 x y y z +=?? +=?,5(2)6x y xy +=?? =?, 7(3)6 a b b -=??=?, 2(4)13x y x y +=-???-=??,52(5)122 y x x y =-?? ?+=??,25(6)312 x y -=?? +=?,213257m n x y --+=211 321 m n -=??-=?1(2)2a x a y -+-=

行列式解二元一次方程组

行列式解二元一次方程组 在研究用消元法解二元一次方程组???=+=+2 221 11c y b x a c y b x a 中,可得解的公式 ??? ??? ?--=--=.,122112211 2211221b a b a c a c a y b a b a b c b c x ,显然,那个公式本身还看不出它的明显规律,也不易经历,因此那个公式还不够理想,那么能不能找一个更好的表现形式,使得它们之间的依赖关系表示得更明显,更有规律,且便利经历呢?下面介绍的用行列式解二元一次方程组的方法,就能够达到以上目的,由此,能够看出行列式能关心解决刚才提出的问题、 1、符号 2 2 11b a b a 叫做二阶行列式,a 1、a 2、b 1、b 2叫做那个二阶行列式的元素, a 1、a 2、 b 1、b 2这四个元素排成二行二列〔横排叫行,竖排叫列〕、例如,a 2是位于第二行第一列上的元素,b 1是位于第一行第二列上的元素、 2、二阶行列式的展开形式为 2 2 11b a b a =a 1b 2-a 2b 1,它的展开方法是,将a 1、 a 2、 b 1、b 2四个数排列成正方形,即 2 21 1b a b a 能够看出a 1b 2-a 2b 1是如此两项的和,一项为哪一项正方形中实线表示的对角线〔叫做主对角线〕上两数的积,再添上正号;一项为哪一项虚线表示的对角线〔叫做副对角线〕上两数的积,再添上负号、这种方法叫做二阶行列式展开的对角线法那么、 3、二元一次方程组???=+=+2 221 11c y b x a c y b x a 的解的行列式表示法, 2 2 11 2 2 11b a b a b c b c x = , 2 2 112 2 11b a b a c a c a y = ,〔a 1b 2-a 2b 1≠0〕 为简便起见,设2 2 11b a b a D = ,2 2 11b c b c D x = ,2 2 11c a c a D y = ,那么当D ≠0

二元一次方程组的概念及解法

二元一次方程组的概念及解法 知识点梳理 知识点一二元一次方程组的概念 含有两个未知数,并且含有未知数的相的次数都是1,像这样的方程叫做二元一次方程。 把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。 使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。 一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。 典例分析 例1、在方程组、、、、 、中,是二元一次方程组的有个; 例2、已知二元一次方程2x-y=1,若x=2,则y=;若y=0,则x=. 变式1:方程x+y=2的正整数解是__________. 变式2、在方程3x-ay=8中,如果是它的一个解,那 么a的值为? ? ? = = 1 3 y x

例3 方程组???=+=-5 21 y x y x 的解是( ) A 、 ???=-=21y x B 、???-==12 y x C 、???==21y x D 、???==12y x 例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组 。 例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。问鸡兔各几何。”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。 知识点二 解二元一次方程 消元解二元一次方程???代入消元法加减消元法 典例分析 例1、 把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = . 化成含x 的代数式表示y 的形式:y = .

解二元一次方程“十字交叉法”

解二元一次方程:“十字交叉法” 十字相乘就是把二次项拆成两个数的积 常数项拆成两个数的积 拆成的那些数经过十字相乘后再相加正好等于一次项 看一下这个简单的例子m2+4m-12 m -2 ╳ M 6 把二次项拆成m与m的积(看左边,注意竖着写) -12拆成-2与6的积(也是竖着写) 经过十字相乘(也就是6m与-2m的和正好是4m) 所以十字相乘成功了 m2+4m-12=(m-2)(m+6) 重点:只要把2次项和常数项拆开来(拆成乘积的形式),可以检验是否拆的对,只要相加等于1次项就成了,十字相乘法实际就是分解因式。 解释说明:

十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。 十字相乘法解题实例 常规题例1:把m2+4m-12分解因式 分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -2 ╳ 1 6 所以m2+4m-12=(m-2)(m+6)

例2:把5x2+6x-8分解因式 分析:本题中的5可分为1×5,-8可分为-1×8,-2×4, -4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题 解:因为 1 2 ╳ 5 -4 所以5x2+6x-8=(x+2)(5x-4) 例3:解方程x2-8x+15=0 分析:把x2-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。 解:因为 1 -3 ╳ 1 -5 所以原方程可变形(x-3)(x-5)=0 所以x1=3 x2=5 例4:解方程6x2-5x-25=0 分析:把6x2-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。解:因为 2 -5 ╳ 3 5

初二解二元一次方程公式知识点

解二元一次方程公式知识点设ax+by=c,dx+ey=f,x=(ce-bf)/(ae-bd),y=(cd-af)/(bd-ae),其中/为分数线,/左边为分子,/右边为分母解二元一次方程组一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。求方程组的解的过程,叫做解二元一次方程组。消元将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。如:{5x+6y=72x+3y=4,变为{5x+6y=74x+6y=8消元的方法代入消元法。加减消元法。顺序消元法。(这种方法不常用)消元法的例子(1)x-y=3(2)3x-8y=4(3)x=y+3代入得(2)3(y+3)-8y=4y=1所以x=4这个二元一次方程组的解x=4y=1教科书中没有的,但比较适用的几种解法(一)加减-代入混合使用的方法.例1,13x+14y=41(1)14x+13y=40(2)解:(2)-(1)得x-y=-1x=y-1(3)把(3)代入(1)得13(y-1)+14y=4113y-13+14y=4127y=54y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例2,(x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。(3)另类换元例3,x:y=1:45x+6y=29令x=t,y=4t方程2可写为:5t+6*4t=2929t=29t=1所以x=1,y=4

二元一次方程和它的解

7.1 二元一次方程组和它的解 教学目的 1.使学生了解二元一次方程,二元一次方程组的概念。 2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。 3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。 重点、难点 1.重点:了解二元一次方程。二元一次方程组以及二元一次方程 组的解的含义,会检验一对数是否是某个二元一次方程组的解。 2.难点;了解二元一次方程组的解的含义。 教学过程 一、复习提问 1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一 个数是否是这个方程的解? 2.列方程解应用题的步骤。 二、新授 问题1:暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛,勇士队在第一轮比赛中共赛9场,得17分。 比赛规定胜一场得3分,平一场得1分,负一场得。分,勇士队在这一轮中只负了2场,那么这个队胜了几场?又平了几场呢? 这个问题可以用算术方法来解,也可以列一元一次方程来解,请同学们选一种方法试一试。 解后反思:既然是求两个未知量,那么能不能同时设两个未知数? 学生尝试设勇士队胜了x场,平了y场。 让学生在空格中填人数字或式子: (略)(见教科书) 那么根据填表结果可知 x十y=7 ① 3x+y=17 ② 这两个方程有什么共同的特点? (都含有两个未知数,且含未知数的项的次数都是1) 这里的x、y要同时满足两个条件:一个是胜与平的场数和是7场;另一个是这些场次的得分一共是17分,也就是说,两个未知数x、y 必须同时满足方程①、②。因此,把两个方程合在一起,并写成 x+y=7 ① 3x+y=17 ② 上面,列出的两个方程与一元一次方程不同,每个方程都有两个未知数,并且未知数的次数都是1,像这样的方程,叫做二元一次方程。把这两个二元一次方程①、②合在一起,就组成了一个二元一次方程组。 结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。

二元一次方程基本概念及基本解法讲解

二元一次方程 一、二元一次方程的概念: 含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 注意:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 练习1:已知下列方程,其中是二元一次方程的有________. (1)2x -5=y ; (2)x -1=4; (3)xy =3; (4)x+y =6; (5)2x -4y =7; (6)102x + =;(7)2 51x y +=;(8)132x y +=;(9)280x y -=;(10)462x y +=. 【变式1】下列方程中,属于二元一次方程的有( ) A .71xy -= B .2131x y -=+ C .4535x y x y -=- D . 2 31x y - = 二、二元一次方程的解: 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 注意: (1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2, 5. x y =?? =?. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程. 如:10x y +=的解可以是241 ,,869x x x y y y ===?????? ===??? 等等 练习2:二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程解的是( ) A .0 12 x y =?? ?=-?? B .11x y =??=? C .10x y =??=? D .11x y =-?? =-? 【变式2】若方程24ax y -=的一个解是2 1 x y =?? =?,则a= . 三、二元一次方程组 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 注意:组成方程组的两个方程不必同时含有两个未知数,例如? ??=-=+520 13y x x 也是二元一次方 程组. 练习3:下列方程组中,是二元一次方程组的是( )

二元一次方程解法大全

二元一次方程解法大全 1、直接开平方法: 直接开平方法就是用直接开平方求解二元一次方程的方法。用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m. 例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解:9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0(a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=

当b^2-4ac≥0时,x+=± ∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方) 解:将常数项移到方程右边3x^2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+()2=+()2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2=. 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。 例3.用公式法解方程2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2,b=-8,c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a) ∴原方程的解为x1=,x2=. 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程:

二元一次方程万能公式总结

含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。 使方程左右两边相等的未知数的值叫做方程的解。接下来分享二元一次方程的万能公式, 供参考。 二元一次方程万能公式 b^2-4ac>=0,方程有实数根,否则是虚数根。 实数解是: [-b+sqrt(b^2-4ac)]/2a [-b-sqrt(b^2-4ac)]/2a 二元一次方程的解法 代入消元法 (1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个 未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b 的形式; (2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元 一次方程; (3)解这个一元一次方程,求出x的值; (4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解; (5)把这个方程组的解写成x=c y=d的形式。 换元法 解一些复杂的问题,常用到换元法,即对结构比较复杂的多项式,若把其中某 些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化。该方法在减少多项式项数,降低多项式结构复杂程度等方面能起到独到作用。 加减消元法 (1)变换系数:利用等式的基本性质,把一个方程或者两个方程的两边都乘以 适当的数,使两个方程里的某一个未知数的系数互为相反数或相等。

(2)加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程。 (3)解这个一元一次方程,求得一个未知数的值。 (4)回代:将求出的未知数的值代入原方程组的任何一个方程中,求出另一个未知数的值。

《二元一次方程和它的解》教案

《二元一次方程和它的解》教案 教学目标: 使学生认识二元一次方程. 使学生能找出二元一次方程的解. 教学重难点: 教学重点:二元一次方程的认识. 教学难点:探求二元一次方程的解. 教学过程: (一)情境导入 在新年联欢会上,同学们组织了猜谜活动,并采取积分方法记分,每答对1题得分,每打错1题扣分.在猜谜活动中,王强答对了7道题,答错了3道题,共获得50分;李翔答对了8道题,答错了1道题,共获得62分.问答对1道题得多少分,答错一道题扣多少分. 思考:1.如果我们用方程的知识来解决上述问题,首先要先想清楚问题中都涉及了哪些数量,这些数量中哪些是已知量,哪些是未知量. 2.是否可以设两个未知数,列出含有这两个未知数的方程来求解呢? (二)新课介绍 师:如果设答对1道题得x分,答错1道题扣y分,那么根据x,y之间的关系,我们可以得到下面两个方程: 7x-3y=50;8x-y=62. 概念:上面的两个方程中,每一个方程都含有两个未知数x,y,并且含有未知数的项的次数都是1,我们把这样的方程叫做二元一次方程. 使二元一次方程左右两边的值相等的一对未知数的值,叫做这个二元一次方程的一个解. 例如,当x=1,y=1时,方程3x+8y=11左右两边的值相等,我们就把x=1,y=1叫做方程3x+8y=11的一个解,记作x=1, y=1. 思考:怎样确定二元一次方程ax+by=c(其中a,b,c是已知数,且a≠0,b≠0)的一个解?

学生们纷纷讨论. 师:只要我们给出x(或y)的一个值,把它代入方程中,就可以将方程转化为含有另一个未知数y(或x)的一元二次方程,从而求出相应的y(或x)的一个值.这样的一对x,y的值就是这个二元一次方程的一个解. (三)例题解析 例1:已知:2x+5y=7,用含y的代数式表示x. 例2:求出二元一次方程3x+2y+4=0的任意3个解. 实践:请填写下表,并指出二元一次方程3x+2y=17的所有自然数解. 通过填表我们知道,二元一次方程3x+2y=17的自然数解为: x=1,x=3,x=5, y=7;y=4;y=1. 课堂总结: 本节课你学会了什么?

二元一次方程及其解法

. .. . . 一、问题引入 问题一:如图,已知一个矩形的宽为3,周长为24,求矩形的长。如果我们设长为x ,则可 列方程为:x +3=12 ;如果把问题中矩形的宽改为y ,则可得到什么样的等量关系! 解:x +y =12 问题二:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何? 解:如果设鸡有x 只,兔有y 只,则可列方程为: x +y =35 2x +4y =94 1.二元一次方程的概念:含有两个未知数,且含未知数的项的次数为1的整式方程叫做二元一次方程。 例1.下列方程组中,哪些是二元一次方程组_______________ 判断一个一个方程时候为二元一次方程的三个要素: ①含有两个未知数 ②未知数的次数为1 ③整式方程 (与分式区分开来) 想一想:二元一次方程的解与一元一次方程的解有什么区别? ①二元一次方程的解是成对出现的; ②二元一次方程的解有无数个; ③一元一次方程的解只有一个。 例2 若方程 是二元一次方程,求m 、n 的值. 分析: 变式: 方程 是二元一次方程,试求a 的值. 注意: ①含未知项的次数为1; ②含有未知项的系数不能为0 2.二元一次方程组的解 二元一次方程组的解法,即解二元一次方程的方法;今天我们就一起探究一下有什么方法能解二元一次方程组。 2、把下列各对数代入二元一次方程3x+2y=10,哪些能使方程两边的值相等? (1)X=2,y=2 是 (2)x=3,y=1 否 (3)x=0,y=5 是 (4)x=2/3,y=6 是 2(1)3x y y z +=?? +=?,5(2)6 x y xy +=?? =?, 7(3)6 a b b -=??=?, 2(4)13x y x y +=-???-=??,52(5)122 y x x y =-?? ?+=??,25(6)312 x y -=?? +=?,2132 57m n x y --+=211 321 m n -=??-=?1(2)2a x a y -+-=

(公开课)二元一次方程组和它的解教案

7.1 二元一次方程组和它的解 授课者:周培红 授课时间:2016年3月8日 地点:初一(4)班 知识技能目标 1.理解二元一次方程、二元一次方程组和它的解的含义; 2.会检验一对数是不是某个二元一次方程组的解. 过程性目标 1.在运用数据比较分析、作出推断的过程中,提高学生参与数学活动,乐于接触社会环境中数学信息的兴趣. 2.为学生创设学数学、用数学的情境,让学生体验用数学知识解决实际问题的方法. 教学过程设计 一、创设情境 问题的提出:某中学初一年级组织了“我们学姚明”篮球赛. 初一年(14)班在第一轮比赛中共赛9场, 得17分. 比赛规定胜一场得3分, 平一场得1分, 负一场得0分. 勇士队在这一轮中只负了2场, 那么这个队胜了几场? 又平了几场呢? 二、探索归纳 问 能否用我们已经学过的知识来解决这个问题? 答 可以用一元一次方程来求解. 设初一年(14)班胜了x 场, 因为它共赛了9场, 并且负了2场, 所以它平了(9-x -2) 场. 根据得分规则和它的得分, 我们可以列出一元一次方程: 17)29(3=--+x x . 解这个方程可得5=x . 所以初一年 (14)班胜了5场, 平了2场. 由上面解答可知, 这个问题可以用一元一次方程来求解, 而我们很自然地会提出这样一个问题: 既然要求胜的场数和负的场数,这其中有两个未知数,那么能不能同时设出这两个未知数呢? 师生共同探讨: 不妨就设初一年(14)班胜了x 场, 负了y 场. 在下表的空格中填入数字或式子. 根据填表的结果可知: 7=+y x ① 和 173=+y x ② 引导学生观察方程①、②的特点, 并与一元一次方程作比较, 可知: 这两个方程都含有两个未知数, 并且未知数的次数都是1. 我们把上面这样的方程, 即把含有两个未知数, 并且未知数的次数是1的方程叫做二元一次方程(linear equation with two unknowns ).

二元一次方程组的解的情况

二元一次方程组的解的情况(教案) 教学目标 1、 理解二元一次方程组的解的三种情况 2、 会判断二元一次方程组的解的情况 3、 通过引导,以及学生之间的合作交流,让学生学会对知识进行归纳总结,从而激发学生自主学习的兴趣。 重点难点 重点:二元一次方程组的解的三种情况;会判断二元一次方程组的解的情况 难点:理解二元一次方程组解的情况的判定方法 教学过程 一、 复习引入: 什么叫做方程的解?能使方程两边相等的未知数的取值。如02=-x 的解是2=x 思考:是不是所有的一元一次方程都是只有一个解呢? 解下列一元一次方程 (1)122+=-x x (2)12+=-x x (3))1(222+=+x x 解:122+=-x x 解:12+=-x x 解:2222+=+x x 3=x 30= 00= 有唯一解 无解 有无穷多解 结论:并不是所有的一元一次方程都是只有一个解。有的可能没有解,可能只有一个解,也有的有无数个解。 那二元一次方程组的解又有几种情况呢?(引入课题:二元一次方程

组的解的情况) 二、 新课讲解 先让学生计算下列三个题: (1)???=-=+9321752y x y x (2)???=+-=-56223y x y x (3)? ??-=+-=-46223y x y x 解得:???==1 6y x ①×2+②得0=9 ①×2+②得:0=0 让学生根据前面一元一次方程的解的情况,讨论出上述三个方程组的解的情况: (1)有唯一解 (2)无解 (3)有无穷多解 从而得出二元一次方程组的解也有三种情况。下面让学生小组讨论:分别在什么样的情况下方程组有唯一解、无解、有无数个解? (在学生讨论时教师给予提示:注意观察上述三个方程组中,每个方程组中的对应未知数的系数之间的关系。必要时把它们乘一乘或者除一除。) (1)中3522 -≠ (2)中526321≠-=- (3)中4 26321-=-=- (注:在(2)、(3)两个方程组中也要注意观察方程中个常数项的关系)由上我们可以猜想:若方程组中y x ,两个未知数的系数比不相等,则方程组有唯一解;若方程组中y x ,两个未知数的系数比相等但与常数项的比值不等,则方程组无解;若方程组中y x ,两个未知数的系数比以及常数项的比值都相等,则方程组有无穷多解。为了验证一下我们的猜想,请同学们自己随便写出几个满足期中任一条件的方程组出来,然后再看看它的解是否和我们的猜想一致呢? ① ② ① ②

人教版初一数学下册二元一次方程和它的解

二元一次方程组和它的解教学设计及学生主体地位二元一次方程组和它的解 教学目的 1.使学生了解二元一次方程,二元一次方程组的概念。 2.使学生了解二元一次方程;二元一次方程组的解的含义,会检验一对数是不是它们的解。 3.通过引例的教学,使学生进一步使用代数中的方程去反映现实世界中的等量关系,体会代数方法的优越性。 重点、难点 1.重点:了解二元一次方程。二元一次方程组以及二元一次方程 组的解的含义,会检验一对数是否是某个二元一次方程组的解。 2.难点;了解二元一次方程组的解的含义。 教学过程 一、复习提问 1.什么叫一元一次方程?什么叫一元一次方程的解?怎样检验一 个数是否是这个方程的解? 2.列方程解应用题的步骤。 二、新授 问题1:工厂里,工人用34小时的时间加工出了18件产品。 根据工厂现有技术,加工一件A产品耗时3小时,加工一件B产品耗时1小时,那该工人一共加工了产品A、B各多少件呢? 针对以上的问题,同学们可以应用以前学习过的算术方法来解,也可以列一元一次方程来解,请同学们选一种方法试一试。 解后反思:请同学们思考一下,既然是求两个未知量,那么能不能同时设两个未知数? 引导同学们尝试设加工了x件A、y件B。

叫同学在一下表格中填空: A B 合计 产品数 X Y 耗时 那么根据填表结果可知 X+y=18 ① 3x+y=34 ② 请同学们思考一下:这两个方程有什么共同的特点?(抽学生回答,并同学生们一起探讨,引导学生们一起概括:都含有两个未知数,且含未知数的项的次数都是1) 这里的x、y要同时满足两个条件:一个是加工的产品总数是18;另一个是总耗时数是34,也就是说,两个未知数x、y 必须同时满足方程①、②。因此,把两个方程合在一起,并写成 x+y=18 ① 3x+y=34 ② 上面,列出的两个方程与一元一次方程不同,每个方程都有两个未知数,并且未知数的次数都是1,像这样的方程,叫做二元一次方程。把这两个二元一次方程①、②合在一起,就组成了一个二元一次方程组。 结合一元一次方程,二元一次方程对“元”和“次”作进一步的解释;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。

二元一次方程的解法

二元一次方程的解法 二元一次方程的解法:认识二元一次方程组的有关概念,会把一些简单的实际问题中的数量关系,用二元一次方程组的形式表示出来,学会用含有其中一个未知数的代数式表示另一个的方法。下面小编整理了二元一次方程的解法,供大家参考。 代入消元 (1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.这种解方程组的方法叫做代入消元法,简称代入法. (2)代入法解二元一次方程组的步骤。 ①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数; ②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.); ③解这个一元一次方程,求出未知数的值; ④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值; ⑤用{联立两个未知数的值,就是方程组的解;

⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边). 例题: {x-y=3① {3x-8y=4② 由①得x=y+3③ ③代入②得 3(y+3)-8y=4 y=1 把y=1带入③ 得x=4 则:这个二元一次方程组的解 {x=4 {y=1 加减消元 (1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.[5] (2)加减法解二元一次方程组的步骤 ①利用等式的基本性质,将原方程组中某个未知数的系数化

二元一次方程公式法

育英学校九年级自学能力测试题 21.2.2公式法 一、读懂文本,捕捉重要的知识信息,为记住知识和应用知识奠定基础。(30分)。 读懂材料第 页: 1.知识点1: 一般地,式子ac b 42-叫做方程02=++c bx ax (0≠a ) .通常用希腊字母?表示它,即 2.知识点2: 当△≥0时,方程0c b a 2=++x x (a ≠0)的实数根可写为 的形式,这个式子叫作一元二次方程的求根公式。 3.知识点3: [方法归纳] 用公法解下列一元二次方程的步骤: (1)把方程化为一般形式,确定a,b,c,的值。 (2)求出b 2-4ac 的值。 (3)若b 2-4ac ≥0,则将a,b,c,的值代入求根公式求出方程的根。 4.读完文本后,你有哪些疑惑? 5.本文和以前学过的知识有什么联系? 二、加强记忆,巩固知识,解决问题,提升能力。(60分) 1.方程0132=+-x x 的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .只有一个实数根 解下列一元二次方程 (1)x 2-3x-1=0 (2) x 2+x-6=0 (3)3x 2-6x-2=0 (4)4x 2-6x=0

(5)x2+4x+8=4x+11 (6)x(2 x-4)=5 -8x 三、选做题(20分) 1.用公式法解方程4x2-12x=3,得到(). A.x= 36 2 -± B.x= 36 2 ± C.x= 323 2 -± D.x= 323 2 ± 2.代数式x2-8x+12的值是-4,求x的值 四、思想提升(学用结合,让本文与学习者自身的学习、记忆、巩固、再现和应用紧密挂钩,站在学的角度思考文本对于自己有什么用处,达到培养学习者学科思想的目的。)(10分) 1、本节知识的重点内容是什么?学习这些知识后有什么用处?(5分) 2、学习本节内容你有什么好的方法,写下来与大家分享。(5分)

二元一次方程和它的解教案

二元一次方程和它的解教案 教学目标: 知识目标:认识二元一次方程〔组〕的意义; 明白得二元一次方程〔组〕的解的含义。 能力目标:培养自主探究咨询题的能力。 情感目标:培养学生积极主动的情感。 教学过程: 一、引入新课〔三张足球图片〕 咨询:那么一样足球联赛的得分规那么是什么呢?〔请爱好足球的学生回答〕 胜一场得3分,平一场得1分,负一场得0分。 ? 甲队胜2场,平2场,负一场,那么甲队共赛几场?得几分? ? 甲队共赛5场,胜3场,负一场,那么甲队平了几场?又得了几分? ? 甲队共赛9场,得17分,负2场,那么甲队胜了几场,又平了几场?〔胜5场, 平场〕 二、师生合作教学: 1、提出咨询题1: 暑假里,?新晚报?组织了〝我们的小世界杯〞足球邀请赛。勇士队在 第一轮竞赛中共赛9场,得17分。 竞赛规定胜一场得3分,平一场得1分,负一场得0分。勇士队在这一轮中只负了2场,那么那个队胜了几场?又平了几场呢? 2、列表: 设勇士队胜了? ??=+=+437y x y x 3、二元一次方程组的有关定义 咨询:上面所列方程各含有几个未知数? 2个未知数 含有未知数的项的次数是多少? 次数是1 定义:含有两个未知数,同时所含未知数的项的次数差不多上 1 的方程叫做二元一次方程. 课内练习:比一比看谁快 (1) x+y+z=9 (2) x=6 (3) 2x+6y=14 (4) xy+y=7 (5) 7x+6y+4=16 (6) x2+y=6 议一议 咨询:方程 x +y =7 和 x +3y =17中,x 的含义相同吗?y 呢? 定义:把这两个二元一次方程合在一起,就组成了一个二元一次方程组. (方程组各方程中同一字母必须代表同一个量) 定义:满足一个二元一次方程的每一对未知数的值,叫做那个二元一次方程的一个解 例如 x=3,y=4确实是方程 x+y=7的一个解,我们把它记作:???==4 3y x

二元一次方程的”特殊解“

二元一次方程的“特殊解” 我们知道,任何一个二元一次方程都有无数多个解,但二元一次方程的特殊解例如“自然数解或者正整数解”,往往是有限多个。例如二元一次方程5 2= +y x 的解有无数多个,但是其正整数解只有2个,分别是 1, 3 x y = ? ? = ? 和 2, 1; x y = ? ? = ? 自然数解有 3个,分别是 1, 3, x y = ? ? = ? 2, 1, x y = ? ? = ? 0, 5. x y = ? ? = ? 二元一次方程的特殊解在解决实际问题时,可 以助你一臂之力。 例12008年北京奥运会的球类比赛的门票价格如下: 某球迷购买了x张男篮比赛的门票,y张足球比赛的门票,共用去12000元。 ⑴列出二元一次方程; ⑵写出各种购票的方案。 析解:⑴男篮比赛的门票x张,每张1000元,费用为1000x元;足球比赛的门票y张,每张800元,费用为800y元,所以可得到二元一次方程12000 800 1000= +y x。 ⑵根据题意,求各种购票的方案,就是求二元一次方程12000 800 1000= +y x 的自然数解的问题,方程12000 800 1000= +y x经过整理可以化为60 4 5= +y x, 易得出其自然数解为 0, 15, x y = ? ? = ? 4, 10, x y = ? ? = ? 8, 5, x y = ? ? = ? 12, 0. x y = ? ? = ? 所以有以下购票方案:购男 篮比赛门票12张;或者购男篮比赛门票8张,足球比赛5张;或者购男篮比赛门票4张,足球比赛门票10张;或者购足球比赛门票15张。 例2 当围绕一点拼在一起边长相等的正五边形和正十边形,怎样组合才能 1 / 2

二元一次方程组应用题公式

实际问题与二元一次方程组题型归纳 知识点一:列方程组解应用题的基本思想 列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关 键是把已知量和未知量联系起来,找出题目中的相等关系.一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2 )同类量的单位要统一;(3)方程两边的数值要相等. 知识点二:列方程组解应用题中常用的基本等量关系 1?行程问题: (1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而 行。这类问题比较直观,画线段,用图便于理解与分析。其等量关系式是遠度-路 程 两者的行程差=开始时两者相距的路程;总士空反几「.;厂L.; 时间醬 ⑵相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。这类问题的等量关系是:双方所走的路程之和=总路程。 (3)航行问题:①船在静水中的速度+水速=船的顺水速度; ②船在静水中的速度-水速=船的逆水速度; ③顺水速度—逆水速度=2 X水速。 注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。 2.工程问题:工作效率X工作时间=工作量. 3.商品销售利润问题: 、、、利润率=直址攀处:<1叩%、、

(1)利润=售价—成本(进价);(2)=i ; (3)利润=成本(进价)x利润率; 标价=成本(进价)X (1 +利润率);(5)实际售价=标价x打折率; 注意:“商品利润=售价一成本”中的右边为正时,是盈利;为负时,就是亏损。打几折就是按标价的十分之几或百分之几十销售。(例如八折就是按标价的十分之八即五分之四或者百分之八十) 4 .储蓄问题: (1)基本概念 ①本金:顾客存入银行的钱叫做 本金。②利息:银行付给顾客的 酬金叫做利息。 ③本息和:本金与利息的和叫做本息和。④期数:存入银行的时 间叫做期数。 ⑤利率:每个期数内的利息与本金的比叫做利率。⑥利息税:利 息的税款叫做利息税。 (2)基本关系式 ①利息=本金x利率x期数 ②本息和=本金+利息=本金+本金x利率x期数=本金x (1 + 利率x期数) ③利息税=利息x利息税率=本金x利率x期数x利息税率。 ④税后利息=利息x (1—利息税率)⑤年利率=月利率x 12⑥ 月利率宰利率工丄

7.1 二元一次方程组和它的解

7.1 二元一次方程组和它的解 一课时 教学内容:二元一次和它的解,二元一次方程组和解的意义. 检验一对数是否是方程的解.教材P24—26页的内容. 教学目标:1. 理解二元一次方程、二元一次方程组及其解的意义. 2. 会检验一对数是不是某个二元一次方程组的解. 重点、难点:重点是二元一次方程、二元一次方程组及其解的意义. 难点:列二元一次方程组 教学过程: (一)新课引入 “我们的小世界杯”足球赛规定: 胜一场得3分,平一场得1分,负一场得0分.“勇士”队赛了9场,共得17分.已知这个队只输2场,那么胜了几场?又平了几场呢? 这就要研究有两个未知数的问题了! 让我们来看导图中的问题. (二)探究新知 1、解答问题1 暑假里,《新晚报》组织了“我们的小世界杯”足球邀请赛.勇士队在第一轮比赛中共赛9场,得17分. 比赛规定胜一场得3分,平一场得1分,负一场得0分.勇士队在这一轮中只负了2场,那么这个队胜了几场?又平了几场呢? 这个问题可以算术方法来解,也可以列一元一次方程来解. 思考:问题中有两个未知数,如果分别设为x 、y 又会怎样呢? 探索:在下表的空格中填入数字或式子. 设勇士队胜了x 场,平了y 场,那么根据填表的结果可知 x +y =7, ① 和 3x +y =17. ② 由题意可知,比赛场数x 、y 要满足两个要求:一个是胜与平的场数,一共是7场;另一个是这些场次的得分,一共是17分.也就是说,两个未知数x 、y 必须同时满足①、②这两个方程.因此,把两个方程合在一起,并写成 ???=+=+.173,7y x y x ① ② 上面我们列出的这两个方程与一元一次方程不同.每个方程都有两个未知数,并且未知项的次数都是1.像这样的方程,我们把它叫做二元一次方程.把这两个二元一次方程合在一起,就组成了一个二元一次方程组. 用算术方法或者通过列一元一次方程都可以求得勇士队胜了5场,平了2场,即x =5,y =2.

相关主题
文本预览
相关文档 最新文档