当前位置:文档之家› 环形脉冲分配器教案

环形脉冲分配器教案

环形脉冲分配器教案
环形脉冲分配器教案

159

7-1 时序逻辑电路组成

时序逻辑电路的特点是:电路在任一时刻的输出状态不仅与该时刻输入信号状态有关,而且还与电路原有的状态有关。

时序逻辑电路按状态转换情况可分为同步时序逻辑电路和异步时序逻辑电

160

图7-2 四位数码寄存器

所示为采用D触发器组成的四位数码寄存器。四个触发器

的时钟脉冲输入端CP接在一起,作为接收数码的控制端,

器的数码输入端,Q0~Q3是寄存器的数据输出端,各触发器的复位端连接在一起,作为寄存器的总清零端,低电平有效。

161

图7-3 四位左移寄存器

图7-3所示为采用D触发器组成的四位左移寄存器;其是由四个上升沿触发控制的D触发器G0~G3组成。

由图可见,四个D触发器的时钟脉冲输入端CP连在一起,作为移位脉冲的控制端;受同一移位脉冲CP上升沿触发控制。各触发器的复位端连

162

163=

图7-4 四位右移寄存器

图7-4所示为采用D触发器组成的四位右移寄存器,由图可见该电路的结构与左移寄存器相似。

右移寄存器与左移寄存器的区别是:最高位触发器

图7-5 移位寄存器测试

⒉采用右移方式按表7-2中输入数码,观察寄存器的数据串行输出、并行输出,并将结果填入表7-2中。

⒊采用左移方式按表7-3中输入数码,观察寄存器的数据串行输出、并行输出,并将结果填入表7-3中。

164

图7-6 74LSl94外脚引线排列

165

=1

图7-7 四位环形脉冲分配器

;先置D0=1,输入CP脉冲,然后置

166

图7-8 输出波形图演示四位环形脉冲分配器的连接和调试操作

167

实验十六 脉冲分配器及其应用(优.选)

实验十六脉冲分配器及其应用 一、实验目的 1.熟悉集成时序脉冲分配器的使用方法及其应用。 2.学习步进电动机的环形脉冲分配器的组成方法。 二、实验原理 1.脉冲分配器的作用是产生多路顺序脉冲信号,它可以由计数器和译码器组成,也可以由环形计数器构成,下图中CP端上的系列脉冲经N位二进制计数器和相应的译码器,可 以转变为2N路顺序输出脉冲。 图16-1 脉冲分配器的组成 2.集成时序脉冲分配器CC4017 CC4017是按BCD计数/时序译码器组成的分配器,其引脚图与功能表为: 图16-2 CC4017的引脚图与功能表

3.步进电动机的环形脉冲分配器 下图是三相步进电动机的驱动电路示意图: 图16-3 三相步进电动机的驱动电路示意图 A、B、C分别表示步进电机的三相绕组。步进电机按三相六拍方式运行,即要求步进电机正转时,控制端X=1,使电机三相绕组的通电顺序为 A A B B B C C CA A 要求步进电机反转时,令控制端X=0,电机三相绕组的通电顺序改为 A AC C BC B AB A 下图为由三个JK触发器构成的按六拍通电方式的脉冲环形计数器: 图16-4 六拍通电方式的脉冲环形计数器 要使步进电机反转,通常应加有正脉冲输入控制和反脉冲输入控制端。 此外,要注意的是,由于步进电机三相绕组任何时刻都不得出现A、B、C三相同时通电或同时断电的情况,所以,脉冲分配器的的三路输出不允许出现111和000两种状态,故要给电路加初态预置环节。 三、实验设备与器材 1、数字逻辑电路实验箱。 2、数字逻辑电路实验箱扩展板。 3、数字万用表,双踪示波器,脉冲源。 4、芯片CC4017、CC4013、CC4027、CC4011、CC4085。 四、实验内容及实验步骤

步进电机环形分配器

步进电机环形分配器 (1)工作原理 步进电机控制主要有三个重要参数即转速、转过的角度和转向。由于步进电机的转动是由输入脉冲信号控制,所以转速是由输入脉冲信号的频率决定,而转过的角度由输入脉冲信号的脉冲个数决定。转向由环形分配器的输出通过步进电机A、B、C相绕组来控制,环形分配器通过控制各相绕组通电的相序来控制步电机转向。 如图1给出了一个双向三相六拍环形分配器的逻辑电路。电路的输出除决定于复位信号RESET外,还决定于输出端Q A、Q B、Q C的历史状态及控制信号-EN使能信号、CON正反转控制信号和输入脉冲信号。其真值表如表1所示。 图1 步进电机环形分配器 表1 真值表

(2)程序设计 程序设计采用组合逻辑设计法,由真值表可知: 当CON=0时,输出Q A、Q B、Q C的逻辑关系为: 当CON=1时,输出Q A、Q B、Q C的逻辑关系为: 当CON=0,正转时步进机A、B、C相线圈的通电相序为: 当CON=1,反转时各相线圈通电相序为: Q A、Q B、Q C的状态转换条件为输入脉冲信号上升沿到来,状态由前一状态转为后一状态,所以在梯形图中引入了上升沿微分指令。 PLC输入/输出元件地址分配见表2。 表2 PLC输入/输出元件地址分配表 根据逻辑关系画出步进电机机环形分配器的PLC梯形图,如图2所示。 CON10 Z EN CLK A B C A B C 1ΦΦ100100 01↑101110 01↑001010 01↑011011 01↑010001 01↑110101 01↑100100 PLC IN代号PLC OUT代号 X0CLK Y0Q A X1EN Y1Q B X2RESET Y2Qc X3CON

环形振荡器

环形振荡器 设计要求: 设计一环形振荡器,频率在120KHz 左右,尽量降低振荡频率和电源电压的相关性。 设计: 环形振荡器是有奇数个反相器构成的环形回路。电路如下图所示: 本设计中,由于振荡频率要求在120KHz 的低频,根据提供的工艺,寄生电容和电阻都很小,要实现如此之低的振荡频率需要非常多的反相器串联,电路冗长庞大。所以采用需要外加阻容元件降低工作频率。电路如下图所示。 反相器内部电路: 本设计要求尽量降低振荡频率和电源电压的相关性。造成这个相关性的原因主要来自电路的寄生电阻电容: 1. 对管的输出电阻Rn 或Rp 。 2 ()2n n THN VDD R KP W VDD V L =-可见VDD 越大,此电阻越小,振荡频率越高。 2. 寄生电容Cgd ,Cgs 。这两个参数对电源的相关性较小,但是也受一定的影响。 可见, 要有效降低振荡频率和电源电压的相关性,可采用外部的远大于寄生参数的元件来吸收寄生参数以达到目的。经分析,电路受电源影响较大的是对管的输出电阻Rn 或Rp, 它们的阻值大约为几千欧,这里,把外部的电阻取在400K 可以有效地降低相关性。根据振荡频率120KHz ,计算出τ=0.00833ms ,每一级的平均时延为/3τ=0.00278ms ,需要的电容

大小为3C R τ ==6.94pF 。这里设计的反相器输出端本身就有800fF 的电容,再考虑到寄生 电阻,电容,这里将外接电容的值取为5.5pF 。 Spice 网表文件: * Waveform probing commands .probe .options probefilename="ring_my1.dat" + probesdbfile="E:\Program Files\Tanner EDA\S-Edit\tutorial\schematic\ring_my1.sdb" + probetopmodule="ring_my1" .lib "E:\Gspice\HSPICE2002\H06MIXDDCT10V02.LIB" tt .lib "E:\Gspice\HSPICE2002\H06MIXDDCT10V02.LIB" resistor .lib "E:\Gspice\HSPICE2002\H06MIXDDCT10V02.LIB" bjt .SUBCKT inv in out Gnd Vdd c2 out Gnd 800ff m1p out in Vdd Vdd pmos L=5u W=12u mn1 out in Gnd Gnd nmos L=5u W=8u .ENDS * Main circuit: ring_my1 C1 N3 Gnd 5.5pF C2 N2 Gnd 5.5pF C3 a7 Gnd 5.5pF Xinv7 a7 OUT Gnd Vdd inv Xinv_1 N3 N5 Gnd Vdd inv Xinv_2 N2 N1 Gnd Vdd inv .print tran OUT R4 N2 OUT 400K TC=0.0, 0.0 R5 N1 N3 400K TC=0.0, 0.0 R6 N5 a7 400K TC=0.0, 0.0 .tran 50n 14000000n start=800000n VCC Vdd GND PWL (0 5 8000000n 4.5 9000000n 4 10000000n 3.5 11000000n 3 12000000n 2.5 13000000n 2) * End of main circuit: ring_my1 这里用的仿真软件是Tanner 系列的T-Spice 。 仿真:

实训八 脉冲分配器及其应用

实训八 脉冲分配器及其应用 一、实验目的 1、熟悉集成时序脉冲分配器的使用方法及其应用 2、学习步进电动机的环形脉冲分配器的组成方法 二、实验原理 1、脉冲分配器的作用是产生多路顺序脉冲 信号,它可以由计数器和译码器组成,也可以 由环形计数器构成,图11-1中CP 端上的系列 脉冲经N 位二进制计数器和相应的译码器,可 以转变为2N 路顺序输出脉冲。 2、集成时序脉冲分配器CC4017 图11-1 脉冲分配器的组成 CC4017是按BCD 计数/时序译码器组成的分配器。 其逻辑符号及引脚功能如图11-2所示。功能如表11-1 图11-2 CC4017的逻辑符号 CO — 进位脉冲输出端 CP — 时钟输入端 CR — 清除端 INH — 禁止端 Q 0~Q 9 — 计数脉冲输出端

CC4017的输出波形如图11-3。 图11-3 CC4017的波形图 CC4017应用十分广泛,可用于十进制计数,分频,1/N 计数(N=2~10只需用一块,N>10可用多块器件级连)。图11-4所示为由两片CC4017组成的60分频的电路。 图11-4 60分频电路

3、步进电动机的环形脉冲分配器 图11-5所示为某一三相步进电动机的驱动电路示意图。 图11-5 三相步进电动机的驱动电路示意图 A、B、C分别表示步进电机的三相绕组。步进电机按三相六拍方式运行,即要求步进电机正转时,控制端X=1,使电机三相绕组的通电顺序为 A—→A B—→B—→B C—→C—→C A 要求步进电机反转时,令控制端X=0,三相绕组的通电顺序改为 A—→A C—→C—→B C—→B—→A B 图11-6所示为由三个JK触发器构成的按六拍通电方式的脉冲环形分配器,供参考。 图11-6 六拍通电方式的脉冲环行分配器逻辑图

断面图的基本概念教案

课题:1、断面图的基本概念 2、断面图的分类 3、剖切位置与标注 课堂类型:讲授 教学目的:1、介绍断面图的概念和分类 2、讲解断面图的概念和分类 教学要求:1、理解断面图的概念和分类 2、掌握断面图的画法和标注方法 教学重点:移出断面图的画法 教学难点:断面图的标注 教具:挂图:“轴的断面图” 教学方法:讲课时需讲清三个问题: (1)举例说明断面与剖视的区别,防止学生将这两个概念混为一谈,避免把断面画成剖视; (2)指出断面图的作用和优点;(3)定性地指出断面图的适用范围。 教学过程: 一、复习旧课 总结各种剖视图的画法、应用场合和标注,巩固剖视一节的内容,为学习断面图打下基础。 二、引入新课题 在上一节,我们重点学习了用剖视图来表达零件的内部结构。但对于某些零件,如种类,断面图的有关知识。 三、教学内容 国家标准GB/T17452—1998和GB/T4458.6—2002规定了断面图。 (一)断面图的基本概念 1、概念 假想用剖切平面将机件在某处切断,只画出切断面形状的投影并画上规定的剖面符号的图形,称为断面图,简称为断面。如图6—21所示。

(a)(b) (c) 图6—21 断面图的画法 2、断面图与剖视图的区别 断面图仅画出机件断面的图形,而剖视图则要画出剖切平面以后的所有部分的投影,如图6—21(c)所示。 (二)断面图的分类 断面图分为移出断面图和重合断面图两种。 1、移出断面图 (1)概念 画在视图轮廓之外的断面图称为移出断面图。 (2)举例 如图6—21(b)所示断面即为移出断面。 (3)画法要点 1)移出断面的轮廓线用粗实线画出,断面上画出剖面符号。移出断面应尽量配置在剖切平面的延长线上,必要时也可以画在图纸的适当位置。

硬件脉冲环形分配器的设计

数控 数显 硬件脉冲环形分配器的设计 河北省农业工程学校 孙继山 在对一台数控机床维修中,发现其步进电动机 的环形分配器损坏,在原配件买不到的情况下,我用 D触发器和与非门电路进行代换,取得了成功。下 面将电路设计过程作一介绍。 1.根据电机的相数,选择D触发器的数量。一 个触发器控制步进电动机的一相。我们所用的步进 电动机是三相电动机,需用三个D触发器,分别用 F A、F B、F C表示。其状态分别用Q A、Q B、Q C表示。 2.根据步进电动机的通电方式,列出带方向控 制的真值表。三相步进电动机的通电方式有三相单 三拍、三相双三拍和三相单双六拍。由原电路集成 块YB013的3、4接高电平说明其工作在单双六拍。 用D作为方向控制,D=1电机正转、D=0电机反 转。列出的真值表如表1。 表1 真值表 D Q A N Q B N Q C N Q A N+1Q B N+1Q C N+1 1100110 1110010 1010011 1011011 1001101 1101100 0100101 0101001 0001011 0011010 0010110 0110100 3.根据真值表,利用卡诺图得每个触发器的次 态方程。以F A为例,画出卡诺图,由真值表添入数 值后结果如图1。 D Q A n Q B n Q C n000111 10 00x0 01 0110x1 1111x0 10x100 图1 卡诺图 经化简得: Q A n+1=D Q C n+DQ B n=D Q C n D Q B n Q B n+1和Q C n+1可用同样方法得出。也可根据三相电路的对称性,由Q A n+1的表达式推出: Q B n+1=D Q C n D Q B n Q C n+1=D Q B n DQ A n 4.对照D触发器的特性方程:Q n+1=D,得到每个触发器的驱动方程: D A=D Q C n D Q B n D B=D Q A n D Q C n D C=D Q B n D Q A n 5.由驱动方程画出脉冲分配器电路如图2。 图2 脉冲分配器电路 图3 原电路接线图 6.应用:原电路接线如图3所示。图中8031单片机用P1口的三根口线P1 0、P1 1、P1 2实现对环分电路的控制,其中: P1 0:方向控制输出端,接至代换电路的D端。 P1 1:输出控制信号,可用其封锁代换电路的CP 脉冲。 P1 2:环分电路复位控制,接至代换电路的R。代换电路的CP脉冲直接接8155定时器的定时输出。 (收稿日期:2000-12-15) ! 11 ! 数控 数显 机床电器2001No.6

环形振荡器版图设计

实验三:环形振荡器版图设计 一、实验目的 1、使用现有的布局实例创建新的布局; 2、仿真提取版图; 二、实验要求 1、打印出DRC报告; 2、输出CMOS环形振荡器的后置仿真结果,包括瞬态响应、振荡频率和平均功率。 三、实验工具 Virtuoso 四、实验内容 1、创建CMOS环形振荡器电路原理图; 2、创建CMOS环形振荡器的版图; 3、后仿真(Post-layout simulation,PLS)。

1、创建CMOS环形振荡器的电路原理图 在library manager界面选中lab1(自己创建的库),并点击菜单栏上的file->new->cell view,创建CMOS环形振荡器的电路原理图。 图1 CMOS环形振荡器电路原理图的创建 因为CMOS环形振荡器是由几个CMOS反相器组成的,在前面两个实验中已经创建好了CMOS反相器的电路原理图,所以可以直接调用CMOS反相器,在schematic editing窗口利用快捷键’i’打开添加实例窗口,选择之前所创建的CMOS反相器,如图2所示,连续放置5个。 图2 添加CMOS反相器 将5个CMOS反相器一次首尾相连,接着创建一个输出引脚,放置在最后一个CMOS反相器后,并通过wire将它们连接起来,具体如图3所示:

图3 CMOS环形振荡器电路原理图 2、创建CMOS环形振荡器的版图 与创建CMOS反相器的版图类似,也是在library manager窗口先选中lab1,在选择file->new->cell view,在弹出的窗口中输入环形振荡器的信息如图4所示: 图4 CMOS环形振荡器版图的创建 在layout editing中添加5个CMOS反相器,并将它们摆放在一起,中间的金属正好相接,如图5所示: 图5 CMOS环形振荡器版图

s7200脉冲设置

S7-200系列PLC编程器的使用示例 Siemens编程器S7-200系列用在中小型设备上的自动系统的控制单元,适用于各行各业,各种场合中的检测,监测及控制。 在这里,和大家一起来讨论S7-200几个使用方面的情况。 1.步进,伺服脉冲定位控制。 在设备的控制系统中,有关运动控制是很重要的,下面我们来看一看西门子S7-200系列PLC怎样来实现这 个功能。 首先,确定使用哪个端口来发脉冲,如采用Q0.0发脉冲,则它的控制字为SMB67,脉冲同期为SMW68,脉 冲个数存放在SMD72中, 下面是控制字节的说明: Q0.0 Q0.1 控制字节说明 SM67.0 SM77.0 PTO/PWM更新周期值 0=不更新,1=更新周期值 SM67.1 SM77.1 PWM更新脉冲宽度值 0=不更新,1=脉冲宽度值 SM67.2 SM77.2 PTO更新脉冲数 0=不更新,1=更新脉冲数 SM67.3 SM77.3 PTO/PWM时间基准选择 0=1微秒值,1=1毫秒值 SM67.4 SM77.4 PWM更新方法 0=异步更新,1=同步更新 SM67.5 SM77.5 PTO操作 0=单段操作,1=多段操作 SM67.6 SM77.6 PTO/PWM模式选择 0=选择PTO,1=选择PWM SM67.7 SM77.7 PTO/PWM允许 0=禁止PTO/PWM,1=允许 这样根据以上表格,我们得出Q0.0控制字:SMB67为:10000101,采用PTO输出,微妙级周期,发脉冲的周期(也就是频率)与脉冲个数都要重新输入。10000101转化为16进制为85,有了控制字以后,我们来写这一段程序:

第4章_组合逻辑电路习题解答

习题 写出图所示电路的逻辑表达式,并说明电路实现哪种逻辑门的功能。 习题图 解:B A B A B A B A B A F ⊕=+=+= 该电路实现异或门的功能 分析图所示电路,写出输出函数F 。 习题图 解:[]B A B B B A F ⊕=⊕⊕⊕=)( 已知图示电路及输入A 、B 的波形,试画出相应的输出波形F ,不计门的延迟. 解:B A B A B A AB B AB A AB B AB A F ⊕=?=???=???= 由与非门构成的某表决电路如图所示。其中A 、B 、C 、D 表示4个人,L=1时表示决议通过。 (1) 试分析电路,说明决议通过的情况有几种。 (2) 分析A 、B 、C 、D 四个人中,谁的权利最大。 习题图 解:(1)ABD BC CD ABD BC CD L ++=??= (2) A C & & & & L B A =1 =1 =1 F F A B F B A

(3)根据真值表可知,四个人当中C 的权利最大。 分析图所示逻辑电路,已知S 1﹑S 0为功能控制输入,A ﹑B 为输入信号,L 为输出,求电路所具有的功能。 习题图 解:(1)011011)(S S B S A S S B S A L ⊕⊕+⊕=⊕⊕?⊕= (2) (3)当S 1S 0=00和S 1S 0=11S 1S 0=01时,该电路实现两输入或非门,当S 1S 0=10时,该电路实现两输入与非门。 (2) A 10

电路逻辑功能为:“判输入ABC 是否相同”电路。 已知某组合电路的输入A 、B 、C 和输出F 的波形如下图所示,试写出F 的最简与或表达式。 习题图 解:(1)根据波形图得到真值表: C AB BC A C B A F ++= 、设∑= )14,12,10,9,8,4,2() ,,,(m D C B A F ,要求用最简单的方法,实现的电路最简单。 1)用与非门实现。 2)用或非门实现。 3) 用与或非门实现。 解:1) (1)将逻辑函数化成最简与或式并转换成最简与非与非式。 F C B A F

5相环形分配器

步进电机论文:五相混合式步进电动机环形分配器的设计 2012年1月21日 五相混合式步进电机环形分配器的设计 徐殿国王宗培(哈尔滨工业大学) l引言 五相混合式步进电机具有许多优良的性能,因此在国内外都得到了较大发展,其驱动技术也取得了很大进步[1]。由于五相混合式步进电动机系统的研制和开发历史不长,电机驱动电源中的环形脉冲分配器专用芯片目前尚未见到,国内外厂家生产的五相混合式步进电动机驱动电源中的环形脉冲分配器大都是由数字逻辑集成电路或EPROM存贮器构成的[2.3]。由于电机的运行节拍和运行方式较多,采用这些方式设计的环形脉冲分配器结构复杂、功能较少、可靠性不高。近年来随着逻辑可编程器件的出现,为逻辑电路的设计提供了极大的灵活性,因此完全可以用逻辑可编程器件(例如PAL、GAL等)设计步进电动机的环形脉冲分配器。本文给出由两片GAL16V8构成的五相混合式步进电动机环形脉冲分配器的设计方法。 2五相混合式步进电机的励磁方式及环形脉冲分配逻辑 根据五相混合式步进电机韵工作原理,可以得到如表1所示的励磁方式。可见五相混合式步进电机的励磁方式很多,但是运行节拍只有两种即整步10拍和半步20拍。尽管该电机的励磁方式很多,但从电机运行的平稳陛和获得最大合成转矩的角庋出发,表1五相混合式步进电动

机的励磁方式常采用4-4相通电方式作为整步运行方式,4-5相通电方式作为半步运行方式。整步运行方式中的5-5相通电方式虽较4-4相通电方式的合成转矩大,但由于驱动电源中采用桥式电路时存在上下桥臂换向容易引起短路而较少采用。本文给出的是4-4相通电方式和5-5相通电方式的环形脉冲分配器设计方法。 根据五相混合式步进电机的合成转矩矢量图[4],可以得到4-5相励磁方式和4-4相励磁方式下的逻辑通电状态变化顺序,如表2所示。与之对应的功放电路形式如图1所示。表2中的“1”代表功率管导通,“0”代表功率管关断。其中正转的逻辑通电状态变化顺序 为。 表2中序号为奇数的逻辑通电状态即为4-4相励磁方式。

步进电机驱动电路设计

步进电机驱动电路设计 摘要 随着数字化技术发展,数字控制技术得到了广泛而深入的应用。步进电机是一种将数字信号直接转换成角位移或线位移的控制驱动元件, 具有快速起动和停止的特点。因为步进电动机组成的控制系统结构简单,价格低廉,性能上能满足工业控制的基本要求,所以广泛地应用于手工业自动控制、数控机床、组合机床、机器人、计算机外围设备、照相机,投影仪、数码摄像机、大型望远镜、卫星天线定位系统、医疗器件以及各种可控机械工具等等。直流电机广泛应用于计算机外围设备( 如硬盘、软盘和光盘存储器) 、家电产品、医疗器械和电动车上, 无刷直流电机的转子都普遍使用永磁材料组成的磁钢, 并且在航空、航天、汽车、精密电子等行业也被广泛应用。在电工设备中的应用,除了直流电磁铁(直流继电器、直流接触器等)外,最重要的就是应用在直流旋转电机中。在发电厂里,同步发电机的励磁机、蓄电池的充电机等,都是直流发电机;锅炉给粉机的原动机是直流电动机。此外,在许多工业部门,例如大型轧钢设备、大型精密机床、矿井卷扬机、市内电车、电缆设备要求严格线速度一致的地方等,通常都采用直流电动机作为原动机来拖动工作机械的。直流发电机通常是作为直流电源,向负载输出电能;直流电动机则是作为原动机带动各种生产机械工作,向负载输出机械能。在控制系统中,直流电机还有其它的用途,例如测速电机、伺服电机等。他们都是利用电和磁的相互作用来实现向机械能能的转换。 介绍了步进电机和直流电机原理及其驱动程序控制控制模块,通过AT89S52单片机及脉冲分配器(又称逻辑转换器)L298完成步进电机和直流电机各种运行方式的控制。实现步进电机的正反转速度控制并且显示数据。整个系统采用模块化设计,结构简单、可

环形振荡器

集成电路设计实践报告 题目:基于Cadence的反相器设计 班级: 学号: 姓名: 1.关于Cadence EDA软件

Cadence EDA软件是当前在各类工作站上广泛使用的一种功能最为完备的电子设计自动化辅助工具,其布局/布线工具与电路仿真工具的性能超群,世界上绝大多数IC生产厂商都可以直接接收由它们生成的IC版图和仿真结果。 对于全定制的设计,首先应输入电路原理图,然后对其要完成的功能进行仿真,以便对设计功能进行验证并对设计参数进行优化。仿真结束后,进行电路的IC版图设计,设计完成后要进行版图的设计规则检查和设计参数的提取,以检查版图设计是否符合工艺要求。完成了版图的设计后,还要将版图电路与原理图电路进行对比,即LVS(Layout Versus Schematic)。确定无误后,用从版图中提取的包括各种寄生参数在内的数据进行所谓的后仿真(Post Simulation),该后仿真能够比较好地反映IC制造完成后电路的实际工作情况。一旦仿真结果满足设计要求,就可以将版图数据提交给生产厂商进行流片生产。 2.反相器设计 2.1实验目的 1、掌握用Composer绘制倒相器的电路图; 2、掌握用Analog Artist进行倒相器的电路仿真。 3、通过Vrtuoso工具进行倒相器的版图设计,尺寸按照要求绘制; 4、对倒相器的版图进行DRC、ERC、LVS验证。 2.2实验步骤 2.2.1反相器原理图的绘制 1 在终端提示符下,键入icfb&,启动Cadence EDA软件。 2 在弹出的Library Manager窗口中执行File->New->Library,将会弹出如下图所示的窗口,在Name栏中输入设计库的名字,然后还需要为设计选择一个已经存在的工艺库。具体做法是点击Attach to existing tech library前面的按钮,然后选择相应的工艺文件,当然在进行电路设计及仿真时也可以不选定工艺文件,最后点击OK。 3、在Library Manager窗口中先选择刚才新建立的库,再在菜单文件选项中选择执行File->New->Cell View选择工具栏中的“添加元件”,弹出添加元件的窗口,点击Add Instance窗口中的Browse,会弹出Component Browser窗口,选定Library为analogLib,并使得Flatten的复选框选中,一些常用的元器件就在Analoglib库中列出来了。

嵌入式 步进电机(环形分配器)

课程数控实验 题目基于LPC2114的直流电机控制系统学院信息工程学院 专业13计算机测控 学号3113002316、3113002317、 3113002318、3113002319 姓名谢志鹏、杨光、叶国康、曾晖

基于LPC2114的步进电机控制器 一.实验要求 1.用一片LPC2000处理器或单片机设计步进电机驱动器,实现脉冲环形分配器和放大驱动电路功能,驱动步进电机运行。 2.用另外一片LPC2000处理器设计数控系统,设置步进电机步进运动方向选择开关、电位器输入步进运动速度、键盘输入步进运动步数,设置运动脉冲和方向信号输出给步进电机驱动器,实现对步进电机的运动控制信号给定。 二.实验原理 1.LPC2103部分(步进电机驱动部分): (1)脉冲输入:利用LPC2103芯片的脉宽调制器(PWM)产生占空比为50%的方波信号。 (2)正反转:把L297的CW/CCW接到LPC2103的一个引脚,通过控制该引脚电平的高低即可实现控制电机正反转。 (3)步进步数控制:把步进电机控制器的定时器0设置成捕获计数模式,当捕获到一个脉冲时,TC 加1,直到TC等于给定步数时,停止方波输出。 2.LPC2114(信号输入部分) (1)步进运动速度输入:通过调节电位器,再经过LPC2114的AD转换,得到电位器触点的电压值。将电压值按照一定的比例换算成速度值,通过串口发送到LPC2103(步进电机控制器),以改变方波的频率。 (2)步进步数输入:通过键盘输入步进步数,将结果通过串口发送到LPC2103(步进电机控制器)。

三.硬件电路 图3.1 电路图 L297是步进电机控制器,适用于双极性两相步进电机或单极性四相步进电机的控制,可有半步、整步和波状三种驱动模式。片内斩波电路允许开关式控制绕组电流。该器件的一个显著特点是仅需时钟、方向和模式输入信号。步进电机所需相位由电路内部产生,大大减轻了的负担。 L297的引脚端功能如下: ◆引脚端10(使能端EN)为芯片的片选信号,高电平有效; ◆引脚端20(复位RST),低电平有效; ◆引脚端19(HALF/FULL)和引脚端17(CW/CCW)都通过上拉电阻链接到高电平; ◆引脚端18(时钟输入CLK)的最大输入时钟频率不能超过5KHz,控制时钟的频率,即可控制电机转 动速率; ◆引脚端19(HALF/FULL)决定电机的转动方式,HALF/FULL=0,电机按整步方式运转,HALF/FULL=1,

计算机网络基本概念-教学设计

计算机网络基本概念教学设计 一、教学目的与要求: 1、了解计算机网络的定义。 2、了解并掌握计算机网络的基本功能与计算机网络的分类方法。 3、理解并能画出不同网络拓扑结构图。 4、了解常用的网络硬件与软件。 二、教学重点、难点: 了解并掌握计算机网络的基本功能,画出不同网络拓扑结构图。 三、教学方法:演示法、讲授法、练习法。 四、课堂练习、作业: 1、什么是计算机网络? 2、计算机网络根据网络覆盖的地理范围和规模分类,可分为哪几种? 3、画出几种网络拓扑结构图。 五、课后小结: 了解网络的基本概念对以后掌握网络的相关应用有很大的帮助,因此它是非常重要的教学内容。但是由于概念性的内容比较枯燥乏味,教学上很难激起学生的学习兴趣。 六、教学过程: (一)导入:因特网是20世纪最伟大的发明之一,因特网已经深深地影响和改变了人们的工作、生活方式,并正以极快的速度在不

断发展和更新,掌握因特网的应用是时代和工作的需要,本节我们先来学习因特网的基础知识----计算机网络基本概念。 (二)授课内容 1、计算机网络 以能够相互共享资源的方式互连起来的自治计算机系统的集合。 二、数据通信 数据通信是指在两个计算机或终端之间以二进制的形式进行信息交换和传输数据。 3、计算机网络的分类 计算机网络分类标准有很多种,根据网络覆盖的地理范围和规模分类是最普遍采用的分类方法。依据这种分类标准,可以将计算机网络分为如下三种。 (1)局域网(LAN) 局域网是一种在有限区域内使用的网络,在这个区域内的各种计算机、终端与外部设备互连成网,其传送距离一般在几公里之内,最大距离不超过10公里,因此适用于一个部门或一个单位组建的网络。 (2)城域网(MAN) 城域网是介于广域网与局域网之间的一种高速网络,它的设计目标是满足几十公里范围内的大量企业、学校、公司的多个局域网的互连需求,以实现大量用户之间的信息传输。 (3)广域网(WAN) 广域网又称远程网,所覆盖的地理范围要比局域网大得多,从

PWM原理设计+脉冲调节的仿真+PWM程序

PWM原理+程序+仿真设计 1、脉宽调制(PWM)基本原理 脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。 例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。这些脉冲宽度相等,都等于∏/n ,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果把上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,使矩形脉冲的中点和相应正弦等分的中点重合,且使矩形脉冲和相应正弦部分面积(即冲量)相等,就得到一组脉冲序列,这就是PWM波形。可以看出,各脉冲宽度是按正弦规律变化的。根据冲量相等效果相同的原理,PWM波形和正弦半波是等效的。对于正弦的负半周,也可以用同样的方法得到PWM波形。 在PWM波形中,各脉冲的幅值是相等的,要改变等效输出正弦波的幅值时,只要按同一比例系数改变各脉冲的宽度即可,因此在交-直-交变频器中,PWM逆变电路输出的脉

冲电压就是直流侧电压的幅值。 根据上述原理,在给出了正弦波频率,幅值和半个周期内的脉冲数后,PWM波形各脉冲的宽度和间隔就可以准确计算出来。按照计算结果控制电路中各开关器件的通断,就可以得到所需要的PWM波形。 研究过程:脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。

脉冲与数字电路模拟试题第1套及答案讲义

1 数字电子技术(第2版) 第一套 A 卷 一、单选题(每题1分) 1. 回差是( B )电路的特性参数。 A 时序逻辑 B 施密特触发器 C 单稳态触发器 D 多谐振荡器 2. 石英晶体多谐振荡器的主要优点是( B )。 A 电路简单 B 频率稳定度高 C 振荡频率高 D 振荡频率低 3. 对TTL 与非门多余输入端的处理,不能将它们( B )。 A 与有用输入端并联 B 接地 C 接高电平 D 悬空 4. TTL 与非门的关门电平是0.8V ,开门电平是2V ,当其输入低电平为0.4V ,输入高电平 为3.2V 时,其低电平噪声容限为( C ) A 1.2V B 1.2V C 0.4V D 1.5V 5. 逻辑函数ACDEF C AB A Y +++=的最简与或式为( B ) A .C A Y += B. B A Y += C. AD Y = D. AB Y = 6. 在什么情况下,“与非”运算的结果是逻辑0。 ( D ) A .全部输入是0 B. 任一个输入是0 C. 仅一个输入是0 D. 全部输入是1 7. 组合逻辑电路( D )。 A 一定是用逻辑门构成的 B 一定不是用逻辑门构成的 C 一定是用集成逻辑门构成的 D A 与B 均可 8. 已知逻辑函数的真值表如下,其表达式是( C )

2 A .C Y = B .AB C Y = C .C AB Y += D .C AB Y += 图2202 9. 要把不规则的矩形波变换为幅度与宽度都相同的矩形波,应选择( C )电路。 A 多谐振荡器 B 基本RS 触发器 C 单稳态触发器 D 施密特触发器 10. 所谓三极管工作在倒置状态,是指三极管( C )。 A 发射结正偏置,集电结反偏置 B 发射结正偏置,集电结正偏置 C 发射结反偏置,集电结正偏置 D 发射结反偏置,集电结反偏置 11. TTL 与非门的关门电平为0.8V ,开门电平为2V ,当其输入低电平为0.4V ,输入高电 平为3.5V 时,其输入高电平噪声容限为( D )。 A 1.1 V B 1.3V C 1.2V D 1.5V 12. 下图电路,正确的输出逻辑表达式是( A )。 A . CD A B Y += B . 1=Y C . 0=Y D . D C B A Y +++=

单片机处理的带延时的软件环形分配器程序

编制基于MCS51系列单片机汇编语言的能够实现3相6拍软件环形分配器正反转运行功能的程序。 正反转的识别由开关K7识别,设K7连接8031的P1.7,而三相电机的A、B、C通电状态由P1.0、P1.1、P1.2三条口线控制。 开关K7闭合,P1.7=1, 接正转,实现:A→AB→B→BC→C→CA→A 开关K7断开,P1.7=0, 接反转,实现:A→AC→C→CB→B→BA→A 硬件电路如图: ORG 0000H SJMP START ORG 0030H TABLE: DB 01H DB 03H DB 02H DB 06H DB 04H DB 05H ORG 0040H START:MOV SP, #60H SETB P1.7 JB P1.7, ZZH SJMP FZH ZZH: MOV DPTR, #TABLE

MOV R0, #0H LOOP1: MOV A, R0 MOVC A, @A+DPTR ORL P1, A ACALL DELAY CJNE R0, #05H, NEXT1 MOV R0, #0H SJMP LOOP1 NEXT1: INC R0 SJMP LOOP1 FZH: MOV DPTR, #TABLE MOV R0, #0H LOOP2: MOV A, R0 MOVC A, @A+DPTR ORL P1, A ACALL DELAY CJNE R0, #0H, NEXT2 MOV R0, #05H SJMP LOOP2 NEXT2: DEC R0 SJMP LOOP2 DELAY: MOV R7, #10H

DELAY1: MOV R6, #0FFH DELAY2: MOV R5, #0FFH DELAY3: DJNZ R5, DELAY3 DJNZ R6, DELAY2 DJNZ R7, DELAY1 RET END

环形脉冲分配器教案精选文档

环形脉冲分配器教案精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

A、导入新课 实物演示:演示环形脉冲分配器的电路功能,提出本次学习的任务,激发学生的兴趣。 B、新授课 7、1 环形脉冲分配器 基础知识 一、概述 按照逻辑功能和电路组成的不同,数字电子电路分成组合逻辑电路和时序逻辑电路两大类。本任务将介绍时序逻辑电路。 时序逻辑电路是由组合逻辑电路和存储电路两部分组成,其方框图如图7-1所示。 图7-1 时序逻辑电路组成 时序逻辑电路的特点是:电路在任一时刻的输出状态不仅与该时刻输入信号状态有关,而且还与电路原有的状态有关。(如:指纹开门) 时序逻辑电路按状态转换情况可分为同步时序逻辑电路和异步时序逻辑电路两大类。 同步时序逻辑电路是指在同一时钟脉冲CP的控制下,电路中所有触发器Q的状态都在同一时刻发生改变。而异步时序逻辑电路是在时钟脉冲CP 的控制下,各触发器Q的状态改变不在同一时刻发生。 最常用的时序逻辑电路是各种类型的寄存器和计数器。 寄存器 (一)概述 寄存器是常用于接收、暂存、传递数码及指令等信息的数字逻辑部件。 寄存器存放数码及指令等信息的方式有并行输入和串行输入两种: ⑴并行输入——数码及指令等信息从各对应位置的输入端同时输入到寄存器中。 ⑵串行输入——数码及指令等信息从一个输入端逐位输入到寄存器中。 寄存器传递数码及指令等信息的方式也有并行输出和串行输出两种: ⑴并行输出——数码及指令等信息同时出现在各对应位置的寄存器的输出端。 ⑵串行输出——数码及指令等信息在一个寄存器的输出端逐位出现。 寄存器分为数码寄存器和移位寄存器: ⑴数码寄存器——用于暂时存放数码的逻辑记忆电路。 ⑵移位寄存器——除具有存放数码的记忆功能外,还具有移位功能。(二)、数码寄存器演示法(结合演示讲解)举例法图片解释(结合演示讲解)连接线路 功能测试(结合演示讲解)连接与调试

步进电机三相六拍环形分配器

10.2 步进电动机位置控制系统 10.2.2 步进电动机的脉冲分配电路 1. 硬件脉冲分配器电路 步进电动机的脉冲分配可以由硬件和软件两种方法来实现。硬件环形分配器需要根据步进电动机的相数和要求的通电方式而设计专门的电路,图10.6所示为一个三相六拍的环形分配器。 分配器的主体是三个J-K触发器。三个J-K触发器的Q输出端分别经各自的功放线路与步进电动机A、B、C三相绕组连接。当QA=1时,A相绕组通电;QB=1时,B 相绕组通电;QC=1时,C相绕组通电。DR+和DR-是步进电动机的正反转控制信号。 正转时,各相通电顺序:A-AB-B-BC-C-CA 反转时,各相通电顺序:A-AC-C-CB-B-BA 图10.6 三相六拍环形分配器 图10.6所示为的三相六拍环形分配器逻辑真值表如表10.1所示。

表10.1 三相六拍环形分配器逻辑真值表 2. 软件脉冲分配 对于不同的计算机和接口器件,软件环分有不同的形式,现以AT89C51单片机配置的系统为例加以说明。 (1)由P1口作为驱动电路的接口 控制脉冲经AT89C51的并行I/O接口P1口输出到步进电动机各相的功率放大器输入,设P1口的P1.0输出至A相,P1.1输出至B相,P1.2输出至C相。 (2)建立环形分配表 为了使电动机按照如前所述顺序通电,首先必须在存储器中建立一个环形分配表,存储器各单元中存放对应绕组通电的顺序数值,如表10.2所示。当运行时,依次将环形分配表中的数据,也就是对应存储器单元的内容送到P1口,使P1.0、P1.1、P1.2依次送出有关信号,从而使电动机轮流通电。 表10.2 三相六拍软件环形分配数据表

基本概念教学文档

专题检测评估(一) 一、单项选择题(本题包括10小题,每小题3分,共30分,每小题只有一个选项符合题目要求) 1.阿伏加德罗是意大利化学家(1776.08.09- 1856.07.09),曾开业当律师,24岁后弃法从理,十分勤奋, 终成一代化学大师。为了纪念他,人们把1 mol 某种微粒集合体所含有的粒子个数,称为阿伏加德罗常数,用N A 表示。下列说法或表示中正确的是( ) A.物质的量就是物质的质量 B.阿伏加德罗常数就是6.230210? C.6.230210? 1mol -叫做阿伏加德罗常数 D.科学上规定含有阿伏加德罗常数个粒子的任何粒子集合体都为1 mol 2.2Na O 、NaOH 、23Na CO 、NaCl 、24Na SO 可按某种标准划为同一类物质,下列分类标准正确的是( ) ①钠的化合物 ②能与硝酸反应的物质 ③可溶于水的物质 ④电解质 ⑤钠盐 ⑥钠的含氧化合物 A.①③④ B.①②⑤⑥ C.②⑤⑥ D.①②④⑤ 3.下列各组物质中,全都属于纯净物的是( ) A.液氯和氯水 B.酒精溶液和乙醇 C.七水合硫酸亚铁和硫酸亚铁溶液 D.干冰和冰水 4.(2012江西师大高三一模,1)下列有关物质分类或归类正确的是( ) ①混合物:石炭酸、福尔马林、水玻璃、水银; ②化合物:2CaCl 、烧碱、聚苯乙烯、HD; ③电解质:明矾、胆矾、冰醋酸、硫酸钡; ④同系物:22CH O 、242C H O 、362C H O 、482C H O ; ⑤同素异形体:60C 、70C 、金刚石、石墨。 A.①③④ B.②④ C.②③④ D.③⑤ 5.(2012江西师大高三一模,2)分类是化学学习和研究的常用手段。下列分类依据和结论都 A.2H O 、HCOOH 、4242()()NH Fe SO 中均含有氧元素,都是氧化物 B.HCl 、24H SO 、3HNO 均具有氧化性,都是氧化性酸 C.赤铁矿、磁铁矿、黄铁矿、孔雀石都是常见的铁矿石 D.23Na CO 、2()Ba OH 、4NH Cl 、22Na O 都属于离子化合物

一种低成本的RC环形振荡器

一种低成本的RC环形振荡器 【摘要】本文提出了一种能够在纯数字CMOS工艺中制造的振荡器。通过电荷守恒原理将内部节点的电压范围限制在0~VDD之间,使其可以采用低成本的N-阱电阻和MOS电容。测试结果表明,振荡器输出频率中心值为1MHz,与设计预期相符。 【关键词】振荡器;CMOS;低成本 1.引言 众所周知,振荡器在集成电路中占有重要的地位。通过振荡器的运用,可以产生各种不同频率的周期性的时钟信号。振荡器的实现方式有很多,有通过恒流源对电容充放电,并将电容上的电压与参考电压进行比较以此来决定输出是否翻转的振荡器[1][2][3][4]。文献[5]中在通过恒流源对电容充放电的基础上,采用LDO对振荡器进行供电,以减小电源电压变化对频率的影响。上述两种方案都需要比较精确的电流和电压参考,在纯数字CMOS工艺的实现成本也较高。除此以外还有用于PLL的压控振荡器(VCO),其频率范围较大,不适合作为时钟发生器[6][7]。 图1所示的振荡器是一种通过电阻点电容充放电实现的振荡器电路。电路的各个节点的电压波形如图2所示,其中VDD为工作电源电压。这种结构的振荡器的优点是不需要用到精确的电流和电压基准,且且其振荡周期由RC常数决定,与电源电压无关,大约为2.2×R1×C1,成本相对较低。但是从图2可以看出,节点V A的电压范围为-1/2×VDD到3/2×VDD,超出了0到VDD的范围,这会导致两个问题: (1)当V A的电压达到3/2×VDD时,反相器INV1中的NMOS的栅源电压绝对值大于VDD,从而容易使NMOS晶体管的栅极被击穿,造成电路失效;同理,当V A的的电压达到-1/2×VDD时,反相器INV1中的PMOS的栅源电压绝对值也大于VDD,从而容易使PMOS晶体管的栅极被击穿,造成电路失效。 图1 现有的RC环形振荡器 图2 现有的RC环形振荡器各节点电压波形 (2)在CMOS工艺中,电容C1虽然可以有双多晶电容、MIM电容和MOS 电容(多晶-N阱电容)等多种电容被采用,但是双多晶电容的制造需要在普通的栅极多晶上添加额外的一层绝缘层和多晶层,而MIM电容的制造需要额外的绝缘层和金属层,因此双多晶电容和MIM电容在标准的纯数字CMOS工艺的基础上均需要增加额外的工艺步骤,成本较高;而MOS电容是由单层多晶和N阱组合实现的,可在纯数字CMOS工艺中制造,成本较低。同时由于MOS电容的的电压系数较大,为减小多晶-N阱电容受电压系数的影响,一般将MOS电容反

相关主题
文本预览
相关文档 最新文档