当前位置:文档之家› 14元阵列天线方向图及其MATLAB仿真

14元阵列天线方向图及其MATLAB仿真

14元阵列天线方向图及其MATLAB仿真
14元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真

1设计目的

1.了解阵列天线的波束形成原理写出方向图函数

2.运用MATLAB 仿真阵列天线的方向图曲线

3.变换各参量观察曲线变化并分析参量间的关系

2设计原理

阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。

阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。

在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。

二元阵辐射场:

式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场:

令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数:

式中:ζφθψ+=cos sin kd

均匀直线阵最大值发生在0=ψ 处。由此可以得出

]

)[,(2

12121ζ

θθθ?θj jkr jkr m e r e r e F E E E E --+=+=1

2cos ),(21jkr

m e F r E E -=ψ?θθζ

φθψ+=cos sin kd ∑-=+-=1

)cos sin (),(N i kd ji jkr

m

e e

r

F E E ζ?θθ?θ2

π

θ=)

2/sin()

2/sin(1)(ψψψN N A =

kd

m ζ

?-

=cos

这里有两种情况最为重要。

1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴

的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。

2.端射振,计最大辐射方向在阵轴方向上,此时0=m

?或π,也就是说阵的

各元电流沿阵轴方向依次超前或滞后kd 。

3设计过程

本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。

14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi);

f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b));

title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示:

14元端射振天线三维方向图的源程序为: y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); surf(x1,y1,z1);

2

π?±=m

axis equal

title('14元端设式三维图');

得到的仿真结果如图:

14元阵列天线的方向图随相位的衰减的代码为:clear;

sita=-pi/2:0.01:pi/2;

lamda=0.03;

d=lamda/2;

n1=14;

beta=2*pi*d*sin(sita)/lamda;

z11=(n1/2)*beta;

z21=(1/2)*beta;

f1=sin(z11)./(n1*sin(z21));

F1=abs(f1);

figure(1);

plot(sita,F1,'b');

hold on;

grid on;

xlabel('theta/radian');

ylabel('amplitude');

title('方向图的衰减');

得到的方向图和相位之间的关系图如图所示:

当天线各个阵元之间的间隔d=0.001m时,波长和方向图之间有一定的关系,其中程序代码如下:

clear;

sita=-pi/2:0.01:pi/2;

n=14;

d=0.001;

lamda1=0.002;

beta=2*pi*d*sin(sita)/lamda1;

z11=(n/2)*beta;

z21=(1/2)*beta;

f1=sin(z11)./(n*sin(z21));

F1=abs(f1);

figure(1);

lamda2=0.005;

beta=2*pi*d*sin(sita)/lamda2;

z12=(n/2)*beta;

z22=(1/2)*beta;

f2=sin(z12)./(n*sin(z22));

F2=abs(f2);

lamda3=0.01;

beta=2*pi*d*sin(sita)/lamda3;

z13=(n/2)*beta;

z23=(1/2)*beta;

f3=sin(z13)./(n*sin(z23));

F3=abs(f3)

plot(sita,F1,'b',sita,F2,'r',sita,F3,'k');

grid on;

xlabel('theta/radian');

ylabel('amplitude');

title('方向图与波长的关系');

legend('lamda=0.002','lamda=0.005','lamda=0.01');

得到的方向图和波长的关系如图所示;

从图中可以得到:随着波长lamda的增大,方向图衰减越慢,收敛性越不是很好。

天线线列阵方向图

阵列方向图及MATLAB 仿真 1、线阵的方向图 2 ()22cos(cos )R φψπφ=+- MATLAB 程序如下(2元): clear; a=0:0.1:2*pi; y=sqrt(2+2*cos(pi-pi*cos(a))); polar(a,y); 图形如下: 若阵元间距为半波长的M 个阵元的输出用方向向量权重11(,,)M j j M g e g e φφ???加以组合的话,阵列的方向图为 [(1)cos()]1()m M j m m m R g e ψπφφ--==∑ MATLAB 程序如下(10个阵元): clear; f=3e10; lamda=(3e8)/f;

beta=2.*pi/lamda; n=10; t=0:0.01:2*pi; d=lamda/4; W=beta.*d.*cos(t); z1=((n/2).*W)-n/2*beta* d; z2=((1/2).*W)-1/2*beta* d; F1=sin(z1)./(n.*sin(z2));i K1=abs(F1) ; polar(t,K1); 方向图如下: 2、圆阵方向图程序如下: clc; clear all; close all; M = 16; % 行阵元数 k = 0.8090; % k = r/lambda DOA_theta = 90; % 方位角 DOA_fi = 0; % 俯仰角 % 形成方位角为theta,俯仰角位fi的波束的权值m = [0 : M-1];

w = exp(-j*2*pi*k*cos(2*pi*m'/M-DOA_theta*pi/180)*cos(DOA_fi*pi/180)); % w = exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(DOA_theta*pi/180)*cos(DOA_fi*pi/180)+sin(2*pi*m'/M)*si n(DOA_fi*pi/180))); % 竖直放置 % w = chebwin(M, 20) .* w; % 行加切比雪夫权 % 绘制水平面放置的均匀圆阵的方向图 theta = linspace(0,180,360); fi = linspace(0,90,180); for i_theta = 1 : length(theta) for i_fi = 1 : length(fi) a = exp(-j*2*pi*k*cos(2*pi*m'/M-theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)); %a=exp(-j*2*pi*k*(cos(2*pi*m'/M)*cos(theta(i_theta)*pi/180)*cos(fi(i_fi)*pi/180)+sin(2*pi*m'/ M)*sin(fi(i_fi)*pi/180))); % 竖直放置 Y(i_theta,i_fi) = w'*a; end end Y= abs(Y); Y = Y/max(max(Y)); Y = 20*log10(Y); % Y = (Y+20) .* ((Y+20)>0) - 20; % 切图 Z = Y + 20; Z = Z .* (Z > 0); Y = Z - 20; figure; mesh(fi, theta, Y); view([66, 33]); title('水平放置时的均匀圆阵方向图'); % title('竖面放置时的均匀圆阵方向图'); % 竖直放置 axis([0 90 0 180 -20 0]); xlabel('俯仰角/(\circ)'); ylabel('方位角/(\circ)'); zlabel('P/dB'); figure; contour(fi, theta, Y); 方向图如下:

基于MATLAB的智能天线及仿真

基于M A T L A B的智能天 线及仿真 This model paper was revised by the Standardization Office on December 10, 2020

摘要 随着移动通信技术的发展,与日俱增的移动用户数量和日趋丰富的移动增值服务,使无线通信的业务量迅速增加,无限电波有限的带宽远远满足不了通信业务需求的增长。另一方面,由于移动通信系统中的同频干扰和多址干扰的影响严重,更影响了无线电波带宽的利用率。并且无线环境的多变性和复杂性,使信号在无线传输过程中产生多径衰落和损耗。这些因素严重地限制了移动通信系统的容量和性能。因此为了适应通信技术的发展,迫切需要新技术的出现来解决这些问题。这样智能天线技术就应运而生。智能天线是近年来移动通信领域中的研究热点之一,应用智能天线技术可以很好地解决频率资源匮乏问题,可以有效地提高移动通信系统容量和服务质量。开展智能天线技术以及其中的一些关键技术研究对于智能天线在移动通信中的应用有着重要的理论和实际意义。 论文的研究工作是在MATLAB软件平台上实现的。首先介绍了智能天线技术的背景;其次介绍了智能天线的原理和相关概念,并对智能天线实现中的若干问题,包括:实现方式、性能度量准则、智能自适应算法等进行了分析和总结。着重探讨了基于MATLAB的智能天线的波达方向以及波束形成,阐述了music和capon两种求来波方向估计的方法,并对这两种算法进行了计算机仿真和算法性能分析; 关键字:智能天线;移动通信;自适应算法;来波方向; MUSIC算法 Abstract With development of mobile communication technology,mobile users and communication,increment service are increasing,this make wireless services increase so that bandwidth of wireless wave is unfit for development of communication,On the other hand,much serious Co-Channel Interruption and the Multiple Address interruption effect utilize rate of wireless wave’s bandwidth,so the transported signals are declined and wear down,All this has strong bad effect on the capacity and

HFSS仿真2×2矩形贴片天线阵

HFSS 仿真2×2线极化矩形微带贴片天线阵 微带天线以其体积小、重量轻、低剖面等独特的优点,在通信、卫星电视接收、雷达、遥感等领域得到广泛应用,它一般工作在100MHz-100GHz 宽广频域的无线电设备中,而矩形微带天线是微带天线最常用的辐射单元,它是一种谐振型天线,通常在谐振频率附近工作。C 波段,是频率在4—8GHz 的无线电波,通常的上行频率范围为—,下行频率范围为—。雷达天线具有将电磁波聚成波束的功能,定向地发射和接收电磁波。本实验采用设计了一款工作于C 波段中心频率在的矩形贴片线极化微带雷达天线阵列,根据理论经验公式初步计算出矩形微带贴片天线的尺寸,然后在里建模仿真,根据仿真结果反复调整天线的尺寸,对天线的结构进行优化,直到天线的中心频率为为止。 1 单个侧馈贴片天线的仿真 矩形贴片天线的设计 导波波长g λ,矩形贴片天线的的有效长度e L 2/g e L λ= , e g ελλ/ 0= 有效介电常数为e ε,r ε为介质的介电常数 2 1 121212 1- ?? ? ?? +-+ += w h r r e εεε 矩形贴片的实际长度为L , L=e L -2L ?=e ελ2 /0-2L ?= e f c ε02-2L ? 0f 天线的实际频率,L ?微带天线等效辐射缝隙的长度 ()()()()8.0/258.0264.0/3.0412.0+-++=?h W h W h L e e εε 矩形贴片的宽度为W 2 1 0212- ?? ? ??+=r f c W ε

基片尺寸取: g L LG λ2.0+≥ ,g W WG λ2.0+≥ 介质板材为Rogers RT/duroid 5880,其相对介电常数r ε=,厚度h=2mm ,损耗角正切为。 在设计过程中,我们假设贴片、微带线的厚度t 与基片厚度相比可以忽略不计,即 005.0/≤h t ,在设计过程中,我们令t=0。 计算矩形贴片天线的尺寸 (1)矩形贴片的宽度 由C=×108 m/s, 0f =,r ε=,可以计算出矩形微带天线贴片的宽度。 W=0.02062m=20.62mm (2)有效介电常数e ε 把h=2mm ,W=20.62mm ,r ε=代入,计算出有效介电常数。 e ε= (3)辐射缝隙的长度 把h=2mm ,W=20.62mm ,e ε=代入,可以计算出天线的辐射缝隙的长度L ?。 L ?=1.01mm (4)矩形贴片的长度 把C=×108 m/s, 0f =,e ε=,L ?=1.01mm 代入,可计算出天线矩形贴片的长度。 L=15.69mm (5)参考地的长度LG 和宽度WG 把C=×108 m/s, 0f =,e ε=代入,可算出导波波长g λ。 g λ=35.42mm LG=22.77mm WG=27.70mm (6)估算天线的输入阻抗 由于介质板材Rogers RT/duroid 5880有一定的损耗,所以在计算微带天线的输入阻抗

(重要)阵列天线

Progress In Electromagnetics Research, PIER 98, 1–13, 2009
A WIDEBAND HALF OVAL PATCH ANTENNA FOR BREAST IMAGING J. Yu ? , M. Yuan, and Q. H. Liu Department of Electrical and Computer Engineering Duke University Durham, NC 27708, USA Abstract—A simple half oval patch antenna is proposed for the active breast cancer imaging over a wide bandwidth. The antenna consists of a half oval and a trapezium, with a total length 15.1 mm and is fed by a coaxial cable. The antenna performance is simulated and measured as immersed in a dielectric matching medium. Measurement and simulation results show that it can obtain a return loss less than ?10 dB from 2.7 to 5 GHz. The scattered ?eld detection capability is also studied by simulations of two opposite placed antennas and a full antenna array on a cubic chamber. 1. INTRODUCTION Breast cancer is the most common cancer in women, but fortunately early detection and treatment can signi?cantly improve the survival rate. Ultrasound, mammography and magnetic resonance imaging (MRI) are currently used clinically for breast cancer diagnosis [1]. However, these techniques have many limitations, such as high rate of missed detections, ionizing radiation (mamography), too expensive to be widely available, and so on. Compared with conventional mammography, microwave imaging of breast tumors is a nonionizing, potentially low-cost, comfortable and safe alternative [2]. The high contrast of the dielectric property between the malignant tumor and the normal breast tissue should manifest itself in terms of lower numbers of missed detections and false positives [3, 4]. The microwave breast tumor detection also has the potential to be both sensitive and speci?c, to detect small tumors, and to be less expensive than methods such as MRI.
?
Corresponding author: M. Yuan (mengqing.yuan@https://www.doczj.com/doc/fa5739528.html,). Also with National Key Laboratory of EMC, Wuhan, Hubei 430064, China.

14元阵列天线方向图及其MATLAB仿真

14元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: 式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2πθ=)2/sin()2/sin(1)(ψψψN N A =kd m ζ?-=cos

这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时0=m ?或π,也就是说阵的各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: 14元端射振天线三维方向图的源程序为: y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); surf(x1,y1,z1); 2 π?±=m

阵列天线方向图的初步研究

通信信号处理实验报告 ——阵列天线方向图的初步研究 11级通信(研) 刘晓娟 一、实验原理: 1、智能天线的基本概念:智能天线是一种阵列天线,它通过调节各阵元信号的加权幅度和相位来改变阵列的方向图形状,即自适应或以预制方式控制波束幅度、指向和零点位置,使波束总是指向期望方向,而零点指向干扰方向,实现波束随着用户走,从而提高天线的增益,节省发射功率。智能天线系统主要由①天线阵列部分;②模/数或数/模转换部分;③波束形成网络部分组成。本次实验着重讨论天线阵列部分。 2、智能天线的工作原理:智能天线的基本思想是:天线以多个高增益的动态窄波束分别跟踪多个期望信号,来自窄波束以外的信号被抑制。 3、方向图的概念:以入射角为横坐标,对应的智能天线输出增益为纵坐标所作的图称为方向图,智能天线的方向图有主瓣、副瓣等,相比其他天线的方向图,智能天线通常有较窄的主瓣,较灵活的主、副瓣大小、位置关系,和较大的天线增益。与固定天线相比最大的区别是:不同的全职通常对应不同的方向图,我们可以通过改变权值来选择合适的方向图,即天线模式。方向图一般分为两类:一类是静态方向图,即不考虑信号的方向,由阵列的输出直接相加得到;另一类是带指向的方向,这类方向图需要考虑信号的指向,通过控制加权相位来实现。 二、实验目的: 1、设计一个均匀线阵,给出λ(波长),N (天线个数),d (阵元间距),画出方向图曲线,计算3dB 带宽。 2、通过控制变量法讨论λ,N ,d 对方向图曲线的影响。 3、分析旁瓣相对主瓣衰减的程度(即幅度比)。 三、实验内容: 1、公式推导与整理: 权矢量12(,,......)T N ωωωω=,本实验旨在讨论静态方向图,所以此处选择 ω=(1,1,......1)T 。 信号源矢量(1)()[1,,...]j j N T a e e ββθ---=,2sin d πβθλ = , 幅度方向图函数()()H F a θωθ== (1)1 sin 2sin 2N j n n N e β β β--== ∑=sin(sin /)sin(sin /)n d n d πθλπθλ。

(完整版)射频微带阵列天线设计毕业设计

射频微带阵列天线设计 摘要 微带天线是一种具有体积小、重量轻、剖面低、易于载体共形、易于与微波集成电路一起集成等诸多优点的天线形式,目前已在无线通信、遥感、雷达等诸多领域得到了广泛应用。同时研究也发现由于微带天线其自身结构特点,存在一些缺点,例如频带窄、增益低、方向性差等。通常将若干单个微带天线单元按照一定规律排列起来组成微带阵列天线,来增强天线的方向性,提高天线的增益。 本文在学习微带天线和天线阵的原理和基本理论,加以分析,利用Ansoft 公司的高频电磁场仿真软件HFSS,设计了中心频率在10GHz的4元均匀直线微带阵列,优化和调整了相关参数,然后分别对单个阵元和天线阵进行仿真,对仿真结果进行分析,对比两者在相关参数的差异。最后得到的研究结果表明,微带天线阵列相较于单个微带天线,由于阵元间存在互耦效应以及存在馈电网络的影响,微带阵列天线的回波损耗要大于单个阵元。但是天线阵列增益明显大于单个微带天线,且阵列天线比单个阵元具有更好的方向性。

关键词:微带天线微带阵列天线方向性增益 HFSS仿真 Design of Radio-Frequency Microstrip Array Antenna ABSTRACT Microstrip antenna is a kind of antenna form with many advantages like,small size, light weight, low profile, easy-to-carrier conformal, easy integration with many other of microwave integrated circuits and so on. Now microstrip array wildly applied in the filed of wireless

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计—— 用MATLAB仿真天线方向图 吴正琳 天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。天线的基本单元就是单元天线。 1、单元天线 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

1.1用MATLAB画半波振子天线方向图 主要是说明一下以下几点: 1、在Matlab中的极坐标画图的方法: polar(theta,rho,LineSpec); theta:极坐标坐标系0-2*pi rho:满足极坐标的方程 LineSpec:画出线的颜色 2、在方向图的过程中如果rho不用abs(f),在polar中只能画出正值。也就是说这时的方向图只剩下一半。 3、半波振子天线方向图归一化方程: Matlab程序: clear all lam=1000;%波长 k=2*pi./lam;

用matlab 仿真不同天线阵列个天线的相关系数

2.3.1 阵列几何图 天线阵可以是各种排列,下图所示分别为圆阵(UCA)、线阵(ULA)、矩形阵(URA)排列方式与空间来波方向关系图,为简化整列分析,假设阵元间不考虑耦合,L 为天线数目,天线间距相等且均为d ,为入射在阵列上的水平波达角,为垂直波达角。 图2- 1 阵列排列方式与空间来波方向的关系 1) 圆阵排列方式的天线响应矢量为: 011cos() cos() cos() cos() (,)[,,...,,...,]l L j j j j T U C A a e e e e ξ?ψξ?ψξ?ψξ?ψ θ?-----= 公 式2- 1 其中2/,0,1,...,1l l L l L ψπ==-为第l 天线阵元的方位角,sin(),w w k r k ξθ=为波 数 2) 线阵排列方式的天线响应矢量为: cos sin (1)cos sin (,)[1,,...,]w w jk d jk d L T U LA a e e ?θ ?θ θ?-= 公式2- 2 3) 矩形阵列方式的天线响应矢量为: (1)()[(1)] (1)[(1)(1)](,)(()())[1,,...,,,,... ,...,,...,] T jv j p v ju j u v u URA N p j u p v j N u j N u p v T a vec a u a v e e e e e e e θ?-++---+-== 公式2- 3 ,N P 分别为x ,y 方向的天线数目,这里设x y d d =, (1)()[1,,...,]ju j N u T N a u e e -=; cos sin w x u k d ?θ=; (1)()[1,,...,]jv j p v T p a v e e -=;

元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2 πθ=) 2/sin() 2/sin(1)(ψψψN N A =

式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时 0=m ?或π,也就是说阵的 各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: kd m ζ?-=cos 2π ?±=m

阵列天线方向图的MATLAB实现

阵列天线方向图的MATLAB 实现课程名称:MATLAB程序设计与应用任课教师:周金柱 班级:04091202 姓名:黄文平 学号:04091158 成绩:

阵列天线方向图的MATLAB 实现 摘要:天线的方向性是指电磁场辐射在空间的分布规律,文章以阵列天线的方向性因子F(θ,φ)为主要研究对象来分析均匀和非均匀直线阵天线的方向性。讨论了阵列天线方向图中主射方向和主瓣宽度随各参数变化的特点,借助M ATLAB绘制出天线方向性因子的二维和三维方向图,展示天线辐射场在空间的分布规律,表现辐射方向图的特点。 关键词:阵列天线;;方向图;MATLAB 前言: 天线是发射和接收电磁波的重要的无线电设备,没有天线也就没有无线电通信。不同用途的天线要求其有不同的方向性,阵列天线以其较强的方向性和较高的增益在工程实际中被广泛应用。因此,对阵列天线方向性分析在天线理论研究中占有重要地位。阵列天线方向性主要由方向性因子F(θ,φ)表征,但F(θ,φ)在远区场是一组复杂的函数,如果对它的认识和分析仅停留在公式中各参数的讨论上,很难理解阵列天线辐射场的空间分布规律[ 1 ]。MATLAB以其卓越的数值计算能力和强大的绘图功能,近年来被广泛应用在天线的分析和设计中。借助MATLAB可以绘制出阵列天线的二维和三维方向图,直观地从方向图中看出主射方向和主瓣宽度随各参数的变化情况,加深对阵列天线辐射场分布规律的理解。 1 均匀直线阵方向图分析 若天线阵中各个单元天线的类型和取向均相同,且以相等的间隔d 排列在一条直线上。且各单元天线的电流振幅均为I,相位依次滞后同一数值琢,那么,这种天线阵称为均匀直线式天线阵,如图1 所示[ 2 ]: 均匀直线阵归一化阵因子为[ 3 ]: Fn(θ,φ)是一个周期函数,所以除§= 0 时是阵因子的主瓣最大值外,§= ±2 mπ

MATLAB仿真天线阵代码

天线阵代码 一、 clc clear all f=3e9; N1=4;N2=8;N3=12; a=pi/2; %馈电相位差 i=1; %天线电流值 lambda=(3e8)/f; %lambda=c/f 波长 d=lambda/2; beta=2.*pi/lambda; W=-2*pi:0.001:2*pi; y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子 y1=abs(y1); r1=max(y1); y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子 y2=abs(y2); r2=max(y2); y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子 y3=abs(y3); r3=max(y3); %归一化阵因子绘图程序, figure(1) subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=4,d=1/2波长,a=π/2') subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=8,d=1/2波长,a=π/2') subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图 t=0:0.01:2*pi; W=a+(beta.*d.*cos(t)); z1=(N1/2).*(W);

阵列天线分析报告与综合_1

阵列天线分析与综合 前言 任何无线电设备都需要用到天线。天线的基本功能是能量转换和电磁波的定向辐射或接收。天线的性能直接影响到无线电设备的使用。现代无线电设备,不管是通讯、雷达、导航、微波着陆、干扰和抗干扰等系统的应用中,越来越多地采用阵列天线。阵列天线是根据电磁波在空间相互干涉的原理,把具有相同结构、相同尺寸的某种基本天线按一定规律排列在一起组成的。如果按直线排列,就构成直线阵;如果排列在一个平面内,就为平面阵。平面阵又分矩形平面阵、圆形平面阵等;还可以排列在飞行体表面以形成共形阵。 在无线电系统中为了提高工作性能,如提高增益,增强方向性,往往需要天线将能量集中于一个非常狭窄的空间辐射出去。例如精密跟踪雷达天线,要求其主瓣宽度只有1/3度;接收天体辐射的射电天文望远镜的天线,其主瓣宽度只有1/30度。天线辐射能量的集中程度如此之高,采用单个的振子天线、喇叭天线等,甚至反射面天线或卡塞格伦天线是不能胜任的,必须采用阵列天线。 对一些雷达设备、飞机着陆系统等,其天线要求辐射能量集中程度不是很高,其主瓣宽度也只有几度,虽然采用一副天线就能完成任务,但是为了提高天线增益和辐射效率,降低副瓣电平,形成赋形波束和多波束等,往往也需要采用阵列天线。 在雷达应用中,其天线即需要有尖锐的辐射波束又希望有较宽的覆盖范围,则需要波束扫描,若采用机械扫描则反应时间较慢,必须采用电扫描,如相控扫描,因此就需要采用相控阵天线。 在多功能雷达系统中,既需要在俯仰面进行波束扫描,又需要改变相位展宽波束,还需要仅改变相位进行波束赋形,实现这些功能的天线系统只有相控阵天线才能完成。 随着各项技术的发展,天线馈电网络与单元天线进行一体化设计成为可能,高集成度的T/R组件的成本越来越低,使得在阵列天线中的越来越广泛的采用,阵列天线实现低副瓣和极低副瓣越来越容易,功能越来越强。等等。 综上所述,采用阵列天线的原因大致有如下几点: ■容易实现极窄波束,以提高天线的方向性和增益; ■易于实现赋形波束和多波束;

MATLAB仿真天线阵代码

天线阵代码 .pudn./downloads164/sourcecode/math/detail750575.htm l 一、 clc clear all f=3e9; N1=4;N2=8;N3=12; a=pi/2; %馈电相位差 i=1; %天线电流值 lambda=(3e8)/f; %lambda=c/f 波长 d=lambda/2; beta=2.*pi/lambda; W=-2*pi:0.001:2*pi; y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子 y1=abs(y1); r1=max(y1); y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子 y2=abs(y2); r2=max(y2); y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子 y3=abs(y3);

r3=max(y3); %归一化阵因子绘图程序, figure(1) subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=4,d=1/2波长,a=π/2') subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=8,d=1/2波长,a=π/2') subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图 t=0:0.01:2*pi; W=a+(beta.*d.*cos(t)); z1=(N1/2).*(W); z2=(1/2).*(W); W1=sin(z1)./(N1.*sin(z2)); %非归一化的阵因子K1 K1=abs(W1); %---------------------- W=a+(beta.*d.*cos(t));

大型阵列天线的等效仿真计算

大型阵列天线的等效仿真计算 Equivalent Source Simulation Method For Large-scale Antenna Array 于嘉嵬周成哲 (成都中电锦江、成都、610051) 摘要: 阵列天线的仿真是典型的电大尺寸问题。由于规模大,如果采用全波方法计算时间长,需要大量的计算资源。Altair公司的FEKO软件的等效源技术可快速、精确计算阵列天线。本文介绍了此方法在一大型阵列天线仿真中的应用。关键词:阵列天线FEKO等效源技术 Abstract:The simulation of antenna array is electrically large problem typically. Due to the large number of element, the simulation of antenna array usually requires large computational resources. FEKO from Altair provides equivalent source technology which can be used to simulate antenna array fast and accurately. In this paper, one large-scale antenna array is simulated by this method. Key words: Antenna array, FEKO, Equivalent source 1 概述 阵列天线是由不少于2个天线单元规则或随机排列,并通过适当激励获得预定辐射特性的1类特殊天线.阵列可由各种类型的天线组成,数目可以是2个甚至几十万个.通过选择和优化阵单元的结构形态、排列方式和馈电幅相特性,阵列天线能够实现单个天线难以提供的优异特性,如更高的增益、方位分辨率、系统信噪比等指标,因此在雷达和通信等领域被广泛地应用。 2 等效源技术精确计算阵列天线 阵列天线的仿真计算规模较大,计算时间长,往往需要耗费大量的计算资源。阵列天线规模如果较小,用常规的建模计算尚可实现,当计算规模达到一定程度时,往往需要用到等效法进行计算。本文提供了一种针对大型面阵行之有效的等效计算方法。总体思路如下:建立一个和全阵排布规律一样的小阵,计算小阵中各个天线单元的方向图,用小阵中各个单元的方向图作为等效源按照全阵的排布规律进行排布,对排布好的阵列进行仿真计算,得出计算结果。本文用等效法计算一个64×64个喇叭单元组成的阵列天线。

天线阵列辐射方向图的研究

微波技术课程考核题目天线阵列辐射方向图的研究 系别物理与电子工程学院专业电子科学与技术班级07(4) 学号050207404 学生姓名牛涛 指导教师范瑜 日期2010-01-05

目录 一、基本概念 (2) 1.1方向图基本概念 (2) 1.2主瓣宽度 (3) 1.2.1主瓣宽度基本概念及特性 (5) 1.3旁瓣抑制 (5)

一、基本概念 1.1方向图基本概念 天线的辐射电磁场在固定距离上随角坐标分布的图形,称为方向图。用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。天线方向图是空间立体图形,但是通常应用的是两个互相垂直的主平面內的方向图,称为平面方向图。在线性天线中,由于地面影响较大,都采用垂直面和水平面作为主平面。在面型天线中,则采用E平面和H平面作为两个主平面。归一化方向图取最大值为一。在方向图中,包含所需最大辐射方向的辐射波瓣叫天线主波瓣,也称天线波束。主瓣之外的波瓣叫副瓣或旁瓣或边瓣,与主瓣相反方向上的旁瓣叫后瓣,见图1:全向天线水平波瓣和垂直波瓣图,其天线外形为圆柱型;图2:定向天线水平波瓣和垂直波瓣图,其天线外形为板状。 图1 全向天线波瓣示意图

图2 定向天线波瓣示意图 1.2主瓣宽度 为了方便对各种天线的方向图特性进行比较,就需要规定一些特性参数。主要包括:零功率波瓣宽度、半功率点波瓣宽度、旁瓣电平、前后比、方向系数等。 1.零功率波瓣宽度,指主瓣两侧场强值为0的两个方向之间的夹角,用2表示。许多天线方向图的主瓣是关于最大辐射方向对称的,因此,只要确定零功率主瓣宽度的一半,再取其2倍即可求得零功率主瓣宽度,即2=2。 2. 半功率点波瓣宽度,指方向图主瓣两侧两个半功率点(即场强下降到最大值下降到0.707(或分贝值从最大值下降3dB处对应的两点)之间的夹角,又称为3dB波束宽度或主瓣宽度,记为。对方向

matlab仿真天线辐射图

微波技术与天线作业 电工1001,lvypf(12) 1、二元阵天线辐射图matlab实现 1)matlab程序: theta = 0 : .01*pi : 2*pi; %确定θ的范围 phi = 0 : .01*pi : 2*pi; %确定φ的范围 f = input('Input f(Ghz)='); %输入频率f c = 3*10^8; %常量c lambda = c / (f*10^9); %求波长λ k = (2*pi) / lambda; %求系数k d = input('Input d(m)='); %输入距离d zeta = input('Input ζ='); %输入方向系数ζ E_theta=abs(cos((pi/2)*cos(theta))/sin(theta))*abs(cos((k*d*sin(theta)+zeta)/2)); %二元阵的E面方向图函数 H_phi=abs(cos((k*d*cos(phi)+zeta)/2)); %二元阵的H面方向图函数 subplot(2,2,1); polar(theta,E_theta); title('F_E_θ') subplot(2,2,2); polar(phi,H_phi); title('F_H_φ'); subplot(2,2,3); plot(theta,E_theta); title('F_E_θ'); grid xlim([0,2*pi]) subplot(2,2,4); plot(phi,H_phi); grid xlim([0,2*pi]) title('F_H_φ');

2)测试数据生成的图形: a)f=2.4Ghz,d=lambda/2,ζ=0 图1,f=2.4Ghz,d=lambda/2,ζ=0 b)f=2.4Ghz,d=lambda/2,ζ=pi 图2,f=2.4Ghz,d=lambda/2,ζ=pi

25 基于HFSS的Ka波段微带阵列天线仿真设计

ANSYS 2011中国用户大会优秀论文 1 基于HFSS 的Ka 波段微带阵列天线仿真设计 [夏景] [东南大学信息科学与工程学院,210096] [ 摘 要 ] 微带天线由于其重量轻、剖面小、易共形、设计灵活、成本低且易和等电路相集成等优点得到 了越来越广泛的应用,比如导弹制导、雷达、卫星通信等方面。毫米波波长介于微波和红外之 间,因而其特性也在一定程度上介于两者之间,如适中的分辨率及良好的烟尘穿透性,因此在 某些情况下可以完成微波和红外均难以完成的任务。本文主要对Ka 波段微带天线单元、T 接 头和拐角、2×2面阵和4×4面阵进行仿真,主要工作有:(1)设计天线单元,对单元S11 参数进行仿真;(2)设计T 型接头,仿真S11、S21等参数;(3)仿真2×2面阵和4×4 面阵的S11参数、方向图等特性。此外,利用4×4面阵的方向图结果和HFSS 的Antenna Array Setup 分析16×16的面阵方向图。 [ 关键词 ] Ku 波段、微带天线、HFSS Simulation of Ka-band Microstrip Array Antenna by using HFSS [Xia Jing] [School of information science and engineering, Southeast University, 210096] [ Abstract ] As to the advantages of light weight, small profile, easy conformal, design flexibility, low cost and easy to integrate the circuits, microstrip antenna has been more widely used, such as missile guidance, radar, satellite communications, etc. Millimeter wavelength ranges between microwave and infrared, so its characteristics are in between to some extent, such as the moderate resolution and good penetration of smoke, so in some cases it can complete the missions which microwave and infrared are difficult to accomplish. It is researched for the simulation of Ka-band microstrip antenna element, T connectors and corner, 2×2planar array, the main work are as follows: (1)Design the antenna element and simulate the S11 parameters; (2)Design the T-joint bending position; (3)Analysis of S11 parameter for 2×2 array and 4×4 array. Moreover, using the result of the array direction pattern of 4×4 array ,the antenna array of 16×16 array is studied using HFSS. [ Keyword ] Ku band, Microstrip antenna, HFSS

相关主题
文本预览
相关文档 最新文档