当前位置:文档之家› ansys螺栓预紧力分析

ansys螺栓预紧力分析

ansys螺栓预紧力分析
ansys螺栓预紧力分析

螺栓紧固面的预紧分析命令流:

/prep7

/title, Sample application of PSMESH

et,1,92

mp,ex,1,1e7

mp,alpx,1,

mp,prxy,1,

mp,ex,2,3e7

mp,alpx,2,

mp,prxy,2,

tref,70

/foc,,,.34,.42

/dist,,.99

/ang,,

/view,,.39,,.31

/pnum,volu,1

/num,1

cylind,,, ,0, 0,180

cylind,,, 1,, 0,180 cylind,,, 0,1, 0,180 wpoff,.05

cylind,,1, 0,, 0,180

wpoff, cylind,,1, ,1, 0,180 wpstyle,,,,,,,,0

vglue,all numc,all vplot mat,1 smrt,off vmesh,4,5 mat,2 vmesh,1,3 /pnum,mat,1 eplot

psmesh,,example,,volu,1,0,z,,,,,elems CM,lines,LINE /dist,, cmplot

/solu

eqslve,pcg,1e-8 asel,s,loc,y da,all,symm asel,all dk,1,ux dk,12,ux dk,1,uz

sload,1,9,,force,100,1,2 /title,Sample

application

of

PSMESH - preload only Solve

图一.应力云图 图二.应变云图

螺栓组受力分析与计算..

螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

带预紧力受剪螺栓连接刚度分析

C A M E O 楷模C A E 案例库 w w w .c a m e o .o r g .c n 2007年8月强 度 与 环 境Aug.2007 第34卷第4期 STRUCTURE & ENVIRONMENT ENGINEERING V ol.34, No.4 带预紧力受剪螺栓连接刚度分析 张永杰 孙秦 (西北工业大学航空学院,西安 710072) 摘要:为了很好的模拟带预紧力受剪螺栓的复杂应力状况,本文应用ANSYS 非线性接触算法对螺栓连接进行了仿真,利用降温法模拟了螺栓的预紧力,给出了螺栓连接刚度计算公式,通过一系列不同厚度构件的螺栓连接刚度计算,得到了构件厚度与螺栓连接刚度间的关系曲线;为复杂结构中螺栓连接的简化计算提供了可靠参考依据。 关键词:ANSYS; 接触; 降温法; 螺栓连接刚度 中图分类号:TH122 文献标识码: A 文章编号:1006-3919(2007)04-0022-04 Sheared bolt joint stiffness analysis with pre-tightened force ZHANG Yong-jie SUN Qin (School of Aeronautics, NPU, Xi’an, 710072, China) Abstract :Nonlinear contact arithmetic of ANSYS is applied for simulating complex stress of sheared bolt with pre-tightened force and emulating bolt joint well. By cool method, pre-tightened force of bolt is caused. In this paper, we present a computational formula of bolt joint stiffness, and obtain relative curve between bolt joint stiffness and thickness of components by varying thickness of components. Reliable references are provided for simplified computation of bolt connection from complex structure. Key words: ANSYS; contact; cool method; bolt joint stiffness 1 引言 对于复杂结构进行有限元分析时,常常遇到很多螺栓连接的情况,根据受力情况不同可分为受拉螺栓与受剪螺栓,本文主要讨论的是受剪螺栓的联接问题。受剪螺栓联接的外载荷主要靠螺栓杆的剪切及螺栓杆与被连接件的挤压来承受,联接件间只有较小的预紧力。但是在某些特殊结构的设计中,为了保证系统的密封性以及提高螺栓联接件孔边的疲劳寿命等方面需要,在受剪螺栓联接的设计中往往需要较大的预紧力。大预紧力的存在而引起的各部件间摩擦力的作用,使得结构的传力路线复杂化,应用理论解进行结构分析会产生较大的误差。因此应用有限元分析软件对结构进行数值模拟与分析已经成为一种有效的途径。 收稿日期:2006-10-10; 修回日期:2007-01-29 作者简介: 张永杰(1979-),男,博士,研究方向:飞行器设计;(710072)西安市西北工业大学120# A502教研室 .

ANSYS计算有预紧力的螺栓连接

/ti t le, Sample application of PSMESH et,1,92 mp,ex,1,1e7 mp,alpx,1,1.3e-5 mp,prxy,1,0.30 mp,ex,2,3e7 mp,alpx,2,8.4e-6 mp,prxy,2,0.30 tref,70 /foc,,-.09,.34,.42 /dist,,.99 /ang,,-55.8 /view,,.39,-.87,.31 /pnum,volu,1 /num,1 cylind,0.5,, -0.25,0, 0,180 cylind,0.5,, 1,1.25, 0,180 cylind,0.25,, 0,1, 0,180 wpoff,.05 cylind,0.35,1, 0,0.75, 0,180 wpoff,-.1 cylind,0.35,1, 0.75,1, 0,180 wpstyle,,,,,,,,0 vglue,all numc,all vplot mat,1 smrt,off vmesh,4,5 mat,2 vmesh,1,3 /pnum,mat,1 eplot psmesh,,example,,volu,1,0,z,0.5,,,,elems CM,lines,LINE /dist,,1.1 cmplot /solu eqslve,pcg,1e-8 asel,s,loc,y da,all,symm

dk,1,ux dk,12,ux dk,1,uz sload,1,9,,force,100,1,2 /ti t le,Sample application of PSMESH - preload only solve !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !Finally, we construct the actual solution of interest. We want to !know what happens to the preload in the bolt, and the stress field around !it, when the assembly temperature rises to 150° F. !Both the preload and the stresses increase because, for a uniform !temperature rise, there is greater thermal expansion in the aluminum plates !than in the steel bolt. Any method for applying preload that did not !allow the load to change would be unable to predict this result. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! /post1 plnsol,s,z /solu antype,,restart tunif,150 /ti t le,Sample application of PSMESH - uniform 150° solve /post1 plnsol,s,z GUI操作流程: 1. Set the Analysis Title (1) Choose Utility Menu> File> Change Title (2) Enter the text, “Sample Application of PSMESH” and click OK. 2004-8-17 11:27 #3

螺栓组受力分析与计算..

螺栓组受力分析与计算 螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁 间的 最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标 准。对于压力容器等紧密性要求较高的重要联接, 螺栓的间距 t0 不得大于 下表 所推荐的数值 扳手空间尺寸 螺栓间距 t 0 注:表中 d 为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成 4,6,8 等偶数,以便在圆周上钻孔时的分度 和画 线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上 保 证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗 糙表面上应安装螺栓时,应制成凸台或沉头座(下图 1)。当支承面为倾斜表面时,应采用 斜面垫圈(下图 2)等。

螺栓连接的预紧力控制

螺栓连接 一、目的 螺栓连接的目的就是通过对螺栓施以一定的扭力矩,使螺栓拉伸变形,得到一个我们所需要的预紧力。也就是我们真正要得到的是一个能满足需要的预紧力,它才是被连接件无论在静止或是在工作状态下可靠、安全连接的保证。 二、预紧力的分散度 下面是M10螺栓拧紧扭矩为50Nm,装配时加油和未加油状态下测得的预紧力 上例可见,同一种螺栓相同的扭矩,装配工艺不同,所得到的预紧力相差很大。显然用扭力矩来间接控制预紧力是很不精确的,因为在这两者的关系中包含着一些变化很大且很难一一测定的因素。如:摩擦系数、螺纹表面及支撑面的光洁度、有无润滑剂、拧紧速度、拧紧工具、温度变化等。 我厂质保实验室有一台螺纹力矩测量仪,它可以测算得到螺纹力矩、螺栓头部力矩和预紧力。从这台机器工作以来曾测得的无数数据

表明,正常情况下对螺栓施加一个扭力矩M后,约有45%消耗在螺栓头部与支撑面间,约有40%消耗在螺纹的摩擦中,只有约15%的力矩作用产生预紧力。 在螺栓的弹性变形范围内,同种螺栓相同的拧紧力矩尽管M=f(Po)近似直线,但由于前述各种因素的影响,每次拧紧的直线斜率不同,所得到的轴向预紧力大不相同,分散度可达±40%左右。(见图二) 因此,在弹性变形范围内选择使用螺栓连接时,考虑到预紧力的分散度,就必须选择相对直径较大的螺栓,这就不能做到材尽其用。 三、控制螺栓预紧力的必要性 在发动机制造行业内,在一些关键的螺栓连接中,预紧力的控制显得尤为重要。如: 1、连杆体盖连接; 2、缸盖、衬床、缸体连接; 3、主轴承盖连接; 4、飞轮、曲轴连接。 下面我们仅以连杆体盖螺栓连接为例说明控制预紧力的必要性。

第6章螺纹联接讨论重点内容受力分析、强度计算。难点受翻转力矩

第6章 螺纹联接 讨论 重点内容:受力分析、强度计算 。 难点:受翻转力矩的螺栓组联接。 附加内容:螺纹的分类和参数 1.螺纹的分类 2. 螺纹参数 (1) 螺纹大径d (2)螺纹小径d 1 (3)螺纹中径d 2 (4)螺距p (5)线数n (6)导程S (7)螺纹升角ψ (8)牙型角α 6.1 螺纹联接的主要类型、材料和精度 6.1.1螺纹联接的主要类型 松联接 根据装配时是否拧紧分 图6.1 紧联接 螺栓联接 螺钉联接 按紧固件不同分 双头螺柱联接 紧定螺钉联接 受拉螺栓联接 按螺栓受力状况分 受剪螺栓联接 6.1.2螺纹紧固件的性能等级和材料 性能等级:十个等级 B σ=点前数字 ×100 ; S σ=10×点前数字×点后数字。 材料:按性能等级来选。 例如:螺栓的精度等级6.8级 6.2 螺纹联接的拧紧与防松 ???外螺纹内螺纹? ??左旋螺纹 右旋螺纹 ?? ?多线螺纹单线螺纹?? ? ??锯齿形螺纹梯形螺纹三角螺纹?? ?传动螺纹 联接螺纹?? ?圆锥螺纹圆柱螺纹

6.2.1螺纹联接的拧紧 拧紧的目的: 拧紧力矩: 21T T T += 431T T T += T 1螺纹力矩: ()V t d F d F T ρψ+?=? =tan 2 22'21 T 2螺母支承面摩擦力矩:r F T ?=' 2μ 2 213 3 131d D d D r --?= 将6410~M M 的相关参数(2d ,ψ ,1D ,0d ) 代入且取 15.0arctan =V ρ得:d F d F k T T T t ' '212.0≈=+= 标准扳手的长度 L=15d d F Fd FL T '2.015===∴ (图 6.2……) F F 75' = 要求拧紧的螺栓联接应严格控制其拧紧力矩,且不宜用小于1612~M M 的螺栓。 测力矩扳手或定力矩扳手 控制拧紧力矩的方法: 用液压拉力或加热使螺栓伸长到所需的变形量 6.2.2 螺纹联接的防松 为何要防松? 自锁条件:ψ

螺纹连接受力分析

螺纹连接受力分析 一、 螺纹强度校核 把螺母的一圈螺纹沿大径展开,螺杆的一圈螺纹沿小径展开,视为悬臂梁,如图。 相关参数: 轴向力F ,旋合螺纹圈数z (因为旋合的各圈螺纹牙受力不均,因而z 不宜大于10); 螺纹牙底宽度b ,螺纹工作高度h ,每圈螺纹牙的平均受力为F z ,作用在中径上。 螺母——内螺纹,大径、中径、小径分别为D 、2D 、1D 。 螺杆——外螺纹,大径、中径、小径分别为d 、2d 、1d 。 1. 挤压强度 螺母一圈挤压面面积为2D h π,螺杆一圈挤压面积为2d h π。 螺母挤压强度2[]p p F F z A D h πσ= =≤σ 螺杆挤压强度2[]p p F F z A d h σσπ= =≤ p σ为挤压应力, []p σ 为许用挤压应力。 2. 剪切强度 螺母剪切面面积为Db π,螺杆剪切面面积1d b π。 螺母,剪切强度[]F F z A Db ττπ= =≤ 螺母的一圈沿大径展开 螺杆的一圈沿小径展开

螺杆,剪切强度1[]F F z A d b ττπ= =≤ []0.6[]τσ=,[]s n σσ= 为材料许用拉应力,s σ为材料屈服应力。 安全系数,一般取3~5。 3. 弯曲强度 危险截面螺纹牙根部,A -A 。 螺母,弯曲强度23[]b b M Fh W Db z σσπ= =≤ 螺杆,弯曲强度213[]b b M Fh W d b z σσπ= =≤ 其中,L :弯曲力臂,螺母22D D L -= ,螺杆2 2 d d L -= M :弯矩,螺母22D D F M F L z -=?= ?,螺杆2 2 d d F M F L z -=?=? W :抗弯模量,螺母2 6 Db W π= ,螺杆2 16 d b W π= []b σ:螺纹牙的许用弯曲应力,对钢材,[]1~1.2[]b σσ= 4. 自锁性能 自锁条件v ψψ≤, 其中,螺旋升角22 arctan arctan S np d d ψππ==,螺距、导程、线数之间关系:S =np ; 当量摩擦角arctan arctan cos v v f f ψβ ==, 当量摩擦系数cos v f f β= f 为螺旋副的滑动摩擦系数,无量纲,定期润滑条件下,可取0.13~0.17; β为牙侧角,为牙型角α的一半,2βα= 5. 螺杆强度 1、 实心

ansys螺栓预紧力分析

螺栓紧固面的预紧分析 命令流: /prep7 /title, Sample application of PSMESH et,1,92 mp,ex,1,1e7 mp,alpx,1,1.3e-5 mp,prxy,1,0.30 mp,ex,2,3e7 mp,alpx,2,8.4e-6 mp,prxy,2,0.30 tref,70 /foc,,-.09,.34,.42 /dist,,.99 /ang,,-55.8 /view,,.39,-.87,.31 /pnum,volu,1 /num,1 cylind,0.5,, -0.25,0, 0,180 cylind,0.5,, 1,1.25, 0,180 cylind,0.25,, 0,1, 0,180 wpoff,.05 cylind,0.35,1, 0,0.75, 0,180 wpoff,-.1 cylind,0.35,1, 0.75,1, 0,180 wpstyle,,,,,,,,0 vglue,all numc,all vplot mat,1 smrt,off vmesh,4,5 mat,2 vmesh,1,3 /pnum,mat,1 eplot psmesh,,example,,volu,1,0,z,0.5,,,,elems CM,lines,LINE /dist,,1.1 cmplot /solu eqslve,pcg,1e-8 asel,s,loc,y da,all,symm asel,all dk,1,ux dk,12,ux dk,1,uz sload,1,9,,force,100,1,2 /title,Sample application of PSMESH - preload only Solve 图一.应力云图 图二.应变云图

螺栓扭矩预紧力对照表

螺栓扭矩预紧力对照表扭力螺丝刀, 扭力扳手 数显扭距测量仪等 螺栓标准扭矩及预紧力查询表(仅供参考) 内六角外六 角 螺栓 直径 DIN267性能等级(螺栓强度等级) 螺栓螺栓 3.6 5.6 6.9 8.8 10.9 12.9 S(m m) S(m m) M(m m) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) Fv(N) Ma (Nm ) 1.5 4 M2 255 0.1 345 0.15 710 0.3 835 0.35 1,170 0.5 1,415 0.6 2 5 M2.5 485 0.26 655 0.35 1,310 0.71 1,550 0.8 3 2,180 1.18 2,620 1. 4 2.2 5 5.5 M3 630 0.37 1,050 0.62 1,700 0.99 2,250 1.3 3,150 1.9 3,800 2.2 6 M3.5 850 0.5 7 1,400 0.95 2,250 1.5 3,000 2 4,250 2.9 5,100 3.4 3 7 M 4 1,100 0.8 5 1,850 1.4 2,900 2.3 3,900 3 5,750 4.4 6,700 5.1 4 8、9 M 5 1,800 1.7 3,000 2.8 4,800 4.5 6,400 5.9 9,400 8.7 11,000 10 5 10 M 6 2,550 2.9 4,200 4.8 6,750 7. 7 9,000 10 13,200 15 15,500 18 6 13、 14 M8 4,650 7 7,750 12 12,40 19 16,500 25 24,300 36 28,400 43 8 15、 17 M10 7,400 14 12,30 23 19,70 37 26,300 49 38,700 72 45,200 84 10 19、 21 M12 10,80 24 18,00 40 28,80 65 38,400 85 56,500 125 66,000 145 12 22、 23 M14 14,80 39 24,70 64 39,50 105 52,500 135 77,500 200 90,500 235 14 24、 26 M16 20,40 59 34,00 98 54,50 155 72,500 210 107,00 310 125,000 365 27 M18 24,80 81 41,30 135 66,00 215 91,000 300 129,00 430 152,000 500 17 30 M20 31,90 115 53,00 190 85,00 305 117,00 425 166,00 610 195,000 710 32 M22 39,90 155 66,50 260 106,0 00 415 146,00 580 208,00 820 244,000 960 19 36 M24 45,90 200 76,50 330 122,0 00 530 168,00 730 240,00 1,050 281,000 1,220 41 M27 80,50 295 100,0 00 490 161,0 00 780 222,00 1,100 316,00 1,550 369,000 1,800 22 46 M30 73,50395 122,0660 196,01,050 269,001,450 384,002,100 449,000 2,450

一个螺栓连接模拟例子(包含预紧力)

螺栓连接模拟(命令流)/PREP7 !!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!参数定义!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!! hc=400 ! 柱截面高度 bc=200 ! 柱截面宽度 tcf=10 ! 柱翼缘厚度 tcw=8 ! 柱腹板厚度 lc=1100 ! 柱构件伸出长度 tep=20 ! 端板厚度 bep=bc+20 !端板宽度 HEP1= hc+200 !端板高度 tst=10 ! 端板外伸部分加劲肋厚度 hst=80 !端板外伸部分加劲肋高度 bst=bc/2-5 ! 端板外伸部分加劲肋高度 lbt=2*tep ! 螺栓杆长度 dbt=20 ! 螺栓杆直径或有效直径 dbth=31.4 ! 螺栓头和螺母直径 lbth=12.5 !螺栓头厚度 preten=155000 !螺栓施工预拉力 miu=.4 !端板间抗滑移系数

hb=400 ! 梁截面高度 bb=200 ! 梁截面宽度 tbf=8 ! 梁翼缘厚度 tbw=6 ! 梁腹板厚度 lb1=870 ! 梁构件伸出长度 lb2=200 ! 梁构件伸出的水平加载断长度 hb1=362 ! 梁最左端高度 dh0=dbt+2 !螺栓孔直径 randa=0.05 ! 梁的坡度 aa=50 !螺栓中心到梁翼缘边缘(非受力方向)的距离aa1=50 ! 螺栓中心到梁翼缘边缘(受力方向的距离ab=120 ! 一二排螺栓间距 displa=-50 ! 施加的位移荷载大小 !!!!!!!!!!! 建模开始!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!! 梁模型!!!!!!!!!! block,o,tep, -hep1/2,hep1/2,0,bep/2 block,-tep,0,-hep1/2-100+4*tcf,hep1/2,0,bep/2 k,20,tep,hb/2 k,21,tep,hb/2-tbf k,22,tep+lb1,hb/2-tbf+lb1*randa

ansys螺栓预紧单元的创建(中文说明)

1、定义螺栓 直接使用ANSYS中创建体的命令创建一个圆柱和两个圆环,组合成螺栓,注意要将螺栓粘接起来 2、定义预应力 psmesh命令 使用功能:生成预拉伸剖面网格,创建并划分一个预紧截面 使用格式:PSMESH, SECID, Name, P0, Egroup, NUM, KCN, KDIR, VALUE, NDPLANE, PSTOL, PSTYPE, ECOMP, NCOMP SECID:唯一的剖面号,截面号,这个号应该没有被用。 Name:截面名字 P0:预紧(预拉伸)节点号码。如果不存在的话,将生成一个。确省的是最大号码数加1。Egroup, NUM PSMESH将操作的单元组,如果EGROUP=P,激活图形拾取,并且NUM被忽略(仅在GUI 的条件下有效) L(or LINE)-PSMESH在所有被NUM指定的线上的单元进行。新的预紧点附在NUM 或者它下面的实体上。任何后来对NUM的LCLEAR操作将删除预紧单元和PSMESH创建的节点 A(or AREA)-PSMESH在所有被NUM指定的面上的单元进行。新的预紧点附在NUM 或者它下面的实体上。任何后来对NUM的ACLEAR操作将删除预紧单元和PSMESH创建的节点 V(or VOLU)-PSMESH在所有被NUM指定的体上的单元进行。新的预紧点附在NUM 或者它下面的实体上。任何后来对NUM的VCLEAR操作将删除预紧单元和PSMESH创建的节点 P-PSMESH在所有后面选择的单元上进行,NUM被忽略。 ALL-命令在所有被选择的单元上进行,NUM被忽略。 KCN:分离面和法线方向所用的坐标系号 KDIR:在KCN坐标系下,分离面的法线方向(x,y,或Z) 如果KCN是笛卡尔坐标系,预紧截面的法线方向平行于KDIR轴而不管预紧节点的位置。 如果KCN非笛卡尔坐标系,预紧截面的法线方向坐标系KCN中,预紧节点处KDR的方向一致。 VALUE:在KDIR轴上,分离面的位置点。如果指定了NDPLANE将被忽略。 NDPLANE:已经存在的节点,PSMESH用来产生分离面的位置。如果NDPLANE被提供分离面的位置,有NDPLANE的KDIR坐标确定。 PSTOL:VALUE的任意的绝对容差。允许稍微高于或低于分离面的节点被包括。下面的表达式描述确省的值: ΔX,ΔY,ΔZ的平方和除以1000开平方 其中ΔX,ΔY,ΔZ是基于节点位置的模型尺寸。(既是, Xmax - Xmin). PSTYPE:如果被指定,这个值是预紧单元的单元类型号(如果不被指定,ansys定义这个值)如果已经被指定,必须是PRETS179。 ECOMP:如果被指定,是由新建的预紧单元和已经存在的被PSMESH改变的单元组成的组的名称(就是创建单元集合的名称)。 NCOMP:由新建的预紧单元的节点组成的组的名字(节点集合)。 使用提示:

ANSYS中如何施加预紧力

ansys中螺栓的预紧力如何施加 我是初学者,螺栓中预紧力的施加不是很清楚,solve之后的预紧力方向为轴向(图见附件),我觉得不符合实际情况,是不是预紧力施加的方法不对啊,请各位指教 给螺栓加预紧力,必须先在螺栓上建立一个预紧力截面,然后在截面上施加预紧力,方向为轴向!在ansys帮助文件里有螺栓加载的例子,找找就能找到! 把通过公式F=T/K*d的力值直接加在预紧力截面上。不过存在一个问题,就是利用公示所计算得到的预紧力数值较大,因此所计算出的应力结果也比较大。我查看过一些别的资料,有同行也讨论过这个问题,也认为应力结果与实际不太相符,偏大!所以有人认为K值应该较理论值大一点,取到0.3左右可能更接近实际! 采用PSMESH命令定义预紧截面,用SLOAD命令加预紧力.可以在ANSYS里面搜一下,有这样的例子. ansys10自带的帮助文件里有一个例子,2.8. Defining Pretension in a Joint Fastener 大家可以参考一下,大家共同研究研究。 /prep7 /title, Sample application of PSMESH et,1,92 mp,ex,1,1e7 mp,alpx,1,1.3e-5 mp,prxy,1,0.30 mp,ex,2,3e7 mp,alpx,2,8.4e-6

mp,prxy,2,0.30 tref,70 /foc,,-.09,.34,.42 /dist,,.99 /ang,,-55.8 /view,,.39,-.87,.31 /pnum,volu,1 /num,1 cylind,0.5,, -0.25,0, 0,180 cylind,0.5,, 1,1.25, 0,180 cylind,0.25,, 0,1, 0,180 wpoff,.05 cylind,0.35,1, 0,0.75, 0,180 wpoff,-.1 cylind,0.35,1, 0.75,1, 0,180 wpstyle,,,,,,,,0 vglue,all numc,all vplot mat,1 smrt,off vmesh,4,5 mat,2 vmesh,1,3 /pnum,mat,1 eplot psmesh,,example,,volu,1,0,z,0.5,,,,elems CM,lines,LINE /dist,,1.1 cmplot /solu eqslve,pcg,1e-8 asel,s,loc,y da,all,symm asel,all dk,1,ux dk,12,ux dk,1,uz sload,1,9,,force,100,1,2 /title,Sample application of PSMESH - preload only solve 这是例子内容,有兴趣的可以研究研究。

螺栓组受力分析与计算..

螺栓组受力分析与计算 螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 H1.螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形, 三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方

向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 | 塾〉不令 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距to不得大于下表所推 荐的数值。 扳手空间尺寸 螺栓间距t o 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4, 6, 8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

螺栓组受力分析与计算..

螺栓组受力分析与计算 1.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置 3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性

要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。 图1 凸台与沉头座的应用 图2 斜面垫圈的应 用

高强度螺栓预紧力和拧紧力矩比较分析

高强度螺栓预紧力和拧紧力矩比较分析 在钢结构连接中经常使用高强度螺栓。高强度螺栓连接对于防止松动有良好的可靠性,尤其用于连接动载荷的构件。在高强度螺栓连接中,预紧力和拧紧力矩是一个很重要的参数。下面就高强度螺栓的预紧力及拧紧力矩进行探讨,以期得到合理的结果,在今后的设计中应用。 1 预紧力大小的确定 高强度螺栓预紧力的大小跟螺栓的材料及其横截面面积有关。所用材料需要经过调质处理以提高其机械性能,满足使用要求。国内高强度螺栓的材料一般为45钢、40B钢及40Cr钢。45钢用作级的螺栓,40B钢及40Cr 钢用作级的螺栓。 预紧力大小由下式计算: P=σ b F i (1-1) 式中σ b —高强度螺栓材料经热处理后的抗拉强度限, F i —螺栓的计算面积(按内螺纹直径计算),按下表取。 高强度螺栓的螺纹内径d 1和计算面积F i 螺栓公称直径M16 M18 M20 M22 M24 螺纹的内径(mm) 计算面积(mm2)149 182 235 292 2 拧紧力矩的计算 拧紧力矩是为了使螺栓产生预紧力,其大小由预紧力确定。 拧紧力矩由下式计算: M =(kg·m)(2-1)

式中 P —高强度螺栓需要的预紧力(t ); d —高强度螺栓的公称直径(mm )。 3 下面就国内外高强度螺栓,根据它们的材料的机械性能计算其预紧力和拧紧力矩,并进行比较和分析,从中找到适合我们应用的预紧力和拧紧力矩。 (1) 根据《机械设计手册》(机械工业出版社) 材料: 45钢,级;40B 钢,级 抗拉强度限:45钢,850kN/mm 2;40B 钢,1550kN/mm 2。 计算结果如下表所示。 预紧力F v (kN)及扭紧力矩M A (N·m) (2) 根据《起重机设计手册》(辽宁人民出版社) 材料:45钢,级;40B 钢,级 抗拉强度限:45钢,850kN/mm 2;40B 钢,1550kN/mm 2。 计算结果如下: 预紧力F v (kN)及扭紧力矩M A (N·m)

螺栓组受力分析与计算

螺栓组受力分析与计算 一.螺栓组联接得设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面得工作能力 5.校核螺栓所需得预紧力就是否合适 确定螺栓得公称直径后,螺栓得类型,长度,精度以及相应得螺母,垫圈等结构尺寸,可根据底板得厚度,螺栓在立柱上得固定方法及防松装置等全面考虑后定出。 1、螺栓组联接得结构设计 螺栓组联接结构设计得主要目得,在于合理地确定联接接合面得几何形状与螺栓得布置形式,力求各螺栓与联接接合面间受力均匀,便于加工与装配。为此,设计时应综合考虑以下几方面得问题: 1)联接接合面得几何形状通常都设计成轴对称得简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组得对称中心与联接接合面得形心重合,从而保证接合面受力比较均匀。 2)螺栓得布置应使各螺栓得受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷得方向上成排地布置八个以上得螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓得位置适当靠近联接接合面得边缘,以减小螺栓得受力(下图)。如果同时承受轴向载荷与较大得横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓得预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓得布置

3)螺栓排列应有合理得间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线与机体壁间得最小距离,应根据扳手所需活动空间得大小来决定。扳手空间得尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高得重要联接,螺栓得间距t0不得大于下表所推荐得数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上得螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时得分度与画线。同一螺栓组中螺栓得材料,直径与长度均应相同。 5)避免螺栓承受附加得弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母与螺栓头部得支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等得粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

高强螺栓预紧力的计算方法

高强螺栓预紧力的计算方法 基本介绍 所谓螺栓预紧力,就是在拧螺栓过程中拧紧力矩作用下的螺栓与被联接件之间产生的沿螺栓轴心线方向的预紧力。对于一个特定的螺栓而言,其预紧力的大小与螺栓的拧紧力矩、螺栓与螺母之间的摩擦力、螺母与被联接件之间的摩擦力有关。对于一个不确定的螺栓而言,一个螺栓可使用的最大预紧力与螺栓材料品种、螺栓材料热处理、螺栓直径大小等都有关系。 假设螺栓在压力容器密封端盖上起到密封预紧的作用,并且这个端盖上有均布同规格的若干只螺栓,那么,这若干只螺栓所能承受的最小预紧力之和必须大于密封容器中工质最高压力所产生的反作用力,否则压力容器端盖与器体之间的密封就无法保障。 在工程领域中,测定螺栓预紧力通常有一些技术方法。对于精度要求高的螺栓预紧力的测量,往往采取螺栓弹性变形量大小来测量并计算出预紧力大小。对于中等要求的螺栓预紧力的测量,通常选用力矩扳手(力矩扳手的种类目前较多,在此不作具体介绍),按照规定的力矩大小拧紧螺母即可。对于一般要求的螺栓预紧力测量,用的最多的方法就是根据手力拧紧螺母,便从此时开始,按规定要求用扳手拧转螺母若干个角(一个角为60度)来估测预紧力是否已经达到。 预紧的目的 预紧可以提高螺栓连接的可靠性、防松能力和螺栓的疲劳强度,增强连接的紧密性和刚性。事实上,大量的试验和使用经验证明:较高的预紧力对连接的可靠性和被连接的寿命都是有益的,特别对有密封要求的连接更为必要。当然,俗话说得好,“物极必反”,过高的预紧力,如若控制不当或者偶然过载,也常会导致连接的失效。因此,准确确定螺栓的预紧力是非常重要的。 高强螺栓预紧力的计算方法 Mt=K×P0×d×10-3 N.m K:拧紧力系数 d:螺纹公称直径 P0:预紧力 P0=σ0×As As也可由下面表查出 As=π×ds2/4 ds:螺纹部分危险剖面的计算直径 ds=(d2+d3)/2 d3= d1-H/6 H:螺纹牙的公称工作高度 σ0 =(0.5~0.7)σs σs――――螺栓材料的屈服极限N/mm2 (与强度等级相关,材质决定) K值查表:(K值计算公式略) 摩擦表面状况 K值 有润滑无润滑

相关主题
文本预览
相关文档 最新文档