当前位置:文档之家› ansys螺栓预紧单元的创建(中文说明)

ansys螺栓预紧单元的创建(中文说明)

ansys螺栓预紧单元的创建(中文说明)
ansys螺栓预紧单元的创建(中文说明)

1、定义螺栓

直接使用ANSYS中创建体的命令创建一个圆柱和两个圆环,组合成螺栓,注意要将螺栓粘接起来

2、定义预应力

psmesh命令

使用功能:生成预拉伸剖面网格,创建并划分一个预紧截面

使用格式:PSMESH, SECID, Name, P0, Egroup, NUM, KCN, KDIR, VALUE, NDPLANE, PSTOL, PSTYPE, ECOMP, NCOMP

SECID:唯一的剖面号,截面号,这个号应该没有被用。

Name:截面名字

P0:预紧(预拉伸)节点号码。如果不存在的话,将生成一个。确省的是最大号码数加1。Egroup, NUM

PSMESH将操作的单元组,如果EGROUP=P,激活图形拾取,并且NUM被忽略(仅在GUI 的条件下有效)

L(or LINE)-PSMESH在所有被NUM指定的线上的单元进行。新的预紧点附在NUM 或者它下面的实体上。任何后来对NUM的LCLEAR操作将删除预紧单元和PSMESH创建的节点

A(or AREA)-PSMESH在所有被NUM指定的面上的单元进行。新的预紧点附在NUM 或者它下面的实体上。任何后来对NUM的ACLEAR操作将删除预紧单元和PSMESH创建的节点

V(or VOLU)-PSMESH在所有被NUM指定的体上的单元进行。新的预紧点附在NUM 或者它下面的实体上。任何后来对NUM的VCLEAR操作将删除预紧单元和PSMESH创建的节点

P-PSMESH在所有后面选择的单元上进行,NUM被忽略。

ALL-命令在所有被选择的单元上进行,NUM被忽略。

KCN:分离面和法线方向所用的坐标系号

KDIR:在KCN坐标系下,分离面的法线方向(x,y,或Z)

如果KCN是笛卡尔坐标系,预紧截面的法线方向平行于KDIR轴而不管预紧节点的位置。

如果KCN非笛卡尔坐标系,预紧截面的法线方向坐标系KCN中,预紧节点处KDR的方向一致。

VALUE:在KDIR轴上,分离面的位置点。如果指定了NDPLANE将被忽略。

NDPLANE:已经存在的节点,PSMESH用来产生分离面的位置。如果NDPLANE被提供分离面的位置,有NDPLANE的KDIR坐标确定。

PSTOL:VALUE的任意的绝对容差。允许稍微高于或低于分离面的节点被包括。下面的表达式描述确省的值:

ΔX,ΔY,ΔZ的平方和除以1000开平方

其中ΔX,ΔY,ΔZ是基于节点位置的模型尺寸。(既是, Xmax - Xmin).

PSTYPE:如果被指定,这个值是预紧单元的单元类型号(如果不被指定,ansys定义这个值)如果已经被指定,必须是PRETS179。

ECOMP:如果被指定,是由新建的预紧单元和已经存在的被PSMESH改变的单元组成的组的名称(就是创建单元集合的名称)。

NCOMP:由新建的预紧单元的节点组成的组的名字(节点集合)。

使用提示:

在VALUE或者NDPLANE确定的点,沿着已经存在的单元边界,把网格分成两部分并插入PRETS179单元,PSMESH命令创建一个与预紧力垂直的预紧面。PSMESH命令验证PSTYPE 是PRETS179,如果不是,这个命令将找到最低是PRETS179的ITYPE,或者如果必须就创建一个新的。

必须定义预紧节点的时候,ANSYS用节点NDPLANE。如果NDPLANE没有被指定,ANSYS定义预紧节点在:

如果EGROUP=LINE,AREA,或者VOLU,几何实体NUM的质心。

如果EGROUP=ALL,或者P时,是所有被选择单元的质心位置。

如果预紧载荷将要应用的单元被划分成两部分,PSMESH不能用来插入预紧单元。EINF将被用来在两个被分网的组之间插入PRETS179单元

PSMESH操作复制你已经定义在原网格分离面上节点温度从原始节点到新的一致的节点。然而位移,力以及另外的边界条件不被复制。

按照数学定义,预紧面必须是个平面。在非笛卡尔坐标系中,PSMESH命令创建那样的平面在指定的位置,朝着激活坐标系的指定方向。(相似和NROTAT命令转化节点坐标系到曲线坐标系)。例如,假定X=1并且Y=45在以Z轴为旋转轴的柱坐标系中(KCN=1),一个垂直与X轴并倾斜45度的预紧面来自全球坐标系中的X轴。

The PSMESH command is valid for structural analyses only.

PSMESH命令尽在结构分析中有效。

Menu Paths

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>Elements in Area

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>Elements in Line

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>Elements in Volu

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>Picked Elements

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>Selected Element

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Node>Elements in Area

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Node>Elements in Line

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Node>Elements in Volu

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Node>Picked Elements

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Node>Selected Element

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Valu>Elements in Area

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Valu>Elements in Line

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With

Options>Divide at Valu>Elements in Volu

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Valu>Picked Elements

Main Menu>Preprocessor>Modeling>Create>Elements>Pretension>Pretensn Mesh>With Options>Divide at Valu>Selected Element

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>Elements in Area

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>Elements in Line

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>Elements in Volu

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>Picked Elements

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>Selected Element

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Node>Elements in Area

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Node>Elements in Line

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Node>Elements in Volu

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Node>Picked Elements

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Node>Selected Element

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Valu>Elements in Area

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Valu>Elements in Line

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Valu>Elements in Volu

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Valu>Picked Elements

Main Menu>Preprocessor>Sections>Pretension>Pretensn Mesh>With Options>Divide at Valu>Selected Element

GUI:Main Menu>Solution>Define Loads>Apply>Structural>pretnsn>sectn

Main Menu>Solution>Define Loads>Delete>All Load Data>All Section Lds

Main Menu>Solution>Define Loads>Delete>All Load Data>Structural>Section

使用功能:给一个预拉伸界面加载或删除载荷

使用格式:SLOAD,SECID,STLOC,VAL1,VAL2,VAL3,VAL4,VAL5,VAL6

SECID:截面号,并已经指定给一个预拉伸截面

STLOC:在表格中开始输入数据的起始位置,它必须要大于或等于9,位置1~8被保留给了内部参数,如果STLOC=DELETE,则施加在指定界面上的所有载荷都将被删除,而保留区域将被忽略。

VAL1,VAL2,VAL3,VAL4,VAL5,VAL6:可以给从STLOC为起始的6个位置赋值,如果这个位置已经有值,它将会重新定义。如为空将保留原来的值不变,如果STLOC=9,则VAL1与第9个位置相对应,VAL2与第10个位置相对应,以此类推。有5种可能是数据类型:

KINIT:初始运算

KFD:力/位移

FDVALUE:预载荷值

LSLOAD:预载荷

LSLOCK:当命令FDVALUE锁住时的载荷步

初始计算KINIT仅用于当STLOC=9时的VAL1,期望的预载荷被用来保护收敛问题之前,先使用KINIT施加一个很小的预载荷。当期望的预载荷在第1个载荷步没有建立时,可以使用这个条件,对于KINIT(VAL1)还有3中可能:

LOCK,0或1:在LSLOAD之前锁住UX=0

SLID或2:自由滑动

TINY或3:如果KFD=F,它是FDVALUE值的0.1%

余下的4中数据类型可以对每个期望的预载荷进行重复,并根据起始位置STLOC按顺序进行力位移KFD被定义在与第1、2…预载荷相关的位置10 14 18…有两种可能的设想:FORC,F,0,1:KDVALUE表示为力(默认设置)

DISP,D,2:FDVALUE是表示一个偏离的位移

预载荷FDVALUE的值被定义在与第1、2…预载荷相关的位置11,15,19…,预载荷没有默认值,一个正值使得预拉伸单元处于拉伸状态

施加的载荷步LSLOAD被定义在与第1,2…预载荷相关的位置12 16 20…没有默认值,在FDVALUE施加时必须要指定载荷步

载荷步的锁定 LSLOCK被定义在与第1,2…预载荷相关的位置13 17 21…没有默认值,在FDVALUE施加时必须要指定载荷步

使用提示:命令SLOAD施加一个预拉伸载荷到指定的预拉伸截面上,不同的预拉伸载荷有不同的值,且每次施加都在一个指定的载荷步里,其载荷既可以是力,也可以是位移。

载荷值也可以被锁定在摸个载荷步时里,当锁住时,载荷将会从一个力向一个位移转换,并在下一个载荷步里做常量位移施加,但它会改变初始预载荷的效果,当施加附加载荷时,这是特别有用的,为了保护这个效果,预载荷的值能够转换成一个位移。

实例:

SLOAD,1,9,TINY,FORC,5000,1,2

这个例子中,载荷施加在预拉伸界面1上,接下来由初始计算键KINT开始,并设置为TINY。接下的4个域设置为第1载荷:KFD变量的FORC指定了载荷的类型,FDVALUE指定了载荷值为5000,LSLOAD指定了力将要施加的载荷步为1,LSLOCK指定了力将要锁住的载荷步为2,4个域的其他设置也可用来定义其他载荷。

也可以使用这个命令来编辑,实际上是覆盖,施加在预拉伸面上已存在的载荷,这个过程可使用下列方法之一来完成,其一是完全重新进入命令SLOAD,其二是对于想要改变的变量设置一个起始位置,例如:下面将改变预拉伸面1上的载荷为6000:

SLOAD,1,11,6000,1,2

也可以使用这个命令删除在指定预拉伸面上的所有载荷,如:

SLOAD,1,DELETE

对于预应力模型的情况,在模型分析中们可以锁住预拉伸单元,如:

SLOAD,1,11,LOCK,D,1,2

Ansys的热载荷及热单元类型

Ansys的热载荷及热单元类型 Ansys的6种热载荷 ANSYS共提供了6种载荷,可以施加在实体模型或单元模型上,包括:温度、热流率、对流、热流密度、生热率和热辐射率。 1. 温度 作为第一类边界条件,温度可以施加在有限元模型的节点上,也可以施加在实体模型的关键点、线段及面上。 2. 热流率 热流率(Heal Flow)—种节点集中载荷,只能施加在节点或关键点上,主要用于线单元模型。提示:如果温度与热流率同时施加在某一节点上,則ANSYS读取温度值进行计算。 3.对流 对流(Convection)是一种面载荷,用于计算流体与实体的热交换。它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的线段和面上。 4.热流密度 热流密度,又称热通量(Heat Flux),单位为W/m2。热流密度是一种面载荷,表示通过单位面积的热流率。当通过单位面积的热流率己知时,可在模型相应的外表面施加热流密度。若输入值为正,则表示热流流入单元:反之,则表示热流流出单元。它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的线段和面上。 提示:热流密度与对流可以施加在同一外表面,但ANSYS将读取最后施加的面载荷进行计算。 5. 生热率 如前所述,生热率既可看成是材料的一种基本属性,又可作为载荷施加在单元上,它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的关键点、线段、面及体上。 6. 热辐射率 热辐射率也是一种面载荷,通常施加于实体的外表面。它可以施加在有限元模型的节点及单元上,也可以施加在实体模型的线段和面上。

Ansys的热单元类型 ANSYS 10.0热分析共提供了 40余种单元,其中包括辐射单元、对流单元、特殊单元以及前面所介绍的耦合场中-元等。其中常见的用于热分析的单元有16种: 下面一次对各单元进行介绍●MASS71 维度:1D、2D、3D 节点数:1 自由度:温度 性质:质量单元 几何形状 ●LINK31 维度:2D、3D 节点数:2 自由度:温度 性质:热辐射单元 几何形状

(仅供参考)ANSYS软件中常用的单元类型

ANSYS软件中常用的单元类型 一、单元 (1)link(杆)系列: link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。 link10用来模拟拉索,注意要加初应变,一根索可多分单元。 link180是link10的加强版,一般用来模拟拉索。 (2)beam(梁)系列: beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab 读入smisc数据然后用plls命令。注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。该单元需要手工在实常数中输入Iyy和Izz,注意方向。 beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。 beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。可见188单元已经很完善,建议使用。beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。 (3)shell(板壳)系列 shell41一般用来模拟膜。 shell63可针对一般的板壳,注意仅限弹性分析。它的塑性版本是shell43。加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁板结构时常要把板中面望上偏置),可以分层,等等。 (4)solid(体)系列 土木中常用的就solid45、solid46、solid65、solid95等。 solid45就不用多说了,solid95是它的带中结点版本。

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择 初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)、beam3是2D的梁单元,只能解决2维的问题。 2)、beam4是3D的梁单元,可以解决3维的空间梁问题。 3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构) 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。

ANSYS中不同单元之间的连接问题

一般来说,按“杆梁壳体”单元顺序,只要后一种单元的自由度完全包含前一种单元的自由度,则只要有公共节点即可,不需要约束方程,否则需要耦合自由度与约事方程。例如: (1)杆与梁、壳、体单元有公共节点即可,不需要约束方程。 (2)梁与壳有公共节点怒可,也不需要约束写约束方程;壳梁自由度数目相同,自由度也相同,尽管壳的rotz是虚的自由度,也不妨碍二者之间的关系,这有点类同于梁与杆的关系。 (3)梁与体则要在相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。 (4)壳与体则也要相同位置建立不同的节点,然后在节点处耦合自由度与施加约束方程。 上面所述的不同单元之间的接连方法主要是用耦合自由度和约束方程来实现的,有一定的局限性,只适用于小位移,下面介绍一种支持大位移算法的方法,MPC法。 MPC即Multipoint Constraint,多点约束方程,其原理与前面所说的方程的技术几乎一致,将不连续、自由度不协调的单元网格连接起来,不需要连接边界上的节点完全一一对应。 MPC能够连接的模型一般有以下几种。 solid 模型-solid 模型 shell模型-shell模型 solid 模型-shell 模型 solid 模型-beam 模型 shell 模型-beam模型 在 ANSYS中,实现上述MPC技术有三种途径。 (1)通过MPC184单元定义模型的刚性或者二力杆连接关系。定义MPC184单元模型与定义杆的操作完全一致,而MPC单元的作用可以是刚性杆(三个自由度的连接关系)或者刚性梁(六个自由度的连接关系)。 (2)利用约束方程菜单路径Main Menu>preprocessor>Coupling/Ceqn>shell/solid Interface创建壳与实体模型之间的装配关系。 (3)利用ANSYS接触向导功能定义模型之间的装配关系。选择菜单路径Main

ansys各种单元及使用

ansys单元类型种类统计 单元名称种类单元号 LINK (共12种) 1,8,10,11,31,32,33,34,68,160,167,180 PLANE (共20种)2,13,25,35,42,53,55,67,75,77,78,82,83,121,145,146,162,182,183,223 BEAM (共09种)3,4,23,24,44,54,161,188,189 SOLID (共30 种)5,45,46,62,64,65,69,70,87,90,92,95,96,97,98,117,122,123,127,128,147,148,164,168, 185,186,187,191,226,227 COMBIN (共05种)7,14,37,39,40 INFIN (共04种)9,47,110,111 CONTAC (共05种)12,26,48,49,52 PIPE (共06种)16,17,18,20,59,60 MASS (共03种)21,71,166 MATRIX (共02种)27,50 SHELL (共19种)28,41,43,51,57,61,63,91,93,99,131,132,143,150,157,163,181,208,209 FLUID (共14种)29,30,38,79,80,81,116,129,130,136,138,139,141,142 SOURC (共01种)36 HYPER (共06种)56,58,74,84,86,158 VISCO (共05种)88,89,106,107,108 CIRCU (共03种)94,124,125 TRANS (共02种)109,126 INTER (共05种)115,192,193,194,195 HF (共03种)118,119,120 ROM (共01种)144 SURF (共04种)151,152,153,154 COMBI (共01种)165 TARGE (共02种)169,170 CONTA (共06种)171,172,173,174,175,178 PRETS (共01种)179 MPC (共01种)184 MESH (共01种)20

ANSYS单元类型选择方法

ANSYS单元类型选择方法 最近在学习ANSYS,收集到一些资料,跟大家分享一下:还有心得体会将在后面写出来跟同行们交流! 下面是有关ANSYS分析中的单元选择方法: 一、单元类型选择概述: ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上; 单元类型选择方法: 1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元; 二、单元类型选择方法(续一) 2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟; 3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围; 三、单元类型选择方法(续二) 4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型: Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元; 四、单元类型选择方法(续三) 5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”; 五、单元类型选择方法(续四) 6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。 六、单元类型选择方法(续五)

ANSYS单元类型(详细)

ANSYS 单元类型(详细) 把收集到得ANSYS 单元类型向大家交流下。Mass21 是由6 个自由度的点元素,x,y,z 三个方向的线位移以及绕x,y,z 轴的旋转位移。每个自由度的质量和惯性矩分别定义。Link1 可用于各种工程应用中。根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。这个2 维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。X,y, 方向。铰接,没有弯矩。Link8 可用于不同工程中的杆。可用作模拟构架,下垂电缆,连杆,弹簧等。3 维杆元素是单轴拉压元素。每个点有3 个自由度。X,y,z 方向。作为铰接结构,没有弯矩。具有塑性,徐变,膨胀,应力强化和大变形的特性。Link10 3 维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41 的线形式,keyopt(1)=2, ' cloth '选如项果。分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8 和pipe59 )代替。当最终的结构是一个拉紧的结构的时候,Link10 也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。在这种情况下,要用其他的元素或在linkIO中使用‘显示动力’技术°Link1O每个节点有3 个自由度,x,y,z 方向。在拉(或压)中都没有抗弯能力,但是可

以通过在每个link1O 元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。Link11 用于模拟水压圆筒以及其他经受大旋转的结构。此元素为单轴拉压元素,每个节点有3 个自由度。X,y,z 方向。没有弯扭荷载。Link18O 可用于不同的工程中。可用来模拟构架,连杆,弹簧,等。此3 维杆元素是单轴拉压元素,每个节点有3 个自由度。X,y,z 方向。作为胶接结构,不考虑弯矩。具有塑性,徐变,旋转,大变形,大应变能力。link18O 在任何分析中都包括应力强化项(分析中,nlgeon,on),此为缺省值。支持弹性,各向同性硬化塑性,运动上的硬化塑性,希尔各向异性塑性,chaboche 非线性硬化塑性和徐变等。Beam3 单轴元素,具有拉,压,弯性能。在每个节点有3 个自由度。X,y, 方向以及绕z 轴的旋转。Beam4 是具有拉压扭弯能力的单轴元素。每个节点有6 个自由度,x,y,z, 绕x,y,z 轴。具有应力强化和大变形能力。在大变形分析中,提供了协调相切劲度矩阵选项。Beam23 单轴元素,拉压和受弯能力。每个节点有3 个自由度。该元素具有塑性,徐变,膨胀能力。如果这些影响都不需要,可使用beam3 ,2 维弹性梁。Beam24 3 维薄壁梁。单轴元素,任意截面都有拉压、弯曲和St. Venant 扭转能力。可用于任何敞开的和单元截面。该元素每个节点有6 个自由度:x,y,z 和绕x,y,z 方向。该元素在轴向和自定义的 截面方向都具有塑性,徐变和膨胀能力。若不需要这些能力,可用弹性梁beam4或beam44。Pipe20 和beam23 也具有塑性,徐变和膨胀能力。截面是通过一系列的矩形段来定义的。梁的纵轴向方向

Ansys 单元类型选择方法

单元类型选择方法 ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上; 单元类型选择方法: 1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元; 2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟; 3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围; 4. 确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元; 5. 根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”; 6. 根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。 7. 进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作: 仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。 Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。每个自由度的质量和惯性矩分别定义。 Link1可用于各种工程应用中。根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。这个2维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。x,y,方向。铰接,没有弯矩。 Link8可用于不同工程中的杆。可用作模拟构架,下垂电缆,连杆,弹簧等。3维杆元素是单轴拉压元素。每个点有3个自由度。x,y,z方向。作为铰接结构,没有弯矩。具有塑性,徐变,膨胀,应力强化和大变形的特性。 Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41的线形式,keyopt(1)=2,?cloth?选项。如果分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8 和pipe59)代替。当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。在这种情况下,要用其他的元素或在link10中使用…显示动力?技术。Link10每个节点有3个自由度,x,y,z方向。在拉(或压)中都没有抗弯能力,但是可以通过在每个link10元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。 Link11用于模拟水压圆筒以及其他经受大旋转的结构。此元素为单轴拉压元素,每个节点有3个自由度。X,y,z方向。没有弯扭荷载。 Link180可用于不同的工程中。可用来模拟构架,连杆,弹簧,等。此3维杆元素是单轴拉压元素,每个节点有3个自由度。X,y,z方向。作为胶接结构,不考虑弯矩。具有塑性,

ANSYS单元类型详细

把收集到得ANSYS单元类型向大家交流下。 初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 单元类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)beam3是2D的梁单元,只能解决2维的问题。 2)beam4是3D的梁单元,可以解决3维的空间梁问题。 3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。 除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺

ANSYS单元类型(详细)

ANSYS单元类型(详细) 把收集到得ANSYS单元类型向大家交流下。Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。每个自由度的质量和惯性矩分别定义。Link1可用于各种工程应用中。根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。这个2维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。X,y,方向。铰接,没有弯矩。Link8可用于不同工程中的杆。可用作模拟构架,下垂电缆,连杆,弹簧等。3维杆元素是单轴拉压元素。每个点有3个自由度。X,y,z方向。作为铰接结构,没有弯矩。具有塑性,徐变,膨胀,应力强化和大变形的特性。Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41的线形式, keyopt(1)=2,’cloth’选项。如果分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8和pipe59)代替。当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。在这种情况下,要用

其他的元素或在link10中使用‘显示动力’技术。Link10每个节点有3个自由度,x,y,z方向。在拉(或压)中都没有抗弯能力,但是可以通过在每个link10元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。Link11用于模拟水压圆筒以及其他经受大旋转的结构。此元素为单轴拉压元素,每个节点有3个自由度。X,y,z方向。没有弯扭荷载。Link180可用于不同的工程中。可用来模拟构架,连杆,弹簧,等。此3维杆元素是单轴拉压元素,每个节点有3个自由度。X,y,z方向。作为胶接结构,不考虑弯矩。具有塑性,徐变,旋转,大变形,大应变能力。link180在任何分析中都包括应力强化项(分析中,nlgeon,on),此为缺省值。支持弹性,各向同性硬化塑性,运动上的硬化塑性,希尔各向异性塑性,chaboche 非线性硬化塑性和徐变等。Beam3单轴元素,具有拉,压,弯性能。在每个节点有3个自由度。X,y,方向以及绕z轴的旋转。Beam4是具有拉压扭弯能力的单轴元素。每个节点有6个自由度,x,y,z,绕x,y,z轴。具有应力强化和大变形能力。在大变形分析中,提供了协调相切劲度矩阵选项。Beam23单轴元素,拉压和受弯能力。每个节点有3个自由度。该元素具有塑性,徐变,膨胀能力。如果这些影响都不需要,可使用beam3,2维弹性梁。 Beam24 3维薄壁梁。单轴元素,任意截面都有拉压、弯曲和St. Venant扭转能力。可用于任何敞开的和单元截面。该

ansys单元类型详解

ansys单元类型详解 把收集到得ANSYS单元类型向大家交流下。 Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。每个自由度的质量和惯性矩分别定义。 Link1可用于各种工程应用中。根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。这个2维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。X,y,方向。铰接,没有弯矩。 Link8可用于不同工程中的杆。可用作模拟构架,下垂电缆,连杆,弹簧等。3维杆元素是单轴拉压元素。每个点有3个自由度。X,y,z方向。作为铰接结构,没有弯矩。具有塑性,徐变,膨胀,应力强化和大变形的特性。 Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41的线形式,keyopt(1)=2,’cloth’选项。如果分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8和pipe59)代替。当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。在这种情况下,要用其他的元素或在link10中使用‘显示动力’技术。Link10每个节点有3个自由度,x,y,z方向。在拉(或压)中都没有抗弯能力,但是可以通过在每个link10元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。 Link11用于模拟水压圆筒以及其他经受大旋转的结构。此元素为单轴拉压元素,每个节点有3个自由度。X,y,z方向。没有弯扭荷载。 Link180可用于不同的工程中。可用来模拟构架,连杆,弹簧,等。此3维杆元素是单轴拉压元素,每个节点有3个自由度。X,y,z方向。作为胶接结构,不考虑弯矩。具有塑性,徐变,旋转,大变形,大应变能力。link180在任何分析中都包括应力强化项(分析中,nlgeon,on),此为缺省值。支持弹性,各向同性硬化塑性,运动上的硬化塑性,希尔各向异性塑性,chaboche非线性硬化塑性和徐变等。 Beam3单轴元素,具有拉,压,弯性能。在每个节点有3个自由度。X,y,方向以及绕z轴的旋转。 Beam4是具有拉压扭弯能力的单轴元素。每个节点有6个自由度,x,y,z,绕x,y,z轴。具有应力强化和大变形能力。在大变形分析中,提供了协调相切劲度矩阵选项。 Beam23单轴元素,拉压和受弯能力。每个节点有3个自由度。该元素具有塑

ANSYS中单元类型介绍1

Structural Mass 1、3D mass 21 提供集中质量是各种有限元软件模拟实际的很好方式,如果某些区域我们并不是太关心,但是其质量和惯性矩会显著地影响最终结果,比如像你提到的动力学的例子,还有计算结构的弯曲应力、挠度等等。 ANSYS提供了21号质量单元用于这些问题的模拟,它有6个自由度,三个方向的平动和转动,不同方向的质量和惯性矩可能被赋予到相应的坐标方向进行计算。mass21的位置一般会位于被简化区域的质心处,可以采用刚性单元连接分析结构的相接部位,典型的有rbe2,rbe3。rbe2可以节点与节点相连,rbe3一般是节点与边的连接方式。rbe2是通过耦合位移自由度的方式传递载荷,rbe3(均方加权刚性单元)根据质量单元的与相连接边上节点位置自动分配载荷给相关的节点。 弹簧振子系统模态分析一般就用mass21单元。 Solid 1、Quad 4 node 182 182单元可用来对固体结构进行二维建模。182单元可以当作一个平面单元,或者一个轴对称单元。它由4个结点组成,每个结

点有2个自由度,分别在x,y方向。这个单元有可塑性,超弹性,大变形,大应变,应力强化等特性。它也可以用来模拟不可压缩的弹塑性材料和不可压缩的超弹性材料。(有称四方)Contact 1、2D Target 169 Targe169是用来与接触面(conta171,conta172,conta175)相联系的二维目标面。接触单元本身覆盖在实体单元的表面,代表着与潜在的目标面(targe169来定义)相对应的变形实体边界。目标面被一系列的目标块单元离散了,并且与接触面通过共用的一组实常数号来形成接触对。用户可以在目标单元块上施加任意平动的位移,转动的角度,温度,电压,和磁力。也可以在目标单元上施加力或转矩。参考ansys理论手册上的targe169单元更详细的解释。可用targe170 3D目标单元描述3D目标面。对于刚性目标面,这些单元可以轻松建立复杂的接触形状的模型。对于柔性接触面,这些单元将通过覆盖在实体单元上的单元来描述可变形目标体的边界。

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍与单元得选择原则ANSYS中单元类型得选择 初学ANSYS得人,通常会被ANSYS所提供得众多纷繁复杂得单元类型弄花了眼,如何选择正确得单元类型,也就是新手学习时很头疼得问题。 类型得选择,跟您要解决得问题本身密切相关。在选择单元类型前,首先您要对问题本身有非常明确得认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS得帮助文档中都有非常详细得描述,要结合自己得问题,对照帮助文档里面得单元描述来选择恰当得单元类型。 1。该选杆单元(Link)还就是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向得拉力或者压力,杆单元不能承受弯矩,这就是杆单元得基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果您得结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用得有beam3,beam4,beam188这三种,她们得区别在于: 1)、beam3就是2D得梁单元,只能解决2维得问题。 2)、beam4就是3D得梁单元,可以解决3维得空间梁问题。 3)、beam188就是3D梁单元,可以根据需要自定义梁得截面形状。(常规就是6个自由度,比如就是用于桁架等框架结构,如鸟巢,飞机场得架构) 2。对于薄壁结构,就是选实体单元还就是壳单元? 对于薄壁结构,最好就是选用shell单元,shell单元可以减少计算量,如果您非要用实体单元,也就是可以得,但就是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩得时候,如果在厚度方向得单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用得shell单元有shell63,shell93。shell63就是四节点得shell单元(可以退化为三角形),shell93就是带中间节点得四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算

ansys各种单元及使用

ansys 单元类型种类统计单元名称种类单元号 LINK (共12 种) 1,8,10,11,31,32,33,34,68,160,167,180 PLANE (共20 种) 2,13,25,35,42,53,55,67,75,77,78,82,83,121,145,146,162,182,183,223 BEAM (共09 种)3,4,23,24,44,54,161,188,189 SOLID (共30 种) 5,45,46,62,64,65,69,70,87,90,92,95,96,97,98,117,122,123,127,128,147,148,164 ,168, 185,186,187,191,226,227 COMBIN (共05 种)7,14,37,39,40 INFIN (共04 种)9,47,110,111 CONTAC (共05 种)12,26,48,49,52 PIPE (共06 种)16,17,18,20,59,60 MASS (共03 种)21,71,166 MATRIX (共02 种)27,50 SHELL (共19 种) 28,41,43,51,57,61,63,91,93,99,131,132,143,150,157,163,181,208,209 FLUID (共14 种)29,30,38,79,80,81,116,129,130,136,138,139,141,142 SOURC (共01 种)36 HYPER (共06 种)56,58,74,84,86,158 VISCO (共05 种)88,89,106,107,108 CIRCU (共03 种)94,124,125 TRANS (共02 种)109,126 INTER (共05 种)115,192,193,194,195 HF (共03 种)118,119,120 ROM (共01 种)144 SURF (共04 种)151,152,153,154 COMBI (共01 种)165 TARGE (共02 种)169,170 CONTA (共06 种)171,172,173,174,175,178 PRETS (共01 种)179 MPC (共01 种)184 MESH (共01 种)20

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则 ANSYS中单元类型的选择 初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)、beam3是2D的梁单元,只能解决2维的问题。 2)、beam4是3D的梁单元,可以解决3维的空间梁问题。 3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构) 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。 除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。通常情况下,shell63单元就够用了。 3.实体单元的选择 实体单元类型也比较多,实体单元也是实际工程中使用最多的单元类型。常用的实体单元类型有solid45, solid92,solid185,solid187这几种。其中把solid45,solid185可以归为第一类,他们都是六面体单元,都可以退化为四面体和棱柱体,单元的主要功能基本相同,(SOLID185还可以用于不可压缩超弹性材料)。Solid92, solid187可以归为第二类,他们都是带中间节点的四面体单元,单元的主要功能基本相同。 实际选用单元类型的时候,到底是选择第一类还是选择第二类呢?也就是到底是选用六面体还是带中间节点的四面体呢? 如果所分析的结构比较简单,可以很方便的全部划分为六面体单元,或者绝大部分是六面体,只含有少量四面体和棱柱体,此时,应该选用第一类单元,也就是选用六面体单元;如果所分析的结构比较复杂,难以划分出六面体,应该选用第二类单元,也就是带中间节点的四面体单元。

ANSYS中的超单元

ANSYS 中的超单元 摘自htbbzzg的博客,网易从 8.0 版开始,ANSYS 中增加了超单元功能,本文通过一些实际例子,探讨了 ANSYS 中超单元的具体使用。 1. 使用超单元进行静力分析 根据 ANSYS 帮助文件,使用超单元的过程可以划分为三个阶段 (称为 Pass): (1) 生成超单元模型 (Generation Pass) (2) 使用超单元数据 (Use Pass) (3) 扩展模型 (Expansion Pass) 下面以一个例子加以说明: 一块板,尺寸为 20×40×2,材料为钢,一端固支,另一端承受法向载荷。 首先生成原始模型 se_all.db,即按照整个结构进行分析,以便后面与超单元结果进行比较: 首先生成两个矩形,尺寸各为 20×2。 然后定义单元类型 shell63; 定义实常数 1 为: 2 (板厚度)。 材料性能: 弹性模量 E=201000; 波松比μ=0.3; 密度ρ=7.8e-9; 单位为 mm-s-N-MPa。 采用边长 1 划分单元; 一端设置位移约束 all,另一端所有 (21 个) 节点各承受 Z 向力 5。 计算模型如下图:

静力分析的计算结果如下:

为了后面比较的方便,分别给出两个 area 上的结果:

超单元部分,按照上述步骤操作如下: (1) 生成超单元 选择后半段作为超单元,前半段作为非超单元(主单元)。 按照 ANSYS 使用超单元的要求,超单元与非超单元部分的界面节点必须一致 (重合),且最好分别的节点编号也相同,否则需要分别对各节点对建立耦合方程,操作比较麻烦。 实际上,利用 ANSYS 中提供的 mesh200 单元,对超单元和非超单元的界面实体,按照同一顺序,先于所有其它实体划分单元,很容易满足界面节点编号相同的要求。对于多级超单元的情况,则还要结合其它操作 (如偏移节点号等) 以满足这一要求。 对于本例,采用另一办法,即先建立整个模型,然后再划分超单元和非超单元。即:将上述模型分别存为 se_1.db (超单元部分) 和 se_main.db (非超单元部分) 两个文件,然后分别处理。 对于 se_1.db 模型,按照超单元方式进行处理。由于模型及边界条件已建立,只需删除前半段上的划分,结果就是超单元所需的模型。 然后直接进入创建超单元矩阵的操作,首先说明一下创建超单元矩阵的一般步骤: A 进入求解模块: 命令:/Solu GUI:Main menu -> Solution B 设置分析类型为“子结构或部件模态综合“ 命令:ANTYPE GUI :Main menu -> Solution -> Analysis Type -> New Analysis 选择 Substructuring/CMS (子结构或部件模态综合) C 设置子结构选项 命令:SEOPT

ansys单元类型介绍

LINK1可承受单轴拉压的单元,不能承受弯矩作用 PLANE2 2维6节点三角形实体结构单元,可用作平面单元 (平面应力或平面应变),也可以用作轴对称单元 Beam3可承受拉、压、弯作用的单轴单元,每个节点有三个自由度,即沿x,y 方向的线位移及绕Z轴的角位移 Beam4承受拉、压、弯、扭的单轴受力单元,每个节点上有六个自由度:x、y、z三个方向的线位移和绕x,y,z三个轴的角位移 SOLID5三维耦合场体单元,8个节点,每个节点最多有6个自由度 LINK8三维杆(或桁架)单元,用来模拟:桁架、缆索、连杆、弹簧等等,是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动 PLANE13 2 维耦合场实体单元,有 4 个节点,每个节点最多有 4 个自由度PLANE25 4 节点轴对称谐波结构单元,用于承受非轴对称载荷2 维轴对称结构的建模 LINK32二维热传导杆单元,应用在二维(板或轴对称)稳态或瞬态热分析PLANE35 2 维 6 节点三角形热实体单元,用作平面单元或轴对称单元PLANE42 2 维实体结构单元,作平面单元 (平面应力或平面应变),也可以用作轴对称单元。本单元有 4 个节点,每个节点有 2 个自由度,分别为 x 和 y 方向的平移 Shell43 4 节点塑性大应变单元,适合模拟线性、弯曲及适当厚度的壳体结构。单元中每个节点具有六个自由度:沿x、y和z 方向的平动自由度以及绕x、y和z 轴的转动自由度 PLANE53 2 维 8 节点磁实体单元,用于 2 维 (平面和轴对称) 磁场问题的建模 PLANE55 2 维 4 节点热实体单元,作为平面单元或轴对称环单元,用于 2 维热传导分析。本单元有 4 个节点,每个节点只有一个自由度–温度 Shell63弹性壳单元,具有弯曲能力和又具有膜力,可以承受平面内荷载和法向荷载。本单元每个节点具有6个自由度:沿节点坐标系X、Y、Z方向的平动和沿节点坐标系X、Y、Z轴的转动 SOLID64 3-D 各向异性结构实体单元,用于各向异性实体结构的3D建模。单元有8个结点,每个结点3个自由度,即沿x、y、z的平动自由度 SOLID65用于含钢筋或不含钢筋的三维实体模型。该实体模型可具有拉裂与压碎的性能 PLANE67 2 维热-电耦合实体单元,有 4 各节点,每个节点两个自由度:温度和电压 PLANE75 4 节点轴对称谐波热单元,作轴对称环单元,具有 3 维热传导能力。本单元有 4 个节点,每个节点只有一个自由度–温度 TEMP PLANE77 2 维 8 节点热实体单元,2 维 4 节点热单元 (PLANE55) 的高阶版本。每个节点只有一个自由度–温度 PLANE788 节点轴对称-谐波热单元,轴对称环单元,具有 3 维热传导能力。本单元有 8 个节点,每个节点只有一个自由度–温度 TEMP PLANE82 2 维 8 节点结构实体单元,是 2 维 4 节点单元 (PLANE42) 的高阶版本。对于四边形和三角形混合网格,它有较高的结果精度;可以适应不规则形状而较少损失精度。本 8 节点单元具有一致位移形状函数,能很好地适应曲

相关主题
文本预览
相关文档 最新文档