八年级上学期期中考试数学试卷及答案
- 格式:docx
- 大小:147.70 KB
- 文档页数:6
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.下列各组线段不能组成三角形的是()A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm2.三角形一个外角小于与它相邻的内角,这个三角形()A.是钝角三角形B.是锐角三角形C.是直角三角形D.属于哪一类不能确定.3.若一个正多边形的每个内角度数都为135°,则这个正多边形的边数是()A.6 B.8 C.10 D.124.如图,在△AEC中,点D和点F分别是AC和AE上的两点,连接DF,交CE的延长线于点B,若∠A=25°,∠B=45°,∠C=36°,则∠DFE=()A.103°B.104°C.105°D.106°5.如图所示,有一个简易平分角的仪器(四边形ABCD),其中AB=AD,BC=DC,将点A放在角的顶点处,AB和AD沿着角的两边张开,并分别与AQ,AP重合,沿对角线AC画射线AE,AE就是∠P AQ的平分线这个平分角的仪器的制作原理是()A.角平分线性质B.AAS C.SSS D.SAS6.如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:57.如下图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A .8+2aB .8+aC .6+aD .6+2a8.如图,等边三角形ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取得最小值时,则ECF ∠的度数为( )A .15°B .225°C .30°D .45°9.下列四个图形中,不是轴对称图形的是( )A .B .C .D . 10.如下图所示,已知点O 是△ABC 内一点,且点O 到三边的距离相等,∠A=40゜,则∠BOC=( )A .130°B .140°C .110°D .120°二、填空题11.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.12.若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n=_____.13.如图,△ABC纸片中,AB=AC,∠BAC=90°,BC=8,沿过点C的直线折叠这个三角形,使点A落在BC边上的点F处,折痕为CD,BE⊥CD,垂足E在CD的延长线上,则结论①DF=DA;②∠ABE=22.5︒;③△BDF 的周长为8;④CD=2BE.正确的是________________(填上正确的结论序号).≅.(只需填写14.如图,已知AC DB=,再添加一个适当的条件________,使ABC DCB满足要求的一个条件即可).15.如图,AD⊥BC于点D,D为BC 的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=________________.16.已知△ABC中,AB=AC=4,∠A=60°,则△ABC的周长为______.三、解答题17.已知:如图,在△ABC中,点D是BC上一点,∠1=80°,AB=AD=DC.求:∠C的度数.18.(1)某多边形的内角和与外角和的总和为2 160°,求此多边形的边数;(2)某多边形的每一个内角都等于150°,求这个多边形的内角和.19.如图,线段AB和BC,交于B点:(1)请你用尺规作图的方法作出线段AB和BC的垂直平分线.(不写作法,保留作图痕迹)(2)如果线段AB和BC的垂直平分线交于点P,若AB=BC,求证:PB平分∠ABC.20.一个等腰三角形的周长为28cm.(1)如果底边长是腰长的1.5倍,求这个等腰三角形的三边长;(2)如果一边长为10cm,求这个等腰三角形的另两边长.21.如图,Rt△ABC的直角顶点C置于直线l上,AC=BC,现过A.B两点分别作直线l 的垂线,垂足分别为点D.E.(1)求证:△ACD≌△CBE.(2)若BE=3,DE=5,求AD的长.22.(1)如图,请在方格纸中画出△ABC 关于x 轴的对称图形△A ′B ′C ′.(2)写出对称点的坐标:A ′( , ),B ′( , ),C ′( , ). (3)△ABC 的面积是 .(4)请在图中找出一个格点D ,画出△ACD ,使△ACD 与△ABC 全等.23.如图,在△ABC 中,∠ABC =90°,AD ∥BC ,AB =BC ,E 是AB 的中点,CE ⊥BD . (1)求证:△ABD ≌△BCE .(2)求证:AC 是线段ED 的垂直平分线.24.如图,ABC ∆中,AB=AC ,36A ︒∠=,AC 的垂直平分线交AB 于E,D 为垂足,连结EC . (1)求ECD ∠的度数;(2)若CE=12,求BC 长.25.已知四边形ABCD 中,AB ⊥AD ,BC ⊥CD ,AB =BC ,∠ABC =120°,∠MBN =60°,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .(1)当∠MBN 绕B 点旋转到AE =CF 时(如图1),求证:△ABE ≌△CBF .(2)当∠MBN 绕点B 旋转到AE ≠CF 时,如图2,猜想线段AE ,CF ,EF 有怎样的数量关系,并证明你的猜想.(3)当∠MBN 绕点B 旋转到图3这种情况下,猜想线段AE ,CF ,EF 有怎样的数量关系,并证明你的猜想.参考答案1.B【分析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【详解】A 、4485+=>,∴445cm cm cm 、、能组成三角形,故本选项错误;B 、461011+=<,∴4611cm cm cm 、、不能组成三角形,故本选项正确;C 、5496+=>,∴456cm cm cm 、、能组成三角形,故本选项错误;D 、5121713+=>,∴51213cm cm cm 、、能组成三角形,故本选项错误.故选:B .【点睛】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.2.A【分析】由三角形的外角与它相邻的内角互为邻补角,且根据此外角小于与它相邻的内角,可得此外角为锐角,与它相邻的角为钝角,可得这个三角形为钝角三角形.【详解】∵三角形的外角与它相邻的内角互补,且此外角小于与它相邻的内角,∴此外角为锐角,与它相邻的角为钝角,则这个三角形为钝角三角形.故选:A.【点睛】此题考查了三角形的外角性质,其中得出三角形的外角与它相邻的内角互补是解本题的关键.3.B【分析】根据题意可先求出这个正多边形的每个外角度数,再根据多边形的外角和是360°即可求出答案.【详解】解:因为一个正多边形的每个内角度数都为135°,所以这个正多边形的每个外角度数都为45°,所以这个正多边形的边数是360°÷45°=8.故选:B.【点睛】本题考查了正多边形的有关概念和多边形的外角和,属于基本题目,熟练掌握多边形的基本知识是解题的关键.4.D【分析】由∠FEB是△AEC的一个外角,根据三角形外角的性质可得∠FEB=∠A+∠C=61°,再由∠DFE是△BFE的一个外角,根据三角形外角的性质即可求得∠DFE=∠B+∠FEB=106°,问题得解.【详解】∵∠FEB 是△AEC 的一个外角,∠A=25°,∠C=36°,∴∠FEB=∠A+∠C=61°,∵∠DFE 是△BFE 的一个外角,∠B=45°,∴∠DFE=∠B+∠FEB=106°,故选D .【点睛】本题考查了三角形外角的性质,熟知三角形的外角等于与它不相邻的两个内角的和是解题的关键.5.C【分析】根据题意,利用SSS 证明三角形全等,然后有对应角相等,即可得到答案.【详解】解:在△ABC 与△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS ),∴∠BAC =∠DAC .即AE 平分∠BAD .∴不论∠DAB 是大还是小,始终有AE 平分∠BAD .故选C .【点睛】本题考查了角平分线的判定,解题的关键是熟练掌握全等三角形对应角相等.6.C【分析】直接根据角平分线的性质即可得出结论.【详解】∵O 是△ABC 三条角平分线的交点,AB 、BC 、AC 的长分别12,18,24,∴S △OAB :S △OBC :S △OAC =AB :OB :AC =12:18:24=2:3:4.故选C .【点睛】本题考查了角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.7.D【解析】试题分析:由∠P=60°,MN=NP,可得△MNP是等边三角形,再根据等边三角形的“三线合一”的性质以及等腰三角形的判定,即可求得结果.∵∠P=60°,MN=NP∴△MNP是等边三角形.又∵MQ⊥PN,垂足为Q,∴PM=PN=MN=4,NQ=NG=2,MQ=a,∠QMN=30°,∠PNM=60°,∵NG=NQ,∴∠G=∠QMN,∴QG=MQ=a,∵△MNP的周长为12,∴MN=4,NG=2,∴△MGQ周长是6+2a.故选D.考点:本题考查的是等边三角形的判定和性质点评:认识到△MNP是等边三角形是解决本题的关键.同时熟练掌握等腰三角形的“三线合一”的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.8.C【分析】可以取AB的中点G,连接CG交AD于点F,根据等边△ABC的边长为4,AE=2,可得点E是AC的中点,点G和点E关于AD对称,此时EF+FC=CG最小,根据等边三角形的性质即可得∠DCF的度数.【详解】解:如图,取AB的中点G,连接CG交AD于点F,∵等边△ABC的边长为4,AE=2,∴点E是AC的中点,所以点G和点E关于AD对称,此时EF+FC=CG最小,根据等边三角形的性质可知:∠ECF=1∠ACB=30°.2所以∠ECF的度数为30°.故选:C.【点睛】本题考查了轴对称-最短路线问题、等边三角形的性质,解决本题的关键是利用等边三角形的性质找对称点.9.D【解析】试题解析:根据轴对称的概念可知:选项A、B、C的图形均为轴对称图形,只有选项D的图形不是轴对称图形.故选D.10.C【分析】由已知,O到三角形三边距离相等,得O是内心,再利用三角形内角和定理即可求出∠BOC 的度数.【详解】由已知,O到三角形三边距离相等,所以O是内心,即三条角平分线交点,AO,BO,CO都是角平分线,所以有∠CBO=∠ABO=12∠ABC,∠BCO=∠ACO=12∠ACB,∠ABC+∠ACB=180゜-40゜=140゜∠OBC+∠OCB=70゜∠BOC=180゜-70゜=110°故选C.【点睛】此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识点的理解和掌握,难度不大,是一道基础题.11.180°【分析】根据多边形的外角和减去∠B和∠C的外角的和即可确定四个外角的和.【详解】解:∵AB∥DC,∴∠B+∠C=180°,∴∠B的外角与∠C的外角的和为180°,∵六边形ABCDEF的外角和为360°,∴∠1+∠2+∠3+∠4=180°,故答案为:180°.【点睛】本题考查了多边形的外角和定理,解题的关键是发现∠B和∠C的外角的和为180°12.-14【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,再计算m+n即可.【详解】由题意,得m+2=﹣4,n+5=﹣3,解得m=﹣6,n=﹣8.m+n=﹣14,故答案为:﹣14.【点睛】本题考查平面直角坐标系中点坐标的特征,熟记基本结论准确求解参数是解题关键.13.①②③④【分析】由折叠的性质可得AC=CF,AD=DF,∠ACD=∠DCB=22.5°,由余角的性质可得∠EBC=67.5°,可求∠EBA=∠EBC-∠ABC=22.5°,由线段的和差关系可求△BDF的周长为8,延长CA,BE交于点H,通过证明△BCE≌△HCE和△ACD≌△ABH,可证CD=2BE.【详解】解:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵沿过点C的直线折叠这个三角形,使点A落在BC边上的点F处,∴△ACD≌△FCD,∴AC=CF,AD=DF,∠ACD=∠DCB=22.5°,故①正确;∵BE⊥CD,∴∠EBC=67.5°,∴∠EBA=∠EBC-∠ABC=22.5°,故②正确;∵△BDF的周长=BD+DF+BF=BD+AD+BF=AC+BF=CF+BF,∴△BDF的周长为8,故③正确,如图,延长CA,BE交于点H,∵∠ACD=∠BCD,CE=CE,∠BEC=∠CEH=90°,∴△BCE≌△HCE(ASA)∴BE=EH,∴BH=2BE,∵∠EBA=∠ACD=22.5°,∠BAH=∠CAD=90°,AC=AB,∴△ACD≌△ABH(ASA)∴CD=BH,∴CD=2BE,故④正确,故答案为:①②③④.【点睛】本题考查了翻折变换,全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.14.AB=DC或∠ACB=∠DBC【详解】若添加AB=DC,∵AC=DB,BC=BC,AB=DC∴△ABC≌△DCB∴加一个适当的条件是AB=DC.若添加∠ACB=∠DBC,∵AC=DB,∠ACB=∠DBC,BC=BC,∴△ABC≌△DCB∴加一个适当的条件是∠ACB=∠DBC.故答案为:AB=DC或∠ACB=∠DBC.15.70°【分析】略【详解】试题分析:根据题意可得:∠COD=55°,根据等腰三角形的三线合一定理可得:∠BOC=110°,根据等腰三角形的性质可得:∠OBC=∠C=35°,则根据角平分线的性质可得:∠ABC=35°×2=70°.【点睛】略16.12【详解】解:∵AB=AC=4,∠A=60°,∴△ABC是等边三角形,∴BC="AB=AC=4,"∴△ABC的周长为12.故答案为12.【点睛】本题考查等边三角形的判定与性质,难度不大.17.25°【分析】根据三角形的内角和定理和等腰三角形的性质求出∠ADB,根据等腰三角形的性质得出∠C =∠DAC,根据三角形的外角性质得出∠C+∠DAC=∠ADB,代入求出即可.【详解】解:∵∠1=80°,AB=AD,∴∠B=∠ADB=12⨯(180°﹣∠1)=50°,∴AD=CD,∴∠C=∠DAC,∵∠C+∠DAC=∠ADB=50°,∴∠C=∠DAC=12⨯50°=25°.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.18.(1)12;(2)1800°.【分析】(1)任何多边形的外角和是360度,n边形的内角和是(n-2)•180°,根据多边形的内角和与外角和的总和为2160°列方程求解即可;(2)多边形的每一个内角都等于150°,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出,外角和中外角的个数,即多边形的边数,从而求出内角和.【详解】(1)设这个多边形的边数是n,(n-2)•180°+360°=2160°,解得n=12.(2)∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°-150°=30°,∴边数n=360°÷30°=12,∴这个多边形的内角和为=(12-2)×180°=1800°.故答案为1800°.【点睛】本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n变形的内角和为:(n-2) ×180°,n变形的外角和为:360°;然后根据等量关系列出方程求解.19.(1)见解析;(2)见解析【分析】(1)依据几何语言进行作图即可得到线段AB和BC的垂直平分线;(2)依据全等三角形的对应角相等,即可得到PB平分∠ABC.【详解】解:(1)如图所示,DP为AB的垂直平分线,EP为BC的垂直平分线;(2)如图所示,∵AB=BC,DP为AB的垂直平分线,EP为BC的垂直平分线,∴DB=EB,∠BDP=∠BEP=90°,又∵BP=BP,∴Rt△BDP≌Rt△BEP(HL),∴∠PBD =∠PBE ,即BP 平分∠ABC .【点睛】本题主要考查了基本作图,解决问题的关键是掌握线段垂直平分线的定义以及全等三角形的性质.20.(1)8,8,12; (2)10,8或9,9【解析】试题分析:(1)、首先设腰长为xcm ,则底边长为1.5xcm ,然后根据三边长的和列出方程从而求出x 的值,得出三角形的三边长;(2)、本题需要分两种情况进行讨论,即10cm 为腰长或10cm 为底边时两种情况分别进行计算,得出答案.试题解析:(1)、设腰长为xcm ,则底边长为1.5xcm ,根据题意可得:2x+1.5x=28解得:x=8cm 则1.5x=1.5×8=12cm 即这个等腰三角形的三边长为8cm ,8cm ,12cm(2)、当10cm 为腰长时,则底边长为28-10×2=8cm ,则两边长为10cm ,8cm当10cm 为底边时,则腰边长为(28-10)÷2=9cm ,则两边长为9cm ,9cm 综上所述,这个等腰三角形的两边长为10cm ,8cm 或9cm ,9cm21.(1)详见解析;(2)AD=8【分析】(1)根据AAS 即可证明△ACD ≌△CBE ;(2)由(1)知△ACD ≌△CBE ,根据全等三角形的对应边相等,得出CD=BE=3,AD=CE ,由CE=CD+DE ,从而可求出AD 的长.【详解】(1)证明:∵AD ⊥CE ,BE ⊥CE ,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=∠CBE=90°-∠ECB .在△ACD 与△CBE 中,ADC CEB ACD CBE AC BC ∠∠∠∠⎧⎪⎨⎪⎩===,∴△ACD≌△CBE(AAS);(2)解:∵△ACD≌△CBE,∴CD=BE=3,AD=CE,又∵CE=CD+DE=3+5=8,∴AD=8.【点睛】本题考查全等三角形的判定与性质,余角的性质,熟练掌握全等三角形的判定与性质是解题的关键.22.(1)见解析;(2)A′(﹣4,﹣5),B′(﹣6,﹣2),C′(﹣3,﹣1);(3)5.5;(4)见解析【分析】(1)利用关于x轴对称的点的坐标特征写出A、B、C关于x轴的对称点A′、B′、C′的坐标,然后描点即可;(2)根据作图即可确定A′,B′,C′三点坐标;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(4)以AC为对角线,作平行四边形ABCD即可.【详解】解:(1)如图,△A′B′C′为所作;(2)对称点的坐标:A′(﹣4,﹣5),B′(﹣6,﹣2),C′(﹣3,﹣1).(3)△ABC的面积=3×4﹣12×3×1﹣12×3×2﹣12×4×1=5.5;故答案为5.5.(4)如图,点D 为所作.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了三角形全等的判定. 23.(1)见解析 (2)见解析【分析】(1)根据等角的余角可知∠1=∠2,利用ASA 即可证得△BAD ≌△CBE ;(2)由△BAD ≌△CBE 可知AD=BE ,根据E 是AB 中点,故EB=EA ,进而可得AE=AD ,根据平行线的性质可得∠5=∠ACB=45°,再根据AD=AE ,即可知AF ⊥DE ,且EF=DF ,即可得证.【详解】如图(1)证明:∵∠ABC=90°,BD ⊥EC ,∴∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,在△BAD 和△CBE 中,2190BA CB BAD CBE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△BAD ≌△CBE (ASA ),(2)证明:∵△BAD ≌△CBE ,∴AD=BE∵E 是AB 中点,∴EB=EA ,∴AE=AD ,∵AD ∥BC ,∴∠5=∠ACB=45°,∵∠4=45°,∴∠4=∠5,又∵AD=AE ,∴AF ⊥DE ,且EF=DF ,即AC是线段ED的垂直平分线;【点睛】本题考查全等三角形的判定及性质以及等腰三角形的性质,还涉及了等角的余角相等、平行线性质等知识点,熟练掌握各个性质定理是解题关键.24.(1)36°;(2)12.【分析】(1)ED是AC的垂直平分线,可得AE=EC;∠A=∠C;已知∠A=36,即可求得;(2)△ABC中,AB=AC,∠A=36°,可得∠B=72°,又∠BEC=∠A+∠ECA=72°,所以,得BC=EC=12.【详解】(1)解:∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°.(2)解:∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∵∠ECD=36°,∴∠BCE=∠ACB-∠ECD=36°,∠BEC=72°=∠B,∴BC=EC=12.25.(1)见解析;(2)AE+CF=EF,证明见解析;(3)AE﹣CF=EF,证明见解析【分析】(1)利用SAS定理证明△ABE≌△CBF;(2)延长DC至点K,使CK=AE,连接BK,分别证明△BAE≌△BCK、△KBF≌△EBF,根据全等三角形的性质、结合图形证明结论;(3)延长DC 至G ,使CG =AE ,仿照(2)的证明方法解答.【详解】(1)证明:在△ABE 和△CBF 中,=90?AB BCBAE BCF AE CF=⎧⎪=⎨⎪=⎩∠∠,∴△ABE ≌△CBF (SAS );(2)解:AE +CF =EF ,理由如下:延长DC 至点K ,使CK =AE ,连接BK , 在△BAE 与△BCK 中,=BA BCBAE BCK AE CK=⎧⎪=⎨⎪⎩∠∠,∴△BAE ≌△BCK (SAS ),∴BE =BK ,∠ABE =∠KBC ,∵∠FBE =60°,∠ABC =120°,∴∠FBC +∠ABE =60°,∴∠FBC +∠KBC =60°,∴∠KBF =∠FBE =60°,在△KBF 与△EBF 中,BK BEKBF EBF BF BF=⎧⎪=⎨⎪=⎩∠∠,∴△KBF ≌△EBF (SAS ),∴KF =EF ,∴AE +CF =KC +CF =KF =EF ;(3)解:AE ﹣CF =EF ,理由如下:延长DC 至G ,使CG =AE ,由(2)可知,△BAE ≌△BCG (SAS ),∴BE =BG ,∠ABE =∠GBC ,21 ∠GBF =∠GBC ﹣∠FBC =∠ABE ﹣∠FBC =120°+∠FBC ﹣60°﹣∠FBC =60°, ∴∠GBF =∠EBF ,∵BG =BE ,∠GBF =∠EBF ,BF =BF ,∴△GBF ≌△EBF ,∴EF =GF ,∴AE ﹣CF =CG ﹣CF =GF =EF .【点睛】本题考查的是全等三角形的判定和性质,正确作出辅助线、掌握全等三角形的判定定理和性质定理是解题的关键.。
沪科版八年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.在平面直角坐标系中,点(5,4)A -所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限2.会议室“4排6号”记作()4,6,那么“3排2号”记作()A .()2,3B .()3,2C .()2,3--D .()3,2--3.下列各曲线中不能表示y 是x 的函数的是()A .B .C .D .4.若一个函数y kx b =+中,y 随x 的增大而增大,且0b <,则它的图象大致是()A .B .C .D .5.下列长度的3根小木棒不能搭成三角形的是()A .2cm ,3cm ,4cmB .1cm ,2cm ,3cmC .3cm ,4cm ,5cmD .4cm ,5cm ,6cm6.若一个三角形的三个内角度数的比为1:2:3,则这个三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7.直线y 3x b =+经过点()m,n ,且n 3m 8-=,则b 的值是()A .4-B .4C .8-D .88.将点A 先向下平移3个单位长度,再向右平移4个单位长度,得到点A '(−3,−6),则点A 的坐标为()A .(−7,3)B .(−7,−3)C .(6,−10)D .(−1,−10)9.已知一次函数的函数表达式为y kx b =+,若6,5k b kb +=-=,则这个一次函数的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限10.在平面直角坐标系中,对于点(),P x y ,我们把点()'1,1P y x -++叫做点P 伴随点已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4···A ,这样依次得到点123,,,A n A A A ,,若点1A 的坐标为()2,4,点2019A 的坐标为()A .()3,3-B .()2,2--C .()3,1-D .()2,4二、填空题11.若点() 5,2P a a -+在x 轴上,则a =__________.12.在函数4y x =+中,自变量x 的取值范围是___________.13.在ABC ∆中,已知点,D E 分别是边上BC AD 、的中点,若ABC ∆面积为212cm ,则BDE ∆的面积为__________2cm 14.已知2y +与x 成正比例关系,且当 3x =时,4y =,则6y =时,x =_______.15.将直线y 2x 1=+平移后经过点(5,1),则平移后的直线解析式为___________.16.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图,相交于点P 的两条线段12,l l 分别表示小敏、小聪离B 地的距离()y km 与已用时间()x h 之间的关系,则x =_______时,小敏、小聪两人相距8.4km .17.已知:如图:试写出坐标平面内各点的坐标.A(______,______);B(______,______);C(______,______);D(______,______);E(______,______);F(______,______).三、解答题18.已知函数()21 3.y m x m =++-()1若函数为正比例函数,求m 的值;()2若函数图象与y 轴的交点坐标为()0,2-,求m 的值;()3若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.19.如图,已知单位长度为1的方格中有个ABC ∆.()1请画出ABC ∆向.上平移3格再向右平移2格所得'''A B C ∆()2请以点A 为坐标原点建立平面直角坐标系(在图中画出),然后写出点B 、点'B 的坐标:B(,);'B (,);20.如图,△ABC 中,CD 是∠ACB 的角平分线,CE 是AB 边上的高,若∠A =40°,∠B =72°.(1)求∠DCE 的度数;(2)试写出∠DCE 与∠A 、∠B 的之间的关系式.(不必证明)21.我国很多城市水资源缺乏,为了加强居民的节水意识,某市制定了每月用水4吨以内(包括4吨)和用水4吨以上收费标准(收费标准:每吨水的价格)某用户每月应交水费y (元)与用水量x (吨)之间关系的图象如图:(1)说出自来水公司在这两个用水范围内的收费标准;(2)当x >4时,求因变量y 与自变量x 之间的关系式;(3)若某用户该月交水费26元,求他用了多少吨水?22.4月23日是世界读书日,在世界读书日来临之际,某校为了营造读书好、好读书、读好书的氛围,决定采购《童年》《汤姆 索亚历险记》两种图书供学生阅读.通过了解,购买2本《童年》、3本《汤姆 索亚历险记》共需84元,购买3本《童年》、2本《汤姆 索亚历险记》共需81元.()1求每本《汤姆 索亚历险记》和《童年》的定价各是多少元?()2该校计划购买两种图书共60本,并且要求《汤姆 索亚历险记》的数量不少于《童年》数量的2倍,请你设计一种购买方案,使得购买两种图书所需的总费用最低.23.如图,已知在ABC 中,,C ABC BE AC ∠=∠⊥于点E ,点D 在边AB 上,BDE 为等边三角形,求EBC ∠的度数.24.如图,AD、AF分别是△ABC中∠BAC的平分线和BC边上的高,已知∠B=36°,∠C =76°,求∠DAF的大小.25.如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD与CE相交于点P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度数.参考答案1.B【分析】由题意根据各象限内点的坐标特征对选项进行分析解答即可.【详解】解:点(5,4)A -在第二象限.故选:B .【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.B 【分析】根据有序数对的第一个数表示排数,第二个数表示号数即可解答.【详解】解:会议室“4排6号”记作()4,6,那么“3排2号”记作()3,2,故选:B .【点睛】本题考查了坐标确定位置,理解有序数对的两个数的实际意义是解题的关键.3.D 【分析】依据函数的概念进行判断,对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.【详解】解:A ,B ,C 的图象都满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,故A ,B ,C 选项能表示y 是x 函数,D 选项的图象,对于x 的一个取值,y 可能有两个确定的值与之对应关系,故D 选项不能表示y 是x 函数;故选:D .【点睛】本题主要考查了函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.理解函数的定义是解题的关键.4.B根据y随x的增大而增大,可以判断直线从左到右是上升的趋势,0b<说明一次函数与y轴的交点在y轴正半轴,综合可以得出一次函数的图像.【详解】根据y随x的增大而增大,可以判断直线从左到右是上升的趋势,0b<说明一次函数与y轴的交点在y轴正半轴,综合可以得出一次函数的图像为B故选B【点睛】本题主要考查了一次函数的图像,以及k和b对图像的影响,掌握一次函数的图像和性质是解题的关键.5.B【分析】看哪个选项中两条较小的边的和大于最大的边即可.【详解】A.234+>,能构成三角形,不合题意;B.123+=,不能构成三角形,符合题意;C.435+>,能构成三角形,不合题意;D.456+>,能构成三角形,不合题意.故选B.【点睛】此题考查了三角形三边关系,解题关键在于看较小的两个数的和能否大于第三个数.6.B【分析】根据三角形内角和定理求出最大的内角的度数,再判断选项即可.【详解】解:∵三角形三个内角的度数之比为1:2:3,∴此三角形的最大内角的度数是3123++×180°=90°,∴此三角形为直角三角形,故选:B.本题考查了三角形内角和定理的应用,能求出三角形最大内角的度数是解此题的关键.7.D【分析】利用一次函数图像上点的坐标特征得到n=3m+b,然后利用整体代入的方法即可求出b的值.【详解】由题意可得n=3m+b, b=n-3m=8故答案选D.【点睛】本题考查的知识点是一次函数的性质,解题的关键是熟练的掌握一次函数的性质.8.B【解析】【分析】根据点的平移规律,左右移,横坐标减加,纵坐标不变:上下移,纵坐标加减,【详解】由题意知点A的坐标为(-3-4,-6+3),即(-7,-3),故选:B【点睛】此题考查点的平移规律,正确掌握规律是解题的关键,9.A【分析】利用有理数的性质可判断k<0,b<0,然后根据一次函数图象与系数的关系可得一次函数y =kx+b的图象经过第二、三、四象限.【详解】解:∵k+b=−6<0,kb=5>0,∴k<0,b<0,∴一次函数y=kx+b的图象经过第二、三、四象限,即一次函数的图象不经过第一象限,故选:A.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b,当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y =kx +b 的图象在一、三、四象限;k<0,b>0⇔y =kx +b 的图象在一、二、四象限;k<0,b<0⇔y =kx +b 的图象在二、三、四象限.10.B 【分析】根据“伴随点”的定义依次求出各点,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A 2019的坐标即可.【详解】解:观察发现:()()()()12342,4,3,3,2,2,3,1A A A A ----()()562,4,3,3,A A - ∴依此类推,每4个点为一个循环组依次循环,20194504÷= …3,∴点2019A 的坐标与3A 的坐标相同,为()2,2--,故选:B .【点睛】此题考查点的坐标规律,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.11.2-【分析】根据x 轴上的坐标的特点是纵坐标为零即可解答.【详解】解:∵点() 5,2P a a -+在x 轴上,∴20a +=,解得2a =-故答案为:2-.【点睛】本题考查了x 轴上点的坐标的特点,解题的关键是熟知x 轴上的坐标的特点是纵坐标为零.12.4x ≥-【详解】根据题意得:x+4≥0;解之得:x ≥-4.13.3【分析】根据中线将三角形面积分为相等的两部分可知:△ABD 是△BDE 的面积的2倍,△ABC 的面积是△ABD 的面积的2倍,依此即可求解.【详解】解:∵点,D E 分别是边上BC AD 、的中点,∴12BDE ABD S S = ,12ABD ABC S S = ,∴1112344BDE ABC S S ==⨯= ,故答案为:3.【点睛】本题考查了三角形的面积和中线的性质:三角形的中线将三角形分为相等的两部分,知道中线将三角形面积分为相等的两部分是解题的关键.14.4【分析】设2y kx +=,将 3x =,4y =代入求出函数关系式,在将y=6代入求解即可.【详解】解:设2y kx +=,∵当 3x =时,4y =,∴423k +=,解得:2k =∴22y x =-∴当6y =时,622x =-,解得4x =,故答案为:4.【点睛】本题主要考查了待定系数法求函数关系式,解题的关键是根据函数类型设出函数关系式.15.y=2x-9【分析】根据平移不改变k 的值可设平移后直线的解析式为y=2x+b ,然后将点(5,1)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=2x+b .把(5,1)代入直线解析式得1=2×5+b ,解得b=-9.所以平移后直线的解析式为y=2x-9.故答案为y=2x-9.【点睛】本题考查一次函数图象与几何变换及待定系数法求函数的解析式,掌握直线y=kx+b (k≠0)平移时k 的值不变是解题的关键.16.0.4或2.8【分析】直线l 1的解析式为y 1=kx +b ,将点(1.6,4.8),(2.8,0)代入,运用待定系数法求出直线l 1的解析式为y 1=−4x +11.2,设直线l 2的解析式为y 2=nx ,将点(1.6,4.8)代入,运用待定系数法求出直线l 2的解析式为y 2=3x ,再根据小敏、小聪两人相距8.4km ,列出方程|y 1−y 2|=8.4,解方程即可.【详解】解:设直线1l 的解析式为1y kx b =+,将点()()1.6,4.8, 2.8,0代入16 4.82.80k b k b +=⎧⎨+=⎩解得411.2k b =-⎧⎨=⎩则直线1l 的解析式为1411.2y x =-+设直线2l 的解析式为2y nx =,将点()1.6,4.8代入得4.8 1.6n =,解得3n =,则直线2l 的解析式为23y x =.小敏、小聪两人相距8.4km ,128.4y y ∴-=411.238.4x x ∴-+-=11.278.4x ∴-=或11.278.4x -=-解得:0.4x =或 2.8x =【点睛】此题主要考查了一次函数的综合应用,利用待定系数法求函数的解析式是需要熟练掌握的方法,本题根据小敏、小聪两人相距8.4km ,列出方程|y 1−y 2|=8.4是解题的关键17.(1)-5(2)0(3)0(4)-3(5)5(6)-2(7)3(8)2(9)0(10)2(11)-3(11)3【分析】根据点的位置,可得点的坐标.【详解】坐标平面内各点的坐标A (﹣5,0),B (0,﹣3),C (5,﹣2),D (3,2),E (0,2),F (﹣3,3).故答案为﹣5,0;0,﹣3;5,﹣2;3,2;0,2;﹣3,3.【点睛】本题考查了点的坐标,利用点的坐标表示方法:(横前,纵后)是解题的关键.18.(1)3m =;(2)1m =;(3)12m <-【分析】(1)根据一次函数和正比例函数的定义,可得出m 的值;(2)直接把(0,−2)代入求出m 的值即可;(3)直线y =kx +b 中,y 随x 的增大而减小说明k <0.【详解】解:(1)()213y m x m =++- 是正比例函数,21030m m +≠⎧∴⎨-=⎩,解得3m =(2)当 0x =时,2y =-,即 32m -=-,解得1m =;(3)根据y 随x 的增大而减小说明k 0<.即210m +<.解得:12m <-【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点一定适合此函数的解析式是解答此题的关键;还要熟悉在直线y =kx +b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.19.(1)详见解析;(2)图详见解析,()()1,2;'3,5B B 【分析】(1)把3个顶点向上平移3个单位,再向右平移2个单位,顺次连接个顶点即可;(2)以点A 为坐标原点,建立平面直角坐标系,找到所求点的坐标即可.【详解】解:(1)如图可得'''A B C ∆(2)如上图,以点A 为坐标原点建立平面直角坐标系,则()()1,2;'3,5B B 【点睛】在平面直角坐标系中,图形的平移与图形上某点的平移相同,注意上下移动改变点的纵坐标,下减,上加.20.(1)∠DCE =16°;(2)∠DCE =12(∠B -∠A ).【分析】(1)由CD是∠ACB的角平分线,求出∠DCB的度数,再由CE是AB边上的高,求出∠ECB,相减即可求出∠DCE度数,(2)证明过程与上一问思路相同.【详解】解:(1)∵∠A=40°,∠B=72°,∴∠ACB=68°∵CD平分∠ACB∴∠DCB=12∠ACB=34°∵CE是AB边上的高∴∠ECB=90°-∠B=90°-72°=18°∴∠DCE=34°-18°=16°(2)∠DCE=12(∠B-∠A).【点睛】本题考查了角平分线和高线得应用,属于简单题,明确各角之间的关系是解题关键. 21.(1)4吨以内,每吨为2元,4吨以上,每吨为3元;(2)y=3x﹣4;(3)10【分析】(1)仔细观察图象,便可写出函数在不同范围内的函数解析式;(2)仔细观察图象,便可写出函数在不同范围内的函数解析式;(3)根据已知条件可知:该用户的交水费范围属于x>4的范围,代入解析式即可得到答案.【详解】解:(1)4吨以内,每吨为824=(元);4吨以上,每吨为148364-=-(元);故答案为:4吨以内,每吨为2元,4吨以上,每吨为3元;(2)当x>4时,y=8+3(x﹣4)=3x﹣4,即y=3x﹣4;故答案为:y=3x﹣4;(3)∵y=26,∴3x﹣4=26,解得x=10,则该月他用了10吨水,故答案为:10.【点睛】考查了一次函数的应用,能够从函数图象中获取有效信息是解题的关键,利用数形结合的方法找到变量之间的关系,注意自变量的取值范围.22.(1)每本《汤姆•索亚历险记》的定价为18元,每本《童年》的定价为15元;(2)购买《童年》20本,购买《汤姆•索亚历险记》40本时,所需总费用最低【分析】(1)设每本《汤姆•索亚历险记》的定价是x 元,每本《童年》的定价是y 元,根据题意,可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式,求出《童年》的取值范围,再根据题意得到费用与《童年》之间的函数关系,由一次函数的性质求出函数的最小值,本题得以解决.【详解】解:(1)设每本《汤姆•索亚历险记》的定价是x 元,每本《童年》的定价是y 元依题意得:32842381x y x y +=⎧⎨+=⎩,解得1815x y =⎧⎨=⎩答:每本《汤姆•索亚历险记》的定价为18元,每本《童年》的定价为15元.(2)设购买《童年》a 本,总费用为W 元,则购买《汤姆•索亚历险记》为()60a -本,602a a -≥ ,解得,20a ≤,()151********W a a a +-=-+ =,30k =-<W ∴随a 的增大而减小,∴当20a =时,W 的最小值,此时 1020,60602040W a =-=-=,答:购买《童年》20本,购买《汤姆•索亚历险记》40本时,所需总费用最低【点睛】本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质求函数的最值.23.15°【分析】先根据等边三角形的性质和垂线的性质求出∠AED ,再利用三角形内角和定理求出∠A,再利用等腰三角形的性质求出∠C 和∠ABC ,即可解答.【详解】∵BDE 为等边三角形,∴∠DEB=∠EDB=60°,∵BE AC ⊥,∴∠BEC=90°,∴∠AED=180°-∠DEB-∠BEC=30°,∴∠ADE=180°-∠EDB=120°,∴∠A=180°-∠ADE-∠AED=30°,∵,C ABC ∠=∠∴180-30=2C ABC ︒︒∠=∠=75°,在△BEC 中,∠BEC=90°,∠C=75°,∴∠EBC=180°-90°-75°=15°.【点睛】此题考查三角形内角和定理,等边三角形的性质,等腰三角形的性质,解题关键在于掌握各性质定义.24.20°【分析】由三角形的内角和是180°,可求∠BAC=68°,因为AD 为∠BAC 的平分线,得∠BAD=34°;又由三角形的一个外角等于与它不相邻的两个内角的和,得∠ADC=∠BAD+∠B=72°;又已知AF 为BC 边上的高,所以∠DAF=90°-∠ADC=20°.【详解】解:∵∠BAC +∠B +∠C =180°,∠B =36°,∠C =76°,∴∠BAC =68°.∵AD 为∠BAC 的平分线,∴∠BAD =34°,∴∠ADC =∠BAD +∠B =70°.又∵AF 为BC 边上的高,∴∠DAF =90°-∠ADC =20°.【点睛】本题考查三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°这一隐含的条件;解答的关键是沟通外角和内角的关系.25.123°【分析】根据角平分线的定义可得∠BAD=∠CAD=12∠BAC=33°,再根据直角三角形两锐角互余求出∠B,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可求出∠ADC,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠APC=∠ADC+∠BCE.【详解】∵AD是△ABC的角平分线,∠BAC=66°,∴∠BAD=∠CAD=12∠BAC=33°,∵CE是△ABC的高,∴∠BEC=90°,∵∠BCE=40°,∴∠B=50°,∴∠ADC=∠BAD+∠B=33°+50°=83°;∠APC=∠ADC+∠BCE=83°+40°=123°.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,角平分线的定义,熟记性质并准确识图是解题的关键.。
2023年11月-黄埔期中考-八年级数学卷一.选择题(共10小题,每题3分,共30分)1.下面各图形不是轴对称图形的是( )A.圆B.长方形C.等腰梯形D.平行四边形2.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处3.如图,要测量池塘两岸相对的两点A、B的距离,可以在池塘外取AB的垂线BF上的两点C、D,使得BC=CD,再画出BF的垂线DE,使点E与点A、C在一条直线上,这是测得线段DE 的长就是线段AB的长,其原理运用到三角形全等的判定是( )A.ASA B.SSS C.HL D.SAS4.如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°5.设等腰三角形的一边长为5,另一边长为10,则其周长为( )A.15B.20C.25D.20或256.如图,△ABC≌△DEC,点E在线段AB上,∠B=75°,则∠ACD的度数为( )A.20°B.25°C.30°D.40°7.如图,在△ABC中,分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N 两点;作直线MN分别交BC、AC于点D、E.若AE=6cm,△ABD的周长为26cm,则△ABC 的周长为( )A.32cm B.38cm C.44cm D.50cm8.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.280°B.285°C.290°D.295°9.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN的度数为( )A.15°B.22.5°C.30°D.47.5°10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn,正确的结论有( )个.A.1B.2C.3D.4二.填空题(共6小题,每题3分,共18分)11.已知点P(﹣a+3b,3)与点Q(﹣5,a﹣2b)关于x轴对称,则a= b = .12.正n边形的每个内角都是120°,这个正n边形的对角线条数为 条.13.如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为 .14.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的A′处,如果∠A′EC=70°,那么∠ADE= 度.15.如图所示,∠BOC=10°,点A在OB上,且OA=1,按下列要求画图:以点A为圆心、1为半径向右画弧交OC于点A1得到第1条线段AA1;再以点A1为圆心、1为半径向右画弧交OB于点A2,得到第2条线段A1A2;再以点A2为圆心、1为半径向右画弧交OC于点A3,得到第3条线段A2A3…这样画下去,则∠A6A7C的度数为 .16.如图,△ABC中,∠C=90°,AD平分∠BAC,E为AC边上的点,连接DE,DE=DB,下列结论:①∠DEA+∠B=180°;②AB﹣AC=CE;③AC=(AB+CD);④S△ADC=S四边形ABDE,其中一定正确的结论有 (填写序号即可).三.解答题(共8小题,共72分)17.(本题6分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF.求证:AB=AC.18.(本题6分)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,求证:∠A =2∠P.19.(本题8分)如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C 均在网格上).(1)画出△ABC关于直线MN对称的△A1B1C1;(2)直接写出△ABC的面积为 ;(3)在直线MN上画出点P,使得PA+PC最小(保留作图痕迹).20.(本题8分)使用直尺与圆规完成下面作图,(不写作法,保留作图痕迹)(1)在AB上找一点P使得P到AC和BC的距离相等;(2)在射线CP上找一点Q,使得QB=QC;(3)若BC=16,则点Q到边AC的距离为 .21.(本题10分)如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.22.(本题10分)如图,在△ABC中,AC=BC,∠ACB=120°,CD是BC边上的中线,BD的垂直平分线EF交BC于点E,交AB于点F,∠CDG=15°.(1)求证:AG=BD;(2)判断△CDE的形状,并加以证明;(3)若EF=1,求AC边的长.23.(本题12分)对于平面直角坐标系xOy中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“中垂点”;当QM=QN=MN时,称点Q为线段MN的“完美中垂点”.(1)如图1,A(4,0),下列各点中,线段OA的中垂点是 .Q1(1,4),Q2(4,),Q3(2,﹣2)(2)如图2,点A为x轴上一点,若Q(1,)为线段OA的“完美中垂点”,∠QOA=60°写出线段OQ的两个“完美中垂点”是 和 .(3)如图3,若点A为x轴正半轴上一点,点Q为线段OA的“完美中垂点”,点P(0,m)在y轴负半轴上,在线段PA上方画出线段AP的“完美中垂点”M,直接写出MQ= .(用含m的式子表示).并求出∠MQA.24.(本题12分)0在平面直角坐标系中,已知A(a,0),B(0,b),AB=AC,且AB⊥AC,AC 交y轴于点E.(1)如图1,若点C的横坐标为﹣a,求证:AE=CE;(2)如图2,若BE平分∠ABC,点E的坐标为(0,b﹣6),求点C的横坐标;(3)如图3,若a=1,以BC为边在BC的左侧作等边△BCM,当∠BOM=60°时,求OC的长.2023年11月-黄埔期中考-八年级数学卷参考答案与试题解析一.选择题(共10小题)1.下面各图形不是轴对称图形的是( )A.圆B.长方形C.等腰梯形D.平行四边形【解答】解:圆、长方形和等腰三角形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,平行四边形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,故选:D.2.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处【解答】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.3.如图,要测量池塘两岸相对的两点A、B的距离,可以在池塘外取AB的垂线BF上的两点C、D,使得BC=CD,再画出BF的垂线DE,使点E与点A、C在一条直线上,这是测得线段DE 的长就是线段AB的长,其原理运用到三角形全等的判定是( )A.ASA B.SSS C.HL D.SAS【解答】解:因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:A.4.如图,在△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°【解答】解:∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣50°﹣100°=30°,故选:B.5.设等腰三角形的一边长为5,另一边长为10,则其周长为( )A.15B.20C.25D.20或25【解答】解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25.故选:C.6.如图,△ABC≌△DEC,点E在线段AB上,∠B=75°,则∠ACD的度数为( )A.20°B.25°C.30°D.40°【解答】解:∵△ABC≌△DEC,∴∠ACB=∠DCE,BC=EC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,即∠BCE=∠ACD,∠BEC=∠B=75°,∴∠BCE=180°﹣∠B﹣∠BEC=30°,∴∠ACD=30°.故选:C.7.如图,在△ABC中,分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于M、N 两点;作直线MN分别交BC、AC于点D、E.若AE=6cm,△ABD的周长为26cm,则△ABC 的周长为( )A.32cm B.38cm C.44cm D.50cm【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=12(cm),∵AB+AD+BD=26(cm),∴AB+BD+DC=26(cm,∴△ABC的周长=AB+BD+BC+AC=26+12=38(cm),故选:B.8.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )A.280°B.285°C.290°D.295°【解答】解:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠2+∠3=180°﹣∠D=150°,∵∠α=∠1+∠A,∠β=∠4+∠C,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠A+∠1+∠4+∠C=∠A+∠C+∠2+∠3=45°+90°+150°=285°,故选:B.9.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN的度数为( )A.15°B.22.5°C.30°D.47.5°【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故选:C.10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn,正确的结论有( )个.A.1B.2C.3D.4【解答】解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故选:D.二.填空题(共6小题)11.已知点P(﹣a+3b,3)与点Q(﹣5,a﹣2b)关于x轴对称,则a= ﹣19 b= ﹣8 .【解答】解:∵点P(﹣a+3b,3)与点Q(﹣5,a﹣2b)关于x轴对称,∴,解得.故答案为:﹣19,﹣8.12.正n边形的每个内角都是120°,这个正n边形的对角线条数为 9 条.【解答】解:由多边形内角和公式列方程,180°(n﹣2)=120°n解得,n=6.∴该正多边形为正六边形.所以该六边形对角线条数==9(条).故答案为9.13.如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为 (6,6)或(3,﹣3) .【解答】解:如图,当点C在第一象限时,过点C作CE⊥OA,CF⊥OB,∵∠AOB=90°,∴四边形OECF是矩形,∴∠ECF=90°,∵∠ACB=90°,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(AAS),∴CE=CF,∵四边形OECF是矩形,∴矩形OECF是正方形,∴OE=OF,∵AE=OE﹣OA=OE﹣3,BF=OB﹣OF=9﹣OF,∴OE=OF=6,∴C(6,6),当点C在第四象限时,过点C'作C'H⊥OA,CG⊥OB,同理得,C'(3,﹣3)故答案为:(6,6)或(3,﹣3).14.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的A′处,如果∠A′EC=70°,那么∠ADE= 65 度.【解答】解:∵∠A′EC=70°,∴∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,由折叠性质可得:∠A′ED=∠AED=∠AEA′=55°,∵∠A=60°,∴∠ADE=180°﹣∠AED﹣∠A=180°﹣55°﹣60°=65°.故答案为:65.15.如图所示,∠BOC=10°,点A在OB上,且OA=1,按下列要求画图:以点A为圆心、1为半径向右画弧交OC于点A1得到第1条线段AA1;再以点A1为圆心、1为半径向右画弧交OB于点A2,得到第2条线段A1A2;再以点A2为圆心、1为半径向右画弧交OC于点A3,得到第3条线段A2A3…这样画下去,则∠A6A7C的度数为 110° .【解答】解:∵AO=A1A,A1A=A2A1,…;则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…;∵∠BOC=10°,∴∠A1AB=2∠BOC=20°同理可得∠A2A1C=30°,∠A3A2B=40°,∠A4A3C=50°,∠A5A4B=60°,∠A6A5C=70°,∠A7A6B=80°,∴∠A6A7O=∠A7A6B﹣∠BOC=70°∴∠A6A7C=180°﹣∠A6A7O=110°,故答案为:110°.16.如图,△ABC中,∠C=90°,AD平分∠BAC,E为AC边上的点,连接DE,DE=DB,下列结论:①∠DEA+∠B=180°;②AB﹣AC=CE;③AC=(AB+CD);④S△ADC=S四边形ABDE,其中一定正确的结论有 ①②④ (填写序号即可).【解答】解:如图,过D作DF⊥AB于F,∵∠C=90°,AD是角平分线,∴DC=DF,∠C=∠DFB,又∵DE=DB,∴Rt△CDE≌Rt△FDB(HL),∴∠B=∠CED,∠CDE=∠FDB,CE=BF,又∵∠DEA+∠DEC=180°,∴∠DEA+∠B=180°,故①正确;∵AD=AD,DC=DF,∴Rt△CDA≌Rt△FDA(HL),∴AC=AF,∴AB﹣AC=AB﹣AF=BF=CE,故②正确;∵AC=AF,∴AB+AE=(AF+FB)+(AC﹣CE)=AF+AC=2AC,∴AC=(AB+AE),∵CD≠AE,∴AC≠(AB+CD),故③错误;∵Rt△CDE≌Rt△FDB,∴S△CDE=S△FDB,∴S四边形ABDE=S四边形ACDF,又∵△ACD≌△AFD,∴S△ACD=S△ADF,∴S△ADC=S四边形ACDF=S四边形ABDE,故④正确;∴一定正确的结论有①②④.故答案为:①②④.三.解答题(共8小题)17.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF.求证:AB=AC.【解答】证明:∵D是BC的中点,∴BD=CD,∵DE⊥AB,DF⊥AC,∴△BED和△CFD都是直角三角形,在△BED和△CFD中,,∴△BED≌△CFD(HL),∴∠B=∠C,∴AB=AC(等角对等边).18.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,求证:∠A=2∠P.【解答】证明:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=∠ABC,∠PCM=∠ACM,∵∠ACM是△ABC的外角,∠PCM是△PBC的外角,∴∠PCM=∠P+∠PBC,∠ACM=∠A+∠ABC,∴∠ACM=∠P+∠ABC,∴(∠A+∠ABC)=∠P+∠ABC,∠A+∠ABC=∠P+∠ABC,∠A=∠P,∴∠A=2∠P.19.如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C均在网格上).(1)画出△ABC关于直线MN对称的△A1B1C1;(2)直接写出△ABC的面积为 5.5 ;(3)在直线MN上画出点P,使得PA+PC最小(保留作图痕迹).【解答】解:(1)如图,△A1B1C1即为所求;故答案为:5.5;(3)如图,点P即为所求.20.使用直尺与圆规完成下面作图,(不写作法,保留作图痕迹)(1)在AB上找一点P使得P到AC和BC的距离相等;(2)在射线CP上找一点Q,使得QB=QC;(3)若BC=16,则点Q到边AC的距离为 8 .【解答】解:(1)如图所示,点P即为所求;(2)如图所示,点Q即为所求;(3)如图所示,设线段BC的垂直平分线交BC于点D,∴∠QDB=90°=∠ACB,,∴AC∥QD,∴点Q到AC的距离为CD的长,即为8(平行线间间距相等),故答案为:8.21.如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.【解答】解:AE=AB+DE;理由:在AE上取一点F,使AF=AB.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点.∴BC=CD,∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°∴∠ECF=∠ECD.在△CEF和△CED中,,∴△CEF≌△CED(SAS),∴EF=ED.∵AE=AF+EF,∴AE=AB+DE.22.如图,在△ABC中,AC=BC,∠ACB=120°,CD是BC边上的中线,BD的垂直平分线EF 交BC于点E,交AB于点F,∠CDG=15°.(1)求证:AG=BD;(2)判断△CDE的形状,并加以证明;(3)若EF=1,求AC边的长.【解答】证明:∵AC=BC,∠ACB=120°,CD是BC边上的中线,∴CD⊥AB,∠A=∠B=(180°﹣∠ACB)=30°,AD=BD,∴∠ADC=∠CDB=90°,∵∠CDG=15°,∴∠ADG=90°﹣∠CDG=75°,∴∠AGD=180°﹣∠A﹣∠ADG=75°,∴∠AGD=∠ADG,∴AG=AD,∴AG=BD;(2)结论:△CDE是等边三角形.∵EF垂直平分线段BD,∴DE=EB,∵∠B=30°,∴∠EDB=∠B=30°,∴∠CDE=90°﹣∠EDB=60°,又∵AC=BC,∠ACB=120°,CD是BC边上的中线,∴∠DCB=∠ACB=60°,∴∠DCE=∠CDE=60°,∴△CDE是等边三角形;(3)∵EF⊥DB,∠B=30°,EF=1,∴BE=2EF=2,∴DE=2,∵△CDE是等边三角形,∴CE=DE=2,∴BC=4,∴AC=BC=4.23.对于平面直角坐标系xOy中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“中垂点”;当QM=QN=MN时,称点Q为线段MN的“完美中垂点”.(1)如图1,A(4,0),下列各点中,线段OA的中垂点是 Q3(2,﹣2) .Q1(1,4),Q2(4,),Q3(2,﹣2)(2)如图2,点A为x轴上一点,若Q(1,)为线段OA的“完美中垂点”,∠QOA=60°写出线段OQ的两个“完美中垂点”是 (2,0) 和 (﹣1,) .(3)如图3,若点A为x轴正半轴上一点,点Q为线段OA的“完美中垂点”,点P(0,m)在y轴负半轴上,在线段PA上方画出线段AP的“完美中垂点”M,直接写出MQ= ﹣m .(用含m的式子表示).并求出∠MQA.【解答】解:(1)∵A(4,0),∴线段OA的垂直平分线为直线x=2,∵Q是线段OA的中垂点,∴点Q在线段OA的垂直平分线上,即点Q在直线x=2上,∴点Q的横坐标为2,∴只有Q2(2,﹣2)是线段OA的中垂点,故答案为:Q3(2,﹣2);(2)∵,∴,∵Q为线段OA的“完美中垂点”,∴OA=QA=OQ=2,即A(2,0)为线段OQ的一个“完美中垂点”,设线段OQ的另外一个“完美中垂点”为L,如图所示,∴OL=QL=OA=QA=OQ=2,∴△LOQ和AOQ都是等边三角形,∴∠LQO=∠AOQ=60°,∴LQ∥OA,∴.故答案为:(2,0),(﹣1,);(3)如图,分别以A、P为圆心,以AP的长为半径画弧,二者的交点在线段PA上方即为M;∵M是AP的“完美中垂点”,点Q为线段OA的“完美中垂点”∴PA=PM=AM,OQ=QA=OA,∴△OQA和△AMP都为等边三角形,∴∠OAQ=∠PAM,AQ=AO,PA=MA,∴∠OAP=∠QAM,∴△OAP≌△QAM(SAS),∵P(O,m).∴MQ=0P=﹣m,∠MQA=∠POA=90°.24.在平面直角坐标系中,已知A(a,0),B(0,b),AB=AC,且AB⊥AC,AC交y轴于点E.(1)如图1,若点C的横坐标为﹣a,求证:AE=CE;(2)如图2,若BE平分∠ABC,点E的坐标为(0,b﹣6),求点C的横坐标;(3)如图3,若a=1,以BC为边在BC的左侧作等边△BCM,当∠BOM=60°时,求OC的长.【解答】(1)证明:如图1中,过点C作CH⊥x轴于点H,连接HE.∵∠AHC=∠BOA=∠BAC=90°,∴∠CAH+∠BAO=90°,∠BAO+∠ABO=90°,∴∠CAH=∠∠ABO,在△AHC和△BOA中,,∴△AHC≌△BOA(AAS),∴CH=OA,∵A(a,0),点C的横坐标为﹣a,∴OA=OH,∵OE⊥AH,∴EH=EA,∴∠EAH=∠EHA,∵∠EAH+∠ACH=90°,∠AHE+∠CHE=90°,∴∠ECH=∠EHC,∴EH=EC,∴AE=EC;(2)解:如图2中,过点C作CH⊥x轴于点H,设BC交AH于点J.∵BE平分∠ABC,∴∠ABO=∠JBO,∵∠ABO+∠BAO=90°,∠JBO+∠BJO=90°,∴∠BAO=∠BJO,∴BJ=BA,∵OB⊥AJ,∴OJ=OA=a,∵CH∥OB,∴∠HCJ=∠JBO,∵∠CAH=∠ABO,∴∠HCJ=∠OAE,∵△AHC≌△BOA,∴CH=AO,在△CHJ和△AOE中,,∴△CHJ≌△AOE(ASA),∴OE=JH,AH=OB=b.∵E(0,b﹣6),∴HJ=OE=6﹣b,∵OA=OJ=a,∴OH=a+6﹣b,∴AH=a+6﹣b+a=b,∴a﹣b=3,OH=3∴点C的横坐标为﹣3;(3)解:如图3中,过点C作CJ⊥x轴于点J,在OM上取一点H,使得OH=OB.∵A(1,0),∴OA=1,∵OH=OB,∠BOH=60°,∴△OBH是等边三角形,∴BO=BH,∠OHB=60°,∴∠BHM=120°,∵△BCM是等边三角形,∴BC=BM,∠CBM=∠OBH=60°,∴∠MBH=∠CBO,在△MBH和△CBO中,,∴△MBH≌△CBO(SAS),∴∠BHM=∠BOC=120°,∴∠COJ=120°﹣90°=30°,∵CJ⊥AJ,同法可证△AJC≌△BOA,∴CJ=OA=1,∴OC=2CJ=2.。
八年级上册数学期中考试试卷及答案读书之乐何处寻,数点梅花天地心。
书是我生活中的一大乐趣。
我坚信,只有让我们的灵魂融入书的海洋,让书的内容融入我们的生命,才能有一个比水海更为宽敞的心灵空间!下面给大家共享一些关于〔八年级〕上册数学期中考试试卷及答案,希望对大家有所关怀。
试卷:一、选择题(每题3分,共30分)1、在,-2ab2,,中,分式共有()A.2个B.3个C.4个D.5个2、以下各组中的三条线段能组成三角形的是()A.3,4,5B.5,6,11C.6,3,10D.4,4,83、以下各题中,所求的最简公分母,错误的选项是()A.与最简公分母是6x2B.与最简公分母是3a2b3cC.与的最简公分母是(m+n)(m-n)D.与的最简公分母是ab(x-y)(y-x)4、不转变的值,把它的分子和分母中的各项系数都化为整数,所得的结果为()A.B.C.D.5、若分式,则x的值是()A.3或-3B.-3C.3D.96、如图,将三角尺的直角顶点放在直线a上,a‖b,∠1=50°,∠2=60°,则∠3的度数为()A.50°B.60°C.70°D.80°7、以下式子:①(-2)-2=;②错误!未找到引用源。
;③3a-2=;④-7.02×10-4=-0.000702.新$课$标$第$一$网其中正确的式子有()A.1个B.2个C.3个D.4个8、如图,D是线段AB,BC垂直平分线的交点,若∠ABC=150°,则∠ADC的大小是()A.60°B.70°C.75°D.80°9、甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x棵,则根据题意列出方程正确的选项是()A.=B.=C.=D.=10、以下命题中是假命题的()A、在同一平面内,垂直于同一条直线的两条直线平行。
人教版八年级数学上学期期中考试复习测试题(含答案)一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.2,3,4 C.5,12,13 D.6,7,83.到△ABC的三边距离相等的点是△ABC的()A.三边中线的交点 B.三条角平分线的交点 C.三边上高的交点 D.三边垂直平分线的交点4.如图,一棵大树在一次强台风中于离地面10m处折断倒下,倒下部分的树梢到树的距离为24m,则这棵大树折断处到树顶的长度是()A.10m B.15m C.26m D.30m5.如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=6,CF=2,则AC的长度为()A.6 B.7 C.8 D.9(第4题)(第5题)(第6题)(第7题)6.如图,已知∠ABC=∠DCB,AC、BD交于点E,添加以下条件,不能判定△ABC≌△DCB的是()A.AB=DC B.BE=CE C.AC=DB D.∠A=∠D7.如图,在△ABC中,∠ACB=90°,∠B=30°,AD平分∠BAC,E是AD中点,若BD=9,则CE的长为()A.3 B.3.5 C.4 D.4.58.在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共 10 小题,每小题 3 分,共 30 分)9.已知图中的两个三角形全等,则∠α的度数是°.10.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.(第9题)(第10题)(第13题)(第14题)11.已知一个等腰三角形的两边分别为5和10,则它的周长为.12.若一直角三角形两直角边长分别为6和8,则斜边长为.13.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠B的度数为°. 14.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m、n于点B,C,连接AB,BC.若∠1=40°,则∠ABC=°.15.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=4,S2=8,则S3= .(第15题)(第16题)(第17题)(第18题)16.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=3,CD=4,ED=5,则FG的长为.17.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC长是.18.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是.三、解答题(本大题共 10 小题,共 96 分)19.(8分)如图,已知点B、E、C、F在一条直线上,且AB=DF,BE=CF,∠B=∠F.求证:△ABC≌△DFE.20.(8分)如图,△ABC中,DE,FG分别为AB、AC的垂直平分线,E、G分别为垂足,若△DAF的周长为16,求BC的长.21. (8分)如图,在8×8的正方形网格中,每个小正方形的边长都是1,已知△ABC的三个顶点均在格点上.(1)画出△ABC关于直线l对称的△A1B1C1;(2)在直线l上找一点P,使PA+PB的长最短;(3)△A1B1C1的面积为________.22.(8分)如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.(1)求证:DE=DF;(2)如果S△A BC=14,AC=7,求DE的长.23.(10分)如图,在笔直的公路AB旁有一座山,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,已知点C与公路上的停靠站A的距离为15km,与公路上另一停靠站B的距离为20km,停靠站A、B之间的距离为25km,且CD⊥AB.(1)求修建的公路CD的长;(2)若公路CD修通后,一辆货车从C处经过D点到B处的路程是多少?24.(10分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.25. (10分)如图,在四边形ABCD中,∠BAD=∠BCD=90°,点E、F分别是BD和AC的中点,连接EF.(1)求证:EF⊥AC;(2)若BD=26,EF=5,求AC的长.26.(10分)如图,在等腰△ABC中,AB=AC,BC=5.点D为AC上一点,且BD=4,CD=3.(1)求证:BD⊥AC;(2)求AB的长.27. (12分)在△ABC中,∠ACB=90°,AC=BC,D是直线AB上一点(点D不与点A、B重合),连接DC并延长到E,使得CE=CD,过点E作EF⊥直线BC,交直线BC 于点F.(1)如图1,当点D为线段AB的上任意一点时,用等式表示线段EF、CF、AC的数量关系,并说明理由;(2)如图2,当点D为线段BA的延长线上一点时,依题意补全图2;(3)在(2)的条件下猜想线段EF、CF、AC的数量关系是否发生改变,若不变,请说明理由;若改变,写出它们的数量关系,并加以证明.28. (12分)如图,在等边△ABC中,AB=9cm,点P从点C出发沿CB边向点B点以2cm/s的速度移动,点Q从B点出发沿BA边向A点以5cm/s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)请用t的代数式表示BP和BQ的长度:BP=,BQ=.(2)若点Q在到达点A后继续沿三角形的边长向点C移动,同时点P也在继续移动,请问在点Q从点A到点C的运动过程中,t为何值时,直线PQ把△ABC的周长分成4:5两部分?(3)若P、Q两点都按顺时针方向沿△ABC三边运动,请问在它们第一次相遇前,t为何值时,点P、Q能与△ABC的一个顶点构成等边三角形?直接写出答案。
2023~2024学年度八年级上学期期中综合评估数学►上册11.1~13.3.1◄说明:共有六个大题,23个小题,满分120分,作答时间120分钟.注意事项:1. 答题前,考生务必将密封线内的项目填写清楚.2. 必须使用黑色签字笔书写,字体工整、笔迹清楚.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内.错选、多选或未选均不得分.1. 第19届亚运会于2023年9月23日至10月8日在杭州举办,下列关于体育运动的图标中,是轴对称图形的是()A. B. C. D.2. 已知一个三角形三边的长分别为7,a,3,则a的值可能为()A. 2B. 4C. 8D. 103. 如果一个多边形的边数增加2,那么关于其内角和与外角和的变化,下列说法正确的是()A. 内角和、外角和均增加B. 外角和不变,内角和增加C. 内角和不变,外角和增加D. 内角和、外角和均不变4. 如图,已知,,要使,可添加的条件是()A. B. C. D.5. 已知点与点关于y轴对称,则的值为()A. -7B. -1C. 1D. 76. 两个底角为、顶角为的等腰三角形,叫做“黄金三角形”,这种三角形既美观又标准.如图,在中,,,BD,CE为的角平分线,则图中“黄金三角形”的个数是()A. 1B. 4C. 5D. 6二、填空题(本大题共6小题,每小题3分,共18分)7. 在中,,则的度数为______.8. 正n边形的一个内角为,则n的值是______.9. 如图,这是由4个相同的小正方形组成的田字格,则的度数为______.第9题图10. 如图,P是的平分线AD上一点,过点P作于点E.若,则点P到AB的距离是______.第10题图11. 如图,在钝角中,CD是的平分线,CE是的高,若,,则的度数为______.第11题图12. 在平面直角坐标系中,点,点,点,若是以OA为直角边的等腰直角三角形,则点B的坐标为______.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)如图,若正方形和正八边形的一边重合,求的度数.(2)如图,已知,,求证:.14. 如图,F是内一点,过点F作于点A,于点B,连接AB,若.求证:OF平分.15.(1)小贤露营时带着如图1所示的折叠凳,打开时坐着舒适、稳定.这种设计所运用的数学原理是____________.(2)图2是折叠凳打开后的侧面示意图,凳腿AB和CD的长度相等,交点O是AB,CD的中点.经过实验,厂家将打开后的折叠凳的宽度AD设计为,求此时BC的宽度,并说明理由.图1 图216. 如图,请仅用无刻度直尺完成以下作图(保留作图痕迹).图1 图2(1)在图1中作,使得与关于x轴对称.(2)在图2中作AB边上的高CD.17. 课本再现如图,直线l垂直平分线段AB,,,,…是l上的点,分别量一量点,,,…到点A与点B 的距离,你有什么发现?可以发现,点,,,…到点A的距离与它们到点B的距离分别相等.定理证明(1)为了证明该性质,珍珍画出了图形,并写出了“已知”和“求证”,请你完成证明过程.已知:如图1,直线,垂足为C,,点P在直线l上,求证:.知识应用(2)如图2,在中,,DE,FG分别是边AB,AC的垂直平分线,与的交点分别为D,E,F,G,连接AD,AF,求的周长.图1 图2四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,与关于直线l对称,其中,,,.(1)连接AD,写出线段AD与直线l的关系.(2)求的度数.(3)求的周长和的面积.19. 如图,在正六边形ABCDEF中,M,N分别是边BC,CD上的点,且,AM与BN交于点Q.(1)求证:;(2)求的度数.20. 如图,在四边形ABCD中,,连接对角线AC,E为CD的中点,连接AE并延长,交BC的延长线于点F,AF平分.(1)求证:.(2)判断AF与CD的位置关系,并说明理由.五、解答题(本大题共2小题,每小题9分,共18分)21. 如图1,CD是的高,.图1 图2(1)证明:是直角三角形.(2)如图2,若AE是角平分线,AE与CD相交于点F.请判断是否为等腰三角形,并说明理由. 22. 阅读信息:如图1,在中,,,D是外一点,且,求的度数.解:设.∵是等腰三角形,∴.又∵,∴,∴.同理,∵是等腰三角形,∴,∴.请根据阅读信息解决问题.如图2,在中,,,D是外一点,且,求的度数.图1 图2六、解答题(本大题共12分)23. 综合与实践问题提出如图1,在中,AD平分,交BC于点D,且,则AB,CD,AC之间存在怎样的数量关系?并说明理由.方法运用(1)我们可以通过作辅助线,构造全等三角形来解题.如图2,延长AC至点E,使得,连接DE,……,请判断AB,CD,AC之间的数量关系并补充完整解题过程.(2)以上方法叫做“补短法”.我们还可以采用“截长法”,即通过在AB上截取线段构造全等三角形来解题.如图3,在线段AB上截取AF,使得①______,连接②______.请补全空格,并在图3中画出辅助线.延伸探究(3)小明发现“补短法”或“截长法”还可以帮助我们解决其他多边形中的问题.如图4,在五边形ABCDE 中,,,,若,求的度数.图1 图2 图3 图42023~2024学年度八年级上学期期中综合评估数学参考答案1. A2. C3. B4. D5. D6. C7. 8. 5 9. 10. 12 11. 12. 或或13.(1)解:∵正八边形每个内角的度数是,∴……1分∵,∴.……3分(2)证明:在和中,,∴,∴.……3分14. 证明:∵,∴.……2分∵,,∴点F在的平分线上,∴OF平分.……6分15. 解:(1)三角形具有稳定性.……2分(2).……3分理由:∵O是AB,CD的中点,∴,.在和中,,∴,……5分∴.又∵,∴.……6分16. 解:(1)如图1,为所求.……3分(2)如图2,线段CD为所求.……6分图1 图217. 解:(1)证明:∵直线,∴.……1分又∵,,∴,∴.……3分(2)∵DE,FG分别是边AB,AC的垂直平分线,∴,,∴的周长.……6分18. 解:(1)直线l垂直平分AD.……2分(2)∵与关于直线l对称,∴,∴.……4分(3)∵,,,,∴,,,∴的周长,……6分的面积.……8分19. 解:(1)证明:∵六边形ABCDEF为正六边形,∴,.……1分∵,∴,即.……2分在和中,,∴.……4分(2)∵,∴.……5分已知,∴,∴.……8分20. 解:(1)证明:∵,∴.……1分∵AF平分,∴,∴,∴.……4分(2).……5分(方法不唯一)理由:∵E为CD的中点,∴.在和中,,∴,∴.……7分又∵,∴(三线合一).……8分21. 解:(1)证明:∵CD是的高,∴,∴.……1分∵,∴,……3分∴是直角三角形.……4分(2)是等腰三角形.……5分理由:∵AE是角平分线,∴.∵,∴在中,,在中,,∴.……7分∵,∴,∴,∴是等腰三角形.……9分22. 解:设.……1分∵,∴是等腰三角形,∴.……3分又∵,……4分∴,即.……6分∵,∴是等腰三角形,∴,……7分∴.……9分23. 解:(1).……1分理由:∵AD平分,∴.又∵,,∴,∴.……2分∵,∴.又∵,∴,∴.……3分∵,∴.……5分(2)①AC ②DF.……7分辅助线如图1所示.……8分图1 图2(3)如图2,延长BA至点G,使,连接BE,GE.∵,,∴.……9分∵,,,∴,∴,.∵,∴.……10分又∵,,∴,∴.……11分又∵,∴.……12分。
人教版八年级上学期期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4B.4,5,9C.4,6,8D.5,5,112.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()3.(3分)一个多边形的每个外角都等于72°,则这个多边形的边数为()A.5B.6C.7D.84.(3分)一副三角板有两个三角形,如图叠放在一起,则∠α的度数是()A.120°B.135°C.150°D.165°5.(3分)如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A.95°B.120°C.135°D.无法确定6.(3分)一个多边形的内角和比外角和的三倍少180°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形7.(3分)如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,BC=DE,则下列结论中不正确的是()A.△ABC≌△CDE B.E为BC中点C.AB⊥CD D.CE=AC8.(3分)下列各图中,OP 是∠MON 的平分线,点E ,F ,G 分别在射线OM ,ON ,OP 上,则可以解释定理“角的平分线上的点到角的两边的距离相等”的图形是( )9.(3分)如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB =AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B =∠C B .AD =AE C .BD =CE D .BE =CD10.(3分)如图,在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F .若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠EDB B .∠BEDC .21∠AFBD .2∠ABF二、填空题(每小题3分,共24分)11.(3分)已知等腰三角形的一边等于6cm ,一边等于12cm ,则它的周长为 .12.(3分)已知△ABC 中,∠A :∠B :∠C =1:3:5,则△ABC 是 三角形.13.(3分)如图,△ABC 中,∠B =40°,∠C =30°,点D 为边BC 上一点,将△ADC 沿直线AD 折叠后,点C 落到点E 处,若DE ∥AB ,则∠ADC 的度数为 .14.(3分)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.15.(3分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若BC=15,且BD:DC=3:2,AB =25,则△ABD的面积是.16.(3分)如图,△ABC三边的中线AD,BE,CF的公共点为G,且AG:GD=2:1,若S△ABC=12,则图中阴影部分的面积是.17.(3分)如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3).如果要使以点A、B、D为顶点的三角形与△ABC全等,那么点D的坐标是.18.(3分)如图所示,线段AB=8cm,射线AN⊥AB于点A,点C是射线上一动点,分别以AC、BC为直角边作等腰直角三角形,得△ACD与△BCE中,连接DE交射线AN于点M,则CM的长为.三、解答题(共66分)19.(8分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.20.(8分)如图,∠MON=90°,点A,B分别在射线OM、ON上移动,BE是∠ABN的平分线,BE的反向延长线与∠OAB平分线相交于点C,试问:∠ACB的大小是否发生变化?如果保持不变,请给出证明;如果随点A、B移动发生变化,请求出变化范围.21.(10分)如图,已知,DA=DC,BA=BC,点P在BD上,PM⊥AD于点M,PN⊥CD于点N,求证:DM=DN.22.(10分)如图,已知AB=DC,AE⊥BC于点E,DF⊥BC于点F,CE=BF连接AD交EF于点O.求证:AD 与EF互相平分.23.(8分)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,求∠MAB的度数.24.(10分)如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,探究BC,AB,CD之间的数量关系,并证明.25.(12分)已知在△ABC中,∠BAC=90°,AB=CA,将△ABC放在平面直角坐标系中,如图所示.(1)如图1,若A(1,0),B(0,3),求C点坐标;(2)如图2,若A(1,3),B(﹣1,0),求C点坐标.。
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知线段6=,则下列线段中,能与a,b组成三角形的是()b cma cm=,9A.3cm B.12 cm C.15cm D.18cm3.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°4.等腰三角形有一个外角是110°,则其顶角度数是()A.70°B.70°或40°C.40°D.110°或40°5.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°6.下列两个三角形中,一定全等的是()A.两个等腰直角三角形B.两个等边三角形C.有一个角是100︒,底边相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形∠=︒,AD⊥BC于点D.点P是BA延长线上一7.如图,等腰△ABC,AB=AC,BAC120点,O点是线段AD上一点,OP=OC,下面的结论:①AC平分∠PAD;②∠APO=∠DCO;③△OPC是等边三角形;④AC=AO+AP.其中正确结论的个数为()A.4 B.3 C.2 D.18.下列图形中具有稳定性的是()A.梯形B.长方形C.平行四边形D.等腰三角形9.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.两点确定一条直线B.两点之间线段最短C.三角形的稳定性D.垂线段最短10.如图,用三角板作ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.11.如图,若CD是△ABC的中线,AB=10,则AD=()A.5 B.6 C.8 D.412.如图AD⊥BC于点D,那么图中以AD为高的三角形的个数有()A .3B .4C .5D .6二、填空题 13.若一个多边形外角和与内角和相等,则这个多边形是_____.14.在△ABC 中,∠C =90°,D 是边BC 上一点,连接AD ,若∠BAD +3∠CAD =90°,DC =a ,BD =b ,则AB =________. (用含a ,b 的式子表示)15.如图,点D 在线段BC 上,AC ⊥BC ,AB =8cm ,AD =6cm ,AC =4cm ,则在△ABD 中,BD 边上的高是__cm .16.如图,将长方形ABCD 沿DE 折叠,使点A 落在BC 边上的点F 处,若60EFB ︒∠=,则AED =∠________.三、解答题17.如图,点F 是△ABC 的边BC 延长线上的一点,且AC=CF ,ABC ∠和A CF ∠的平分线交于点P.求证:(1)点P 在DAC ∠的平分线上;(2)CP 垂直平分AF.18.如图,点O 是等边△ABC 内一点,AOB 110∠=︒,BOC α∠=,△BOC ≌△ADC ,连接OD .(1)求证:△COD 是等边三角形;(2)当α150=︒时,试判断△AOD 的形状,并说明理由;(3)当△AOD 是等腰三角形时,求α的度数.19.如图,在△ABC 中,∠A=40°,∠B=76°,CE 平分∠ACB ,CD ⊥AB 于点D ,DF ⊥CE 于点F ,求∠CDF 的度数.20.如图,在△ACB 中,∠ACB=90°,CD ⊥AB 于D .(1)求证:∠ACD=∠B ;(2)若AF 平分∠CAB 分别交CD 、BC 于E 、F ,求证:∠CEF=∠CFE .21.请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图①,四边形ABCD 中,AB=AD ,∠B=∠D ,画出四边形ABCD 的对称轴m ;(2)如图②,四边形ABCD 中,AD ∥BC ,∠A=∠D ,画出边BC 的垂直平分线n .22.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于N ,交AC 于M . (1)若70B ∠=︒,则NMA ∠的度数是 ;(2)连接MB ,若8AB cm =,MBC △的周长是14cm .①求BC 的长;②在直线MN 上是否存在点P ,使由P ,B ,C 构成的PBC 的周长值最小?若存在,标出点P 的位置并求PBC 的周长最小值;若不存在,说明理由.23.如图,已知AD BD ⊥,BC AC ⊥,AC BD =,且AC ,BD 相交于点O .(1)求证:AD BC =;(2)取AB 的中点E ,连接OE ,在不添加任何辅助线的情况下,请直接写出图中所有的全等三角形.24.(1)如图1,在△ABC 中,D 是BC 的中点,过D 点画直线EF 与AC 相交于E ,与AB 的延长线相交于F ,使BF =CE .①已知△CDE 的面积为1,AE =kCE ,用含k 的代数式表示△ABD 的面积为 ; ②求证:△AEF 是等腰三角形;(2)如图2,在△ABC 中,若∠1=2∠2,G 是△ABC 外一点,使∠3=∠1,AH ∥BG 交CG 于H ,且∠4=∠BCG ﹣∠2,设∠G =x ,∠BAC =y ,试探究x 与y 之间的数量关系,并说明理由;(3)如图3,在(1)、(2)的条件下,△AFD 是锐角三角形,当∠G =100°,AD =a 时,在AD 上找一点P ,AF 上找一点Q ,FD 上找一点M ,使△PQM 的周长最小,试用含a 、k 的代数式表示△PQM 周长的最小值 .(只需直接写出结果)25.如图(1),在ABC 中,75,35,BAC ACB ABC ∠=︒∠=︒∠的平分线BD 交边AC 于点D .(1)求证:BCD 为等腰三角形;(2)若BAC ∠的平分线AE 交边BC 于点E ,如图(2),求证:BD AD AB BE +=+; (3)若BAC ∠外角的平分线AE 交CB 的延长线于点E ,请你探究(2)中的结论是否仍然成立,若不成立,请写出正确的结论,并说明理由.参考答案1.B【解析】直接利用轴对称图形的定义得出答案.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A.不是轴对称图形,不符合题意;B.是轴对称图形,符合题意;C.不是轴对称图形,不符合题意;D.不是轴对称图形,不符合题意.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.2.B【分析】根据三角形的第三边大于两边之差小于两边之和即可判断.【详解】解:设三角形的第三边为m.由题意:9-6<m<6+9,即3<m<15,故选B.【点睛】本题考查三角形的三边关系,解题的关键是熟练掌握基本知识,属于中考常考题型.3.A【分析】根据全等三角形的性质求出∠D和∠E,再根据三角形内角和定理即可求出∠EAD的度数.【详解】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.【点睛】本题主要考查了全等三角形的性质及三角形内角和,掌握全等三角形的性质是解题的关键. 4.B【分析】题目给出了一个外角等于110°,没说明是顶角还是底角的外角,所以要分两种情况进行讨论.【详解】解:①当110°角为顶角的外角时,顶角为180°﹣110°=70°;②当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°.故选B.【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.5.B【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【详解】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选:B.【点睛】本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.6.C【分析】根据全等三角形的判定与等腰三角形的性质对各项进行判断即可.【详解】解:A、两个等腰直角三角形只能得到三个对应角相等,不清楚三边关系,故无法证明全等,故此选项错误;B、两个等边三角形只能得到三个对应角相等,不清楚三边关系,故无法证明全等,故此选项错误;C、100°角只能是两个等腰三角形的顶角,可知底角也相等,由于底相等,利用“ASA”可证得此两个三角形全等,故此选项正确;D、没有指明边是腰还是底,角是顶角还是底角,不能证明全等,故此选项错误,故选:C.【点睛】本题考查等腰三角形的性质、全等三角形的判定,解答的关键是掌握等腰三角形的性质、熟知全等三角形的判定方法.7.B【分析】①根据等腰三角形的性质,邻补角的定义即可得到结论;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④首先证明△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP;【详解】解:①∵AB=AC,∠BAC=120°,AD⊥BC;∴∠CAD=12∠BAC=60°,∠PAC=180°−∠CAB=60°,∴∠PAC=∠DAC,∴AC平分∠PAD故①正确;②由①知:OB=OC,OP=OC,则OB=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°−(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故③正确;④如图,在AC上截取AE=PA,连接PE,由①知∠PAE=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,在△OPA和△CPE中,PA=PE,∠APO=∠CPE,OP=CP,∴△OPA≌△CPE(SAS),∴AO=CE,∴AC=AE+CE=AO+AP;故④正确;故答案为:B.【点睛】本题主要考查了等腰三角形的判定与性质、等边三角形的判定与性质以及全等三角形的判定与性质,正确作出辅助线是解决问题的关键.8.D【分析】根据三角形具有稳定性作答.【详解】因为三角形具有稳定性,四边形不具有稳定性,所以只有D符合,故选:D.【点睛】本题主要考查了三角形的稳定性,在几何图形中只有三角形具有稳定性,而四边形以及四边以上的多边形都不具有稳定性.9.C【分析】A,O,B三点构成了三角形,窗钩AB可将其固定,则是利用了三角形的稳定性.【详解】解:∵A,O,B三点构成了三角形,且窗钩AB可将其固定∴其原理是利用了三角形的稳定性.故选项为:C.【点睛】本题考查了三角形的稳定性,掌握三角形稳定性的意义是解本题的关键.10.B【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.根据高线的定义即可得出结论.【详解】解:A.作出的是△ABC中BC边上的高线,故本选项错误;B.作出的是△ABC中AB边上的高线,故本选项正确;C.不能作出△ABC中AB边上的高线,故本选项错误;D.作出的是△ABC中AC边上的高线,故本选项错误;故选:B.【点睛】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键.11.A【分析】根据三角形中线定义可得.【详解】因为CD是△ABC的中线,AB=10,所以AD=15 2AB故选:A【点睛】考核知识点:三角形中线.理解三角形中线定义是关键.12.D【详解】结合三角形高的定义可知,以AD为高的三角形有:△ABD,△ABE,△ABC,△ADE,△ADC,△AEC,共6个.故选D.13.四边形.【详解】根据多边形的内角和公式与多边形的外角和定理列出方程,然后解方程即可求出多边形的边数:设这个多边形的边数是n,则(n﹣2)•1800=3600,解得n=4.∴这个多边形是四边形.14.2a+b.【分析】延长BC至点E,使CE=CD=a,连接AE,利用∠BAD+3∠CAD=90°,∠CAB+∠B=90°,证得∠B=2∠CAD,再利用CE=CD,AC⊥CD,证得△AED是等腰三角形,推出∠E=∠EAB, 由此得到AB=EB=2a+b.【详解】如图,延长BC至点E,使CE=CD,连接AE,∵∠ACB=90°,∴∠CAB+∠B=90°,AC⊥CD,∵∠BAD+3∠CAD=90°,∠BAD+∠CAD=∠BAC,∴∠B=2∠CAD,∵CE=CD,AC⊥CD,∴AC垂直平分ED,∴AE=AD,即△AED是等腰三角形,∴∠EAC=∠CAD,∴∠EAD=2∠CAD=∠B,∴∠EAB=∠B+∠BAD,∵∠E=∠ADE=∠B+∠BAD,∴∠E=∠EAB,∴AB=EB,∵EB=EC+CD+BD=a+a+b=2a+b,∴AB=2a+b.故填:2a+b.【点睛】此题考查直角三角形的性质、等腰三角形的性质,延长BC 至点E ,使CE=CD 是关键的辅助线,由此将直角三角形转化为等腰三角形来证明.15.4cm【分析】从三角形的一个顶点向它对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高.这条边叫做底.【详解】因为AC ⊥BC ,所以三角形ABD 中,BD 边上的高是:AC=4cm故答案为:4cm【点睛】考核知识点:三角形的高.理解三角形的高的定义是关键.16.75°【分析】根据ADE 和FDE 关于直线DE 对称得到AED FED ∠=∠,得到BEF ∠的度数,再根据折叠的性质即可求解.【详解】由题意可知ADE 和FDE 关于直线DE 对称,∴AED FED ∠=∠.∵60EFB ︒∠=,90B ︒∠=,∴906030BEF ︒︒︒∠=-=, ∴18030752AED FED ︒︒︒-∠=∠==. 故答案为75°.【点睛】此题主要考查矩形的角度求解,解题的关键是熟知折叠的性质.17.(1)答案见解析;(2)答案见解析【分析】(1)根据角平分线的性质和判定即可解题;(2)根据等腰三角形三线合一即可证明【详解】(1)如图,过P作PE⊥BD于E,PG⊥AC于G,PH⊥BC于H∵P在∠ABC的角平分线上∴PH=PE∵P在∠ACF的角平分线上∴PG=PH∴PG=PE∴点P在∠DAC 的平分线上(2)∵P在∠ACF的角平分线上∴∠ACP=∠PCF∵AC=CF∴CP垂直平分AF.【点睛】本题主要考察角平分线的性质和判定以及等腰三角形三线合一得性质,熟记性质并在图形上熟练找到运用是解题的关键.18.(1)见解析;(2)△AOD是直角三角形;(3)α=125°或110°或140°【分析】(1)由等边三角形的性质可得∠ACB=60°,再根据全等三角形的性质可得OC=CD,∠BCO=∠ACD,可证∠OCD=∠ACB=60°,再根据等边三角形的判定即可证得结论;(2)由全等三角形的性质得∠ADC=∠BOC=150°,由(1)中结论得∠CDO=60°,则有∠ADO=90°,即可得到△AOD的形状;(3)根据全等三角形的性质和已知可得∠AOD=190°﹣α,∠ADO=α﹣60°,再根据等腰三角形的性质分类讨论即可.【详解】(1)证明:∵△ABC是等边三角形,∴∠ACB=60°,∵△BOC≌△ADC,∴OC=CD,∠BCO=∠ACD,∴∠BCO+∠OCA=∠ACD+∠OCA,即∠OCD=∠ACB=60°,∴△COD为等边三角形;(2)△AOD是直角三角形,理由为:∵△BOC≌△ADC,∴∠ADC=∠BOC=150°,∵△COD为等边三角形,∴∠CDO=60°,∴∠ADO=∠ADC﹣∠CD0=150°﹣60°=90°,∴△AOD是直角三角形;(3)∵△COD为等边三角形,∴∠COD=∠CDO=60°,∵∠ADC=∠BOC=α,∠AOB=110°,∴∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(α﹣60°)﹣(190°﹣α)=50°,①当∠AOD=∠ADO时,190°﹣α=α﹣60°,解得:α=125°;②当∠AOD=∠OAD时,190°﹣α=50°,解得:α=140°;③当∠ADO=∠OAD时,α﹣60°=50°,解得:α=110°,综上,当α=125°或110°或140°时,△AOD为等腰三角形.【点睛】本题考查了全等三角形的性质、等边三角形的判定与性质、直角三角形的判定、等腰三角形的性质、三角形的内角和定理、解一元一次方程,熟练掌握相关知识,会利用等腰三角形的性质分类讨论是解答的关键.19.∠CDF=72°.【详解】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角的平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.试题解析:∵∠A=40°,∠B=76°,∴∠ACB=180°﹣40°﹣76°=64°,∵CE平分∠ACB,∴∠ACE=∠BCE=32°,∴∠CED=∠A+∠ACE=72°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=72°.20.(1)证明见解析;(2)证明见解析.【详解】试题分析:(1)由于∠ACD与∠B都是∠BCD的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出∠CFA=90°-∠CAF,∠AED=90°-∠DAE,再根据角平分线的定义得出∠CAF=∠DAE,然后由对顶角相等的性质,等量代换即可证明∠CEF=∠CFE.试题解析:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°-∠CAF,同理在Rt△AED中,∠AED=90°-∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.考点:直角三角形的性质.21.(1)见解析;(2)见解析;【分析】(1)连接AC,AC所在直线即为对称轴m.(2)延长BA,CD交于一点,连接AC,BC交于一点,连接两点获得垂直平分线n.【详解】解:(1)如图①,直线m即为所求(2)如图②,直线n即为所求【点睛】本题考查了轴对称作图,根据全等关系可以确定点与点的对称关系,从而确定对称轴所在,即可画出直线.22.(1)50°(2)① 6cm;②存在点P,点P与点M重合,△PBC周长的最小值为14cm 【分析】(1)根据等腰三角形的性质得出∠B=∠C=70°,在△ABC中,根据三角形内角和定理求得∠A=40°,在△AMN中,根据三角形内角和定理求得∠NMA=50°;(2)①根据线段垂直平分线可得AM=BM,根据△MBC的周长=BM+BC+CM=AM+BC+CM即可求解;②根据对称轴的性质可知,M点就是点P所在的位置,△PBC的周长最小值就是△MBC的周长.【详解】解:(1)∵AB=AC,∴∠B=∠C=70°,∴∠A=180°-70°-70°=40°∵MN 垂直平分AB 交AB 于N∴MN ⊥AB, ∠ANM =90°,在△AMN 中,∠NMA =180°-90°-40°=50°;(2)①如图所示,连接MB ,∵MN 垂直平分AB 交于AB 于N∴AM =BM ,∴△MBC 的周长=BM +BC +CM =AM +BC +CM =BC +AC =14cm又∵AB =AC =8cm ,∴BC =14 cm -8 cm =6cm ;②如图所示,∵MN 垂直平分AB ,∴点A 、B 关于直线MN 对称,AC 与MN 交于点M ,因此点P 与点M 重合; ∴△MBC 的周长就是△PBC 周长的最小值,∴△PBC 周长的最小值=△MBC 的周长=14cm .【点睛】本题考查三角形内角和定理,线段垂直平分线性质,等腰三角形的性质,轴对称-最短路线问题.解题的关键是熟练掌握这些知识点.23.(1)详见解析;(2)ADO BCO ≌,Rt ADB Rt BCA ≌,AOE BOE ≌, ACD BDC ≌. 【分析】(1)根据HL 证明Rt △ADB 与Rt △ACB 全等,进而利用全等三角形的性质解答即可; (2)根据全等三角形的判定解答即可.【详解】(1)AD BD ⊥,BC AC ⊥,90ADB BCA ∴∠=∠=︒.在Rt ADB 与Rt BCA 中,DB CAAB BA =⎧⎨=⎩,()Rt ADB Rt BCA HL ∴≌,AD BC ∴=;(2)图中所有的全等三角形:由AOD BOCADO BCO AD BC∠=∠⎧⎪∠=∠⎨⎪=⎩,可得()ADO BCO AAS ≌,AO BO ∴=,DAO CBO ∠=∠;由DB CAAB BA =⎧⎨=⎩,可得()Rt ADB Rt BCA HL ≌,ABD BAC ∴∠=∠;由AO BOOAE OBE AE BE=⎧⎪∠=∠⎨⎪=⎩,可得()AOE BOE SAS ≌;由AD BCDAC CBD AC BD=⎧⎪∠=∠⎨⎪=⎩,可得()ACD BDC SAS ≌.【点睛】此题考查全等三角形的判定,关键是根据HL 证明Rt △ADB 与Rt △ACB 全等. 24.(1)①k +1;②见解析;(2)y =34x +45°,理由见解析;(3)2(1)(1)k k k a +-【分析】(1)①先根据AE 与CE 之比求出△ADE 的面积,进而求出ADC 的面积,而D 中BC 中点,所以△ABD 面积与△ADC 面积相等;②延长BF 至R ,使FR =BF ,连接RC ,注意到D 是BC 中点,过B 过B 点作BG ∥AC 交EF 于G .得BGD CED ≅,再利用等腰三角形性质和判定即可解答;(2)设∠2=α.则∠3=∠1=2∠2=2α,根据平行线性质及三角形外角性质可得∠4=α,再结合三角形内角和等于180°联立方程即可解答;(3)分别作P 点关于F A 、FD 的对称点P '、P '',则PQ +QM +PM =P 'Q +QM +MP “≥P 'P ''=FP ,当FP 垂直AD 时取得最小值,即最小值就是AD 边上的高,而AD 已知,故只需求出△ADF 的面积即可,根据AE =kEC ,AE =AF ,CE =BF ,可以将△ADF 的面积用k 表示出来,从而问题得解.【详解】解:(1)①∵AE =kCE ,∴S △DAE =kS △DEC ,∵S △DEC =1,∴S △DAE =k ,∴S △ADC =S △DAE +S △DEC =k +1,∵D 为BC 中点,∴S △ABD =S △ADC =k +1.②如图1,过B 点作BG ∥AC 交EF 于G .∴BGD CED ∠=∠,BGF AED ∠=∠在△BGD 和△CED 中,BGD CED BD CD BDG CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴BGD CED ≅(ASA ),∴BG =CE ,又∵BF =CE ,∴BF =BG ,∴BGF F ∠=∠,∴F AED ∠=∠∴AF =AE ,即△AEF 是等腰三角形.(2)如图2,设AH 与BC 交于点N ,∠2=α.则∠3=∠1=2∠2=2α,∵AH ∥BG ,∴∠CNH =∠ANB =∠3=2α,∵∠CNH =∠2+∠4,∴2α=α+∠4,∴∠4=α,∵∠4=∠BCG ﹣∠2,∴∠BCG =∠2+∠4=2α,在△BGC 中,3180BCG G ∠+∠+∠=︒,即:4180x α+=︒,在△ABC 中,12180BAC ∠+∠+∠=︒,即:3180y α+=︒,联立消去α得:y =34x +45°.(3)如图3,作P 点关于F A 、FD 的对称点P '、P '',连接P 'Q 、P 'F 、PF 、P ''M 、P ''F 、P 'P '',则FP '=FP =FP '',PQ =P 'Q ,PM =P ''M ,∠P 'FQ =∠PFQ ,∠P ''FM =∠PFM , ∴∠P 'FP ''=2∠AFD ,∵∠G =100°,∴∠BAC =34∠G +45°=120°, ∵AE =AF ,∴∠AFD =30°,∴∠P 'FP ''=2∠AFD =60°,∴△FP 'P ''是等边三角形,∴P 'P ''=FP '=FP ,∴PQ +QM +PM =P 'Q +QM +MP ''≥P 'P ''=FP ,当且仅当P '、Q 、M 、P ''四点共线,且FP ⊥AD 时,△PQM 的周长取得最小值. AE kCE =,AF AE =,BF CE =,1AB k AF k-∴=, ()111ADF ABD k k k S S k k +∴==--,∴当FP AD ⊥时,()()2121ADF k k S FP AD k a+==-, PQM ∴的周长最小值为()()211k k k a +-.【点睛】本题是三角形综合题,涉及了三角形面积之比与底之比的关系、全等三角形等腰三角形性质和判定、轴对称变换与最短路径问题、等边三角形的判定与性质等众多知识点,难度较大.值得强调的是,本题的第三问实际上是三角形周长最短问题通过轴对称变换转化为两点之间线段最短和点到直线的距离垂线段最短.25.(1)见解析;(2)见解析;(3)不成立,正确结论:BD AD BE AB +=-,理由见解析【分析】(1)先根据内角和得到70ABC ∠=︒,再由角平分线的性质计算判断即可;(2)在AC 上截取AH AB =,连接EH ,根据等腰三角形的性质证明ABE AHE ≌△△,即可计算得到结论;(3)在BE 上截取BF AB =,连接AF ,可得到35∠=∠=︒AFB BAF ,再根据角平分线的性质可得到152.52∠=∠=︒EAB HAB ,通过计算得到AF EF =,即可得到结论; 【详解】(1)【证明】在ABC 中,75BAC ∠=︒,35ACB ∠=︒,∴18070∠=︒-∠-∠=︒ABC BAC ACB .∵BD 平分ABC ∠, ∴1352∠=∠=︒DBC ABC , ∴DBC ACB ∠=∠,∴BD DC =,∴BCD 为等腰三角形.(2)【证明】如图(1),在AC 上截取AH AB =,连接EH .由(1)得BCD 为等腰三角形,∴BD CD =,∴+=+=BD AD CD AD AC .∵AE 平分BAC ∠,∴∠=∠EAB EAH ,∴ABE AHE ≌△△,∴,70=∠=∠=︒BE EH AHE ABE ,∴35∠=∠-∠=︒HEC AHE ACB ,∴∠=∠HEC ACB ,∴EH HC =,∴+=+=AB BE AH HC AC ,∴BD AD AB BE +=+.(3)【解】不成立,正确结论:BD AD BE AB +=-.理由:如图(2),在BE 上截取BF AB =,连接AF .∵由(1)得70ABC ∠=︒,∴35∠=∠=︒AFB BAF .∵75BAC ∠=︒,∴105∠=︒HAB .∵AE 平分HAB ∠, ∴152.52∠=∠=︒EAB HAB ,∴52.53517.5∠=︒-︒=︒EAF ,17.5∠=∠-∠=︒AEF ABC EAB , ∴EAF AEF ∠=∠,则AF EF =.∵35∠=∠=︒AFC C ,∴==AF AC EF ,∴-=-===+=+BE AB BE BF EF AC AD CD AD BD ,∴BD AD BE AB +=-.【点睛】本题主要考查了等腰三角形的判定与性质,结合三角形全等是解题的关键.。
深圳市八年级上学期期中考试数学试卷含答案(共3套)2018-201年广东省深圳市福田区八年级(上册)期中数学试卷一、选择题(共12小题,共36分)1.下列各数是无理数的是()A.√2 B.3/4 C.5 D.-72.-3的倒数是()A.1/3 B.-1/3 C.-3 D.33.下列各点中,位于第四象限的是()A.(8,-1)B.(-2,-5)C.(-4,0)D.(0,-4)4.在下列哪两个连续自然数之间()A.2和3 B.3和4 C.4和5 D.5和65.P(3,-4)到y轴的距离是()A.4 B.-4 C.3 D.56.一次函数y=-2x+3上有两点(-1,y1)和(2,y2),则y1与y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.无法比较7.以下以各组数据为边长作三角形,其中能组成直角三角形的是()A.3,4,5 B.5,6,7 C.6,9,15 D.4,12,138.下列各式的计算中,正确的是()A.3/4-1/3=5/12 B.2/3+3/4=11/12C.1/2+1/3=5/6 D.4/5+3/4=31/209.下列说法不正确的是()A.√16的平方根是4 B.±5的平方根是±√5C.-9的算术平方根是3i D.-3的平方根是±i√310.在如图所示的计算程序中,y与x的函数关系式所对应的图象是()A.y=x^2 B.y=2x C.y=1/x D.y=√x11.B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,如图,△ABC的顶点A,则BD的长为()A.1 B.√2 C.3/2 D.212.甲、乙两车从A城出发匀速行驶至B城。
在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示。
则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=4或t=5/3,其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(共4小题,共12分)13.若(x+2)^2+(y-2)^2=4,那么(x+y)^2018=2^2018.14.函数y=2x-4+b是正比例函数,则b=-4.15.如图,在△ABC中,AB=15,AC=9,AD⊥BC于D,∠ACB=45°,则BC的长为6√2.16.如图,一只蚂蚁从长为3cm、宽为2cm、高为4cm的长方体纸箱外壁的A点沿纸箱爬到纸箱内壁的B点,CB=1,那么它所行的最短路线长是√26 cm.三、解答题(共7题,共52分)17.计算:1) 2/5+3/4-1/8;2) 5/6-2/3×1/4.18.计算:1) 3√2+2√3-√2+√3;2) 3√3-5√2+√3+2√2.19.如图,在平面直角坐标系中,A(-2,2),B(-3,-2)(每个小正方形的边长均为1)。
八年级上期中考试数学试卷一、选择题(每小题3分,共30分)1.如图,BE=CF ,AB=DE ,添加下列哪些条件可以推证△ABC ≌△DFE ( )A.BC=EFB. ∠A=∠DC.AC ∥DFD.AC=DF2.已知,如图,AC=BC ,AD=BD ,下列结论不正确的是 ( )A.CO=DOB.AO=BOC.AB ⊥CDD. △ACO ≌△BCO3.在△ABC 内取一点P 使得点P 到△ABC 的三边距离相等,则点P 应是△ABC 的哪三条线交点 ( )A.高B.角平分线C.中线D.垂直平分线4. △ABC ≌△DEF ,AB=2,BC=4若△DEF 的周长为偶数,则DF 的取值为( )A.3B.4C.5D.3或4或55.下列条件能判定△ABC ≌△DEF 的一组是 ( )A. ∠A=∠D ,∠C=∠F ,AC=DFB.AB=DE ,BC=EF ,∠A=∠DC. ∠A=∠D ,∠B=∠E ,∠C=∠FD.AB=DE ,△ABC 的周长等于△DEF 的周长F E D B C A O DBC A )(第2题图)A.等边三角形B.等腰直角三角形C.四边形D.线段7.如下图,轴对称图形有()A.3个B.4个C.5个D.6个8.下列图形中,不是轴对称图形的是()A.有两条边相等的三角形B.有一个角为45°的直角三角形C.有一个角为60°的等腰三角形D.一个内角为40°,一个内角为110°的三角形9.当你看到镜子中的你在用右手往左梳理你的头发时,实际上你是()A.右手往左梳B.右手往右梳C.左手往左梳D.左手往右梳10.下列条件中不能作出唯一直角三角形的是()A.已知两个锐角B.已知一条直角边和一个锐角C.已知两条直角边D.已知一条直角边和斜边11.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么图中共有 对全等三角形..12.如图,△ABC ≌△ADE ,若∠BAE=120°,∠BAD=40°,则∠BAC= . 13.如图,在△AOC 与△BOC 中,若∠1=∠2,加上条件 则有△AOC ≌△BOC.14.如图所示,在△ABC 中,∠A=90°,BD 平分∠ABC ,AD=2㎝,则点D 到BC 的距离为 ㎝.15.如图,AE=BF ,AD ∥BC ,AD=BC ,则有△ADF ≌ .OD C B AE D C B A 21O C B A (第11题图) (第12题图) (第13题图)D C BA F E D CB A F E DC B A (第14题图) (第15题图) (第16题图)△ABC ≌△DEF.17.点P (5,―3)关于x 轴对称的点的坐标为 .18.如图,∠AOB 是一建筑钢架,∠AOB=10°,为使钢架更加稳固,需在内部添加一些钢管EF 、FG 、GH 、HI 、IJ ,添加钢管的长度都与OE 相等,则∠BIJ= .19.等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角的度数是 .20.一个等腰三角形有两边分别为5和8㎝,则周长是 厘米.三、证明题(每小题5分,共10分)21.如图,AB=DF ,AC=DE ,BE=FC ,求证:∠B=∠FJ I H G F E O B A (第18题图)F E D C B A求证:△ABE ≌△ACD.四、解答题(每小题6分,共12分)23.如图,在△ABC 中,∠ACB=90°,DE 是AB 的垂直平分线,∠CAE :∠EAB=4:1,求∠B 的度数.E OD C B AE D CB A24.如图,某地有两所大学和两条交叉的公路.图中点M 、N 表示大学,OA ,OB 表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P 应建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)五、解答题(每小题7分,共14分)25.已知:AD ⊥BE ,垂足C 是BE 的中点,AB=DE ,则AB 与DE 有何位置关系?请说明理由.26.已知:在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15° 求:S △ABC .E CD B A六、解答题(每小题7分,共14分)27.画出△ABC 关于x 轴对称的图形△A 1B 1C 1,并指出△A 1B 1C 1的顶点坐标.CB A接DE ,交BC 于F.求证:DF=EF.六、解答题(每小题10分,共20分)29.如图:AB=AD ,∠ABC=∠ADC ,EF 过点C ,BE ⊥EF 于E ,DF ⊥EF 于F ,BE=DF.求证:CE=CF30.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形,BE 交AC 于F ,F E C D B A FEC DB A。
北师大版八年级上学期数学期中考试卷
(满分120分 时间90分钟)
一、 选择题(每小题3分,共24分) 1、下列四个数中,是无理数的是
A.2-
B.
8
3
C.1.732
D.2- 2、已知直角三角形的两边长分别为3和4,则此三角形的周长为
A.12
B.77+
C.12或77+
D.以上都不对
3、已知一次函数k kx y --=,若y 随x 的增大而增大,则该函数图像经过
A.第一、二、三象限
B.第一、二、四象限
C.第二、三、四象限
D.第一、三、四象限 4、已知点P (m +3,2m +4)在x 轴上,那么点P 的坐标为
A.(-1,0)
B.(1,0)
C.(-2,0)
D.(2,0) 5、要使二次根式有意义,字母x 必须满足的条件是( ) A .x ≤2
B .x <2
C .x ≤﹣2
D .x <﹣2
6、有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一 根细木条(木条的粗细、形变忽略不计)要求木条不能露出木 箱.请你算一算,能放入的细木条的最大长度是( ) A.
cm B .cm C .cm D .cm
7、如图,分别以直角三角形的三边为边长向外作等边三角形,面积分别记为S 1、S 2、S 3,则 S 1、 S 2、S 3之间的关系是
A.2
32221S S S =+ B.3
21S S S >+
C.321S S S <+
D.321S S S =+
8、已知:5=a ,72
=b ,且b a b a +=+,则a -b 的值为
A.2或12
B.-2或-12
C.2或-12
D.-2或12 二、填空题(每小题3分,共21分) 9、9的算术平方根是
10、在△ABC 中,a 、b 、c 分别为三边,给出下列各组条件:
x -241345253
①∠A :∠B :∠C =3:4:5;②a :b :c =3:4:5;③a =16,b =63,c =65;④C B A ∠=∠=∠3
1
21; 其中,能判定△ABC 是直角三角形的有 个。
11、若直线y =kx +b 平行于直线y =-2x +3,且经过点(5,-9)关于x 轴的对称点,则b = 12、若函数8
2
)3(--=m
x m y 是正比例函数,则m =
13、直角坐标系中,在坐标轴上且到点(-3,-4)的距离等于5的点有 个。
14、直线与x 轴、y 轴分别交于点A 、B ,M 是y 轴上一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上,则点M 的坐标为 。
15、如图,△OB 1A 2、△OB 2A 3、△OB 3A 4、…△OB n A n +1都是等边三角形,其中B 1A 1、B 2A 2、…B n A n 都与x 轴垂直,点A 1、A 2、…A n 都在x 轴上,点B 1、B 2、…B n 都在直线y x 上,已知OA 1=1,则点B 的坐标为 . 三、解答题(共75分)
16、计算(每小题5分,共10分) (1)3131242732+-
(2))252)(522()326(2
-+--
17、(7分)已知:13+=x ,13-=y ,求22y xy x ++的值。
43
4
+-
=x y 3n
18、(7分)如图,长方形纸片ABCD 中,AB =8cm ,把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,AF =4
25
cm ,求AD 。
19、(8分)某生物小组观察一植物生长,得到植物高度y (单位:厘米)于观察时间x (单位:天)的关系,并画出如图所示的图像(AC 是线段,直线CD 平行x 轴)(1)该植物从观察时起,多少天以后停止生长? (2)求直线AC 的解析式,并求该植物最高倡导多少厘米?
20、(9分)如图,长方体的长BE =20cm ,宽AB =10cm ,高AD =15cm ,点M 在CH 上,且CM =5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M ,需要爬行的最短距离是多少?
21、(8分)(1)已知:2a +1的算术平方根是3,3a -b -1的立方根是2,求320a b +的值。
(2)已知a 是10的整数部分,b 是它的小数部分,求2
2)3(++b a 的值。
22、(8分)已知点A 、B 都是x 轴上的点,若点A 的坐标为(4,0),且AB =5,点C 的坐标为(2,5) (1)请写出点B 的坐标,并画出符合条件的△ABC ;(2)求ABC S ∆.
23、(9分)如图,已知直线1:1+=kx y l ,与x 轴相交于点A ,同时经过点B (2,3),另一条直线2l 经过点B ,且于x 轴相交于点P (m ,0)。
(1)求1l 的解析式; (2)若3=∆APB S ,求P 的坐标。
24、(8分)如图,在正方形ABCD 纸片上有一点P ,P A =1,PD =2,PC =3,现将△PCD 剪下,并将它拼到如图所示位置(C 与A 重合,P 与G 重合,D 与D 重合),求∠APD 的度数。
参考答案
一.选择题
二.填空题
三.解答题
16、(1)35- (2)212- 17、10 18、6cm
19、(1)50天后 (2),65
1
+=x y 当x =50时,y =16 20、215<510<265
∴最短距离是215cm 21、(1)4 (2)19
22、(1)B (-1,0)或(9,0),图略 (2)2
25=∆ABC S 23、(1)y =x +1 (2)(-3,0)或(1,0) 24、连接PG ∠APG =135°。