当前位置:文档之家› 高级数理逻辑课件CH06--模态逻辑形式系统

高级数理逻辑课件CH06--模态逻辑形式系统

北邮高级数理逻辑课件

形式系统由{∑, TERM, FORMULA, AXIOM, RULE}等5个部分构成,其中 称为符号表,TERM 为项集;FORUMULA 为公式集;AIXIOM 为公理集;RULE 为推理规则集。: 1、 符号表∑为非空集合,其元素称为符号。 2、 设∑* 为∑上全体字的组合构成的集合。项集TERM 为∑* 的子集,其元素称为项; 项集TERM 有子集V ARIABLE 称为变量集合,其元素称为变量。F(X) a, X, 3、 设∑* 为∑上全体字的组合构成的集合。公式结FORMULA 为∑* 的子集,其元素称为公式;公式集有子集ATOM ,其元素称为原子公式。 A(f(a,x1,y)), A →B 4、 公理集AXIOM 是公式集FROMULA 的子集,其元素称为公理。 5、 推理规则集RULE 是公式集FORMULA 上的n 元关系集合,即 RULE=)}2(|{n FORMULA r n n n r ?∧≥∧?是正整数, 其元素称为形式系统的推理规则。 其中公式集和项集之间没有交叉,即TERM ∩FORMULA =φ,公式和项统称为表达式。 由定义可知,符号表∑、项集TERM 、公式集FORMULA 是形式系统的语言部分。而公理集AXIOM 、推理规则集RULE 为推理部分 形式系统特性 1、 符号表∑为非空、可数集合(有穷、无穷都可以)。 2、 项集TERM 、公式集FORMULA 、公理集AXIOM 和推理规则集RULE 是递归集合, 即必须存在一个算法能够判定给定符号串是否属于集合(可判定的)。 3、 形式系统中的项是用来描述研究的对象,或者称为客观世界的。而公式是用来描述 这些研究对象的性质的。这个语言被称为对象语言。定义公式和项产生方法的规则称为词法。 公理: I ))((A B A →→ II ))()(())(((C A B A C B A →→→→→→ III ))())()(((A B B A →→?→? 证明:A →A (1) A →(A →A) ((A →(B →C))→((A →B)→(A →C)) ((A →(B →A))→((A →B)→(A →A)) ((A →((A →A)→A))→((A →(A →A))→(A →A)) A →((A →A)→A)) (A →(A →A))→(A →A) (A →(A →A)) A →A

数理逻辑复习题

一、选择题 1、永真式的否定是(2) (1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能 2、设P :2×2=5,Q :雪是黑的,R :2×4=8,S :太阳从东方升起,则下列真命题为(1) (1)R Q P ∧→ (2)S P R ∧→ (3)R Q S ∧→ (4) )()(S Q R P ∧∨∧。 3、设P :我听课,Q :我看小说,则命题R “我不能一边听课,一边看小说”的符号化为⑵ ⑴ P Q → ⑵Q P ?→(3) Q P →? ⑷ P Q ?→?()P Q ?∧ 提示:()R P Q P Q ??∧?→? 4、下列表达式错误的有⑷ ⑴()P P Q P ∨∧? ⑵()P P Q P ∧∨? ⑶()P P Q P Q ∨?∧?∨ ⑷()P P Q P Q ∧?∨?∨ 5、下列表达式正确的有⑷ ⑴ P P Q ?∧ ⑵ P Q P ?∨ ⑶ ()Q P Q ???→⑷Q Q P ??→?)( 6、下列联接词运算不可交换的是(3) ⑴∧ ⑵∨ (3)→ ⑷ ? 6、设D :全总个体域,F (x ):x 是花,M(x) :x 是人,H(x,y):x 喜欢y ,则命题“有的人喜欢所有的花”的逻辑符号化为⑷ ⑴(()(()(,))x M x y F y H x y ?∧?→ ⑵(()(()(,))x M x y F y H x y ?∧?→ (3) (()(()(,))x M x y F y H x y ?∧?→ ⑷(()(()(,))x M x y F y H x y ?∧?→ 7、设L(x):x 是演员,J(x):x 是老师,A(x , y):x 钦佩y ,命题“所有演员都钦佩某些 老 师”的逻辑符号化为⑵ ⑴)),()((y x A x L x →? ⑵))),()(()((y x A y J y x L x ∧?→? (3) )),()()((y x A y J x L y x ∧∧?? ⑷)),()()((y x A y J x L y x →∧?? 8、谓词公式)())()((x Q y yR x P x →?∨?中的 x 是⑶ ⑴自由变元 ⑵约束变元 ⑶既是自由变元又是约束变元 ⑷既不是自由变元又不是约束变元 9、下列表达式错误的有⑴ ⑴(()())()()x A x B x xA x xB x ?∨??∨? ⑵(()())()()x A x B x xA x xB x ?∧??∧? (3) (()())()()x A x B x xA x xB x ?∧??∧? ⑷(()())()()x A x B x xA x xB x ?∨??∨?

离散数学之集合论

第二篇集合与关系 集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。 随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。 现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科学工作者必不可少的基础知识。集合论可作为数学学科的通用语言,一切必要的数据结构都可以利用集合这个原始数据结构而构造出来,计算机科学家或许也可以利用这种方法。 本篇介绍集合论的基础知识,主要内容包括集合及其运算、性质、序偶、关系、映射、函数、基数等。 第2-1章集合及其运算 §2-1-1 集合的概念及其表示 一、集合的概念 “集合”是集合论中的一个原始的概念,因此它不能被精确地定义出来。一般地说,把具有某种共同性质的许多事物,汇集成一个整体,就形成一个集合。构成这个集合的每一个事物称为这个集合的一个成员(或一个元素),构成集合的这些成员可以是具体东西,也可以是抽象东西。例如:教室内的桌椅;图书馆的藏书;全国的高等学校;自然数的全体;程序设计语言C的基本字符的全体等均分别构成一个集合。通常用大写的英文字母表示集合的名称;用小写的英文字母表示元素。若元素a属于集合A记作

浅谈数理逻辑在计算机科学中的应用

浅谈数理逻辑在计算机科学中的应用 文章整理编辑---论文文库工作室(QQ1548927986) 摘要:数理逻辑是离散数学课程中研究推理的逻辑学科,它为确定一个给出的论证是否有效提供各种法则和技巧,在计算机科学里用来检验程序的正确性,也可以验证定理和推论,同时在计算机模型、计算机程序设计语言、计算机硬件系统等方面有着重要作用。研究数理逻辑在计算机科学领域中的应用,必须从研究数理逻辑的符号化开始讨论、加以分析、验证结论。 关键词:数理逻辑;命题逻辑;一阶逻辑;推理理论 离散数学是现代数学的重要分支,是研究离散量的结构及相互关系的学科,它在计算机理论研究及软、硬件开发的各个领域都有着广泛的应用。其内容大致包含数理逻辑、集合论、代数结构、组合数学、图论和初等数论6部分,这6部分从不同的角度出发,研究各种离散量之间数与形的关系。本文主要研究数理逻辑部分在计算机科学领域中的应用。 1.为计算机的可计算性研究提供依据 数理逻辑分为命题逻辑和一阶逻辑两部分,命题逻辑是一阶逻辑的特例。在研究某些推理问题时,一阶逻辑比命题逻辑更准确。数理逻辑中的可计算谓词和计算模型中的可计算函数是等价的,互相可以转化,计算可以用函数演算来表达,也可以用逻辑系统来表达。 某些自然语言的论证看上去很简单,直接就可以得出结论,但是通过数理逻辑中的两种符号化表达的结果却截然不同,让人们很难理解,这就为计算机的可计算性研究埋下伏笔。下面举一个简单例子加以说明。 例1 凡是偶数都能被2整除。6是偶数,所以6能被2整除。 可见,一个复杂的命题或者公式可以利用符号的形式来说明含义,来判断正确性,这使得计算机科学中的通过复杂文字验证的推理过程变得简单、明了了。 2.为计算机硬件系统的设计提供依据 数理逻辑部分在计算机硬件设计中的应用尤为突出,数字逻辑作为计算机科学的一个重要理论,在很大程度上起源于数理逻辑中的布尔运算。计算机的各种运算是通过数字逻辑技术实现的,而代数和布尔代数是数字逻辑的理论基础,布尔代数在形式演算方面虽然使用了代数的方法,但其内容的实质仍然是逻辑。范式正是基于布尔运算和真值表给出的一个典型公式。 下面以计算机科学中比较典型的开关电路的设计为实例说明数理逻辑中布尔代数和范式的应用。整个开关电路从功能上可以看做是一个开关,把电路接通的状态记为1(即结果为真),把电路断开的状态记为0(即结果为假),开关电路中的开关也要么处于接通状态,要么处于断开状态,这两种状态也可以用二值布尔代数来描述,对应的函数为布尔函数,也叫线路的布尔表达式。接通条件相同的线路称为等效线路,找等效线路的目的是化简线路,使线路中包含的节点尽可能地少。利用布尔代数可设计一些具有指定的节点线路,数学上既是按给定的真值表构造相应的布尔表达式,理论上涉及到的是范式理论,但形式上并不难构造。 例2 关于选派参赛选手,赵,钱,孙三人的意见分别是:赵:如果不选派甲,那么不选派乙。钱:如果不选派乙,那么选派甲;孙:要么选甲,要么选乙。以下诸项中,同时满足赵,钱,孙三人意见的方案是什么? 解答:把赵,钱,孙三个人的意见看做三条不同的线路,对三条线路化简得到接通状态

高级数理逻辑第2讲全解

3命题逻辑形式系统(FSPC) 3.1 命题逻辑与命题演算 Leibniz提出逻辑推理变成符号演算不久,英国数学家BOOL提出了布尔代数。布尔代数把逻辑命题与逻辑推理归结为代数计算。把命题看作是计算对象;把联结词看作算子;讨论计算的性质。 1、命题(Propositions):可以判断真假的陈述句。不涉及任何联结词的命题称为原 子命题。 2、联结词:?, →, ?, ∨, ∧为联结词,用于联结一个或者多个命题。 ~A=1-A →如果A成立则B成立,<->如果A成立则B成立,并且如果B成立则A成立; A→B A∨B,或者A成立或者B成立;A∧B,A成立并且B成立。 3、真值表:命题的真假称为命题的真值,用0表示假;用1表示真。 A←→B T(~A)=1-T(A) A=1, ~A=0, 1-A True(?A)=1- True(A),如果True(A)=0,True(?A)=1:True(A)=1, True(?A) =0 T(A→B)=1 或者A不成立,或者B成立; A=1, B=1, A→B =1 A=0, B=1, A→B=1 A=0, B=0, A→B=1 A=1,B=0 A→B=0 或者A=0, 或者B=1 ~AvB=A→B A<=B;;;; A<=B A=0,B=1 A=0时,B=?,1;A=1,B=1,1;A=1,B=0,0; A=0,B=0,T(A→B)=1;A=0,B=1,T(A→B)=1;A=1,B=0,T(A→B)=1;A=1,B=1,T(A→B) =1; A=0;T(A→B)=1 B=1;T(A→B)=1 A→B是或者A=0,或者B=1;=~AvB A<=B A∨B=MAX(A,B) A=1, B=0, 1;A=1,B=1, 1, A=0,B=1;1, A=0,B=0, 0 A∧B=MIN(A,B) =~(~A v ~B) DEMORGAN ~A ∨B True(A->B):True(A)《=True(B)

数理逻辑心得

数理逻辑的心得 数理逻辑:是计算机科学的基础,应熟练掌握将现实生活中的条件化成逻辑公式,并能做适当的推理,这对程序设计等课程是极有用处的。是大四接触到的,现简单介绍一下数理逻辑的发展史,算是一点感悟吧 1数理逻辑的发展前期 ·前史时期——古典形式逻辑时期:亚里斯多德的直言三段论理论 ·初创时期——逻辑代数时期(17世纪末) ·资本主义生产力大发展,自然科学取得了长足的进步,数学在认识自然、发展技术方面起到了相当重要的作用。 ·人们希望使用数学的方法来研究思维,把思维过程转换为数学的计算。 ·莱布尼兹(Leibniz, 1646~1716)完善三段论,提出了建立数理逻辑或者说理性演算的思想: ·提出将推理的正确性化归于计算,这种演算能使人们的推理不依赖于对推理过程中的命题的含义内容的思考,将推理的规则变为演算的规则。 ·使用一种符号语言来代替自然语言对演算进行描述,将符号的形式和其含义分开。使得演算从很大程度上取决与符号的组合规律,而与其含义无关。 ·布尔(G. Boole, 1815~1864)代数:将有关数学运算的研究的代数系统推广到逻辑领域,布尔代数既是一种代数系统,也是一种逻辑演算。 数理逻辑的奠基时期 ·弗雷格(G. Frege, 1848~1925):《概念语言——一种按算术的公式语言构成的纯思维公式语言》(1879)的出版标志着数理逻辑的基础部分——命题演算和谓词演算的正式建立。 ·皮亚诺(Giuseppe Peano, 1858~1932):《用一种新的方法陈述的算术原理》(1889)提出了自然数算术的一个公理系统。 ·罗素(Bertrand Russell, 1872~1970):《数学原理》(与怀特黑合著,1910, 1912, 1913)从命题演算和谓词演算开始,然后通过一元和二元命题函项定义了类和关系的概念,建立了抽象的类演算和关系演算。由此出发,在类型论的基础上用连续定义和证明的方式引出了数学(主要是算术)中的主要概念和定理。 ·逻辑演算的发展:甘岑(G. Gentzen)的自然推理系统(Natural Deduction System),逻辑演算的元理论:公理的独立性、一致性、完全性等。 ·各种各样的非经典逻辑的发展:路易斯(Lewis, 1883~1964)的模态逻辑,实质蕴涵怪论和严格蕴涵、相干逻辑等,卢卡西维茨的多值逻辑等。 集合论的悖论使得人们觉得数学产生了第三次危机,提出了数学的基础到底是什么这样的问题。 ·罗素等的逻辑主义:数学的基础是逻辑,倡导一切数学可从逻辑符号推出,《数学原理》一书是他们这一思想的体现。为解决悖论产生了逻辑类型论。 ·布劳维尔(Brouwer, 1881~1966)的直觉主义:数学是心灵的构造,只承认可构造的数学,强调构造的能行性,与计算机科学有重要的联系。坚持潜无穷,强调排中律不能用于无穷集合。海丁(Heyting)的直觉主义逻辑。 ·希尔伯特(D. Hilbert)的形式主义:公理化方法与形式化方法,元数学和证明论,提倡将逻辑演算和数学证明本身形式化,把用普通的语言传达的内容上的数学科学变为用数学符号和逻辑符号按一定法则排列的一堆公式。为了消除悖论,要数学建立在公理化基础上,将

第一讲逻辑与公理化系统

第一讲数理逻辑与公理化系统 逻辑是人通过概念、判断、推理、论证来理解和区分客观事物的思维过程,逻辑思维,人们在认识过程中借助于概念、判断、推理等思维形式能动地反映客观现实的理性认识过程,又称理论思维。它是作为对认识着的思维及其结构以及起作用的规律的分析而产生和发展起来的。只有经过逻辑思维,人们才能达到对具体对象本质规定的把握,进而认识客观对象。它是人的认识的高级阶段,即理性认识阶段。 概念是反映事物内的本质属性及其分子的的思维形式,是抽象的、普遍的想法、观念或充当指明实体、事件或关系的范畴或类的实体。其特征是概念的内涵(内容)和外延(包含在概念中的事物); 判断的特征是对事物有所断定且有真假; 演绎推理的特征是如果前提真,则结论真;(数学的逻辑推理通常是演绎推理) 定义是揭示概念内涵的逻辑方式,是用简洁的语词揭示概念反映的对象特有属性和本质属性。定义的基本方法是“种差”加最邻近的“属”概念。 定义的规则:一是定义概念与被定义概念的外延相同;二是定义不能用否定形式;三是定义不能用比喻;四是不能循环定义。 划分是明确概念全部外延的逻辑方法,是将“属”概念按一定标准分为若干种概念。划分的逻辑规则:一是子项外延之和等于母项的外延;二是一个划分过程只能有一个标准;三是划分出的子项必须全部列出;四是划分必须按属种关系分层逐级进行,不可以越级。 数学中的逻辑除了上述特点之外,更重要的是定量的刻画客观事物,在这一过程中,集合是一个基本的概念,它通过集合中的一些关系将事物量化。 将具有某种确定的特性的事物的全体称为一个集合。 在数学中,在逻辑量化过程中,会用到量词。 量词是命题中表示数量的词,分为全称量词和存在量词。全称量词断定所有的个体都具有相关谓词所表示的性质或关系,相当于自然语言中的“一切”、“所有”、“凡”等;存在量词断定存在(即至少有一个,但不一定是每一个)个体具有相关谓词所表示的性质或关系,相当于自然语言中的“有的”、“有”、“至少有一个”、“找得到一个”等。 符号表示为?(任一)表示全称量词,?(存在)表示存在量词,在数学中主要有以下几种形式: x F ?表示任一x具有性质F; ,x ) ( x?表示存在x具有性质F(满足条件F); F ,x ( ) y x? ?表示任一x和任一y具有关系G(满足条件G); G ( , ) ,y x x,具有关系G(满足条件G); y x? ?表示对任一x,存在y,使得y G , ) ( ,y x x,具有关系G(满足条件G); y x? G ?表示存在x,对任一y,使得y ( ) , ,y x

数理逻辑考试题及答案

“离散数学”数理逻辑部分考核试题答案 ━━━━━━━━━━━━━━━━━━★━━━━━━━━━━━━━━━━━━ 一、命题逻辑基本知识(5分) 1、将下列命题符号化(总共4题,完成的题号为学号尾数取4的余,完成1题。共2分) (0)小刘既不怕吃苦,又爱钻研。 解:p∧q,其中,P:小刘怕吃苦;q:小刘爱钻研。 (1)只有不怕敌人,才能战胜敌人。 解:q→p,其中,P:怕敌人;q:战胜敌人。 (2)只要别人有困难,老张就帮助别人,除非困难已经解决了。 解:r→(p→p),其中,P:别人有困难;q:老张帮助别人;r:困难解决了。 (3)小王与小张是亲戚。 解:p,其中,P:小王与小张是亲戚。 2、判断下列公式的类型(总共5题,完成的题号为学号尾数取5的余,完成1题。共1分) (0)A:((p q)((p q) (p q))) r (1)B:(p(q p)) (r q) (2)C:(p r) (q r) (3)E:p(p q r) (4)F:(q r) r 解:用真值表判断,A为重言式,B为矛盾式,C为可满足式,E为重言式,F为矛盾式。 3、判断推理是否正确(总共2题,完成的题号为学号尾数取2的余,完成1题。共2分) (0)设y=2|x|,x为实数。推理如下:如y在x=0处可导,则y在x=0处连续。发现y在x=0处连续,所以,y在x=0处可导。 解:设y=2|x|,x为实数。令P:y在x=0处可导,q:y在x=0处连续。由此,p为假,q为真。本题推理符号化为:(p q) q p。由p、q的真值,计算推理公式真值为假,由此,本题推理不正确。 (1)若2和3都是素数,则6是奇数。2是素数,3也是素数。所以,5或6是奇数。 解:令p:2是素数,q:3是素数,r:5是奇数,s:6是奇数。由此,p=1,q=1,r=1,s=0。本题推理符号化为: ((p q) →s) p q) →(r s)。计算推理公式真值为真,由此,本题推理正确。 二、命题逻辑等值演算(5分) 1、用等值演算法求下列公式的主析取范式或主合取范式(总共3题,完成的题号为学号尾数取3的余,完成1题。共2分) (0)求公式p→((q∧r) ∧(p∨(q∧r)))的主析取范式。 解:p→((q∧r) ∧(p∨(q∧r)))p∨(q∧r∧p) ∨(q∧r∧q∧r) p∨(q∧r∧p) ∨0 (p∧q∧r) ∨ (p∧1∧1) ∨(q∧r∧p) (p∧(q∨q)∧(r∨r)) ∨(q∧r∧p) (p∧(q∨q)∧(r∨r)) ∨m7 (p∧q∧r)∨(p∧q∧r)∨(p∧q∧r)∨(p∧q∧r)∨m7 m0∨m1∨m2∨m3∨m7. (1)求公式((p→q)) ∨(q→p)的主合取范式。 解:((p→q)) (q→p) (p→q) (p→q) (p→q) p q M2.

数理逻辑与集合论作业二 - 参考解答

數理邏輯與集合論作業二 1. 解:該題應該理解為此列表中每一句都是形如“i: 在這個列表中,恰有i條語句為假”的形式。 a)思路:考慮這100句裡可能有幾句為真。是否可能沒有一句為真?是否可能 祗有一句為真,是哪一句?是否可能多餘等於兩句為真? b)思路:“至少i+1句為假”蘊含“至少i句為假”,若第i句為真,則1…… i-1句都為真,所以第 100, 99, 98, ……句都為假,一直到第50句為真 c) 思路同上,但是…… 2. 解答:如果我說右邊的路通往遺跡你將回答“是”,對嗎? 3.

解答: ))))a q p b p q c q p d q p →∧→?→? 4. 也就是上述描述是否自相矛盾? 5. 解答: 条件符号化 ::::(1)(2)(C G)(3)(G W)G W (4)G W G W S C G W S C G W S C C G W C C S C S →?∧=?∨???∧?=∨→?????男管家廚師園丁雜役假設為真,則由(2)得:再由(1)得:但無法判定的真假 假設為假,則由(3)得:再由(4)得:由(1)得:綜上所述:和說了假話,,的話真假未知 6. 四个朋友被认定为非法进入某计算机系统的嫌疑人。他们已对调查员作了陈述。

艾丽斯说“卡罗斯干的” 约翰说“我没幹。” 卡罗斯说“戴安娜干的。” 戴安娜说“卡罗斯说是我幹的,他说谎。” a)如果调查员知道四个嫌疑人中恰有一人说真话,那么准幹的?解释你的推理。 b)如果调查员知道恰有一人说谎,谁干的?解释你的推理。 解:前提符號化為 (1)A: C (2)J: ? J (3)C: D (4)D: ? (C: D) a) 祗有一句話為真,而(3)(4)有且僅有一句為真,分別討論(3)(4)為真的情況。 b)分析步驟同上。 7. 用真值表證明德摩根律和吸收律。 解答略 8. 使用等值演算證明下列命題公式為永真式(不得用真值表) 解答: a

数理逻辑的推理及形式证明

第一讲引言 一、课程内容 ·数理逻辑:是计算机科学的基础,应熟练掌握将现实生活中的条件化成逻辑公式,并能做适当的推理,这对程序设计等课程是极有用处的。 ·集合论:数学的基础,对于学习程序设计、数据结构、编译原理等几乎所有计算机专业课程和数学课程都很有用处。熟练掌握有关集合、函数、关系等基本概念。 ·代数结构:对于抽象数据类型、形式语义的研究很有用处。培养数学思维,将以前学过的知识系统化、形式化和抽象化。熟练掌握有关代数系统的基本概念,以及群、环、域等代数结构的基本知识。 ·图论:对于解决许多实际问题很有用处,对于学习数据结构、编译原理课程也很有帮助。要求掌握有关图、树的基本概念,以及如何将图论用于实际问题的解决,并培养其使用数学工具建立模型的思维方式。 ·讲课时间为两个学期,第一学期讲授数理逻辑与集合论,第二学期讲授代数结构和图论。考试内容限于书中的内容和难度,但讲课内容不限于书中的内容和难度。 二、数理逻辑发展史 1. 目的 ·了解有关的背景,加深对计算机学科的全面了解,特别是理论方面的了解,而不限于将计算机看成是一门技术或工程性的学科。 ·通过重要的历史事件,了解计算机科学中的一些基本思维方式和一些基本问题。 2. 数理逻辑的发展前期 ·前史时期——古典形式逻辑时期:亚里斯多德的直言三段论理论 ·初创时期——逻辑代数时期(17世纪末) ·资本主义生产力大发展,自然科学取得了长足的进步,数学在认识自然、发展技术方面起到了相当重要的作用。 ·人们希望使用数学的方法来研究思维,把思维过程转换为数学的计算。 ·莱布尼兹(Leibniz, 1646~1716)完善三段论,提出了建立数理逻辑或者说理性演算的思想:·提出将推理的正确性化归于计算,这种演算能使人们的推理不依赖于对推理过程中的命题的含义内容的思考,将推理的规则变为演算的规则。 ·使用一种符号语言来代替自然语言对演算进行描述,将符号的形式和其含义分开。使得演算从很大程度上取决与符号的组合规律,而与其含义无关。 ·布尔(G. Boole, 1815~1864)代数:将有关数学运算的研究的代数系统推广到逻辑领域,布尔代数既是一种代数系统,也是一种逻辑演算。 3. 数理逻辑的奠基时期 ·弗雷格(G. Frege, 1848~1925):《概念语言——一种按算术的公式语言构成的纯思维公式语言》(1879)的出版标志着数理逻辑的基础部分——命题演算和谓词演算的正式建立。 ·皮亚诺(Giuseppe Peano, 1858~1932):《用一种新的方法陈述的算术原理》(1889)提出了自然数算术的一个公理系统。 ·罗素(Bertrand Russell, 1872~1970):《数学原理》(与怀特黑合著,1910, 1912, 1913)从命题演算和谓词演算开始,然后通过一元和二元命题函项定义了类和关系的概念,建立了抽象的类演算和关系演算。由此出发,在类型论的基础上用连续定义和证明的方式引出了数学(主要是算术)中的主要概念和定理。 ·逻辑演算的发展:甘岑(G. Gentzen)的自然推理系统(Natural Deduction System),逻辑演算的元理论:公理的独立性、一致性、完全性等。 ·各种各样的非经典逻辑的发展:路易斯(Lewis, 1883~1964)的模态逻辑,实质蕴涵怪论和严格蕴涵、

数理逻辑与集合论试卷

2006年的考题 一、A={a,b,c},B={X|a∈X且X?A},求B-A, B-{A}, ∪B, ∩B。 二、A={1,2,3,5,9},R是A上的关系且R={|3x≤y},求R-1, R2, r(R), t(R)。 三、R和S是集合A上的等价关系,A/R={{1,2},{3,4},{5}},A/S={{1},{2,3,4,5}}, 求①(A/R)∩(A/S) ②∪(A/R) ③R∩S ④A/(R∩S)。 四、用谓词逻辑公式表示下列命题: 任何两个不同的有理数之间必有另一个有理数。 五、设R是A上的关系,证明:R是拟反对称的(即R[imasym])当且仅当R 既是反自反的(即R[irref])又是反对称的(即R[asym])。 六、请分别判断以下结论是否一定成立,如果一定成立请证明,否则请举出反 例。 ①A⊕C=B⊕C当且仅当A=B。 ②如果A×B=A×C且A≠?,则B=C。 七、R是非空集合A上的关系且满足自反性(即R[ref])和传递性(即R[tra]), S是A上的关系且S={|存在A中元素x和y使得∈R且∈R}, 证明:S是A上的等价关系。 八、是偏序,如果D?A,且满足以下条件: ?x?y((x∈D & y∈D)??z(z∈D & x≤z & y≤z)),则称D是有向集。 ①证明:如果D是有限的有向集,则D有最大元。 ②举例说明如果D是无限的有向集,则D中不一定有最大元。 2005年的考题 一、A={2,3,4},R是A上的关系,R={|x+y=6}, ①R是否具有自反性?是否具有传递性?说明理由。 ②求R-1,R2,ts(R)。 二、A={a,b,c,d,e,f},R={,,,,,,}, R’=tr(R),画 出的哈斯图,求{c,d,e}的最大元、极小元、上界、下界和最大下界。 三、A={a,?},B=?∪{?},求A⊕B,P(A-B),A×A。 四、用谓词逻辑公式表示下列命题: 1) 存在最小的自然数。 2) 每个自然数都有唯一的后继。 五、R?A×A,证明:R是反对称的当且仅当R∩R-1?I A。 六、R是A上的等价关系,证明:A/R是A上的划分。 七、R是实数集,f:RXR→RXR,f()=,请问f是否为单射?是 否为满射?证明或举反例。 八、R?AXA,证明:s(R)=∩{R’|R?R’且R’是A上的对称关系}。 九、已知B∩C=?,证明:P(B∪C)与P(B)XP(C)等势。

模态逻辑概述

模态逻辑概述 Ps:本文整理编辑---论文文库工作室(QQ1548927986):毕业论文写作与发表 模态逻辑,或者叫(不很常见)内涵逻辑,是处理用模态如“可能”、“或许”、“可以”、“一定”、“必然”等限定的句子的逻辑。模态逻辑可以用语义的“内涵性”来描述其特征: 复杂公式的真值不能由子公式的真值来决定的。允许这种决定性的逻辑是“外延性的”,经典逻辑就是外延性的例子。模态算子不能使用外延语义来形式化: “乔治·布什是美国总统”和“2 + 2 = 4”是真的,但是“乔治·布什必然是美国总统”是假的,而“2 + 2 = 4 是必然的”是真的。 形式模态逻辑使用模态判决算子表示模态。基本的模态算子是和。(有时分别使用“L” 和“M”)。它们的意义依赖于特定的模态逻辑,但它们总是以相互定义的方式来定义: 真势模态 在真势模态逻辑(就是说必然性和可能性的逻辑)中表示必然性,而表示可能性。所 以Jones 有兄弟是“可能的”,当且仅当Jones “没”有兄弟是“非必然的”。 句子被认定为 ?可能的如果它“可能”为真(不管实际上是真是假); ?必然的如果它“不可能”为假; ?偶然的如果它“不是”必然为真,就是说,可能为真可能为假。偶然的真理是“实际上” 为真,但“可能曾经不是”的真理。 其他模态 认识 模态逻辑最经常用来谈论所谓的“真势模态”: “...是必然的”或者“....是可能的”,这些模态(包括形而上学模态和逻辑模态)最容易混淆于认识模态(来自希腊语episteme, 知识):“...确实是真的” 和“...(对给定的可获得的信息)或许是真的”。在普通的话语中这两种模态经常用类似的词来表达;下列对比可能有所帮助: 一个人Jones 可以合理的“同时”说出: (1)“我确信大脚怪不可能存在”,还有(2)“大脚怪存在的确是可能的”。Jones 通过(1)表达的意思是,对于给定的所有可获得的信息,大脚怪存在与否是没有疑问的。这是一个认识上的断言。通过(2)表达的意思是这个事物可能曾是其它样子的。他的意思不是“就我所知而言,大脚怪可能存在”。(所以这不矛盾于(1))。而是,他做了一个“形而上学”上的断定,“即使我不知道,大脚怪存在仍是可能的”。 在其他方面,Jones 可以说(3)“哥德巴赫猜想可能为真,也可能为假”,还有(4) “如果它是真的,则它必然是真的,不可能是假的”。这里Jones 的意思是,“就他所知而言,它为真为假都是在认识上可能的(哥德巴赫猜想仍未被证明是真还是假)。但是如果有这么一个证明(至今仍未发现),则哥德巴赫猜想为假在逻辑上是不可能的”。逻辑上的可能性是一种“真势”(alethic)可能性;(4)做了对一个数学真理曾经为假是否可能的一个断言,而(3)只做了对“就

高级数理逻辑第11讲全解

总复习 本章对高级数理逻辑所讲述的内容总结,并对已经学习的内容进行回顾。在对所讲述的内容回顾之前,首先对整个数理逻辑学科的组成进行回顾,从而使大家有更深刻的认识。 数理逻辑学科 学科发展 从数理逻辑学中衍生出来的学科有很多,如:递归论、可计算理论、模型论、机器证明、知识工程、布尔代数等。这些理论都是以数理逻辑学为基础的。针对数理逻辑本身,由于这些学科的需求产生了很多不同种类的逻辑系统。 数理逻辑的不同种类,基本上都是从经典的逻辑系统中扩展而来的。这种扩展通常有语法扩展和语义扩展。 ●语法扩展:在经典逻辑系统中,扩充一些符号,从而衍生出新的逻辑系统。如模态 逻辑,二阶谓词逻辑等。 ●语义扩展:对逻辑系统中语义的范围等进行扩展,如模糊逻辑等。 数理逻辑通常划分成以下不同种类的逻辑系统: 1、经典逻辑:传统的命题逻辑、一阶谓词逻辑等。认为世界是黑白的,对于一个命题 非真既假。 2、模态逻辑:认为世界上任何事情的真假是与时间有着密切的关系的。 3、多值逻辑:认为世界上的对与错是没有绝对的,命题的真假是可以是多个甚至连续 值的。 4、非单调逻辑:讨论如何将人类的常识加入到逻辑系统中去。经典逻辑是单调逻辑, 既事实越多,已有的结论不会消失;而单调逻辑中,可能随着事实的增加原有的结论被否定。 体系构成 在高级数理逻辑(计算逻辑)中,每一种逻辑都自成体系。逻辑的体系过程主要包括以下几个方面: 1、形式系统:用符号的方式来描述一个逻辑系统的构成。类似于形式语言系统。 2、语义系统:针对形式进行解释的一套体系,这套体系确定了符号的含义的解释方法 和规则。 3、元理论:对形式系统组成、语义系统特性和形式与语义之间关系进行研究。从而保 证了数理逻辑的初衷(利用数学演算的方法来研究人类思维过程)。 4、自动化推理:在形式系统的基础上,研究利用计算机自动进行推理的理论和方法。 以及自动推理的效率提高方法和自动推理完备性研究。

培养方案-北京邮电大学软件学院

软件工程(适用于在职专业学位硕士) (工程领域英文名称:Software Engineering ) 1、领域简介 软件工程是利用计算机及电子元器件实施信息的采集、转换、传输、运算、分析、存储、显示、打印、记忆、反馈、控制等软件程序的设计、制作、检测和质量控制的工程技术领域。它涉及各工业、农业、国防的生产过程、生产设备和军事装备的自动化、连续化、智能化,也涉及社会和其它领域,如管理信息化、城市的数字化、办公室自动化、文艺、宣传及其它信息传媒的智能化。因此,软件和硬件(包括计算机、集成电路及其它电子元器件)构成了信息技术的核心,软件产业和硬件产业共同构成信息产业的核心,是国民经济信息化的基础。 北京邮电大学软件工程领域,依托北邮在通信领域的深厚背景,与国内外多家著名通信公司、运营商紧密结合,在面向通信领域的软件工程学科建设及人才培养方面,具有得天独厚的优势。目前北京邮电大学软件工程学科拥有两个重点实验室,网络与交换技术国家重点实验室和可信分布式计算与服务教育部重点实验室(筹),共有教师36人,其中教授10人,副教授13人,具有博士学位人员20人,本科、硕士毕业生历年就业率保持100%。通信软件工程实验教学中心于2010年被评为“北京高等学校实验教学示范中心”。 2、培养目标 面向软件产业发展和信息化建设对软件工程技术人才的需要,培养高层次实用型、复合型软件工程技术和管理人才。本领域培养的学生应满足以下要求: 2.1 拥护党的基本路线和方针、政策;热爱祖国,诚信守法,具有良好的职业道德和敬业精神,愿为我国经济建设和社会发展服务。 2.2 掌握软件工程领域坚实的基础理论和系统的专业知识;具有较强的工程实践能力,具备运用先进的工程化方法、技术和工具从事软件分析、设计、开发、维护等工作的能力,以及工程项目的组织与管理能力、团队协作能力、技术创新能力或市场开拓能力。 2.3 掌握一门外语,具备良好的阅读、理解和撰写外语资料的能力和进行国际化交流的能力。 3、研究方向

离散数学测试(数理逻辑)

《离散数学》单元测试(数理逻辑部分) 一、填空题 1. 命题公式)(r q p G →?→=,则G 共有 个不同的解释,使公式G 为假的解释是 和 ,把G 在其所有解释下所取真值列成一个表,称为G 的 ,并可以通过它判定该公式的类型是 。 2. 在谓词逻辑中将下面命题符号化: a) 在北京工作的人未必都是北京人。(设F (x ):x 在北京工作,G (x ):x 是北京人) 。 b) 没有不犯错的人。(设F (x ):x 是人,G (x ):x 犯错误) 。 3. 将公式化成与之等值的前束范式, =→?→???)))()((),((x R z zQ y x yP x 。 4. 设谓词的定义域为},,{c b a ,将表达式))()((y yS x R x ?∧?中的量词消除,写成与之等值的命题公式 是 。 二、单项选择题 1. 一个公式在等值的意义下,下面哪个写法是唯一的( )。 A .析取范式 B .合取范式 C .主析取范式 D .以上答案都不对 2. 设命题公式P Q P G →∧=)(,则G 是( )。 A. 永假式 B. 永真式 C. 可满足式 D. 析取范式 3. 设命题公式)(),(P Q P H Q P G ?→→=→?=,则G 与H 的关系是( )。 以上都不是。 .;.;.;.D H G C G H B H G A ???

4. 已知命题))((R Q P G ∧→?=,则所有使G 取真值1的解释是( )。 A. (0,0,0),(0,0,1),(1,0,0) B. (1,0,0),(1,0,1),(1,1,0) C. (0,1,0),(1,0,1),(0,0,1) D. (0,0,1),(1,0,1),(1,1,1) 5. 设I 是如下一个解释,0 101),(),(),() ,(},,{b b P a b P b a P a a P b a D =, 则在解释I 下取真值为1的公式是( )。 ),(.);,(.);,(.);,(.y x yP x D x x xP C y x yP x B y x yP x A ??????? 6. 下面给出的一阶逻辑等值式中,( )是错的。 .(()())()(); .(()())()(); .()(()); .()(()). A x A x B x xA x xB x B x A x B x xA x xB x C xA x x A x D A xB x x A B x ?∨??∨??∨??∨??????→???→ 三、判断题 1. 判断下列陈述是否是命题? a) 3是无理数。 b) 什么时候开会呀? c) 2310x +≤。 d) 苹果树和梨树都是落叶乔木。 e) 吃一堑,长一智。 f) 李辛与李末是兄弟。 2. 设A 与B 均为含n 个命题变项的公式,判断下列命题的真值。 a) A ?B 当且仅当 A B 是可满足式。 b) 若A 为重言式,则A 的主析取范式中含有2n 个不同的极小项。 c) A 为矛盾式,当且仅当A 的主合取范式中含有2n 个不同的极大项。 d) 任何公式A 都能等值地化为联结词集{∧、∨} 中的公式。 3. 任何一阶逻辑公式都存在唯一与之等值的前束范式。

高级数理逻辑第3讲全解

3命题逻辑形式系统(FSPC)-续3.4 命题逻辑语义 P(X)→Q(F(X-a)) A(X)-->A(X) X是复数,则(x-a)平方大于等于0; X=R Px是复数 Q(x)代表的是大于等于0 F代表的是平方 X复数 T(P(X))=0.5 P(X)→(Q(X)→P(X)) A→B 3.4.1基本概念 1、什么是形式系统的语义 (1)形式系统与具体的系统无关 (2)能够用形式系统来描述现实系统 (3)把从形式系统解释成“→”现实系统的过程成为语义 语义有多种类型:指称语义,克里普克语义,操作语义,公理语义等2.语义构成(指称语义) 语义主要有两部分: (1)结构:(有两个主要部分构成) *确定研究对象集合,论域或个体域 *把形式系统中的变量到论域中的一组规则映射规则(2)域值:指一组给公式赋值的规则 根据这项规则将-Atomic→Value中

3.4.2 命题逻辑语义 1、语义结构 由于没有变量,所以只有第二部分赋值,值域为{0,1} 赋值规则: I. {}1,0∈V P II. ???? ?===?0 ,11 ,0)(V V V A A A T(~A)= 当T (A )=0时,T(~A)=1。当T (A )=1时,T(~A)=0。 III. ?????=====∧0 0,01,1)(V V V V V B A B A B A 或 当T(A)=T(B)=1时,T(B A ∧)=1,其他情况T(B A ∧)=0。 IV. ?????=====∨0 01 11)(V V V V V B A B A B A ,或, 当T(A)=1或者T (B )=1情况下,T (B A ∨)=1,其他情况T (B A ∨)=0。 V. ???===→,否则 或,01 01)(V V B A B A 当T(A)=0时候,T (B A →)=1,当T(B)=1时候,T (B A →)=1。其他情况下T (B A →)=0。 A B VI. ?????≠==?V V V V V B A B A B A ,,01)( 2、 语义的特殊公式 1) 公式A 为永真式,重言式tautologies ,如果对一切赋值v ,1=V A .

社会逻辑

防操纵社会选择机制初探 ——逻辑学与计算机科学的交叉研究 李娜孙雯(南开大学哲学院,天津300071) [摘要]:合理的投票系统都是操纵的,决策形成过程中的防策略投票问题,属于社会选择应用领域的前沿问题。文章从逻辑学的视角,研究了防操纵社会选择机制的核心理论-防策略不可能性定理,并结合计算机科学,梳理了防操纵社会选择机制的设计方法。笔者希望引起我国对这一领域感兴趣的学者做进一步的了解和研究。 [关键词]:防策略;社会选择;模态逻辑;计算复杂性 作者简介: 李娜(1958- ),女, 河南开封人, 南开大学哲学系, 教授, 博士生导师, 主要研究现代逻辑。 孙雯(1982- ),女,河北石家庄人,南开大学哲学系博士生,主要从事现代逻辑研究。 防操纵(non-manipulability)或防策略(Strategy-proofness),通常被认为是一个非常理想的属性,它要求投票者不能从谎报他们的真实偏好中获益,进而可以抑制社会选择中的策略投票, 促使投票者都投出自己的真实选票,使选举结果能够体现人们的真实意愿。然而,防操纵问题的解决仅依靠社会选择理论本身难以完成,越来越多的学者关注于用逻辑来刻画和模型社会选择机制中的防操纵问题。 目前,国内对防操纵的研究主要是在社会选择的理论中,关于防操纵社会选择机制的逻辑研究还比较少,所以,我们介绍了国外在这方面的研究成果,从防操纵社会选择机制的理论体系和具体的设计方法二个方面进行梳理,希望引起我国逻辑学界对这一领域感兴趣的学者进一步的了解和研究。 一防操纵社会选择机制的逻辑研究状况

防操纵社会选择理论的研究最早可以追溯到20世纪60年中后期关于投票理论的研究,维克瑞(Vickery)、达米特(Dummett)和法夸尔森(Farquharson)等都对防操纵问题进行过研究,但他们都未能对投票程序的可被操纵性从理论上加以解释和证明。之后,吉伯德(Allan Gibbard)和萨特斯韦特(Mark Satterthwaite)扩展了阿罗不可能定理的思想,分别于1973年和1975年提出了著名的Gibbard—Satterthwaite防策略不可能性定理。从本质上讲,防策略投票不可能性定理意味着在一定条件下,任何投票选择程序要么是可被操纵的,要么是独裁的,从理论上证明了社会决策过程中策略投票行为的普遍存在性。 21世纪初,泰勒(Alan D.Taylor)2005年在其著作《社会选择和操纵的数学》中用公理化的方法,首次严谨系统的给出了Gibbard-Satterthwaite防策略不可能定理、Duggan-Schwartz定理、Barberá-Kelly定理这三个定理的统一证明。[1]其中,Gibbard-Satterthwaite防策略不可能定理在社会选择中是非常重要的,在过去的三十年里,有许多关于这个定理的证明。泰勒借助集合论,通过大量的谓词演算,对Gibbard-Satterthwaite防策略不可能性定理进行了精致的逻辑刻画,这为化解操纵问题提供了很大的帮助。基于上述工作,范艾吉克(Jan van Eijck)2011年借助Saari方法,具体地说,Saari方法将三角型分为六个区域,分别代表六种不同的投票类型,通过从一个区域移动到另一个区域,来改变其投票类型。三角形的三个顶点分别代表不同的选票,越接近一个区域的顶点,越偏好于这个顶点所代表的选票。这种方法很巧妙的化简了Gibbard-Satterthwaite防策略不可能性定理的证明,从新的角度论证了防策略不可能性定理。[2] 不难看出,在社会选择理论中,最初引入逻辑,只是其公理化方法的严格使用,而不是作为一个正规的形式系统的应用,对此,艾格特尼斯(Thomas ?gotnes)、特罗卡尔(Nicolas Troquard)、帕瑞曼(Erik Parmann)等人做了进一步研究。 艾格特尼斯等,2006年基于模态逻辑,设计了一种可以刻画社会福利函数的逻辑,这种逻辑在语法上是简单的,但足以表达社会福利函数的属性,如量化偏好关系,刻画阿罗定理。[3]特罗卡尔等2011年设计了一种逻辑,用于推理社会选择函数。这个逻辑是也基于模态逻辑的,想法来源于命题控制联盟逻辑

相关主题
文本预览
相关文档 最新文档