当前位置:文档之家› Cellulose acetate butyrate as multifunctional additive for poly(butylene succinate) by melt blending

Cellulose acetate butyrate as multifunctional additive for poly(butylene succinate) by melt blending

Cellulose acetate butyrate as multifunctional additive for poly(butylene succinate) by melt blending
Cellulose acetate butyrate as multifunctional additive for poly(butylene succinate) by melt blending

Cellulose acetate butyrate as multifunctional additive for poly(butylene succinate)by melt blending:Mechanical

properties,biomass carbon ratio,and control of biodegradability

Yuya Tachibana a ,Nguyen Thien Truong Giang a ,b ,Fumi Ninomiya a ,Masahiro Funabashi a ,Masao Kunioka a ,*

a National Institute of Advanced Industrial Science and Technology (AIST)/1-1-1Higashi,Tsukuba,Ibaraki 305-8565,Japan b

National Institute of Animal Husbandry (NIAH)/Tu Liem District,Hanoi,Socialist Republic of Viet Nam

a r t i c l e i n f o

Article history:

Received 14December 2009Received in revised form 7January 2010

Accepted 8January 2010

Available online 22January 2010Keywords:

Poly(butylene succinate)Cellulose acetate butyrate Plasticizer

Biomass carbon ratio Biodegradability

a b s t r a c t

We have evaluated the plasticizing effect of poly(butylene succinate)(PBS)and cellulose acetate butyrate (CAB).PBS and CAB were mixed with a melt-kneading machine.The tensile strength and strain at break in the case of the blend with 10%CAB in the PBS matrix were 547%and 35MPa.It showed that CAB acted as a plasticizer for PBS.The biomass carbon ratio of the blends measured by accelerator mass spec-trometry based on ASTM D6866showed that the biomass carbon derived from a part of the CAB cor-responded to the theoretical value of the polymer blend.The biodegradation of PBS with the CAB melt blend powders was evaluated by a microbial oxidative degradation analyzer under controlled compost conditions based on ISO 14855-2.PBS with 10%CAB was not degraded within 60days due to the addition of CAB that could control the biodegradability of the PBS.

ó2010Published by Elsevier Ltd.

1.Introduction

Aliphatic polyesters,such as poly(lactic acid),polycaprolactone,and poly(butylene succinate)(PBS),have received signi ?cant interest for industrial applications,such as agricultural mulch sheets to protect against insects,control growing weeds and maintain suitable conditions,such as temperature and moisture,for the better growth and effective production of vegetables [1,2].It is important to control and inhibit the biodegradability during use,therefore chemical modi ?cation,the addition of a stabilizer,and polymer composites were employed.Furthermore,the ?exibility of the material is an important property for end-use applications.The biodegradability of materials is also useful for the solution of waste problems,thus biodegradable materials are called environment friendly polymers.

PBS resins are commercially available biodegradable materials [3,4].One of these is available under the tradename “Bionolle ò”based on the polycondensation of 1,4-butanediol and succinic acid by a Japanese company (Fig.1.)[5].However,other properties of PBS,such as softness,tensile and gas barrier properties,melt

viscosity for further processing,etc.,are frequently insuf ?cient for various end-use applications.To modify its properties,some methods such as an additive,inorganic ?ller,nanocomposite,and other polymer were developed [6].In addition to its biodegrad-ability,PBS has recently been produced from biorenewable resources to reduce greenhouse gas emissions and provide sustainable alternatives to the reliance on limited petroleum-based resources.The Showa High Polymer Co.[7]and Mitsubishi Co.[8,9]are now also establishing the production of succinic acid as one of the monomers of PBS from biomass resources,and a partially-biobased PBS is produced.We developed a fully biobased PBS from the biobased furfural [10].To promote high biobased materials,it should be required to use the additives derived from renewable materials.

Cellulose esters are one of the thermoplastics derived from biomass feedstocks.Cellulose acetate butyrate (CAB)esteri ?ed by acetyl and butyryl groups (Fig.1.)is a brittle and transparent material.Therefore,CAB has been used as a photo ?lm and a coating material.Some researchers reported that CAB acted as a plasticizer for some polyesters,such as poly(hydroxy butyrate)[11e 13].We reported that biobased furfural was a good plasticizer for PBS [14].Ogata et al.produced the cast ?lm of CAB which contained PBS as a plasticizer [15].The CAB cast ?lms containing PBS obtained using

*Corresponding author.Tel.:t81298614584;fax:t81298614589.E-mail address:m.kunioka@aist.go.jp (M.

Kunioka).Contents lists available at ScienceDirect

Polymer Degradation and Stability

journal h omepage:ww w.elsevi

https://www.doczj.com/doc/f611055777.html,/locate/polydegstab

0141-3910/$e see front matter ó2010Published by Elsevier Ltd.doi:10.1016/j.polymdegradstab.2010.01.006

Polymer Degradation and Stability 95(2010)1406e 1413

the cast-blend method were transparent and elastic materials,and the Young's modulus of the CAB/PBS blend?lms decreased as the ratio of PBS increased to40%because of the plasticizing effect of the PBS.On the other hand,we have used CAB as an additive derived from biomass feedstocks for PBS prepared by melt-pressing with a dry blend[16].The strain at break was over270%with the addition of20%CAB,however,it seemed that the melt-pressing used as the molding method is insuf?cient to prepare a homoge-neous blend sample.

Furthermore,the cellulose moiety of CAB is derived from biomass feedstocks,and the PBS/CAB blends become partially-biobased materials with the CAB ratio.When the product is used as a biobased material,it is important to measure the biomass carbon ratio.Recently,the accelerator mass spectroscopy(AMS)(Fig.2) measurement method for determining the biomass carbon ratio based on the American Society for Testing and Materials(ASTM) D6866method entitled“Standard test methods for determining the biomass carbon ratio of solid,liquid,and gaseous samples using radiocarbon analysis”has become very important in the?eld of biomass plastics[3,17e21].The AMS method has been used for the carbon dating of archaeological and geological samples.In addition, the method can be applied to a mass balance study using a lower amount of14C-labelled metabolic compounds for biological systems.AMS can measure very small14C concentrations,and determine the ratio of the radiocarbon-14to carbon-12and13.The ratio14C/12C in biomass carbon is around1?10à12.Fossil resources and materials are those that contain no14C because all the14C atoms that have a5730year half-life time had been changed to14N during their very long burial time.

As mentioned above,the biodegradability is the most charac-teristic and important property of PBS.The biodegradability of a polymer blend often changes from the original polymer depending on the composition.To evaluate the biodegradability of plastics,some international standard measurement methods have been set such as the International Organization for Standard(ISO) 14851,ISO14852,ISO14855-1,ISO14855-2,ISO14853,and ISO 15985.The ISO14855-2as shown in Fig.3is the ultimate aerobic biodegradability of plastic materials under controlled compost conditions using the Microbial Oxidative Degradation Analyzer (MODA)apparatus[3,22,23].

In this paper,we mixed PBS and CAB by melt-kneading and measured its chemical properties,thermal property,and mechanical properties.The variation in the biomass carbon contents as the ratio of CAB increased and the effect of the CAB on the biodegradability of the PBS were evaluated.

2.Experimental

2.1.Materials

PBS,extended with1,6-diisocyanatohexane(Mn?5.0?105, Mw/Mn?2.7)and CAB(Mn?1.1?105,Mw/Mn?2.8),were purchased from the Aldrich Chemical Co.All materials were used after drying at80 C for24h in vacuo.

2.2.Melt-kneading of PBS/CAB

PBS and CAB(ca.10g)were melt-kneaded using a kneading machine(Imoto Seisakusho,Co.,Ltd.;Micro melt-kneader)at the rotation rate of30rpm and220 C for15min.The mixing part (43.0mm length and19.4mm radius)is a cylinder with a rotating piston.The mixing mechanism is the Weissenberg effect generated by the surface of the piston and the melting blend resin.The mixed blends were compressed to a100?100?0.5mm sheet at20MPa using a hot-pressing machine(Tester Sangyo Co.,Ltd.;SA-303)at various temperatures for5min.After compressing,the melt-pressed?lms were gradually cooled to room temperature.After cooling,the sheets were cut into dumbbell-shaped

specimens

Fig.2.Outline of the accelerator mass spectroscopy(AMS)apparatus(size ca.15?10m,height2m)for determining the percentage of modern carbon(pMC)by the ratio of14C/12C (14As)at the Institute of Accelerator Analysis,Ltd.,

Japan.

Fig.1.Molecular structure of poly(butylene succinate)(PBS)and cellulose acetate

butyrate(CAB).

Y.Tachibana et al./Polymer Degradation and Stability95(2010)1406e14131407

(100mm total length,25mm total width,5mm narrow width, 0.5mm thick,and25mm effective distance between chalks)based on ISO527-type5(JIS K7127-3).

2.3.Chemical and thermal properties

The IR spectrum was measured by an FT-IR(Thermo Scienti?c; Nicolet6700)equipped with a single re?ection ATR system (Thermo Scienti?c;SMART iTR).The molecular weight was deter-mined by gel permeation chromatography(GPC)using a GPC system(Tosoh Co.,HLC-8320GPC)with a refractive index detector and a combination of two columns(Tosoh Co.,TSK GMHXL).The columns were eluted with chloroform(?ow rate of1mL/min at 40 C)and the molecular weights were calibrated with polystyrene standards.The melting temperature was determined by a differ-ential scanning calorimeter system(Seiko Instruments Inc.,Japan; SSC/5520).After the sample was heated to220 C and cooled to 30 C at the rate of10 C/min,it was heated from30 C to220 C at the rate of10 C/min as the second heating scan.The melting temperature of the PBS/CAB blend was measured for the second heating scan.

2.4.Mechanical properties

The tensile strength and strain at break of the PBS/CAB blend were measured using tensile tests.The tensile tests based on ISO 527-3(JIS K7127-3)were carried out using a universal material testing machine(Shimadzu Co.;Autograph AG-1000B)with the dumbbell-shaped specimens at room temperature.The grip distance was50mm,the gage length was25mm,and the tensile test speed rate was5mm/min.The tensile strength was determined as the ultimate strength required to break the materials on the stress e strain curve.The tensile strain at break was determined to be the maximum strain of the stress e strain curve.An average value was taken from the measurements of three samples under the same conditions for each blend specimen.

2.5.Sample preparation for measurement of biomasss carbon ratio

The sample preparation and measurement were performed at the Institute of Accelerator Analysis,Ltd.(IAA),Japan.All carbon atoms in the blend samples were transferred to graphite carbons through serial oxidation and reduction reactions using a quartz glass tube and a vacuum manifold system.The blend(6.5mg)was mixed with CuO(1g)and transferred to a quartz glass tube.The tube was closed after storage under vacuum for10h.The blend sample in the tube was oxidized to CO2at500 C for30min and at 850 C for2h.Subsequently,CO2,CO,and H2O were cold-trapped into another tube using dry ice-ethanol(à76 C)connected in the closed vacuum line system.The cold-trap step was repeated twice. Only pure CO2was cold-trapped in a quartz glass tube with pure ferrous powder in liquid nitrogen(à196 C)from the reactants such as CO2,CO,and H2O in another tube under dry ice-ethanol.The CO2 with ferrous powder was reduced to graphite at650 C for10h. After these processes,the pure graphite with oxidized iron(1mg) was then transferred to a sample holder(small rod shape;1mm hole).

2.6.Biomass carbon ratios based on ASTM D6866

The measurement of the ratio of the three carbon isotopes(14C, 13C,and12C)using AMS was performed at the IAA.The

AMS

Absorption column of carbon dioxide

Dehumidifying trap 2

Dehumidifying trap 1

Absorption column of water

CaCl2

CaCl2

SiO2

SiO2

Ammonia trap

2N H2SO4

Heater

Mixture of compost, test

material and sea sand

Reaction vessel

Humidifier

Water

Carbon dioxide trap

NaOH (Soda lime)

Outlet

Thermo sensor

Compressed air

Carbon dioxide trap system

NaOH+Ca(OH)

2

(Soda lime/Soda talc)

Fig.3.Biodegradation evaluation method by gravimetric measurement of carbon dioxide evolved in laboratory-scale test using Microbial Oxidative Degradation Analyzer(MODA) instrument in controlled compost at58 C based on ISO14855-2.

Y.Tachibana et al./Polymer Degradation and Stability95(2010)1406e1413

1408

measurement procedure is outlined in Fig.2.Our measurements were obtained using the3MV tandem accelerator system at the IAA.The carbon in the graphite,transferred from the blend samples,was ionized using a cesium cation beam.The reduced carbon atoms were accelerated using a3MV tandem accelerator (NEC Pelletron,9SDH-2).The amounts of12C and13C were detected as a current using multi-Faraday cups.The14C atoms were detected using a gas detector.The percent modern carbon(pMC)was calculated from the ratio of the14C to12C concentrations for the blend sample.The percentage of modern carbon(pMC)for an oil-based carbon is0%.The pMC for the biomass made from the?xa-tion of CO2in the modern atmosphere through photosynthesis is 108e110%in2002.The biomass carbon ratio was determined from the14C concentration measured using AMS based on the ASTM D6866standard method.The reference material was measured for the obtained graphite using AMS.The biomass carbon ratios were calculated as follows:

14As?14C=12C in sample(1) 14Ar?14C=12C in reference materialeNIST SRM4990cT(2) D14C??e14Asà14ArT=14Ar ?1000e&T(3) pMC?D14C=10t100e%T(4)

Biomass carbon ratio?0:93?pMCe%T(5) D14C is the isotope differential ratio of14C of the sample and reference material,and pMC is the percentage of modern carbon. Modern carbon based oxalic acid radiocarbon[Standard Reference material(SRM)4990c,NIST,USA]was used as the reference material.The pMC of the all biomass compounds was around110% in2002.The pMC can be slightly higher than100%because of the continuing,but diminishing effects of the1950s nuclear testing programs.During this period,large amounts of14C were ejected into the atmosphere.Because all the sample14C is referenced to a“prebomb”standard,all pMC values must be multiplied by0.93to correct for the bomb carbon and to obtain the true biomass carbon ratio of the sample as indicated in eq.(5)based on ASTM D6866.

2.7.Biodegradation measurement based on ISO14855-2

The PBS/CAB solid blend with dry ice was mechanically crushed by a rotating mixer with titanium blades.The crushing was carried out15times for3min each.After drying under reduced pressure at room temperature,the sample powder was separated using sieves of120mesh(125m m)and60mesh(250m m).Standard sieves with a guarantee were used.The powders,which passed through a60mesh sieve and held on the120mesh,were employed as the powder samples.The sieves with the crude polymer powders were set on a sieve vibrator and vibrated for15min.A biodegradation test was performed using the Microbial Oxidative Degradation Analyzer(MODA)apparatus in controlled compost at58 C as shown in Fig.3.The controlled compost(YK-6,Hissan Trading Co., Ltd.,Japan)for the MODA based on ISO14855-2was prepared as follows.The waste material of used wood blocks for growing mushrooms and chicken droppings was composted for seven months.During this period,a mature compost was prepared.After preparation,this obtained compost was sieved using a4.7mesh (4mm),kept at room temperature and prevented from drying. Before using this compost,an activation step(preincubation)was required to recover the biological activities for the respiration and biodegradation by the microorganisms.The controlled compost prepared by mixing144g of compost(60g total dry solids)and 320g of sea sand,and its water content was controlled to over 80wt%(the weight of the volatile solids of this compost without sea sand).This amount was for one reaction vessel.Preincubation was done once for the total amount of blanks and samples using a large container(5L).Sea sand was added to create good homo-geneous conditions and a better aerobic environment inside the compost.This compost for the activation step was mixed once

a day,and the water content was adjusted to65wt%for7days at

58 C.A10g sample was well mixed in the activated compost with sea sand(ca.400g)and transferred to a reaction https://www.doczj.com/doc/f611055777.html,post with no sample was used as the blank to determine the respiration activity of this compost.The biodegradation tests were performed at58 C and a10mL/min air(CO2-free)?ow rate for60days.The activated compost used in this study produced50mg CO2per gram of volatile solids of this compost over the?rst10days.In almost all cases,the number of experimental replicates of the blank or sample was two(duplicate).The produced CO2amounts were measured once a day by measuring the weights of an absorption column for carbon dioxide and an absorption column for water.The degree of biodegradation percentage was calculated from the produced CO2 amount from which was subtracted the respiration CO2amount determined from a blank,and the theoretically produced CO2 amount of the added sample.For example,10g of PBS could be changed into20.47g of CO2which was the theoretical amount for the100%biodegradation.As recommended by ISO14855-2,once a week,the sample and compost were well mixed and the water content was controlled.The absorbed CO2amounts for the absorption columns reached40%of the theoretical absorption capacity,and the chemicals(soda lime and soda talc)inside the columns were changed.This test method is based on ISO14855-2.

3.Results and discussion

3.1.Preparation of PBS blend with CAB by melt-kneading

In general,the properties of the polymer blend were signi?-cantly in?uenced by the mixing process conditions.The melt-kneading,which was the mixing process by melting over the melting temperature of the materials and mixing by the shear stress was employed in this study for preparing the homogeneous blend of PBS and CAB.The melting temperature of PBS used in this study was118 C,and CAB had no melting temperature.The aspects of the blends depended on the blending condition are shown in

Table1

Aspect of PBS/CAB blends.a

PBS/%CAB/%Temp/o C Transparency Color Shape

9010160translucent white self-standing 9010180translucent white self-standing 9010200translucent white self-standing 9010220translucent pale yellow self-standing 9010240translucent blown self-standing 9010260translucent dark blown self-standing 1000220translucent white self-standing 955220translucent white self-standing 8020220translucent pale yellow self-standing 7030220translucent pale yellow self-standing 6040220transparent pale yellow self-standing 5050220transparent brown soft

4060220transparent brown soft

3070220transparent brown soft

2080220transparent pale yellow brittle 1090220transparent pale yellow brittle

0100220transparent pale yellow brittle

a PBS and CAB(ca.10g)were melt-kneaded at rotation rate of30rpm for15min.

Y.Tachibana et al./Polymer Degradation and Stability95(2010)1406e14131409

Table 1.The tansparency,color,and shape were estimated from the appearance.Self-standing means that the blended ?lm could stand without any other supports,soft means that the blended ?lm could not stand by itself,and brittle means that the specimen could not be molded.When the melt-kneading temperature of the PBS and CAB is under 160 C,which is higher than the melting temperature of PBS,and the softening temperature of CAB,PBS and CAB had not been miscible,a heterogeneous blend was produced.The thermal degradation temperature of CAB or PBS for a 5%weight loss was over 300 C measured by thermogravimetric analysis.Therefore,the melt-kneading was carried out from 160 C up to 260 C.However,the resulting blends became dark in color with the increase in the temperature and the kneading time.For the blend including CAB,an unusual odor was produced during the melt-kneading.As the odor might be butyric acid,it suggested that the ester group of CAB was decomposed during the melt-kneading.On the other hand,no decomposition was observed in the thermog-ravimetric analysis of the PBS/CAB blend samples.Therefore,a small amount of CAB had decomposed due to the heating and shear stresses.The PBS/CAB ?lm was molded by a hot-pressing method.It seems that the resulting ?lms were fully miscible,because no heterogeneous part was observed in the ?lm by visual judgment.The ?lms became transparent with the CAB increase due to the effect of the CAB which was a transparent material.Although the blends with any ratio of CAB could be molded,the blend in which the ratio of CAB was over 80%could not be cut into speci-mens for measurement of its mechanical properties due to its brittleness.

3.2.Stability of PBS/CAB blend during melt-kneading

The number averaged molecular weight (Mn)and molecular weight distribution (Mw/Mn)of the melt-kneading blends of PBS/CAB (?90/10(wt/wt))for 15min at various melt temperatures are shown in Fig.4.The Mn and Mw/Mn of the original PBS were 5.0?105and 2.7,and those of the original CAB were 1.1?105and 2.8,respectively.The fact that the molecular weight decreased with the increasing temperature and ?nally down to 2.1?105at 260 C suggests thermal degradation of PBS or CAB in the blends.The Mn and Mw/Mn of the melt-kneading blends of various CAB ratios for 15min at 220 C are shown in Fig.5.The Mn linearly decreased with the CAB increase and the Mw/Mn was maximized at 50%CAB.This phenomenon showed the increase in CAB,which had a lower molecular weight than that of PBS,and the mixing of the materials which had different molecular weights.The decomposition

depending on the CAB ratio did not occur based on these observations.

The IR spectra of the PBS/CAB blends are shown in Fig.6.The peaks of the blends of the PBS/CAB samples with various ratios were the mixed peaks of PBS and CAB in proportion to the ratio

and

Temperature / °C

Mw/Mn

M n x 10-5

Fig. 4.The number averaged molecular weight (Mn)(C )and molecular weight distribution (Mw/Mn)(:)of PBS/CAB (9/1)melt-kneaded at various temperature for 15

min.

Ratio of CAB / %

Mw/Mn

M n x 10-5

Fig.5.The Mn (C )and Mw/Mn (:)of PBS/CAB blends melt-kneaded with various ratio of CAB at 220 C for 15min.The Mn and Mw/Mn of the original PBS are 5.0?105and 2.7,and those of original CAB were 1.1?105and 2.8,respectively.

3000200015001000

Wavenumbers /cm -1

PBS/CAB

-1

Fig.6.IR spectra of PBS/CAB blend by melt blended at 220 C for 15min.

Y.Tachibana et al./Polymer Degradation and Stability 95(2010)1406e 1413

1410

no new peak appeared.For example,the peak at 1712cm à1,which was the carbonyl double bond of PBS,gradually disappeared,and the peak of 1738cm à1,which was the carbonyl double bond of CAB,appeared.Therefore,the thermal degradation could be limited to scission of the polymer chain and the chemical reaction like a trans-esteri ?cation reaction only slightly occurred.In addition,an inter-molecular interaction was observed as indicated the miscible state between PBS and CAB molecules.

The thermal property is shown in Fig.7.The melting tempera-ture and heat of fusion depended on the CAB ratio.In the CAB range from 60%to 100%,the melting temperature disappeared due to the plasticizing effect of the CAB which was an amorphous material.By the addition of CAB from 5to 30%,the melting temperature decreased and a new peak appeared at a lower value than the original melting temperature of PBS.The higher peak was shifted to a lower value over for 10%CAB.It was theorized that the new peak appeared due to the change of the crystalline state of PBS during the melt-kneading and annealing,and the change could affect the properties of PBS.It was predicted that the mechanical properties of the blend,especially in the range from 10%to 20%were signi ?-cantly changed by changing the crystalline state of the PBS in the PBS/CAB blends.

3.3.Mechanical properties of PBS/CAB blend

To evaluate the plasticizing effect of CAB on PBS,the tensile strength and strain at break of the PBS/CAB blended ?lm prepared as dumbbell shape specimens were measured.The effect of the

melt-kneading temperature on the PBS/CAB(9/1)for 15min is shown in Fig.8.The blend melt-kneaded at 220 C was the highest elongated sample.The blend melt-kneaded at a lower temperature had a slightly lower elongated sample.It seemed that PBS and CAB were hardly miscible at low temperature and might produce a heterogeneous blended ?lm.As mentioned about the molecular weight,the PBS/CAB blends were decomposed at the higher temperature,therefore,the tensile strength and strain at break signi ?cantly decreased.

The effect of the CAB ratio in the PBS/CAB blend at 220 C for 15min is shown in Fig.9.The effect of the 5%CAB was very lows.However,by the addition of 10%CAB,the strain at break drastically increased by more than 42times the strain of PBS without CAB from 13to 527%.In spite of such a high strain at break,the tensile strength for the 10%CAB (36MPa)blend was almost equal to the PBS without CAB (33MPa).The strain at break and the tensile strength decreased with the further addition of CAB,and the blends over 80%CAB were very brittle due to the effect of the CAB brit-tleness.It was found that the addition of a small amount of CAB was effective for plasticizing PBS without decreasing the tensile strength.It was postulated that this plasticizing effect of CAB on PBS was derived from the change in the crystalline state of PBS as mentioned above.The different crystalline state formed by a small amount of CAB could disturb the original crystalline state by an intermolecular interaction.The drastic change in the mechanical properties using 10%CAB coincided with the thermal properties shown in Fig.7.The change in the mechanical properties using 40%CAB was small as the thermal properties did not change.Due to the addition of a large amount of CAB,the CAB properties were superior to that of PBS.

3.4.Biomass carbon ratio of PBS/CAB blend

To promote greenhouse gas emission reductions,the materials provided by biorenewable resources must be used even if it is a low ratio of materials.The PBS used in this study was synthe-sized from only petroleum-based compounds.The hydroxyl group of the cellulose functionalized by 45unit %of the acetyl group and 46unit %of the butyryl ester,and least 9unit %of the hydroxyl group was not acylated and free hydroxyl groups remained,which was calculated from the manufacture's data sheets.The acetyl and butyryl groups might contain only petroleum-based carbon and the cellulose moiety is only biobased carbon,therefore the theo-retical biomass carbon CAB ratio is 42.19%.Therefore,the addition of CAB to PBS increases the biomass carbon ratio of the

blend.

Fig.7.DSC charts (second scan)of PBS/CAB blend by melt-kneading at 220 C for 15min.The heating rate was 10

C/min.

Temperature / °C

Strength /MPa

S t r a i n a t b r e a k /%

Fig.8.The strain at break (C )and strength (:)of PBS/CAB (9/1)blend melt-kneaded at various temperatures for 15min.

Y.Tachibana et al./Polymer Degradation and Stability 95(2010)1406e 14131411

Determination of the biomass carbon ratio is an important issue for the promotion of products fabricated using biorenewable resources.The pMC measurement based on ASTM D6866is one of the accurate and practical methods.The biomass carbon ratio of the PBS/CAB blends based on the pMC measured by AMS is shown in Fig.10.The biomass carbon ratio of 0%CAB was 0.17?0.02%and that of 100%CAB was 44.97?0.21%.The biomass carbon ratio linearly changed with the CAB increase.The result showed that the blends of PBS and CAB became homogeneous ?lms without any pronounced degradation during the thermal process.The reason that the biomass carbon ratio was slightly greater than the theoretical value might be due to the fact that the actual ratio of the acetyl and butyryl groups in CAB was slightly different.Perhaps,the actual ratio of the ester group was lower.The determination of the actual ratio by 1H NMR was unsuccessful due to the complex peaks derived from the random acylation of cellulose.It was found that the biomass carbon ratio increased with the addition of the biobased CAB in addition to the plasti-cizing effect.The increase in the biomass carbon ratio could be measured by AMS.

3.5.Biodegradability of PBS/CAB blend based on ISO 14855-2To evaluate the effect of the CAB,the biodegradation tests of the PBS/CAB blends based on ISO 14855-2were performed using the MODA instrument in the controlled compost at 58 C.The results

are shown in Fig.11.By melt-kneading,the biodegradation rate of the kneaded PBS powders became slower and the degree of biodegradation of the original PBS powders decreased.As the PBS used was extended with 1,6-diisocyanatohexane,the urethane moiety was reacted and formed a cross-linkage by the heating and shear stress.Therefore,the unbiodegradable moiety slightly increased.Surprisingly,the blend with 10%CAB was hardly degraded after 60days.CAB could not be degraded in the compost conditions,however,on extraordinary effect of an additive was that the biodegradability was almost lost by the addition of only 10%CAB.The fact that the degree of biodegradation was slightly up to 5%after 60days showed that the microorganism in the compost was active.It was postulated that the change in the biodegrad-ability of the blend with 10%CAB was caused by the new crystalline phase formed by the addition of CAB.It was dif ?cult to degrade the new crystalline phase under the compost condition.

4.Conclusion

The PBS and CAB melt blend could be prepared by melt-kneading and hot-pressing.It was found that the strain at break and the tensile strength of the blend was maximized up to 547%and 36MPa with the addition of 10%CAB to the PBS without decreasing the strength.It was postulated that the melt-kneading and annealing with a small amount of CAB affected the PBS crys-talline state,and the mechanical properties were signi ?cantly changed.The biomass carbon ratio measurement by the AMS method was very essential to con ?rm the biomass carbon ratio in the polymer blend regarding their reference and reliabilities in the commercial market.It was found that the AMS measurement could accurately evaluate the biomass carbon ratio for the biomass-based and oil-based mixed polymer,such as the CAB and polymer blend,i.e.,PBS/CAB,and the biomass carbon ratio from the AMS method corresponded to the theoretical carbon ratio of CAB in the PBS blend.The biodegradability signi ?cantly decreased by the addition of only 10%CAB.It was found that CAB was available as a biomass-based plasticizer,and also as an inhibitor for the biodegradation of PBS.The reason for this has not been

clearly

Ratio of CAB / %

B i o m a s s c a r b o n r a t i o /%

Fig.10.The biomass carbon ratio of PBS/CAB blends melt-kneaded with various ratios of CAB at 220 C for 15min measured by AMS based on ASTM

D6866.

Ratio of CAB / %

Strength /MPa

S t r a i n a t b r e a k /%

Fig.9.The strain at break (C )and strength (:)of PBS/CAB blends melt-kneaded with various ratios of CAB at 220 C for 15min.For the ratio over 80%,the samples were brittle.

Y.Tachibana et al./Polymer Degradation and Stability 95(2010)1406e 1413

1412

determined yet,and we have been studying the mechanism of CAB as an inhibitor for the biodegradation of PBS. Acknowledgements

The authors are thankful for the?nancial support by the New Energy and Industrial Technology Development Organization (NEDO)for the Research Project entitled“Development of prepa-ratory basic bioenergy technologies:Accelerated technology development for biofuel:R&D of method to measure biomass carbon ratio of biopolyole?n.”

References

[1]Doi Y,Steinbuchel A,editors.“Polyesters”in biopolymers,vol.4.Weinhelm:

Wiley-VCH;2002.

[2]Tachibana Y,Maeda T,Ito O,Maeda Y,Kunioka M.Utilization of a biodegrad-

able mulch sheet produced from poly(lactic acid)/Eco?exò/modi?ed starch in mandarin orange groves.Int J Mol Sci2009;10:3599e615.

[3]Kunioka M,Ninomiya F,Funabashi M.Biodegradation of poly(butylenes

succinate)powder in a controlled compost at58 C evaluated by naturally-occurring carbon14amounts in evolved CO2based on the ISO14855-2 method.Int J Mol Sci2009;10:4267e83.

[4]Liu L,Yu J,Cheng L,Yang X.Biodegradability of poly(butylene succinate)(PBS)

composite reinforced with jute?ber.Polym Degrad Stab2009;94:90e4. [5]Fujimaki T.Processability and properties of aliphatic polyesters,‘BIONOLLE’,

synthesized by polycondensation reaction.Polym Degrad Stab1998;59:209.

[6]Ray SS,Okamoto M.Polymer/layered silicate nanocomposites:a review from

preparation to processing.Prog Polym Sci2003;28:1539e641.

[7]Mizukoshi T.Bionolle-approach to the more environmentally-friendly green

plastics.In:ICTABP2;Hangzhou,China,2006:123.

[8]Kato S,Tsukahara T,Kishimoto M,Nagaya I.Development of green sustainable

plastic(GS Pla).In:ICTABP2;Hangzhou,China,2006:96.

[9]Shitani N,Kato S.Green sustainable plastic(GC Pla)and GS Pla-degrading

enzyme from fungus.In:GSC-AON;Tokyo,Japan,2007:235.

[10]Masuda T,Kunioka M.Synthesis of poly(butylenes succinate)and its related

polymers using furfural and their biomass carbon ratio.In:18th Polymer Material Forum,2009:234.[11]Ceccorulli G,Pizzoli M,Scandola M.Effect of low molecular weight plasticizer

on the thermal and viscoelastic properties of miscible blends of bacterial poly (3-hydroxybutyrate)with cellulose acetate butyrate.Macromolecules 1993;26:6722e6.

[12]Buchanan CM,Gedon SC,Whete AW,Wood MD.Cellulose acetate butyrate

and poly(hydroxybutyrate-co-valerate)copolymer blends.Macromolecules 1992;25:7373e81.

[13]Wang T,Cheng G,Ma S,Cai Z,Zhang L.Crystallization behavior,mechanical

properties,and environmental biodegradability of poly(b-hydroxybutyrate)/ cellulose acetate butyrate blends.J Appl Polym Sci2003;89:2116e22.

[14]Frores ED,Funabashi M,Kunioka M.Mechanical properties and biomass

carbon ratios of poly(butylenes succinate)composites?lled with starch and cellulose?ller using furfural as plasticizer.J Appl Polym Sci2009;112:3410e7.

[15]Tatsushima T,Ogata N,Nakane K,Ogihara T.Structure and physical properties

of cellulose acetate butyrate/poly(butylenes succinate)blend.J Appl Polym Sci 2005;96:400e6.

[16]Linsyarini A,Kunioka M,Funabashi M.Biodegradable poly(butylenes succi-

nate)blended with biorenewable derivatives from polysaccharides.Trans Mater Res Soc Jpn2008;33:1159e64.

[17]Kunioka M,Ninomiya F,Funabashi M.Novel evaluation method of biode-

gradabilities for oilbased polycaprolactone by naturally occurring radio-carbon-14concentration using accelerator mass spectrometry based on ISO 14855-2in controlled compost.Polym Degrad Stab2007;92:1279e88. [18]Kunioka M,Inuzuka Y,Ninomiya F,Funabashi M.Biobased contents of

biodegradable poly(e-caprolactone)composites polymerized and directly molded using aluminum tri?ate from caprolactone with cellulose and inor-ganic?ller.Macromol Biosci2006;6:517e23.

[19]Kunioka M,Ninomiya F,Funabashi M.Biobased contents of organic?llers

and polycaprolactone composites with cellulose?llers measured by accel-erator mass spectrometry based on ASTM D6866.J Polym Environ 2007;15:281e7.

[20]Funabashi M,Ninomiya F,Ohara K,Kunioka M.Biomass carbon ratio of

biomass chemicals measured by accelerator mass spectrometry.Bull Chem Soc Jpn2009;82:1538e47.

[21]Narayan R.Biobased and biodegradable polymer materials.San Diego,CA,

USA:ACS Polymer Preprints;2005.pp.319e20.

[22]Kunioka M,Ninomiya F,Funabashi M.Biodegradation of poly(lactic acid)

powders proposed as the reference test materials for the international stan-dard of biodegradation evaluation methods.Polym Degrad Stab 2006;91:1919e28.

[23]Funabashi M,Ninomiya F,Kunioka M.Biodegradation of polycaprolactone

powders proposed as reference test materials for international standard of biodegradation evaluation method.J Polym Environ2007;15:7e17.

Y.Tachibana et al./Polymer Degradation and Stability95(2010)1406e14131413

四种再生纤维的概述

四种再生纤维的概述及鉴定方式 再生纤维具有优良的吸湿性、穿着舒适性,是纺织服装业最理想、最有开 发潜力的纺织原料。 再生纤维概述: 1.Tencel纤维 Tencel纤维是以针叶树为主的木浆、水和溶剂氧化胺混合,加热至完全溶解,在溶解过程中不会产生任何衍生物和化学作用,经除杂而直接纺丝,其分子结构是简单的碳水化合物。Tencel纤维在泥土中能完全分解,对环境无污染;另外,生产中所使用的氧化胺溶剂对人体完全无害,几乎完全能回收,可反复使用,生产中原料浆粕所含的纤维素分子不起化学变化,无副产物,无废弃物排出厂外,是环保或绿色纤维。该纤维织物具有良好的吸湿性、舒适性、悬垂性和硬挺度且染色性好,加之又能与棉、毛、麻、腈、涤等混纺,可以环锭纺、气流纺、包芯纺,纺成各种棉型和毛型纱、包芯纱等。 2.Modal纤维 Modal纤维是一种全新的纤维素纤维,Modal纤维的原料来自于大自然的木材,使用后可以自然降解。由于这类纤维是采用天然纤维素为原料,具有生物将解性,并且在纤维生产过程中不产生类似粘胶县委的严重污染环境问题,是21世纪的新型环保纤维。Modal纤维价格是Tencel纤维的一半,系第二代再生纤维素纤维。Modal纤维可与多种纤维混纺、交织,发挥各自纤维的特点,达 到更佳的服用效果。Modal纤维面料吸湿性能、透气性能优于纯棉织物,其手 感柔软,悬垂性好,穿着舒适,色泽光亮,是一种天然的丝光面料。 3.大豆蛋白纤维 大豆蛋白纤维是以出油后的大豆废粕为原料,运用生物工程技术,将豆粕中的球蛋白提纯,并通过助剂、生物酶的作用,使提纯的球蛋白改变空间结构,再添加羟基和氨基等高聚物,配制成一定浓度的蛋白纺丝液,用湿法纺丝工艺纺成。豆粕是油脂车间的副产品,在我国资源十分吩咐,属废物综合利用,资源取之不尽,用之不竭。大豆蛋白纤维可称为新世纪的“绿色纤维”。由于大豆蛋白纤维外层基本上是蛋白质,与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工艺中加入定量的有杀菌消炎作用的中草药与蛋白质侧链以化学键相结合,药效显著且持

再生纤维概述

再生纤维具有优良的吸湿性、穿着舒适性,是纺织服装业最理想、最有开发潜力的纺织原料。 再生纤维概述: 1.Tencel纤维 Tencel纤维是以针叶树为主的木浆、水和溶剂氧化胺混合,加热至完全溶解,在溶解过程中不会产生任何衍生物和化学作用,经除杂而直接纺丝,其分子结构是简单的碳水化合物。Tencel纤维在泥土中能完全分解,对环境无污染;另外,生产中所使用的氧化胺溶剂对人体完全无害,几乎完全能回收,可反复使用,生产中原料浆粕所含的纤维素分子不起化学变化,无副产物,无废弃物排出厂外,是环保或绿色纤维。该纤维织物具有良好的吸湿性、舒适性、悬垂性和硬挺度且染色性好,加之又能与棉、毛、麻、腈、涤等混纺,可以环锭纺、气流纺、包芯纺,纺成各种棉型和毛型纱、包芯纱等。 2.Modal纤维 Modal纤维是一种全新的纤维素纤维,Modal纤维的原料来自于大自然的木材,使用后可以自然降解。由于这类纤维是采用天然纤维素为原料,具有生物将解性,并且在纤维生产过程中不产生类似粘胶县委的严重污染环境问题,是21世纪的新型环保纤维。Modal纤维价格是Tencel纤维的一半,系第二代再生纤维素纤维。Modal纤维可与多种纤维混纺、交织,发挥各自纤维的特点,达到更佳的服用效果。Modal纤维面料吸湿性能、透气性能优于纯棉织物,其手感柔软,悬垂性好,穿着舒适,色泽光亮,是一种天然的丝光面料。 3.大豆蛋白纤维 大豆蛋白纤维是以出油后的大豆废粕为原料,运用生物工程技术,将豆粕中的球蛋白提纯,并通过助剂、生物酶的作用,使提纯的球蛋白改变空间结构,再添加羟基和氨基等高聚物,配制成一定浓度的蛋白纺丝液,用湿法纺丝工艺纺成。豆粕是油脂车间的副产品,在我国资源十分吩咐,属废物综合利用,资源取之不尽,用之不竭。大豆蛋白纤维可称为新世纪的“绿色纤维”。由于大豆蛋白纤维外层基本上是蛋白质,与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工艺中加入定量的有杀菌消炎作用的中草药与蛋白质侧链以化学键相结合,药效显著且持久,避免了棉制品用后整理方法开发的功能性产品,其药效难以持续的缺点。大豆蛋白纤维织物手感柔软、光滑,具有良好的吸湿透气性,有真丝般的光泽,抗皱性优于真丝,尺寸稳定性好。 4.竹纤维 竹纤维是继大豆蛋白纤维之后我国自行开发研制并产业化的新型再生纤维素纤维,竹纤维分竹素纤维和竹原纤维。竹素纤维是以毛竹为原料,在竹浆中加入功能性助剂,经湿法纺丝加工而成。竹原纤维是将毛竹经天然生物制剂处理后所制取的纤维。作为纺丝原料的竹浆粕,来源于速成的鲜竹,资源十分丰富。其废弃物土埋、焚烧不会造成环境污染,属于环保型纤维,满足绿色消费的需求。竹纤维是性能与粘胶纤维相类似,竹纤维织物具有良好的吸湿、透气性,其悬垂性和染色性能也比较好,有蚕丝般的光泽和手感,且具有抗菌、防臭、防紫外线功能

数据管理系统之数据可视化设计

数据管理系统企业级数据可视化项目Html5 应用实践 项目经理:李雪莉 组员:申欣邹丽丹陈广宇陈思 班级:大数据&数字新媒体 一、项目背景 随着大数据、云计算和移动互联网技术的不断发展,企业用户对数据可视化的需求日益迫切。用户希望能够随时随地简单直观的了解企业生产经营、绩效考核、关键业务、分支机构的运行情况,即时掌握突发性事件的详细信息,快速反应并作出决策。随着企业信息化的不断推进,企业不断的积累基础信息、生产运行、经营管理、绩效考核、经营分析等以不同形式分布在多个系统或个人电脑文档内的业务数据。如何将大量的数据进行分析整理,以简单、直观、高效的形式提供给管理者作为经营决策的依据是当前企业数据应用的迫切需求。传统的企业数据可视化方案多基于Java Applet、Flash、Silverlight 等浏览器插件技术进行开发,在当前互联网和移动互联网技术高速发展的背景下,Web技术标准也随之高速发展,用户对互联网技术安全性和使用体验的要求越来越高。Java Applet、Flash、Silverlight 等浏览器插件技术因为落后和封闭的技术架构,以及高功耗、高系统资源占用,已经被微软、谷歌、苹果、火狐等主流操作系统和浏览器厂商逐步放弃,转而不断支持和完善基于HTML5的新一代Web技术标

准 对数据进行直观的拖拉操作以及数据筛选等,无需技术背景,人人都能实现数据可视化无论是电子表格,数据库还是 Hadoop 和云服务,都可轻松分析其中的数据。 数据可视化是科学、艺术和设计的结合,当枯燥隐晦的数据被数据科学家们以优雅、简明、直观的视觉方式呈现时,带给人们的不仅仅是一种全新的观察世界的方法,而且往往具备艺术作品般的强大冲击力和说服力。如今数据可视化已经不局限于商业领域,在社会和人文领域的影响力也正在显现。 数据可视化的应用价值,其多样性和表现力吸引了许多从业者,而其创作过程中的每一环节都有强大的专业背景支持。无论是动态还是静态的可视化图形,都为我们搭建了新的桥梁,让我们能洞察世界的究竟、发现形形色色的关系,感受每时每刻围绕在我们身边的信息变化,还能让我们理解其他形式下不易发掘的事物。 二、项目简介 目前,金融机构(银行,保险,基金,证劵等)面临着诸如利率汇率自由化,消费者行为改变,互联网金融崛起等多个挑战。为满足企业的发展需要,要求管理者运用大数据管理以更为科学的手段对企业进行精准管理,从而更好地把握市场在竞争中胜出。德昂BI商务智能解决方案基于业务的数据分析正是帮助企业实现科学化管理的关键,因而获得客户的高度重视与高频度使用。 激烈的市场竞争下,通过对金融机构业务数据的汇总与整理实现

常见食品纤维素含量

常见食品纤维素含量常见食品的纤维素含量

麦麸:31% 谷物:4-10%,从多到少排列为小麦粒、大麦、玉米、荞麦面、薏米面、高粱米、黑米。

麦片:8-9%; 燕麦片:5-6% 马铃薯、白薯等薯类的纤维素含量大约为3%。 豆类:6-15%,从多到少排列为黄豆、青豆、蚕豆、芸豆、豌豆、黑豆、红小豆、绿豆。(无论谷类、薯类还是豆类,一般来说,加工得越精细,纤维素含量越少。 蔬菜类:笋类的含量最高,笋干的纤维素含量达到30-40%,辣椒超过40%。其余含纤维素较多的有:蕨菜、菜花、菠菜、南瓜、白菜、油菜。 菌类(干):纤维素含量最高,其中松蘑的纤维素含量接近50%,30%以上的按照从多到少的排列为:香菇、银耳、木耳。此外,紫菜的纤维。20%素含量也较高,达到. 黑芝麻、松子、10%以上的有:。坚果:3-14%以下的有白芝麻、核桃、榛子、胡桃、;10%杏仁

葵瓜子、西瓜子、花生仁。含量最多的是红果干,纤维素含量接近:水果大枣、酸枣、黑枣、其次有桑椹干、50%,樱桃、小枣、石榴、苹果、鸭梨。各种肉类、蛋类、奶制

品、各种油、海鲜、酒精饮料、软饮料都不含纤维素;各种婴幼儿食品的纤维素含量都极低。 蔬菜中的膳食纤维 1、笋干:笋干含有多种维生素和纤维素,具有防癌、抗癌作用。发胖的人吃笋之后,也可促进消化,是肥胖者减肥的佳品 2、辣椒:辣椒中含有丰富的膳食纤维,能清洁消化壁和增强消化功能,并能抑制致癌物质的产生和加速有毒物质的排除,可降低血脂和控制胆固醇。. 3、蕨菜:其所含的膳食纤维能促进胃肠动,具有下气通便、清肠排毒的作用。经常食用

还可降低血压缓解头晕失眠治疗风湿性关炎等作用。其所含的膳食纤维能促进胃肠蠕动具有下气通便清肠排毒的作用经常食用还降低血压缓解头晕失眠治疗风湿性关节

药用辅料羟丙基甲基纤维素在制剂中的应用

药用辅料羟丙基甲基纤维素在制剂中的应用 一、前言 药剂辅料不仅是原料药物制剂成型的物质基础,而且与制剂工艺过程的难易程度、药品质量、稳定性、安全性、释药速度、作用方式、临床疗效以及新剂型、新药途径的开发密切相关。新药用辅料的出现往往推动着的提高以及新剂型的发展。药用辅料羟丙基纤维素(HPC)是由碱性纤维素与环氧丙烷在高温高压下反应而得的非离子型纤维素醚。根据其取代基羟丙氧基含量的高低,其分为低取代羟丙基纤维素(LS-HPC或L-HPC)(中国药典称其为羟丙纤维素,规定其羟丙氧基含量为7.0%~16.0%),和高取代羟丙基纤维素(H-HPC;USP/NF中则为HPC)(USP/NF 中规定其羟丙氧基含量不得超过80. 5%;JP中则规定为53. 4% ~77.5%)。L-HPC 和H-HPC均为白色或类白色粉末,无臭,无味,无毒安全,具有良好的抗菌性。L-HPC 在水中溶胀成胶体溶液,在乙醇、丙酮或乙醚中不溶,具有黏合、成膜、乳化等性质,主要被用作崩解剂和黏合剂;而H-HPC常温下溶于水和多种有机溶剂,具有良好的热塑性、黏结性和成膜性,所成的膜坚硬、光泽度好、弹性充分,主要被用作成膜材料和包衣材料等。 羟丙基甲基纤维素( HPMC) 是纤维素衍生物,也是目前国内和国外最受欢迎的药用辅料之一,由于它相对分子质量和黏度的不同,具备乳化、黏合、增稠、增黏、助悬、胶凝和成膜等特点和用途,在制药技术中用途广泛。 二、HPMC的基本性质 羟丙基甲基纤维素( HPMC) ,HPMC为白色或乳白色、无臭无味、纤维状粉末或颗粒,干燥失重不超过10%,能溶于冷水而不溶于热水,在热水中缓缓膨胀、胶溶,形成粘稠的胶体溶液,冷却为溶液,加热时相应地成为凝胶。HPMC不溶于乙醇、氯仿和乙醚,溶于甲醇和氯甲烷混合溶剂中,也溶于丙酮,氯甲烷和异丙醇的混合溶剂以及其它一些有机溶剂中。其水溶液能耐盐(其胶体溶液不被盐类破坏),1%水溶液的pH6一8。HPMC分子式为C8H15O8-( C10H18O6) -C815O,相对分子质量约为86 000。本品为半合成材料,是纤维素的部分甲基和部分聚羟丙基醚。HPMC 属于一种非离子型纤维素醚,它的溶液不带离子电荷不与金属盐或离子)*+, 是纤维素的部分甲基和部分聚羟丙基醚; 具有许多其他辅料所不具备的特性。它有优异的冷水水溶性,在冷水中稍加搅拌便能溶解成透明的溶液,反而在60℃以上热水中基本不溶解,仅能溶胀,它是一种非离子型纤维素醚,其溶液不带离子电荷,不与金属盐或离子有机化合物作用,它在制剂生产过程中不与其他原辅料反应;它具有较强的抗敏性,且随分子结构内取代度的提高,其抗敏性更强,也更稳定;它还具有代谢惰性,作为药用辅料,不被代谢,不被吸收,故在药品食品中不提供热量,对糖尿病患者需用的低热值、无盐、无变原性药品及食品具有独特适用性;它对酸和碱比较稳定,但若PH 值超出2~11并同时受较高温度影响或存放时间较长,其黏度则会降低;其水溶液能提供表面活性,呈现出适度的表面张力与界面张力值;它在两相体系中具有有效的乳化作用,可作为有效的稳定剂和保护胶体;其水溶液具有优良的成膜性能,是片剂和丸剂的良好包衣材料。由它形成的膜具有无色、坚韧的优点,加入甘油还可提高它的可塑性。

新型再生纤维素纤维

新型再生纤维素纤维 小组成员:翁密侬 41006010214 刘肖肖 41006010219 冯莹莹 41006010215 张玲玲 41006010217 张亚婷 41006010209 顾恬静 41006010206

新型再生纤维素纤维的发展前景 (一)资源前景 从长远看,合成纤维的原料石油是一次性资源,终会枯竭,因此,在这一背景下,发展纤维素纤维是解决纺织品原料的长远之计。自然界纤维年产量约1000亿吨,大约只有2.5%是通过再生途径制成纤维加以利用的。可见,纤维素资源十分丰富,而且加上纤维素是可再生的自然资源,具有可持续性、可循环性。因此,作为纺织品的原料,从资源供应量这一方面来说,再生纤维素纤维有着相当大的竞争力,发展前景十分可观。 (二)市场前景 自1960年以来,世界纤维消耗量的增长与人口增长呈并行发展趋势及对2020年世界人口和纤维消耗量增长的预测,2020年世界纤维的总消耗量为7000万吨,人均9.2kg。若再生纤维素纤维仍保持在目前的水平上,则棉纤维须从目前的1800万吨增加到3200万吨,而生产这些棉纤维所需资源(土地和水)几乎是无法到达的,而作为棉纤维代用品的再生纤维素的原料木材等将大幅增加。因此,大力发展再生纤维素纤维既是市场的需求,从资源方面来说又是可能的。另外,随着人们对舒适健康生活重视的提高,保健纺织品引起了消费者的极大关注。而后面介绍的四种新型再生纤维素纤维中,竹纤维和甲壳素纤维都有保健功能,竹纤维在生产过程中无虫蛀、无腐烂、无需使用任何农药,且因为竹子的天然抗菌性,使纤维在服用中不会对皮肤造成任何过敏性反应。甲壳素纤维具有抑菌、防臭、止痒等功能。可见,新型再生纤维素纤维有着相当大的市场潜力。 (三)绿色前景 当今,由于全球生态环境受到严重的破坏,环境污染日趋严重,环保议题已成为全人类共同关心的焦点,因此,在“我们只有一个地球”的口号下,消费者越来越多地考虑到产品对生态的影响,生产过程对环境的影响,天然资源的消耗及产品的可处理性等问题,从而,在人们思想意识中逐渐形成“绿色产品”、“绿色消费”、“绿色营销”等观念,且已形成一股国际潮流。据经济协作与开发组织(OECD)在OECD国家中作过的调查表明,大部分消费者愿意选购较高的环保产品。加拿大一项全国性民意调查中,有80%接受调查者表示,如果环保产品价格比一般产品价格高出10%左右,还是愿意购买环保产品。前面介绍的四种新型再生纤维素纤维都属于绿色纤维,在生产过程中不会对生态环境造成危害;纤维制

食品营养标签管理规范--膳食纤维(简)

食品营养标签管理规范 卫生部印发 2008年5月1日开始实施 推荐性法规:国家鼓励食品企业对其生产的产品标示营养标签。卫生部根据本规范的实施情况和消费者健康需要,确定强制进行营养标示的食品品种、营养成分及实施时间。 营养标签是指向消费者提供食品营养成分信息和特性的说明,包括营养成分表、营养声称和营养成分功能声称。 食品企业在标签上标示食品营养成分、营养声称、营养成分功能声称时,应首先标示能量和蛋白质、脂肪、碳水化合物、钠4种核心营养素及其含量。 膳食纤维的定义 膳食纤维(dietary fiber)膳食纤维是指植物中天然存在的、提取的或合成的碳水化合物的聚合物,其聚合度DP ≥ 3、不能被人体小肠消化吸收、对人体有健康意义的物质。包括纤维素、半纤维素、果胶、菊粉及其他一些膳食纤维单体成分等。 食品中产能营养素的能量折算系数 表 1 食物中产能营养素的能量折算系数 * 1 营养成分的标示

包括能量和核心营养素的标识以及宜标示的营养成分的标示,膳食纤维属于宜标识的营养成分。 膳食纤维包括纤维素、半纤维素、果胶、菊粉及其他一些膳食纤维单体成分。膳食纤维可根据其成分选择检测方法和标示方式。 1)以国标或GB/T 9822测定数据,标示为: 不溶性膳食纤维…克(g); 2)以AOAC 、AOAC 方法测定数据,标示为: 膳食纤维…克(g);也可标示为:膳食纤维、可溶性膳食纤维、不可溶性膳食纤维, 例如:膳食纤维…克(g) 或膳食纤维…克(g) --可溶性膳食纤维…克(g)(自愿) --不溶性膳食纤维…克(g)(自愿) 3)以AOAC其他方法测定的膳食纤维单体成分的数据,可标示出膳食纤维和单体成分如“膳食纤维(以xxx计)…克或g ”, 例如:膳食纤维(以菊粉计)…克(g) “零”数值的表达 当某食品营养成分含量低微,或其摄入量对人体营养健康的影响微不足道时,允许标示“0”的数值。可标示的“0”的界限值如下表: 表5 标示“0”的界限值

十三五规划(纤维素纤维)

再生纤维素纤维行业“十三五”发展规划 ——中国化学纤维工业协会纤维素纤维分会 前言 再生纤维素纤维是采用富含纤维素的植物原料,经一系列的化学处理和机械加工而制的的纤维,主要品种包括粘胶纤维、醋酸纤维和铜氨纤维等传统再生纤维素纤维,以及以天丝为代表的新型溶剂法纤维素纤维等。 再生纤维素纤维是重要的纺织材料之一,具有很好的吸湿性、染色性和舒适性。在人们对产品可回收、可降解、对织物舒适性要求越来越高的条件下,其在纺织原料中凸现出越来越重要的作用,另外,其原料为可再生资源,是循环经济可持续发展的重要化学纤维产品。因此,再生纤维素纤维有着更为重要的意义和广泛的发展空间。 我国再生纤维素纤维工业的整体水平和竞争能力的发展将对世界再生纤维素纤维工业 产生重要影响。“当前纺织行业发展的新常态特征日益凸显,对于企业提出更高的调整转型的要求,企业发展压力和挑战将持续增加,但同时也隐含着外部发展的机遇和行业自身提升的动力”。在当前新常态下如何生存与发展是再生纤维素纤维行业“十三五”面临的迫切任务。 《再生纤维素纤维行业“十三五”发展规划》总结分析了我国再生纤维素纤维制造行业的发展现状及特点,存在主要问题和产业发展趋势,明确了“十三五”期间行业发展由“数量型”向“技术效益型”战略转变的指导思想,明确了发展目标和发展重点,提出了发展高新技术、功能性、差别化纤维的技术方向和主要任务。对贯彻落实《国民经济和社会发展第十三个五年规划纲要》精神和《纺织工业“十三五”发展纲要》的具体要求,推动再生纤维素纤维行业的科技进步和自主创新,实现全面、协调和可持续发展,具有重要的指导作用。 一、“十二五”发展规划完成情况及特点 我国是世界最大的再生纤维素纤维生产国,主要生产粘胶纤维、醋酸纤维(用于烟草行业)、NMMO溶剂法纤维素纤维、低温尿素溶解纤维素纤维等。其主要产品是粘胶纤维,约占世界粘胶纤维总量近三分之二。原料采用进口木浆,进口棉短绒生产棉浆,国产木浆、棉浆、竹浆、纸改浆等品种,原料进口依存度约在60%左右。 “十二五”期间,纤维素纤维行业在大宗原料、纤维生产方面基本完成规划目标。在原料利用上发展较慢,木浆发展较快,许多大型纸浆生产企业都在转产溶解浆,溶解木浆产能已达150余万吨。棉浆生产由于资源受限,总量萎缩。竹、麻浆产量较低,秸秆利用进展缓慢。粘胶纤维工业在生产设备、工艺技术、产品质量、节能减排等方面都有了大幅度提高。高湿模量纤维、NMMO溶剂法纤维素纤维、低温尿素溶解纤维素纤维等也有了可喜的进步。 其特点是:企业规模不断增强、产量持续增长,产业集中度进一步加大、产业链配套有

食用纤维素

食用纤维素(网摘) 纤维素虽然不能被人体吸收,但具有良好的清理肠道的作用,因此成为营养学家推荐的六大营养素之一,具有很好的肠道质素作用。各种食物的纤维素含量--麦麸:31% 谷物:4-10%,从多到少排列为小麦粒、大麦、玉米、荞麦面、薏米面、高粱米、黑米。麦片:8-9%;燕麦片:5-6% 马铃薯、白薯等薯类的纤维素含量大约为3%。豆类:6-15%,从多到少排列为黄豆、青豆、蚕豆、芸豆、豌豆、黑豆、红小豆、绿豆无论谷类、薯类还是豆类,一般来说,加工得越精细,纤维素含量越少。蔬菜类:笋类的含量最高,笋干的纤维素含量达到30-40%,辣椒超过40%。其余含纤维素较多的有:蕨菜、菜花、菠菜、南瓜、白菜、油菜菌类(干):纤维素含量最高,其中松蘑的纤维素含量接近50%,30%以上的按照从多到少的排列为:发菜、香菇、银耳、木耳。此外,紫菜的纤维素含量也较高,达到20% 坚果:3-14%。10%以上的有:黑芝麻、松子、杏仁;10%以下的有白芝麻、核桃、榛子、胡桃、葵瓜子、西瓜子、花生仁水果:含量最多的是红果干,纤维素含量接近50%,其次有桑椹干、樱桃、酸枣、黑枣、大枣、小枣、石榴、苹果、鸭梨。富含纤维素的食品之于冠心病,能降低胆固醇。胆固醇是造成动脉粥样硬化的原因之一,是由于血浆胆固醇的增加,使较多的胆固醇沉积在血管内壁。其结果不仅降低了血管的韧性和弹性,而且使血

管内壁加厚,管径变细,影响血液流通,增加了心脏的负担。而食品中的粗纤维能与胆固醇相互结合,防止血浆胆固醇的升高,从而有利于防止冠心病的发生和进一步恶化。另外,食品中的粗纤维还能和胆酸结合,使部分胆酸随着粗纤维排出,而胆酸又是胆固醇的代谢产物。为了补充被排出的部分胆酸,就需要有更多的胆固醇进行代谢。胆固醇代谢的增加则减少了动脉粥样硬化发生的可能性。那么,哪些食物含纤维素多呢?①海带、紫菜、木耳、蘑菇等菌藻类;②黄豆、赤小豆、绿豆、蚕豆、豌豆等豆类;③水果、蔬菜类。一言概之,冠心病患者宜多食富含纤维素的食物。一些粗粮,诸如玉米,小米、紫米、高粱、燕麦这样的食物。纤维素不能背吸收,可以充盈你的肠道,促进排泄。排泄顺畅了,身体就自然不会聚集什么毒素了。而且这类食物不被肠道吸收,就会使你有饱涨感吃不下别的

医药、食品用甲基纤维素

医药、食品用甲基纤维素 医药、食品用羟丙基甲基纤维素 中文名称:甲基纤维素 英文全称:Methy Cellulose 英文简称:MC 分子式:〔 C 6H 7O 2(OH )3 -n(OCH 3)n 〕x 中文名称:羟丙基甲基纤维素 英文全称:Hydroxypropyl Methyl Cellulose 英文简称:HPMC 分子式:〔C 6H 7O 2(OH )3-m-n(OCH 3)m(OCH 2CH(OH)CH 3)n 〕x 1) 外观:本产品为白色至微黄色颗粒或粉末。 2) 可溶性:本产品在无水乙醇、乙醚、丙酮中几乎不溶,在冷水中溶胀成澄清或微浑 浊的胶体溶液。HPMC 可溶在某些有机溶剂中,也可溶解在不——有机溶剂的混合溶剂中。 3) 颗粒度:100目筛上物≤5.0。 4) 本产品随甲氧基含量减少,凝胶点升高,水溶解度下降,表面活性也下降。 1、 抗盐性:本产品是非离子型纤维素醚,而且不是聚合电解质,因此在金属盐或 有机电解质存在时,在水溶液中比较稳定,但过量的添加电解质,可引起凝胶和沉淀。 2、 表面活性:本产品水溶液具有表面活性功能,可作为胶体保护剂,乳化剂,和 分散剂。 3、 热凝胶:HPMC 水溶液当加热到一定温度时,变的一透明,凝胶,形成沉淀, 但在逐渐冷却时,则又恢复到原来的溶液状态。而发生这种凝胶和沉淀的温度主要取决于它们的类型、浓度和加热速率。 4、 PH —稳定性:本产品水溶液的粘度几乎不受酸或碱影响,而且PH 值在3.0~11.0 的范围内比较稳定。因此,溶液的粘度在长期贮存过程中趋于稳定。 5、 保水性:本产品是一种高效保水剂。其医药级产品在食品、化妆品以及许多其 它方面具有广泛应用。 6、 成膜性:本产品可形成一种透明、坚韧、柔性的薄膜,而这种膜能极好的阻止 油脂的渗入。在食品中的应用,常常运用这种性质,在冷却期保持水份和吸附油。 7、 粘结性:本产品还作为一种高性能粘结剂,被应用于食品和药品中。 符合中国药典2000版,美国药典USP24/NF19标准,欧洲药典EP4。

浅谈新型再生纤维素纤维的发展前景

浅谈新型再生纤维素纤维的发展前景 刘长河 胡正春 王建坤 (天津工业大学纺织与服装学院,天津 300160) [摘 要] 本文介绍了新型再生纤维素纤维的性能和特点,从资源、市场、环保三方面分析了新型再生纤维素纤维的发展前景。 [关键词] 新型;再生纤维素纤维;前景 1 前 言 在20世纪70年代以前,作为再生纤维素纤维之一的粘胶纤维,曾是化学纤维生产的第一大品种。然而,随着合成纤维新品种的出现和发展,加上粘胶纤维的生产工艺流程长而复杂,能耗大,耗水量大,特别是严重污染环境,废气和污水的治理难度高、费用大,一些发达国家相继关闭了部分生产粘胶纤维的工厂。致使其世界产量在20年间下降约41%。 在这一背景下,天然纤维素纤维再次得到重视。自然界纤维素年产量1000亿吨,大约只有2.5%是通过再生途径制作成纤维等加以利用的。纤维素资源十分丰富,纤维素是可再生的自然资源,具有可持续性;纤维素具有环保性,可参与自然界的生态循环。作为纺织纤维,纤维素纤维具有优良的吸湿性、穿着舒适性,一直是纺织品和卫生用品的重要原料。所以,纤维素纤维是新世纪最理想,最有前途的纺织原料之一。近年来,出现M odal、Tencel等新一代再生纤维素纤维。随着新型再生纤维素纤维在生产中的大量应用,前景将非常看好。2 各种新型再生纤维素纤维 2.1 T encel纤维 天丝是我国的通俗称呼,它的学名叫Lyocell,商品名叫Tencel。它与粘胶纤维同属再生纤维素纤维,虽然粘胶纤维在19世纪90年代已经问世,并在化学纤维中占据着重要地位,但由于粘胶纤维的制造工艺严重污染环境,在人们强烈呼吁清洁生产、保护地球生态环境、减少污染的今天,如何克服污染环境的缺点呢?荷兰阿克苏?诺贝尔(Akzo Nobel)公司属于美国恩卡公司和德国的恩卡研究所与1980年研究成功用有机溶剂直接溶解纤维浆粕生产纤维素纤维的工艺方法,并取得了专利。1989年,布鲁塞尔国际人造及合成纤维标准局(BISFA)把由这类方法制造的纤维素纤维正式命名为“Ly ocell”。与此同时,英国考陶尔兹公司于20世纪80年代初开始研制T encel短纤维,在得到荷兰阿克苏?诺贝尔公司Ly ocell的许可证后,马上开始试生产,在实验工厂经过反复试验,成功地开发出一种对人体无害的氧化胺溶剂,其后又解决了生产中的一系列问题,最后成功地生产了T encel短纤。 天丝纤维的化学结构,基本与棉纤维,粘 2

食品添加剂羟丙基甲基纤维素HPMC1范围本标准适用于食品

食品添加剂羟丙基甲基纤维素(HPMC)1 范围 本标准适用于食品添加剂羟丙基甲基纤维素。 产品为白色至灰白色纤维状粉末或颗粒。 2 结构式 R=H或者CH3或者CH2CHOHCH3 4 技术要求 应符合表1的规定。

附录 A 检验方法 A.1 一般规定 除非另有说明,在分析中仅使用确认为分析纯的试剂和GB/T 6682-2008中规定的水。分析中所用标准滴定溶液、杂质测定用标准溶液、制剂及制品,在没有注明其他要求时,均按GB/T 601、GB/T 602、GB/T 603的规定制备。本试验所用溶液在未注明用何种溶剂配制时,均指水溶液。 A.2 鉴别试验 A.2.1 称取1g试样,加入100mL水,可在水中溶胀,形成透明呈乳白色粘稠状胶体溶液。 A.2.2 称取1g试样,加入100mL沸腾的水,搅拌均匀(保持部分此试样溶液,用于鉴别试验A.2.3),此试样溶液呈糊状,冷却至20℃,形成清澈或半透明粘稠液体。 A.2.3 取部分A.2.2中的试样溶液,将试样溶液置于玻璃盘中,使水分挥发,形成薄膜。 A.3 甲氧基和羟丙氧基含量的测定 A.3.1 试剂和材料 A.3.1.1 甲苯。 A.3.1.2 邻二甲苯。 A.3.1.3 己二酸 A.3.1.4 氢碘酸。 A.3.1.5 异丙碘。 A.3.1.6 甲基碘。 A.3.2 仪器和设备 气相色谱仪:配备热导检测器,或其他等效的检测器。 A.3.3 参考色谱条件 A.3.3.1 色谱柱:1.8m×4mm玻璃柱,填料为100到120目色谱纯硅质土(Chromosorb WHP或其他等效物)上含10%的甲基硅酮油(UCW 982或其他等效物),或其他等效色谱柱。 A.3.3.2 柱温:100℃。 A.3.3.3 进样口温度:200℃。 A.3.3.4 检测器温度:200℃。 A.3.3.5 载气:氦气。 A.3.3.6 流速:20mL/min。 A.3.3.7 进样量:约2μL。 A.3.3.8 甲基碘、异丙碘、甲苯和邻二甲苯的色谱保留时间分别为3 min,5min,7min和13min。A.3.4 分析步骤 注意事项:在通风橱中进行含有氢碘酸的操作步骤。使用护目镜、耐酸手套和其他合适的安全设备。在处理热玻璃瓶时,要极度小心,因为它们有压力。万一不慎接触氢碘酸,要用大量水冲洗,并立即寻求医疗帮助。 A.3.4.1 内标溶液的制备

膳食纤维的作用与常见食物含量

膳食纤维的作用与常见食物含量 山野国际霍永明高级营养师膳食纤维的定义: 膳食纤维是一种重要的非营养素,它是碳水化合物中的一类非淀粉多糖及寡糖等不消化部分。越来越多的研究表明,膳食纤维的摄入与人体健康密切相关。过量摄入膳食纤维会影响维生素、铁、锌、钙、等的消化吸收,但是摄入足会增加便秘、肥胖、糖尿病、心血管疾病和某些癌症发生的危险。所以与食物中的其他营养素一样,为了保持健康,膳食纤维的摄入量也应在适宜的范围之内。 膳食纤维的定义有两种,一是从生理学角度将膳食纤维定义为哺乳动物消化系统内未被消化的植物细胞的残存物,包括纤维素、半纤维素、果胶、树胶、抗性淀粉和木质素等;二是从化学角度将膳食纤维定义为植物的非淀粉多糖加木质素。 膳食纤维的分类: 膳食纤维可分为可溶性膳食纤维与非可溶性膳食纤维。可溶性膳食纤维包括部分半纤维素、果胶、树胶等;非可溶性膳食纤维包括纤维素、木质素等。 膳食纤维的主要特性: 1,吸水作用 膳食纤维具有很强的吸水能力或与水结合能力。此作用可使肠道中粪便的体积增大,加快其转运速度、减少其中有害物质接触肠壁的时间。 2,黏滞作用 一些膳食纤维具有很强的黏滞性,能形成黏液性溶液,包括果胶、树胶、海藻多糖等。 3,结合有机化合物作用 膳食纤维具有结合胆酸和胆固醇的作用。 4,阳离子交换作用 膳食纤维的与阳离子交换作用与糖醛酸的羧基有关,可在胃肠内结合无机盐,如钾、钠、铁等阳离子形成膳食纤维复合物,影响其吸收。 5,细菌发酵作用 膳食纤维在肠道内易被细菌酵解,其中可溶性膳食纤维可完全被细菌所酵解,而非溶性膳食纤维则不易被酵解。酵解后产生的短链脂肪酸如乙酯酸、丙脂酸和丁酯酸均可作为肠道细胞和细菌的能量来源。 膳食纤维的生理功能: 1,有利于食物的消化过程 膳食纤维能增加食物在口腔咀嚼时间,可促进肠道消化酶分泌,同时加速肠道内容物的排泄,这些都有利于食物的消化吸收。 2,降低血清胆固醇 膳食纤维可结合胆酸,故有降血脂作用,此作用以可溶性纤维(如果胶、树胶、豆胶)的降脂作用较明显,而非溶性纤维无此作用。

图书管理系统数据流程图

图书管理系统数据流程图 2009-04-14 17:20 1.1 系统分析 1.1.1 图书馆管理信息系统的基本任务 该“图书馆管理信息系统”是一个具有万人以上的员工,并地理位置分布在大型企的图 书馆理系统,图书馆藏书 100 多万册,每天的借阅量近万册。在手工操作方式下,图书的编目和借阅等的工作量大,准确性低且不易修改维护,读者借书只能到图书馆手工方式查找书目,不能满足借阅需求。需要建立一套网络化的电子图书馆信息系统。 该图书馆管理信息系统服务对象有两部分人:注册用户和一般读者。一般读者经注册后成为注册用户,注册用户可以在图书馆借阅图书,其他人员只可查阅图书目录,但不能借阅图书。系统同时考虑提供电子读物服务,目前只提供电子读物的目录查询服务,不久的将来将提供电子读物全文服务。用户可通过网络方式访问读图书馆管理信息系统。 1.1.2 系统内部人员结构、组织及用户情况分析 为了对系统有一个全貌性的了解,首先要对系统内部人员结构、组织及用户情况有所了 解。图书馆系统的组织结构如图 1 - 1 所示。 图 1 - 1 图书馆管理信息系统的组织结构 图书馆由馆长负责全面工作,下设办公室、财务室、采编室、学术论文室、图书借阅室、电子阅览室、期刊阅览室和技术支持室。各部门的业务职责如下。

办公室:办公室协助馆长负责日常工作,了解客户需求,制定采购计划。 财务室:财务室负责财务方面的工作。 采编室:采编室负责图书的采购,入库和图书编目,编目后的图书粘贴标签,并送图书借阅室上架。 学术论文室:负责学术论文的收集整理。 图书借阅室:提供对读者的书目查询服务和图书借阅服务。 电子阅览室:收集整理电子读物,准备提供电子读物的借阅服务,目前可以提供目录查询和借阅。 期刊阅览室:负责情况的收集整理和借阅。 技术支持室:负责对图书馆的网络和计算机系统提供技术支持。 1.1.3 系统业务流程分析 系统的业务室系统要达到的业务目标,业务流程分析是系统分析的基础环节。图书馆管 理信息系统的业务流程如图 1 - 2 所示。

甲基纤维素

甲基纤维素(MC) 本公司生产的甲基纤维素为白色或类白色纤维素状粉末,无臭无味,稍有吸湿性,不溶于热水和一般的有机溶剂。它的水溶液对酸和碱是稳定的,PH 2—12范围内不受影响,可耐溶一般的淡酸、碱能使溶液粘度提高,但无其它影响,它的水溶液长期贮存很稳定并能抗酶菌生长。具有良好的粘合力、分散力、润湿性、增稠性、保水性和成膜性,以及对油脂的不透性,与各种水溶性物质有良好的混合性。 产品的溶解方法: 1、产品加入到所需水量的1/3—2/3的热水中(80℃--90℃)搅拌,待溶胀好后再加入剩余的冷水,经搅拌降温冷却而成。 2、将粉末状产品与其它组份干粉掺在一起,混合均匀,在搅拌下加到水中至粉末状产品完全溶解。 3、经过处理的粉末状产品可直接加到冷水中搅拌。为加快溶解,在搅拌下加入少量的碱,调节PH8—9后,产品可迅速溶解,形成均一溶液。 产品用途: 1、化工特殊产品:在工业生产和加工作业中,作为增稠剂、悬浮剂、粘结剂、成膜剂和乳胶稳定剂。 2、聚氯乙烯树脂:作为悬浮聚合的分散剂,用来保护胶体,提高吸收增塑剂的速率,控制树脂粒度分布,提高聚氯乙烯树脂的加工性能。 3、建筑材料:使水泥、砂浆、灰浆以及石膏装饰材料具有定型保水性能,并提高和易性,应用于新型建材涂料,多彩涂料,具有牢固的吸附性和分散性。 4、粘结剂:在粘结剂的配方中作为增稠剂兼粘料。 5、陶瓷:赋予润滑性,保水性并提高坯料原始强度。 6、化妆品:调节流变性,使产品具有适当的粘度,乳化度、稳定性、润滑性和泡沫稳定性,以及 表面活性剂的相溶性。 7、食品:作为烘制食品、营养食品、面包等多种食品的增稠剂、粘结剂、稳定剂、保水剂、成型 剂及胶体悬浮剂。 8、纺织品:作为纺织品浆料、印染色浆、或乳胶涂料中的增稠剂和粘结剂。 9、脱漆剂:利用其水和有机溶剂的兼容性,作为油漆的脱除剂和冲洗剂的增稠剂。 10、油漆及乳胶涂料:作为乳胶漆的保护胶体,增稠剂和颜料悬浮助剂。使油漆粘度稳定,漆膜完整。 11、医药:作为药片的粘结剂、片剂的薄膜包衣,软膏和乳油的稳定剂。 12、农药:喷雾、粘附剂、保护膜和可湿性农药的分散剂。 13、各种树脂:纤维增强塑料的成型,脱膜剂,水基乳胶涂料的增稠剂和稳定剂。 14、香烟:作为烟叶片的粘结剂和成膜剂。

医药食品用甲基纤维素

医药食品用甲基纤维素 医药、食品用羟丙基甲基纤维素 中文名称:甲基纤维素 英文全称:Methy Cellulose 英文简称:MC 分子式:〔C 6H 7O 2(OH )3-n(OCH 3)n 〕x 中文名称:羟丙基甲基纤维素 英文全称:Hydroxypropyl Methyl Cellulose 英文简称:HPMC 分子式:〔C 6H 7O 2(OH )3-m-n(OCH 3)m(OCH 2CH(OH)CH 3)n 〕x 1) 外观:本产品为白色至微黄色颗粒或粉末。 2) 可溶性:本产品在无水乙醇、乙醚、丙酮中几乎不溶,在冷水中溶胀成澄清或微浑 浊的胶体溶液。HPMC 可溶在某些有机溶剂中,也可溶解在不——有机溶剂的混合溶剂中。 3) 颗粒度:100目筛上物≤5.0。 4) 本产品随甲氧基含量减少,凝胶点升高,水溶解度下降,表面活性也下降。 1、 抗盐性:本产品是非离子型纤维素醚,而且不是聚合电解质,因此在金属盐或 有机电解质存在时,在水溶液中比较稳固,但过量的添加电解质,可引起凝胶和沉淀。 2、 表面活性:本产品水溶液具有表面活性功能,可作为胶体爱护剂,乳化剂,和 分散剂。 3、 热凝胶:HPMC 水溶液当加热到一定温度时,变的一透亮,凝胶,形成沉淀, 但在逐步冷却时,则又复原到原先的溶液状态。而发生这种凝胶和沉淀的温度要紧取决于它们的类型、浓度和加热速率。 4、 PH —稳固性:本产品水溶液的粘度几乎不受酸或碱阻碍,而且PH 值在3.0~11.0 的范畴内比较稳固。因此,溶液的粘度在长期贮存过程中趋于稳固。 5、 保水性:本产品是一种高效保水剂。其医药级产品在食品、化妆品以及许多其 它方面具有广泛应用。 6、 成膜性:本产品可形成一种透亮、坚强、柔性的薄膜,而这种膜能极好的阻止 油脂的渗入。在食品中的应用,常常运用这种性质,在冷却期保持水份和吸附油。 7、 粘结性:本产品还作为一种高性能粘结剂,被应用于食品和药品中。

常见食品纤维素含量

常见食品的纤维素含量 麦麸:31% 谷物:4-10%,从多到少排列为小麦粒、大麦、玉米、荞麦面、薏米面、高粱米、黑米。 麦片:8-9%; 燕麦片:5-6% 马铃薯、白薯等薯类的纤维素含量大约为3%。 豆类:6-15%,从多到少排列为黄豆、青豆、蚕豆、芸豆、豌豆、黑豆、红小豆、绿豆。 (无论谷类、薯类还是豆类,一般来说,加工得越精细,纤维素含量越少。 蔬菜类:笋类的含量最高,笋干的纤维素含量达到30-40%,辣椒超过40%。其余含纤维素较多的有:蕨菜、菜花、菠菜、南瓜、白菜、油菜。 菌类(干):纤维素含量最高,其中松蘑的纤维素含量接近50%,30%以上的按照从多到少的排列为:香菇、银耳、木耳。此外,紫菜的纤维素含量也较高,达到20%。 坚果:3-14%。10%以上的有:黑芝麻、松子、杏仁;10%以下的有白芝麻、核桃、榛子、胡桃、葵瓜子、西瓜子、花生仁。 水果:含量最多的是红果干,纤维素含量接近50%,其次有桑椹干、樱桃、酸枣、黑枣、大枣、小枣、石榴、苹果、鸭梨。 各种肉类、蛋类、奶制品、各种油、海鲜、酒精饮料、软饮料都不含纤维素;各种婴幼儿食品的纤维素含量都极低。 蔬菜中的膳食纤维 1、笋干:笋干含有多种维生素和纤维素,具有防癌、抗癌作用。发胖的人吃笋之后,也可促进消化,是肥胖者减肥的佳品

2、辣椒:辣椒中含有丰富的膳食纤维,能清洁消化壁和增强消化功能,并能抑制致癌物质的产生和加速有毒物质的排除,可降低血脂和控制胆固醇。 3、蕨菜:其所含的膳食纤维能促进胃肠蠕动,具有下气通便、清肠排毒的作用。经常食用还可降低血压、缓解头晕失眠,治疗风湿性关节炎等作用。其所含的膳食纤维能促进胃肠蠕动,具有下气通便、清肠排毒的作用。经常食用还可降低血压、缓解头晕失眠,治疗风湿性关节炎等作用。 蕨菜 4、菜花:菜花的能量很低,膳食纤维很高,对抵抗许多癌症都有帮助。 5、菠菜:菠菜中含有的大量维生素和膳食纤维,能促进人体新陈代谢,延缓衰老,排除体内毒素。菠菜中的膳食纤维能起到很好的通便作用。 常见的高纤维食品 绿豆 绿豆营养丰富,其籽粒中含有蛋白质22%~26%,是小麦面粉的倍,小米的倍,玉米面的倍,大米的倍,甘薯面的倍。其中球蛋白%,清蛋白%,谷蛋白%,醇溶蛋白%。在绿豆蛋白质中,人体所必需的8种氨基酸的含量%~%,是禾谷类的2~5倍。绿豆籽粒中含淀粉50%左右,仅次于禾谷类,其中直链淀粉29%、支链淀粉71%。绿豆中纤维含量较高,一般在3%~4%,而禾谷类只有1%~2%,水产和畜禽类则不含纤维素。 燕麦 燕麦的营养价值较高,籽粒蛋白质含量高于其它谷类作物,栽培燕麦品种的蛋白质含量一般为13%~22%。蛋白质的氨基酸含量均衡,组成比较全面,不随蛋白质含量而发生明显

可食性羧甲基纤维素膜制备及性能研究

可食性羧甲基纤维素膜制备及性能研究 王晓玲,董海洲,侯汉学 (山东农业大学食品科学与工程学院, 山东泰安 271018) 摘 要:该试验主要以羧甲基纤维素(CMC)为膜原料,研究影响膜性能的各种因素,并通过正交 试验确定制备CMC 可食性膜最佳工艺参数;最后通过验证试验得出制备可食性羧甲基纤维素膜最佳工艺条件为:CMC 浓度为2%,甘油添加量为30%,倒膜量为11 g,烘烤温度为50℃;在此条件下制得膜综合评分为87.18分。关键词:羧甲基纤维素;可食性膜;食品包装材料 Study on preparation and properties of carboxymethyl cellulose films WANG Xiao-ling, DONG Hai-zhou, HOU Han-xue (College of Food Science and Engineering,Shandong Agricultural University,Taian 271018,China)Abstract:The Edible films were prepared from carboxymethyl cellulose. In this experiment,the factors that influence the properties of edible film had been discussed and the best process parameters of preparing carboxymethyl cellulose films had been determined through orthogonal experiments. At last the verification test was done and the best process parameters of preparing carboxymethyl cellulose films had been determined. The best process parameters were:2% CMC,30% addition of glycerol,11 g poured amount and 50℃. In this condition,the integrate score of edible film was 87.18.Key words:carboxymethyl cellulose;edible film; food packing material 中图分类号:TS206.4 文献标识码:A 文章编号:1008―9578(2009)07―0013―04收稿日期:2009–05–28基金项目:国家高新技术研究发展计划(863计划)重点项目(2007AA100407)作者简介:王晓玲(1983~ ),女,硕士研究生,研究方向:农产品加工和贮藏工程。 随着现代食品工业飞速发展,食品包装领域出现一场新的革命,一种能解决包装材料与环境保护之间矛盾的新型食品包装—可食性膜脱颖而出〔1〕。可食性膜是以天然可食性物质(如:蛋白质、多糖、纤维素及其衍生物等)为原料,通过不同分子间相互作用而形成具有多孔网络结构薄膜〔2〕,通过包裹、浸渍、涂布、喷洒于食品表面(或内部)而对气体、水汽和溶质具有高度选择透过性。 羧甲基纤维素,简称CMC 或SCMC,具有独特增稠性、悬浮性、粘合性及水分保持性等特性,被广泛用于食品、医药、石油、日用化工等领域。因CMC 制成膜具有阻止水分、油脂迁移、防止氧及二氧化碳逸失、保留食品风味、提高机械强度、保持食品结构等作用〔3〕,近年来,在食品工业CMC 被广泛用于肉制品、禽蛋、果蔬等涂膜保鲜。 本试验主要以CMC 为原料,研究影响膜性能各种因素,并通过正交试验最终确定制备CMC 可食性膜最佳工艺参数,从而改善膜性能,完善制膜工艺。 1 材料和方法1.1 主要试验材料 羧甲基纤维素:食品级FH6型,安丘雄鹰纤维素厂;甘油:食用级,国药集团化学试剂有限公司;无水氯化钙:分析纯,上海美兴化工有限公司;硝酸镁:分析纯,北京亚太龙兴化工有限公司。1.2 主要试验仪器 TA–X2i 物性测试仪:英国Stable Micro System 公司;HH–2数显恒温水浴锅:江苏金坛市荣华仪器制造有限公司;99–IA型大功率数显恒温磁力搅拌器:江苏金坛币荣华仪器制造有限公司;AY220电子分析天平:日本岛津公司;螺旋测微器:上海量具刃具厂;101A–1型电热鼓风干燥箱:黄骅市卸甲综合电器厂;真空泵:沈阳微电机厂。1.3 膜制备 称取一定量羧甲基纤维素和甘油溶解到100毫升去离子水中,于65℃恒温水浴并在磁力搅拌器下不断高速搅拌30分钟使其形成均匀成膜液。然后将成膜溶液于0.09 MPa 真空度下脱气20分钟以驱除搅拌过程中溶解在成膜液中空气。称取一定量成膜液流延于一定面积培养皿上,待成膜液基本不流动时,放置于一定温度鼓风干燥箱中干燥一段时间,揭膜备用。 1.4 膜厚度测定 在被测膜上随机取六个点,用螺旋测微器测量,取其平均值。 1.5 膜力学性质测定 抗拉强度TS(Mpa)和断裂伸长率E(%)是判断膜力学性质重要指标。力学性质测试按照ASTM D882–02方法,并根据膜条件进行一些改动。将膜裁剪成8 cm×2.5 cm 长条,并放置在相对湿度为53%环境中放置48小时待测。 抗拉强度按下式计算:

相关主题
文本预览
相关文档 最新文档