当前位置:文档之家› DSP与FPGA实时信号处理系统介绍

DSP与FPGA实时信号处理系统介绍

DSP与FPGA实时信号处理系统介绍
DSP与FPGA实时信号处理系统介绍

FPGA应用文章

DSP+FPGA实时信号处理系统

摘要:简要叙述了常用的信号处理系统的类型与处理机结构,介绍了正逐步得到广泛应用的DSP+FPGA处理机结构,在此基础上提出了一种实时信号处理的线性流水阵列,并举例说明了该结构的具体实现,最后分析说明了此结构的优越性。

关键词:实时信号处理处理机结构线性流水阵列

实时信号处理系统要求必须具有处理大数据量的能力,以保证系统的实时性;其次对系统的体积、功耗、稳定性等也有较严格的要求。实时信号处理算法中经常用到对图象的求和、求差运算,二维梯度运算,图象分割及区域特征提取等不同层次、不同种类的处理。其中有的运算本身结构比较简单,但是数据量大,计算速度要求高;有些处理对速度并没有特殊的要求,但计算方式和控制结构比较复杂,难以用纯硬件实现。因此,实时信号处理系统是对运算速度要求高、运算种类多的综合性信息处理系统。

1信号处理系统的类型与常用处理机结构

根据信号处理系统在构成、处理能力以及计算问题到硬件结构映射方法的不同,将现代信号处理系统分为三大类:

·指令集结构(ISA)系统。在由各种微处理器、DSP处理器或专用指令集处理器等组成的信号处理系统中,都需要通过系统中的处理器所提供的指令系统(或微代码)来描述各种算法,并在指令部件的控制下完成对各种可计算问题的求解。

·硬连线结构系统。主要是指由专用集成电路(ASIC)构成的系统,其基本特征是功能固定、通常用于完成特定的算法,这种系统适合于实现功能固定和数据结构明确的计算问题。不足之处主要在于:设计周期长、成本高,且没有可编程性,可扩展性差。

·可重构系统。基本特征是系统中有一个或多个可重构器件(如FPGA),可重构处理器之间或可重构处理器与ISA结构处理器之间通过互连结构构成一个完整的

计算系统。

从系统信号处理系统的构成方式来看,常用的处理机结构有下面几种:单指令流单数据流(SISD)、单指令流多数据流(SIMD)、多指令流多数据流(MIMD)。

·SISD结构通常由一个处理器和一个存贮器组成,它通过执行单一的指令流对单一的数据流进行操作,指令按顺序读取,数据在每一时刻也只能读取一个。弱点是单片处理器处理能力有限,同时,这种结构也没有发挥数据处理中的并行性潜力,所以在实时系统或高速系统中,很少采用SISD结构。

· SIMD结构系统由一个控制器、多个处理器、多个存贮模块和一个互连网络组成。所有“活动的”处理器在同一时刻执行同一条指令,但每个处理器执行这条指令时所用的数据是从它本身的存储模块中读取的。对操作种类多的算法,当要求存取全局数据或对于不同的数据要求做不同的处理时,它是无法独立胜任的。另外,SIMD一般都要求有较多的处理单元和极高的I/O吞吐率,如果系统中没有足够多的适合SIMD处理的任务,采用SIMD是

不合算的。

· MIMD结构就是通常所指的多处理机,典型的MIMD系统由多台处理机、多个存储模块和一个互连网络组成,每台处理机执行自己的指令,操作数也是各取各的。MIMD结构中每个处理器都可以单独编程,因而这种结构的可编程能力是最强的。但由于要用大量的硬件资源解决可编程问题,硬件利用率不高。

2DSP+ASIC结构

随着大规模可编程器件的发展,采用DSP+ASIC结构的信号处理系统显示出了其优越性,正逐步得到重视。与通用集成电路相比,ASIC芯片具有体积小、重量轻、功耗低、可靠性高等几个方面的优势,而且在大批量应用时,可降低成本。

现场可编程门阵列(FPGA)是在专用ASIC的基础上发展出来的,它克服了专用ASIC不够灵活的缺点。与其他中小规模集成电路相比,其优点主要在于它有很强的灵活性,即其部的具体逻辑功能可以根据需要配置,对电路的修改和维护很方便。目前,FPGA的容量已经跨过了百万门级,使得FPGA成为解决系统级设计的重要选择方案之一。

DSP+FPGA结构最大的特点是结构灵活,有较强的通用性,适于模块化设计,从而能够提高算法效率;同时其开发周期较短,系统易于维护和扩展,适合于实时信号处理。

实时信号处理系统中,低层的信号预处理算法处理的数据量大,对处理速度的要求高,但运算结构相对比较简单,适于用FPGA进行硬件实现,这样能同时兼顾速度及灵活性。高层处理算法的特点是所处理的数据量较低层算法少,但算法的控制结构复杂,适于用运算速度高、寻址方式灵活、通信机制强大的DSP芯片来实现。

3线性流水阵列结构

在我们的工作中,设计并实现了一种实时信号处理结构。它采用模块化设计和线性流水阵列结构(图1)。

这种线性流水阵列结构具有如下特点:

·接口简单。各处理单元(PU)之间采用统一的外部接口。

·易于扩充和维护。各个PU的部结构完全相同,而且外部接口统一,所以系统很容易根据需要进行硬件的配置和扩充。当某个模块出现故障时,也易于更换。

·处理模块的规结构能够支持多种处理模式,可以适应不同的处理算法。

每个PU的核心由DSP芯片和可重构器件FPGA组成,另外还包括一些外围的辅助电路,如存储器、先进先出(FIFO)器件及FLASHROM等(图2)。可重构器件电路与DSP处理器相连,利用DSP处理器强大的I/O功能实现单元电路部和各个单元之间的通信。从DSP的角度来看,可重构器件FPGA相当于它的宏功能

协处理器(Co-processor)。

PU中的其他电路辅助核心电路进行工作。DSP和FPGA各自带有RAM,用于存放处理过程所需要的数据及中间结果。FLASHROM中存储了DSP的执行程序和FPGA的配置数据。先进先出(FIFO)器件则用于实现信号处理中常用到的一些操作,如延时线、顺序存储等。

每个PU单独做成一块PCB,各级PU之间通过插座与底板相连。底板的结构很简单,主要由几个串连的插座构成,其作用是向各个PU提供通信通道和电源供应。可以根据需要安排底板上插座的个数,组成多级线性阵列结构。这种模块化设计的突出优点在于,它使得对系统的功能扩充和维护变得非常简单。需要时,只要插上或更换PU电路板,就可以实现系统的扩展和故障的排除。每一级PU中的DSP都有通信端口与前级和后级PU电路板相连,可以很方便地控制和协调它们之间的工作。

4应用实例

我们应用上述线性流水阵列结构实现了一个实时目标检测系统,该系统的任务主要是接收摄像头输出的灰度图

数字信号处理的应用和发展前景

数字信号处理的应用与发展趋势 作者:王欢 天津大学信息学院电信三班 摘要: 数字信号处理是应用于广泛领域的新兴学科,也是电子工业领域发展最为迅速的技术之一。本文就数字信号处理的方法、发展历史、优缺点、现代社会的应用领域以及发展前景五个方面进行了简明扼要的阐述。 关键词: 数字信号处理发展历史灵活稳定应用广泛发展前景 数字信号处理的简介 1.1、什么是数字信号处理 数字信号处理简称DSP,英文全名是Digital Signal Processing。 数字信号处理是利用计算机或专用处理设备以数字的形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 DSP系统的基本模型如下: 数字信号处理是一门涉及许多学科且广泛应用于许多领域的新兴学科。它以众多的学科为理论基础,所涉及范围及其广泛。例如,在数学领域、微积分、概率统计、随即过程、数值分析等都是数字信号处理的基本工具;同时与网络理论、信号与系统、控制论、通信理论、故障诊断等学科也密切相关。近年来的一些新兴学科,如人工智能、模式识别、神经网络等,都是与数字信号处理密不可分的。数字信号处理可以说许多经典的理论体系作为自己的理论基础,同时又使自己成为一门新兴学科的理论基础。 1.2、数字信号系统的发展过程 数字信号处理技术的发展经历了三个阶段。 70 年代DSP 是基于数字滤波和快速傅里叶变换的经典数字信号处理, 其系统由分立的小规模集成电路组成, 或在通用计算机上编程来实现DSP 处理功能, 当时受到计算机速度和存储量的限制,一般只能脱机处理, 主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。 80 年代DSP 有了快速发展, 理论和技术进入到以快速傅里叶变换(FFT) 为主体的现代信号处理阶段, 出现了有可编程能力的通用数字信号处理芯片, 例如美国德州仪器公司(TI公司) 的TMS32010 芯片, 在全世界推广应用, 在雷达、语音通信、地震等领域获得应用, 但芯片价格较贵, 还不能进 入消费领域应用。 90 年代DSP 技术的飞速发展十分惊人, 理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段, 能够用高速的DSP 处理技术提取更深层的信息, 硬件采用更高速的DSP 芯片, 能实时地完成巨大的计算量, 以TI 公司推出的TMS320C6X 芯片为例, 片内有两个高速乘法器、6 个加法器, 能以200MHZ 频率完成8 段32 位指令操作, 每秒可以完成16 亿次操作, 并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。并推出了C2X 、C3X 、C5X 、C6X不同应用范围的系列, 新一代的DSP 芯片在移动通信、数字电视和消费电子领域得到广泛应用, 数字化的产品性能价 格比得到很大提高, 占有巨大的市场。 1.3、数字信号处理的特点

数字信号处理系统的设计

《DSP技术与应用---基于TMS320C54X》 实验指导书 湘潭大学信息工程学院 姚志强 2010.09.23

TMS320VC5402 DSK使用注意事项 1) 先用并口电缆和串口线(用到的话)将TMS320VC5402DSK与PC机相连, 而后再将电源接上,打开Code Composer Studio(简称CCS)后有可能报TMS320VC5402DSK和PC机未能连上的错误,可在PC机的CMOS_BIOS重新设置并行口的特性。 2) 将TMS320VC5402DSK上的DIP Switches的5、6置ON,其它置OFF。 3) 要在关闭CCS后及在断电的情况下插拔USB电缆线和串口线。 4) 强烈建议不要带电插拨串口,插拨时至少有一端是断电的,否则串口容 易损坏。 5) TMS320VC5402DSK电路板上大多是CMOS集成电路,为防止静电击毁, 在拿出实验电缆后请立即将玻璃盖复原,任何时候都请不要用手及其它带电物体直接和电路板接触。 实验报告的撰写 1) 每个实验都单独写实验报告。 2) 实验要求和目的; 3) 实验主要内容; 4) 看懂程序代码,并画出程序流程图; 5) 作出硬件描述(如果与DSK板硬件有关); 6)实验结果和心得。 实验注意事项 1) 实验项目所建工程文件统一放在F:\TI\CCS\myprojects下,其余盘在重启后会复原。 2) 实验过程中,不要涉及到中文路径(CCS不支持),包括CCS程序安装路径、文件添加路径、实验源文件名称等。 3) 实验七CODEC语音回放实验用到DSK板,需要自带耳麦,请准备好。

实验一 CCS的安装与CCS操作界面的熟悉 一、实验目的 学会安装与设置Code Composer Studio。 熟悉CCS软件的操作界面。 二、实验设备 CCS安装光盘(本次安装程序在D:\DSP\ccs2.0ForC5000)、装有Windows 98以上操作系统的PC机 三、实验内容及步骤 https://www.doczj.com/doc/f88775906.html,S的安装 安装前需要卸载系统原来的C5000,进入控制面板进行卸载完毕后,再开始下面的步骤。 (1)找到CCS的安装软件,点击安装程序setup.exe,双击启动安装。安装完成后在 桌面上会有“CCS 2 C5000”和“SETUP CCS 2 C5000”两个快捷方式图标,分别对应CCS应用程序和CCS配置程序。 (2)双击运行“SETUP CCS 2 C5000”配置程序,配置驱动程序。本次实验没有用到实验箱,只需配置软件驱动程序。在弹出的“Import Configurantions”对话框中,先点击“Clear”键,清除以前的配置,然后选择“C5402 Simulator”,点击“Import”,最后点击“Save and Quit”按钮,完成配置。 https://www.doczj.com/doc/f88775906.html,S操作界面的熟悉 (1)在桌面上双击“CCS 2 C5000”,弹出一个TI仿真器并行调试管理器窗口。 (2)在管理器窗口的“open”菜单下选择“C54xx(C5402) Simulator”命令,将弹出一个CCS运行主窗口(如果直接弹出CCS运行主窗口,此步可略)。 (3) 点击Help_>Contents打开TMS320C54x Code Composer Stdio Help,在左边Contents列表中点击最后一个TMS320C5402 DSK,浏览了解其下所有子列表的内容,熟悉DSK板的基本硬件、配置及功能。 (4)对照教材介绍CCS的地方,逐一熟悉CCS中的12项菜单的功能,包括File、Edit、View、Project、Debug、Profiler、Option、GEL、Tools等菜单(结合实验二建立项目熟悉更好)。 (5)对照教材,逐一熟悉CCS的五种工具栏:Standard Toolbar、GEL Toolbar、Project Toolbar、Debug Toolbar、Edit Toolbar(结合实验二建立项目熟悉更好)。

一种雷达通用信号处理系统的实现与应用

一种雷达通用信号处理系统的实现与应用 一种雷达通用信号处理系统的实现与应用 FPGA是一种现场可编程器件,设计灵活方便可以反复修改内部逻辑,适用于算法结构比较简单、处理速度较高的情况。DSP是一种基于指令集的处理器,适于大信息、复杂算法的信息处理场合。鉴于两种处理器件自身优势,FPGA+DSP信号处理架构,已成为信号处理系统的常用结构。但当前FPGA+DSP的信号处理平台或者是基于某些固定目的,实现某些固定功能,系统的移植性、通用性较差。或者仅仅简要介绍了平台的结构没有给出一些具体的实现。本文提出的基于FPGA+DSP通用信号处理平台具有两种处理器的优点,兼颐速度和灵活性,而且可以应用在不同雷达信号处理系统中,具有很强的通用性。本文举例说明该系统在连续波雷达和脉冲雷达中的典型应用。1系统资源概述1.1处理器介绍本系统FPGA选择Altera公司的EP2S60F1020。Stratix II FPGA采用TSMC的90nm 低k绝缘工艺技术。Stratix II FPGA支持高达1Gb·s-1的高速差分I/O信号,满足新兴接口包括LVDS,LNPECL和HyperTransport标准的高性能需求,支持各种单端I/O接口标准。EP2S60系列内部有48352个ALUT;具有2544192bit的RAM 块,其中M512RAM(512bit)329个,M4K RAM(4kbit)255个,M-RAM(512kbit)2个。具有嵌入式DSP块36个,等效18bit×18bit乘法器144个;具有加强型锁相环EPLL4个,

快速锁相环FPLL8个。这些锁相环具有高端功能包括时钟切换,PLL 重新配置,扩频时钟,频率综合,可编程相位偏移,可编程延迟偏移,外部反馈和可编程带宽等。本系统DSP选择ADI公司的ADSP TS201。它有高达600MHz的运行速度,1.6ns的指令周期;有24MB的片内DRAM;双运算模块,每个计算块包含1个ALU,一个乘法器,1个移位器,1个寄存器组和1个通信逻辑单元(CLU);双整数ALU,提供数据寻址和指针操作功能;集成I/O接口,包括14通道的DMA控制器,外部端口,4个链路口,SDRAM控制器,可编程标识引脚,2个定时器和定时器输出引脚等用于系统连接;IEEE1149.1兼容的JTAG端口用于在线仿真;通过共享总线可以无缝连接多达8个TigerSHARC DSP。1.2FPGA+DSP结构由于FPGA和DSP各自的自身优势,FPGA+DSP信号处理架构已成为信号处理系统的常用结构。一般情况下FPGA+DSP的拓扑结构会根据需要进行不同的连接,这就导致这种结构的专用性,缺乏灵活性。对于一个通用处理平台要考虑到各种不同的信号通路,因此大部分通用FPGA+DSP平台都采取各个处理器间均有通路的方式。这种拓扑结构灵活方便,可以满足各种不同的通路需求,这种结构的缺点就是硬件设计的复杂以及可能会有资源浪费。对于这种通用FPGA+DSP 结构,FPGA与各个DSP之间均有连接,不同之处便是DSP之间的拓扑结构。一般分两种,一是高速外部总线口耦合结构组成多DSP 系统,这种结构可以实现多DSP共享系统内的资源,系统内的个处理器可以共享RAM,SDRAM和主机等资源,还可共享其他处理器核

FPGA在高速数字信号处理中的使用

由于成本、系统功耗和面市时间等原因,许多通讯、视频和图像系统已无法简单地用现有DSP处理器来实现,现场可编程门阵列(FPGA)尤其适合于乘法和累加(MAC)等重复性的DSP任务。本文从FPGA与专用DSP器件的运算速度和器件资源的比较入手,介绍FPGA 在复数乘法、数字滤波器设计和FFT等数字信号处理中应用的优越性,值得(中国)从事信号处理的工程师关注。 Chris Dick Xilinx公司 由于在性能、成本、灵活性和功耗等方面的优势,基于FPGA的信号处理器已广泛应用于各种信号处理领域。近50%的FPGA产品已进入各种通信和网络设备中,例如无线基站、交换机、路由器和调制解调器等。FPGA提供了极强的灵活性,可让设计者开发出满足多种标准的产品。例如,万能移动电话能够自动识别GSM、CDMA、TDMA或AMPS等不同的信号标准,并可自动重配置以适应所识别的协议。FPGA所固有的灵活性和性能也可让设计者紧跟新标准的变化,并能提供可行的方法来满足不断变化的标准要求。 复数乘法 复数运算可用于多种数字信号处理系统。例如,在通讯系统中复数乘积项常用来将信道转化为基带。在线缆调制解调器和一些无线系统中,接收器采用一种时域自适应量化器来解决信号间由于通讯信道不够理想而引入的干扰问题。量化器采用一种复数运算单元对复数进行处理。用来说明数字信号处理器优越性能的指标之一就是其处理复数运算的能力,尤其是复数乘法。 一个类似DSP-24(工作频率为100MHz)的器件在100ns内可产生24×24位复数乘积(2个操作数的实部和虚部均为24位精度)。复数乘积的一种计算方法需要4次实数乘法、1次加法和1次减法。一个满精度的24×24实数管线乘法器需占用348个逻辑片。将4个实数乘法器产生的结果组合起来所需的2个48位加法/减法器各需要24个逻辑片(logic slice)。这些器件将工作在超过100MHz的时钟频率。复数乘法器采用一条完全并行的数据通道,由4×348+2×24=1440个逻辑片构成,这相当于Virtex XCV1000 FPGA所提供逻辑资源的12%。计算一个复数乘积所需的时间为10ns,比DSP结构的基准测试快一个数量级。为了获得更高的性能,几个完全并行的复数乘法器可在单个芯片上实现。采用5个复数乘法器,假设时钟频率为100MHz,则计算平均速率为每2ns一个复数乘积。这一设计将占用一个XCV1000器件约59%的资源。 这里应该强调的一个问题是I/O,有这样一条高速数据通道固然不错,但为了充分利用它,所有的乘法器都须始终保持100%的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数。 除了具有可实现算法功能的高可配置逻辑结构外,FPGA还提供了巨大的I/O带宽,包括片上和片外数据传输带宽,以及算术单元和存储器等片上部件之间的数据传输带宽。例如,XCV1000具有512个用户I/O引脚。这些I/O引脚本身是可配置的,并可支持多种信号标准。实现复数乘法器的另一种方法是构造一个单元,该单元采用单设定或并行的24x24实数乘法器。这种情况下,每一个复数乘法需要4个时钟标识,但是FPGA的逻辑资源占用率却降到了最低。同样,采用100MHz系统时钟,每隔40ns可获得一个新的满精度复数乘积,这仍是DSP结构基准测试数据的2.5倍。这一设定方法需要大约450个逻辑片,占一个XCV1000器件所有资源的3.7%(或XCV300的15%)。 构造一条能够精确匹配所需算法和性能要求的数据通道的能力是FPGA技术独特的特性之一。而且请注意,由于FPGA采用SRAM配置存储器,只需简单下载一个新的配置位流,同样的FPGA硬件就可适用于多种应用。FPGA就像是具有极短周转时间的微型硅片加工厂。

雷达数字信号处理解决方案

雷达数字信号处理解决方案 1.背景 数字信号处理是现代通信、雷达和电子对抗设备的重要组成部分。在实际应用中,利用数字信号处理技术对接收数据进行处理,不仅可以实现高精准的目标定位和目标跟踪,还能够将目标识别、目标成像、精确制导、电子对抗等功能进行拓展,实现多种业务的一体化集成。 在现代雷达系统中,随着有源相控阵和数字波束形成(DBF)技术的广泛应用,接收前端存在大量的数据需要并行处理,并需要保证高性能和低延迟的特点。雷达日益复杂的应用环境,让雷达系统具备自适应于探测目标和环境的能力,数字信号处理部分也需要使用多种更加复杂的算法,并且可以做到算法模块化,以及通过软件配置功能模块的参数,实现软件定义的功能。更大的数据处理带宽能够使雷达获得更高的分辨率,更高的工作频率使得雷达可以小型化,能够在更小的平台上安装,这样对于硬件平台实现也有低功耗的要求。 在电子对抗设备中,可以在最短的时间内对多个威胁目标进行快速分析和响应,同样需要数字信号处理的相关算法具备高实时,高动态范围和自适应的特点。如何在宽频噪声的环境中寻找到目标的特征数据,如何在宽带范围内制造虚假目标实现全覆盖,数字信号的处理性能是至关重要的设计因素。 加速云的SC-OPS和SC-VPX产品,针对5G通信和雷达的数字信号处理的要求,结合Intel最新14nm 工艺的Stratix10 FPGA系列,提供了一套完整的硬件和软件相结合的解决方案。SC-OPS产品作为单独的硬件加速卡,通过PCIe插卡的方式实现与主机的通信功能,还可以通过多卡级联的方式实现数字信号的分布式处理方案。SC-VPX产品是由FPGA业务单板、主控板和机箱组成的VPX系统。借助于FPGA可编程的特性,加速云提供了高性能数学加速库FBLAS和FFT的RTL级IP,具有高性能和算法参数可配置的特点实现了多重信号分类(MUSIC)和自适应数字波束形成(ADBF)的核心算法,提高了5G通信和雷达在对抗干扰方面的性能。为了方便客户使用高层语言开发,加速云提供基于FPGA完整的OpenCL异构开发环境,快速实现用户自定义的信号处理加速方案。 图1. 加速云SC-OPS和SC-VPX产品

基于TMS320C6455的高速数字信号处理系统设计

基于TMS320C6455的高速数字信号处理系统设计 摘要:针对高速实时数字信号处理系统设计要求,本文提出并设计了基于dsp+fpga结构的高速数字信号处理系统,采用ti公司目前单片处理能力最强的定点dsp芯片tms320c6455为系统主处理器,fpga作为协处理器。详细论述了dsp外围接口电路的应用和设计,系统设计电路简洁、实现方便,可靠性强。 关键词:tms320c6455 fpga 数字信号处理系统设计 design of high-speed digital signal processing system based on tms320c6455 cao jingzhi,he fei,li qiang,ren hui,qin wei (department of tool development,china petroleum logging co.,ltd shaan xi xi’an 710077) abstract:according to the design needs of high-speed real-time digital signal processing system.the paper puts forward a design of high-speed digital signal processing system based on dsp+fpga structure,adopting ti company fixed-point dsp chip tms320c6455,the currently strongest capacity monolithic processor,for system main processor,and fpga as coprocessor.this paper describs the application and design of dsp periphery circuit interface in detail.the system design has simple circuit and realize convenient, reliability.

测速雷达数字信号处理系统的设计

西安工程大学学报 Journal of Xi’an Polytechnic University  第22卷第3期(总91期)2008年6月Vol.22,No.3(Sum.No.91) 文章编号:16712850X(2008)0320329204 测速雷达数字信号处理系统的设计 张雪侠1,党幼云1,杨 进2 (1.西安工程大学电子信息学院,陕西西安710048;2.西安展意信息科技有限公司,陕西西安710075) 摘要:采用PCI29812数据采集卡和XC2S200FP GA芯片共同完成测速雷达系统的信号处理,即高速A/D转换模块和频谱的分析,并利用VB语言实现速度时间曲线的拟合问题和终端界面的显示,完成友好的人机交互功能. 关键词:测速雷达;信号处理系统;PCI29812采集卡;界面显示 中图分类号:TN911.25 文献标识码:A 0 引 言 传统的测试速度技术,如靶圈测试、天幕靶测试等方法因测试过程繁琐,精度较差,已不能满足实时战地测试的需要[1].连续波雷达回波的多普勒频移测量方法,具有测速精度高,无速度模糊[2],并且可以得到单值无模糊的频率值[3]的特点,单对于测速来说,是最理想的方法.对于雷达后端信号处理部分,根据实际要求的不同,存在有不同的处理方法[427].目前,实际应用中存在多种车载雷达测速仪,它主要是测量出运动目标的即时速度并进行记录与显示,因而对于终端信号处理相对比较简单.本文设计的测速雷达数字信号处理系统不仅能完成弹丸速度的实时测量、记录与显示,更重要的是通过弹丸速度的连续测定,进而获取弹丸初速值.弹丸初速值的确定对于计算弹道的相关参数,分析弹丸的形状及大小具有重要的意义. 1 测速雷达系统组成 1.1 基本原理 连续波测速雷达系统的理论基础是多普勒效应[4]在电磁波领域中的应用.其基本原理是雷达中的波震荡器震荡出一系列的波,通过天线向着飞行中的弹丸发射电磁波,同时接收弹丸的反射回波,由于弹丸在运动,所以反射波和接收波之间存在有频率差,即发生了频率的变化,就是所谓的频移现象.这一频率差和弹丸的运动速度成正比例关系.其数学表达式为多普勒频差f d=2V t/λ,式中λ为信号波长,V t为运动目标的即时速度;λ=c/f0,c为光速,为常量,由于雷达发射的频率f0已知,可求出λ,那么只要再求出多普勒信号的频率差值f d,即可求得弹丸的即时速度V t.由于得到的是连续的f d的值,即对应多个V t值,因此可得出弹丸飞行轨迹上的多点瞬时速度值,即弹丸速度变化曲线,再根据此曲线按最小二乘法进行拟合,推算出弹丸的初速V o值. 1.2 整体结构 测速雷达由信号采集机和信号处理机组成,其中信号采集机包括高频组件、喇叭天线、前置放大器、红外启动器;信号处理机包括数字信号处理器和终端显示界面. 信号采集机部分完成了雷达发射机和部分接收机的功能.8mm波振荡器产生连续的8mm电磁波,通 收稿日期:2008204211 通讯作者:党幼云(19622),女,陕西省澄城县人,西安工程大学教授.E2mail:xk_dyy@https://www.doczj.com/doc/f88775906.html,

《数字信号处理》课程教学大纲

《数字信号处理》课程教学大纲 课程编号: 11322617,11222617,11522617 课程名称:数字信号处理 英文名称:Digital Signal Processing 课程类型: 专业核心课程 总学时:56 讲课学时:48 实验学时:8 学分:3 适用对象: 通信工程专业、电子信息科学与技术专业 先修课程:信号与系统、Matlab语言及应用、复变函数与积分变换 执笔人:王树华审定人:孙长勇 一、课程性质、目的和任务 《数字信号处理》是通信工程、电子信息科学与技术专业以及电子信息工程专业的必修课之一,它是在学生学完了信号与系统的课程后,进一步学习其它专业选修课的专业平台课程。本课程将通过讲课、练习、实验使学生掌握数字信号处理的基本理论和方法。为以后进一步学习和研究奠定良好的基础。 二、课程教学和教改基本要求 数字信号处理是用数字或符号的序列来表示信号,通过数字计算机去处理这些序列,提取其中的有用信息。例如,对信号的滤波,增强信号的有用分量,削弱无用分量;或是估计信号的某些特征参数等。总之,凡是用数字方式对信号进行滤波、变换、增强、压缩、估计和识别等都是数字信号处理的研究对象。 本课程介绍了数字信号处理的基本概念、基本分析方法和处理技术。主要讨论离散时间信号和系统的基础理论、离散傅立叶变换DFT理论及其快速算法FFT、IIR和FIR数字滤波器的设计以及有限字长效应。通过本课程的学习使学生掌握利用DFT理论进行信号谱分析,以及数字滤波器的设计原理和实现方法,为学生进一步学习有关信息、通信等方面的课程打下良好的理论基础。 本课程将通过讲课、练习、实验使学生掌握数字信号处理的基本理论和方法。为以后进一步学习和研究奠定良好的基础,应当达到以下目标: 1、使学生建立数字信号处理系统的基本概念,了解数字信号处理的基本手段以及数字信号处理所能够解决的问题。 2、掌握数字信号处理的基本原理,基本概念,具有初步的算法分析和运用MATLAB编程的能力。 3、掌握数字信号处理的基本分析方法和研究方法,使学生在科学实验能力、计算能力和抽象思维能力得到严格训练,培养学生独立分析问题与解决问题的能力,提高科学素质,为后续课程及从事信息处理等方面有关的研究工作打下基础。 4、本课程的基本要求是使学生能利用抽样定理,傅立叶变换原理进行频谱分析和设计简单的数字滤波器。 三、课程各章重点与难点、教学要求与教学内容

雷达系统中的信号处理技术

雷达系统中的信号处理技术 摘要本文介绍了雷达系统及雷达系统信号处理的主要内容,着重介绍与分析了雷达系统信号处理的正交采样、脉冲压缩、MTD和恒虚警检测几种现代雷达技术,雷达系统通过脉冲压缩解决解决雷达作用距离和距离分辨力之间的矛盾,通过MTD来探测动目标,通过恒虚警(CFAR)来实现整个系统对目标的检测。 关键词雷达系统正交采样脉冲压缩MTD 恒虚警检测 1雷达系统概述 雷达是Radar(Radio Detection And Ranging)的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。雷达的任务就是测量目标的距离、方位和仰角,还包括目标的速度,以及从目标回波中获取更多有关目标的信息。典型的雷达系统如图1,它主要由雷达发射机、天线、雷达接收机、收发转换开关、信号处理机、数据处理机、终端显示等设备组成。 图1雷达系统框图

随着现代电子技术的不断发展,特别是数字信号处理技术、超大规模集成数字电路技术、计算机技术和通信技术的告诉发展,现代雷达信号处理技术正在向着算法更先进、更快速、处理容量更大和算法硬件化方向飞速发展,可以对目标回波与各种干扰、噪声的混叠信号进行有效的加工处理,最大程度低剔除无用信号,而且在一定的条件下,保证以最大发现概率发现目标和提取目标的有用信息。 雷达发射机产生符合要求的雷达波形,然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由雷达接收机接收,然后对雷达回波信号依次进行信号处理、数据处理,就可以获知目标的相关信息。 雷达信号处理的流程如下: 图 2 雷达信号处理流程 2雷达信号处理的主要内容 雷达信号处理是雷达系统的主要组成部分。信号处理消除不需要的杂波,通过所需要的目标信号,并提取目标信息。内容包括雷达信号处理的几个主要部分:正交采样、脉冲压缩、MTD和恒虚警检测。 正交采样是信号处理的第一步,担负着为后续处理提供高质量数据的任务。采样的速率和精度是需要考虑的首要问题,采样系统引起的失真应当被限定在后续信号处理任务所要求的误差范围内,直接中频数字正交采样是当代雷达的主要技术之一。脉冲压缩技术在现代雷达系统中得到了广泛的应用。脉冲压缩雷达既能保持窄脉冲雷达的高距离分辨力,又能获得脉冲雷达的高检测力,并且抗干扰能力强。现在,脉冲压缩雷达使用的波形正在从单一的线性调频发展到时间、频率、编码混合调制,在尽可能不增加整机复杂度的条件下实现雷达性能的提升。杂波抑制是雷达需要具备的重要功能之一。动目标指示与检测是通过回波多普勒频移的不同来区分动目标和固定目标,通过设计合理的滤波器(组),就可以把目标号和杂波分开。

高速实时数字信号处理系统技术探析

高速实时数字信号处理系统技术探析  (毛二可院士 龙腾副教授)    高速实时数字信号处理(DSP)技术取得了飞速的发展,目前单片DSP芯片的速度已经可以达到每秒16亿次定点运算(1600MIPs到4800MIPs);最近TI宣布1GHz DSP已经准备投产。其高速度、可编程、小型化的特点将使信息处理技术进入一个新纪元。一个完整的高速实时数字信号处理系统包括多种功能模块,如DSP、ADC、DAC等等。本文的内容主要是分析高速实时数字信号处理系统的产生、特点、构成、以及系统设计中的一些问题,并对其中的主要功能模块分别进行了分析。  一、高速实时数字信号处理概述  1.信号处理的概念  信号处理的本质是信息的变换和提取,是将信息从各种噪声、干扰的环境中提取出来,并变换为一种便于为人或机器所使用的形式。从某种意义上说,信号处理类似于"沙里淘金"的过程:它并不能增加信息量(即不能增加金子的含量),但是可以把信息(即金子)从各种噪声、干扰的环境中(即散落在沙子中)提取出来,变换成可以利用的形式(如金条等等)。如果不进行这样的变换,信息虽然存在,但却是无法利用的;这正如散落在沙中的金子无法直接利用一样。  2.高速实时数字信号处理的产生  早期的信号处理主要是采用模拟的处理方法,包括运算放大电路、声表面波器件(SAW)以及电荷耦合器件(CCD)等等。例如运算放大电路通过不同的电阻组配可以实现算术运算,通过电阻、电容的组配可以实现滤波处理等等。模拟处理最大的问题是不灵活、不稳定。其不灵活体现在参数修改困难,需要采用多种阻值、容值的电阻、电容,并通过电子开关选通才能修改处理参数。其不稳定主要体现为对周围环境变化的敏感性,例如温度、电路噪声等都会造成处理结果的改变。  解决以上问题最好的方法就是采用数字信号处理技术。数字信号处理可以通过软件修改处理参数,因此具有很大的灵活性。由于数字电路采用了二值逻辑,因此只要环境温度、电路噪声的变化不造成电路逻辑的翻转,数字电路的工作都可以不受影响地完成,具有很好的稳定性。因此,数字信号处理已经成为信号处理技术的主流。  数字信号处理的主要缺点是处理量随处理精度、信息量的增加而成倍增长,解决这一问题的方法是研究高速运行的数字信号处理系统;这就是本文所探讨的主题:高速实时数字信号处理的理论与技术。 3.高速实时数字信号处理特点   高速实时数字信号处理的特点:  首先是高速度,其处理速度可以达到数百兆量级。

数字信号处理习题及答案

==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV ==================第一章 时域离散时间信号与系统================== 1. ①写出图示序列的表达式 答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期 )5 4sin( )8 sin( )4() 51 cos()3() 54sin()2() 8sin( )1(n n n n n π ππ π - ②判断下面的序列是否是周期的; 若是周期的, 确定其周期。 (1)A是常数 8ππn 73Acos x(n)??? ? ??-= (2) )8 1 (j e )(π-=n n x 解: (1) 因为ω= 73π, 所以314 π2=ω, 这是有理数, 因此是周期序列, 周期T =14。 (2) 因为ω= 81, 所以ω π2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0?+=是周期序列的条件是是有理数2π/w 0。 3.加法 乘法 序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。 移位 翻转:①已知x(n)波形,画出x(-n)的波形图。 ② 尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。 卷积和:①h(n)*求x(n),其他02 n 0n 3,h(n)其他03n 0n/2设x(n) 例、???≤≤-=???≤≤= }2 3 ,4,7,4,23{0,h(n)*答案:x(n)= ②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n ) x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转) 解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+= }{1,4,6,5,2答案:x(n)= 4. 如果输入信号为 ,求下述系统的输出信号。

1第一章 数字信号处理和DSP系统

实验实训中心
DSP实习创新设计
实验实训中心
https://www.doczj.com/doc/f88775906.html,

推荐教材及学习网站
推荐教材
《TMS320C55X 系列DSP 指令系统、开发工具与编程指南》 译:李海森 清华大学出版社 《TMS320C55X DSP 原理及应用》 主编 汪春梅 电子工业出版社 主编:汪春梅
实验实训中心
学习网站
https://www.doczj.com/doc/f88775906.html, www ti com cn https://www.doczj.com/doc/f88775906.html, https://www.doczj.com/doc/f88775906.html, https://www.doczj.com/doc/f88775906.html, TI公司网站 TI公司中国网站 合众达公司网站 论坛

DSP实习创新设计 实习创新设计
实验实训中心
第1章 数字信号处理和DSP系统
肖 飞

授 课 内 容
一、实时数字信号处理技术的发展 二、数字信号处理器的应用 三、数字信号处理器的特点 数字信号处 的特点 四 德州仪器公司的DSP产品 四、德州仪器公司的 五、DSP芯片的选择 五 片的选择 六、DSP应用系统设计流程 七、DSP软件开发流程
实验实训中心

实验实训中心
1 1 实时数字信号处理技术的发展 1.1
典型实时数字信号处理系统的基本部件
A 输入
抗混叠 滤波器
A
ADC
D
数字信 号处理
D
DAC
A
抗镜像 滤波器
A 输出
DAC 数/模转换器(Digital-to-Analog Converter) ADC 模/数转换器(Analog-to-Digital A l t Di it l Converter C t ) 抗混叠滤波器 抗镜像滤波器 (Anti-aliasing g filter) (Anti-image filter)

数字信号处理系统作业

《数字信号处理系统》实践任务报告 学号:3110411072姓名:王伟东班级:11级信计2班 一、问题提出: 1.1实验背景: 滤波器是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的直流电。对特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。经典滤波器按通频带分类可以分为低通(LP)、高通(HP)、带通(BP)、带阻(BS),按处理信号类型可以分为模拟滤波器和数字滤波器。 通过Matlab语言可以快捷的设计出有软件组成的数字滤波器,其中FIR滤波器(即有限冲击响应滤波器)最大的优点就是在满足幅频特性的同时,还可以获得严格的线性相位特性。1.2实验要求: 某一数字信号由500Hz、1000Hz和1500Hz三个频率组成,采样频率为4000Hz,请 1.设计一个低通滤波器,将上述数字信号送入滤波器后只留下500Hz频率分量; 2.设计一个带通滤波器,将上述数字信号送入滤波器后只留下1000Hz频率分量; 3.设计一个高通滤波器,将上述数字信号送入滤波器后只留下1500Hz频率分量; 4.设计一个带阻滤波器,将上述数字信号送入滤波器后滤除1000Hz频率分量; 要求从时域和频域两个角度说明滤波前后信号的变化。 1.3实验目的: 1. 熟悉FIR 滤波器的滤波原理 2. 熟悉FIR 滤波器的汇编实现 3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解 4. 学习用MA TLAB 设计滤波器 二、试验方法和过程 2.1实验原理: 数字滤波器的设计,是对提出的设计要求给出响应的性能指标,再通过计算,使物理可实现的实际滤波器频率响应特性,逼近给出的频率响应特性。设计完成后,可根据计算结果在MATLAB或DSP上实现。

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

数字信号处理练习题

数字信号处理练习题 一、多选 1.信号的幅度和时间可以取连续值也可以取离散值,据此信号可分为(BCD)。 A.机动信号 B.连续时间信号 C.离散时间信号 D.数字信号 2.信号常分为(ABCD)。 A.连续时间信号 B.模拟信号 C.离散时间信号 D.数字信号 3.下列是组成数字信号处理系统的有(ABCD)。 A.预滤波器 B. A/D转换器 C.数字信号处理器 D. D/A转换器 4.数字信号处理的实现大致有(BCD)。 A.卫星信号实现法 B.软件实现法 C.硬件实现法 D.通用的数字信号处理器芯片实现法 7.线性常系数差分方程的解法有(ACD)。 A.经典解法 B.观察解法 C.递推解法 D.z变换解法 8.循环移位有(ABC)。 A.有限长序列的循环移位 B.时域循环移位特性 C.频域循环移位特性 D.无限长序列的循环移位 9.数字滤波器按照不同的分类方法,可分为(BD)。 A. D/A转换器 B.经典滤波器 C.预滤波器 D.现代滤波器 10.扩频通信具有的特点(BCD)。 A.伪随机序列发生器发送端调制器 B.内在的抗敌对干扰特性 C.信号低功率发送到达隐蔽信号的目的,进而对抗在噪声中对信号的倾听 D.多个用户在同一信道内传输信号 8.扩频通信系统按其工作方式不同可分为(ABCD)。 A.直接序列扩展频谱系统 B.跳频扩频系统 C.跳时扩频系统 D.混合式系统 9.ⅡR数字滤波器系统函数H(z)的设计一般有(BCD)。 A.需从相关函数和功率谱的角度来研究其通过线性系统 B.零极点位置累试法 C.用模拟滤波器的理论来设计ⅡR数字滤波器 D.计算机辅助设计法 10.按所处理的信号种类的不同将系统分为(ABCD)。 A.模拟系统 B.连续时间系统 C.离散时间系统 D.数字系统 二、填空题 30

数字信号处理

主要知识点 1、数字信号处理就是用数值计算的方法对信号进行处理,这里“处理”的实质是“运算”, 处理对象则包括模拟信号和数字信号。 1、数字信号处理的主要对象是数字信号,且是采用数字运算的方法达到处理目的的。 2、数字信号处理的实现方法基本上可以分成两种即软件实现方法和硬件实现方法。 3、梳状滤波器适用于分离两路频谱等间隔交错分布的信号,例如,彩色电视接收机中用于进行亮度分离和色度分离等。 4、时间和幅值均离散化的信号称为数字信号。 5、时域离散信号和数字信号之间的差别,仅在于数字信号存在量化误差。 5、时域离散信号有三种表示方法:用集合符号表示序列、用公式表示序列和 用图形表示序列。 6、时域离散信号是一个有序的数字的集合,因此时域离散信号也可以称为序列。 7、关于)(、、n R n u n N )()(δ三种序列之间的关系 8、由模拟信号采样得到的序列,模拟角频率Ω与序列的数字域频率ω成线性关系。 9、判断序列的周期性例如序列) 4 ()(π j e n x =的周期为8 10、序列的简单运算有加法、乘法、移位、翻转及尺度变换。 10、序列的简单运算有加法、乘法、移位、翻转及 。 尺度变换 11、序列之间的加法和乘法是指它的同序号的序列值逐项对应相加和相乘 11、序列之间的加法和乘法是指它的不同序号的序列值逐项对应相加和相乘。错 11、序列)(n x ,其移位序列)(0n n x -,当00>n 时,称为)(n x 的延时序列。 12、实指数序列定义为)()(n u a n x n =,当1a 时序列发散。 14、已知一序列为{ }89531)(、、、、=n x ,则该序列的能量为180。 14、已知一序列为{ }82119751)(、、、、、=n x ,则该序列的能量为1061。 15、在时域离散系统中,最重要和最常用的是线性时不变系统。 15、系统的输入、输出之间满足线性叠加原理的系统称为线性系统。 15、如果系统对输入信号的运算关系T[·]在整个运算过程中不随时间变化,或者说系统对于输入信号的响应与信号加于系统的时间无关,则这种系统称为时不变系统 16、一个线性时不变系统为因果系统的充分必要条件是 00)(<=n n h ,。

数字信号处理答案【精选】

1-1画出下列序列的示意图 (1) (2) (3) (1) (2)

(3) 1-2已知序列x(n)的图形如图1.41,试画出下列序列的示意图。 图1.41信号x(n)的波形 (1)(2)

(3)(4) (5)(6) (修正:n=4处的值为0,不是3)(修正:应该再向右移4个采样点)1-3判断下列序列是否满足周期性,若满足求其基本周期 (1) 解:非周期序列; (2) 解:为周期序列,基本周期N=5; (3)

解:,,取 为周期序列,基本周期。 (4) 解: 其中,为常数 ,取,,取 则为周期序列,基本周期N=40。 1-4判断下列系统是否为线性的?是否为移不变的? (1)非线性移不变系统 (2)非线性移变系统(修正:线性移变系统) (3)非线性移不变系统 (4)线性移不变系统 (5)线性移不变系统(修正:线性移变系统)1-5判断下列系统是否为因果的?是否为稳定的? (1),其中因果非稳定系统 (2)非因果稳定系统 (3)非因果稳定系统 (4)非因果非稳定系统

(5)因果稳定系统 1-6已知线性移不变系统的输入为x(n),系统的单位脉冲响应为h(n),试求系统的输出y(n)及其示意图 (1) (2) (3) 解:(1) (2) (3)

1-7若采样信号m(t)的采样频率fs=1500Hz,下列信号经m(t)采样后哪些信号不失真? (1) (2) (3) 解: (1)采样不失真 (2)采样不失真 (3) ,采样失真 1-8已知,采样信号的采样周期为。 (1)的截止模拟角频率是多少? (2)将进行A/D采样后,的数字角频率与的模拟角频率的关系如何? (3)若,求的数字截止角频率。 解: (1) (2) (3)

相关主题
文本预览
相关文档 最新文档