当前位置:文档之家› 浅谈混凝土中钢筋锈蚀及其检测方法

浅谈混凝土中钢筋锈蚀及其检测方法

浅谈混凝土中钢筋锈蚀及其检测方法
浅谈混凝土中钢筋锈蚀及其检测方法

水泥混凝土强度的检测方法

水泥混凝土强度的检测方法 1、水泥砼抗压强度 测定砼抗压强度是评定砼品质的主要指标。目前,砼抗压强度试件以边长为150mm的正立方体为标准试件,砼强度以该试件标准养护到28天,按规定方法 测得的强度为准。 当砼抗压强度采用非标准试件时,其集料粒径要求及抗压强度尺寸换算系数如下: 集料粒径要求及抗压强度换算系数 集料最大粒径 试件尺寸(mm)尺寸换算系数 (mm) 30 100×100×100 0.95 40 150×150×150 1.00 60 200×200×200 1.05

砼立方体试件抗压强度计算:R=P/A 其中:R—砼抗压强度(MPa)P—极限荷载(N)A—受压面积(mm2)注:①以3个试件测值的算术平均值为测定值。如任一个测值与中间值的差值超过中间值的15%,则取中间值为测定值;如有两个测值与中间值的差值均超过上述规定时,则该组试验结果无效。②结果计算至0.1MPa。③非标准试件的 抗压强度应乘以尺寸换算系数。 2、砼抗折(抗弯拉)强度 测定砼抗(抗弯拉)极限强度,是为了提供水泥砼路面设计参数,检查水泥砼路面施工品质和确定抗折弹性模量试验加荷标准。 水泥砼抗折强度是以150mm×150mm×550mm的梁形试件,在标准养护条件下,达到规定龄期后,在净跨450mm,双支点荷载作用下的弯拉破坏,并按规定的计算方法得到的强度值。 砼抗折强度计算:Rb=PL/bha 其中:Rb—抗折强度(MPa);P—极限荷载(N);L—支座间距(L=450mm);b—试件宽度(mm);h—试件高度(mm)。 注:①如断面位于加荷点外侧,则该试件之结果无效;如两根试件无效,则该组结果作废。断面位置在试件断块短边一侧的底面中轴线上量得。②以3个试件测值的算术平均值为测定值。如任一个测值与中间值的差值超过中间值的15%,则取中间值为测定值;如有两个测值与中间值的差值均超过上述规定时,则该组试验结果无效。③结果计算至0.01MPa。④采用100mm×100mm×400mm非标准试件时,所取得的抗折强度值应乘以尺寸换算系数0.85。

锈蚀对钢筋与混凝土粘结性能的影响

低温建筑技术2012年第11期(总第173期) 锈蚀对钢筋与混凝土粘结性能的影响 仲济波 (镇江市工程勘察设计研究院,江苏镇江212000) 【摘要】采用钢筋混凝土结构最常用的变形肋钢筋和光圆钢筋进行拔出试验,钢筋的锈蚀率为0 12.2%,钢筋锈蚀采用电化学加速锈蚀方法,研究了钢筋表面形状和锈蚀率对粘结力的影响,试验结果表明:在低 锈蚀率时,两种类型钢筋与混凝土的粘结力有所提高,随着锈蚀率的增加,钢筋的粘结力急剧下降;变形肋钢筋试 件的破坏模式均为劈裂破坏,光圆钢筋在无锈蚀和较高锈蚀率时,发生钢筋拔出破坏,在低锈蚀率时,发生劈裂 破坏。 【关键词】钢筋混凝土;劈裂破坏;锈蚀;粘结力 【中图分类号】TU528.57【文献标识码】B【文章编号】1001-6864(2012)11-0006-02 钢筋与混凝土的粘结力是其能够共同工作的关键点,但是钢筋混凝土结构在其使用过程中,混凝土中钢筋容易发生锈蚀,钢筋锈蚀使得钢筋截面减小,降低了钢筋的力学性能,钢筋表面产生的锈蚀产物,其体积是原来的2 6倍,使得钢筋周围混凝土产生环向拉应力,随着钢筋锈蚀率的增加,混凝土保护层产生顺筋裂缝,从而降低钢筋与混凝土间的粘结强度[1,2]。混凝土对钢筋的摩擦力减小,因此降低了钢筋混凝土结构的承载力和使用寿命,例如北京西直门立交桥1980年建成通车,使用一段时间后,保护层剥落露筋,钢筋严重锈蚀,其主要原因为冬季为清除冰雪而撒的除冰盐和盐水,使得氯离子有机会渗透到混凝土中,使得钢筋严重锈蚀,因为损伤严重,危及安全,于1999年不得已拆除重建,使用不到20年;同样近海钢筋混凝土结构长期受到氯离子侵蚀,混凝土保护层开裂、钢筋锈蚀等现象普遍非常严重,锈蚀钢筋与混凝土的粘结力是评估锈蚀钢筋混凝土结构承载力的关键[3-5]。 由于光面钢筋和变形钢筋是现在钢筋混凝土结构最常用的钢筋形式,并且其表面形状不同,文中通过电化学加速锈蚀方法对钢筋进行锈蚀,对不同锈蚀率的钢筋与混凝土进行拔出试验,钢筋采用变形肋钢筋和光圆钢筋两种,研究了不同锈蚀率对不同钢筋的粘结力的影响,为目前钢筋混凝土结构的耐久性评估和鉴定提供依据。 1试验概况 1.1试验试件 试件采用混凝土材料为32.5级普通硅酸盐水泥、天然中砂和粒径小于20mm的碎石,试件采用混凝土长方体试件,试件尺寸为150mm?100mm?100mm,将直径为16mm的钢筋浇筑于长方体的中心位置,钢筋采用变形肋钢筋和光圆钢筋,钢筋设计粘结长度为50mm,钢筋无粘结部分均用环氧树脂涂层,避免其发生钢筋锈蚀,在试件的两端位置,采取塑料套管包裹钢筋,模拟无粘结段,试件的具体尺寸如图1所示,混凝土配合比为水泥?水?砂?石=1?0.44?1.27?2.70,混凝土浇筑时,掺加1%水泥质量的氯化钠,并预留混凝土立方体试件,标准养护28d后,实测混凝土立方体平均抗压强度为33.5MPa 。 1.2钢筋锈蚀 实际钢筋混凝土工程中,钢筋锈蚀速度很慢,为了达到较高的钢筋锈蚀率,需要数年的时间,为了在较短时间内获得期望的钢筋腐蚀率,实验室通常采用电化学加速锈蚀的方法进行钢筋锈蚀,钢筋的理论锈蚀率设定为0%,3%,6%,9%和15%,采用法拉第定律进行计算,如式(1)所示,钢筋在通电锈蚀前,将钢筋混凝土试件放入5%的氯化钠溶液中1d,使得氯化钠溶液能够渗透到钢筋表面,将试件中的钢筋用导线与恒流电源的阳极相连,而恒流电源的阴极则与溶液中的铜片相连,通过氯化钠溶液形成回路,使阳极的钢筋发生锈蚀。 Δm=(A·I·t)/Z·F(1) 式中,Δm为阳极金属的质量损失,g;M为铁的摩尔质量,56g/mol;I为锈蚀电流强度,A;t为锈蚀持续时间,s;z为阳极反应电极化学价(铁为+2);F为法 6

钢筋混凝土防腐蚀

钢筋混凝土防腐蚀 (上海法赫桥梁隧道养护工程技术有限公司) 摘要:介质对钢筋混凝土的腐蚀机理,根据规范要求提出防腐蚀措施。 关键词:腐蚀机理;钢筋混凝土;基础 1 引言 钢筋混凝土基础埋置于地下,接触到的腐蚀性介质主要是腐蚀性水和污染土。如果地下水对砼具有腐蚀性,设计师就需要进行防腐蚀设计。 2 钢筋混凝土的腐蚀机理 钢筋混凝土的腐蚀分为两部分;一部分是混凝土的腐蚀,另一部分是钢筋的腐蚀。 混凝土受腐蚀的类型有结晶类腐蚀,分解类腐蚀及结晶分解复合类腐蚀。结晶类腐蚀指水或土中某些盐类浸入混凝土的毛细孔中,经干湿交替作用盐溶液浓缩至饱和,当温度下降时析出盐晶体,晶体不断积累膨胀或与混凝土中某些成分相结合生成新的结晶物质膨胀,致使混凝土破坏。分解类腐蚀指水或土中的盐类与混凝土的化学成分反应生成易溶盐,被溶解或被水带走,从而使混凝土分解破坏。结晶分解复合类腐蚀指水或土中的盐类对混凝土既有结晶破坏又有分解破坏。 水或土对钢筋的腐蚀主要为电化学腐蚀和酸类的腐蚀。电化学腐蚀是指钢铁表面各部位受不同的物理或化学条件作用,形成电位差产生腐蚀电流,使钢铁被氧化导致锈蚀破坏。酸类的腐蚀是指水、土中的酸类对钢铁的化学溶蚀居多,它是因与电介质接触的金属表面形成大量短路微电池的作用而引起的。 当钢筋所处环境中含有氯离子等杂质时,会大为加快上述电化学腐蚀的速度,其作用原因为:①破坏金属钝化膜:当混凝土中存在氯离子等有害杂质时,可使混凝土局部的PH值降低,造成钝化膜的局部破坏,电化学腐蚀可以进行;②导电作用:腐蚀微电池的要素之一是要有离子通路,氯离子和硫酸根离子的存在,降低了混凝土中的电阻,从而加速了钢筋的电化学腐蚀过程;③阳极去极化作用:氯离子还会加速电化学腐蚀的阳极反应过程,其原理是将阳极反应生成的Fe2+“搬走”,使阳极反应得以顺利进行,也就加速了钢筋的腐蚀过程。同时在这些过程中,氯离子并未被消耗,也即凡进入混凝土中的氯离子均会周而复始地起作用,其危害非常大,建筑物中的金属腐蚀很大程度是由于氯离子造成的。 各主要腐蚀指标(介质)的腐蚀作用为: 2.1 PH值(酸碱度) PH值较小,表明水中的H+浓度相对较高,具有酸性,可与混凝土的CACO3等物质发生复分解反应,产生分解腐蚀。同时,PH值小显酸性时,会对钢铁产生酸性腐蚀。将11.5称做保护钢筋的“临界PH值”。 2.2 侵蚀性CO2(溶蚀碳酸钙) 地下水中常含有一些游离的碳酸(CO2),而水泥石中的氢氧化钙能与碳酸起化学反应,生成碳酸钙(CaCO3),碳酸钙又与碳酸起化学反应,生成易溶于水的碳酸氢钙: 如果水泥石在有渗滤的压力水作用下生成碳酸氢钙,并溶于水中被冲走,上述反应将永远达不到平衡。氢氧化钙将连续流失,使水泥石中石灰浓度逐渐降低,使硬化了的水泥石结构发生破坏。环境水中含游离碳酸越多,其侵蚀性也越强烈;若水温较高,则侵蚀速度将加快。 2.3 阴离子(HCO3-、Cl-及SO42-) 当水泥石处于软水(矿化度低于0.1g/L)中时,氢氧化钙将首先被溶解,溶出性侵蚀的强弱

混凝土检测项目及方法

预拌混凝土质量检测与控制 一、预拌混凝土质量检测 1、原材料及配合比 (1) 水泥。 水泥应符合CB 50204的规定。水泥进场时应具有质量证明文件。水泥进场时进行复验的项目及复验批量的划分应按GB50204标准的规定执行。 (2) 集料。 集料应符合JGJ52或JGJ53及其她国家现行标准的规定。集料进场时应具有质量证明文件。对进场集料应按JGJ52、JGJ53等国家现行标准的规定按批进行复验。但对同一集料生产厂家能连续供应质量稳定的集料时,可一周至少检验一次。在使用海砂以及对集料中氯离子含量有怀疑或有氯离子含量要求时,应按批检验氯离子含量。 (3) 拌合用水 拌制混凝土用水应符合JGJ63规定。混凝土搅拌及运输设备的冲洗水在经过试验证明对混凝土及钢筋性能无有害影响时方可作为混凝土部分拌合用水使用。 (4) 外加剂 外加剂的质量应符合GB8076等国家现行标准的规定。外加剂进场时应具有质量证明文件。对进场外加剂应按批进行复验,复验项目应符合GB50119等国家现行标准的规定,复验合格后方可使用。 (5) 矿物掺合料 粉煤灰、粒化高炉矿渣粉、天然沸石粉应分别符合GB1596、GB/T18046、JGJ/T112的规定。当采用其她品种矿物掺合料时,必须有充足的技术依据,并应在使用前进行试验验证。矿物掺合料应具有质量证明文件,并按有关规定进行复验,其掺量应符合有关规定并通过试验确定。 (6) 混凝土配合比 预拌混凝土配合比设计应根据合同要求由供方按JGJ55等国家现行有关标准的规定进行。

2、试验方法 (1)强度 混凝土抗压及抗折强度试验应按GB/T50081的有关规定进行。 (2)坍落度、含气量、混凝土拌合物表观密度 混凝土坍落度、含气量、混凝土拌合物表观密度试验应按GB/T50080的有关规定进行。 (3)混凝土抗渗性能、抗冻性能 混凝土抗渗性能、抗冻性能试验应按GBJ82的有关规定进行。 (4)氯离子总含量 混凝土拌合物氯离子总含量可根据混凝土各组成材料的氯离子含量计算求得。 (5)放射性核素放射性比活度 混凝土放射性核素放射性比活度试验应按GB6566有关规定进行。 (6)特殊要求项目 对合同中有特殊要求的检验项目,应按国家现行有关标准要求进行,没有相应标准的应按合同规定进行。 3、检验规则 (1)一般规定 检验就是指对本标准规定的项目进行质量指标检验,以判定预拌混凝土质量就是否符合要求。预拌混凝土质量的检验分为出厂检验与交货检验。出厂检验的取样试验工作应由供方承担;交货检验的取样试验工作应由需方承担,当需方不具备试验条件时,供需双方可协商确定承担单位,其中包括委托供需双方认可的有试验资质的试验单位,并应在合同中予以明确。当判断混凝土质量就是否符合要求时,强度、坍落度及含气量应以交货检验结果为依据;氯离子总含量以供方提供的资料为依据;其她检验项目应按合同规定执行。交货检验的试验结果应在试验结束后15天内通知供方。进行预拌混凝土取样及试验的人员必须具有相应资格。 (2)检验项目 通用品应检验混凝土强度与坍落度。特制品还应按合同规定检验其她项目。掺有引气型外加剂的混凝土应检验其含气量。

钢筋锈蚀对混凝土结构的影响

钢筋锈蚀对混凝土结构的影响 摘要:钢筋锈蚀是混凝土结构耐久性的主要病害之一,所以防止钢筋锈蚀对提高混凝土耐久性尤为重要。本文阐述了混凝土中钢筋锈蚀的原理及造成的严重影响,并提出了防止钢筋锈蚀相应措施,希望对相关工程具有一定借鉴意义。 关键词:混凝土结构;钢筋锈蚀;原理与影响;措施 引言 结构腐蚀是影响混凝土结构耐久性、可靠性的至关重要的因素。钢筋锈蚀对钢筋混凝土结构及预应力混凝土结构的耐久性和安全性影响极大。混凝土结构中钢筋锈蚀源于在多种因素作用下(如碳化、氯离子侵蚀等),钢筋原先在碱性介质中生成的钝化膜被渐渐破坏而失去保护作用,导致锈蚀生成的铁锈,其体积是被腐蚀掉的金属体积大3-4倍,使混凝土保护层沿钢筋纵向开裂。钢筋锈蚀引起的裂缝一旦产生,钢筋锈蚀速度将大大加快,结构构件的承载力与可靠性劣化的速度大大加快,有的甚至发展到钢筋锈断,危及结构的安全。1991年在法国召开的第二届混凝土耐久性国际学术会议上,美国加州大学Mehta教授的主题报告“混凝土耐久性50年进展”中提出,目前钢筋锈蚀已经成为钢筋混凝土构件破坏的最主要的原因。基于此,对钢筋锈蚀对混凝土的影响研究势在必行[1-2]。 1 腐蚀原理与影响 钢筋锈蚀的原因有两个方面[3]:一是钢筋保护层的碳化,其碳化的原因是混凝土不密实,抗渗性能不足。硬化的混凝土,由于水泥水化,生成氢氧化钙,故显碱性,pH值>12,此时钢筋表面生成一层稳定、致密、钝化的保护膜,使钢筋不生锈。当不密实的混凝土置于空气中或含CO2环境中时,由于CO2的侵入,混凝土中的氢氧化钙与CO2反应,生成碳酸钙等物质,其碱性逐渐降低,当混凝土的pH值<12时,钢筋的钝化膜就不稳定,当pH值<11.5时,钢筋的钝化保护膜就遭破坏,钢筋的锈蚀便开始进行;二是氯离子的含量。据有关试验证明,即便是pH值较高的溶液(如pH值>13),只要有4~6mg/L的氯离子含量,就足可以破坏钢筋的钝化膜,使钢筋失去钝化,在水和氧气的作用下导致钢筋锈蚀。 资料表明,钢筋锈蚀引起钢筋混凝土结构的过早破坏已成为世界各国普遍关注的一大灾害。混凝土中钢筋锈蚀的影响因素有:混凝土的密实度、混凝土保护层厚度、混凝土碳化、环境湿度、氯离子侵入等。在这些因素中,混凝土保护层的碳化和氯离子侵入是造成钢筋锈蚀的主要原因。钢筋锈蚀主要对混凝土结构造成影响存在以下几方面: (一)钢筋腐蚀对结构受力的影响

钢筋锈蚀电位的检测与判定

第三节钢筋锈蚀电位的检测与判定 一、概述 混凝土碳化会使得混凝土的PH值降低,当PH值小于11时,这时混凝土中钢筋表面的致密钝化膜就被破坏,不仅如此,CaSO3、CaSO4还会与水尼水化产物中的铝酸三钙反应,生成物体积增大,从而使混凝土胀裂,这就是硫酸盐侵蚀破坏。 一旦钢筋表面钝化膜局部破坏或变得致密度差,即不完整,则钝化膜处就会形成阳极,而周围钝化膜完好的部位构成阴极,从而形成了若干个微电池。 二、半电池电位法 半电池电位法是利用混凝土中钢筋锈蚀的电化学反应引起的电位变化来测定钢筋锈蚀状态的一种方法。通过测定钢筋/混凝土半电池电极与在混凝土表面的铜/硫酸铜参考电极之间电位差的大小,评定混凝土中锈蚀活化程度。 三、测量装置 1、参考电极(半电池):本方法参考电极为铜/硫酸铜半电池。 2、二次仪表的技术性能要求 3、导线:导线总长不应超过150m,一般选择截面积大于0.75mm2的导线。 4、接触液:为使铜/硫酸铜电极与混凝土表面有较好的电接触,可在水中加适量的家用液态洗涤剂对被测表面进行润湿,减少接触电阻与电路电阻。 四、测试方法 1、测区的选择与测点布置 (1)、主要承重构件或承重构件的主要受力部位。 (2)、在测工上布置测试网格,网格节点为测点。间距可选20cm×20cm、30cm ×30cm、20cm×10cm。测点位置距构件边缘应大于5cm,一般不宜少于20个测

点。 (3)、当一个测区内存在相邻点的读数超过150mV时,通常应减小测点的间距。(4)、测区应统一编号。 2、混凝土表面处理 用钢丝刷、砂纸打磨测区混凝土表面,去除涂料、浮浆、污迹、尘土等,并用接触液将表面润湿。 3、二次仪表与钢筋的电连接 (1)、铜/硫酸铜电极接二次仪表的正输入端;钢筋接负输入端。 (2)、局部打开混凝土或选择裸露的钢筋,在钢筋上钻一小孔并拧上自攻螺钉,用加压型鳄鱼夹夹住并润湿,确保有良好的电连接。 (3)、铜/硫酸铜参考电极与测点的接触。 电极前端浸湿,读数前湿润混凝土表面。 4、铜/硫酸铜电极的准备。 5、测量值的采集 测点读数变动不超过2mV,可视为稳定。重复测读的差异不超过10mV。五、钢筋锈蚀电位的一般判定标准 (1)、在对已处理的数据(已进行温度修正)进行判读之前,按惯例将这些数据加以负号,绘制等电位图,然后进行判读。 (2)按照表6-6的规定判断混凝土中钢筋发生锈蚀的概率或钢筋正在发生锈蚀的锈蚀活动程度。 结构混凝土中钢筋锈蚀电位的判定标准表6-6

混凝土中钢筋锈蚀与结构耐久性

目录 目录 (2) 引言 (4) 第一章钢筋混凝土结构的组成材料 (4) 1.1混凝土材料…………………………………………………………………………… 1.2钢筋材料..........................................................................................第二章钢筋混凝土的腐蚀原理与过程 (5) 2.1混凝土中钢筋腐蚀的基本理论 (5) 2.2混凝土中气体、水、离子的传输过程 (5) 2.3混凝土碳化诱导的腐蚀 (5) 2.4氢离子诱导腐蚀 (5) 2.5腐蚀防护知识及钢筋混凝土阻锈剂的使用 (6) 第三章混凝土成分对钢筋的影响 (6) 3.1抗碳化性能 (6) 3.2抗氢离子侵入性能 (6) 3.3胶凝材料对氢离子扩散系数的影响 (6) 3.4水泥用量对氢离子扩展系数的影响 (6) 3.5腐蚀速率的影响因素 (6) 第四章:钢筋混凝土表面处理和涂层 (7) 4.1钢筋混凝土腐蚀的原因 (7) 4.2防护与修补的方法 (7) 4.3基层处理 (7) 4.4填充混凝土中的裂缝与孔洞 (7) 4.5砂浆与混凝土 (7)

4.6混凝土表面的保护层 (7) 第五章:钢筋混凝土结构的耐久性 (8) 5.1混凝土结构的耐久性的含义 (8) 5.2提高混凝土的耐久性 (9) 结论 (11) 参考文献 (12) 致谢 (13) 混凝土中钢筋锈蚀与结构耐久性 摘要:建筑工程安全性与耐久性在我国探讨话题中占据了越来越重要的地位,根据建设部近几年的调查研究发现,国内大部分地区大多数钢筋混凝土建筑物在使用寿命达到25~30年后即需大修,甚至处于严酷环境下的钢筋混凝土建筑物使用寿命仅仅只有15~20年。还有一部分工程在建成后几年就出现钢筋锈蚀、混凝土开裂等现象。钢筋混凝土腐蚀和耐久性成为当今一大研究对象。在本文将对钢筋混凝土结构发腐蚀性和耐久性做出一系列的探讨。 关键词:钢筋;腐蚀性;耐久性

混凝土工程质量检查标准

1.质量检查重点 1.1.砂、石、水泥抽样复试结果合格。

1.2.试验室混凝土配合比报告已出具。并在搅拌机处设置混凝土配合比标牌。 1.3.模板及其支架必须具有足够的强度、刚度和稳定性,模板接缝处应严密,模板内清洁, 无杂物 1.4.钢筋做到顺直、间距均匀,按规范放置马凳,混凝土浇注时,防止负弯矩筋踩扁、位移 且注意保护层 1.5.混凝土浇注过程中,不得随意留置施工缝,如遇特殊情况必须留置,严格按施工缝留置 及处理办法施工 1.6.现浇混凝土结构现浇结构尺寸允许偏差和检验方法 2.预控措施 2.1.砼表面麻面、漏筋、蜂窝、孔洞 2.1.1.预控麻面

模板面清理干净,无杂物。木模板在浇筑前用清水充分湿润,拼缝严密,防止漏浆。 模板要刷脱模剂。模板平整,无积水现象。振捣密实,无漏振。每层砼应振捣到气泡 排除为止,防止分层。 2.1.2.预控露筋。 浇筑砼前应检查钢筋位置和保护层厚度是否正确,发现问题及时纠正。钢筋密集时, 应选择合适的石子粒径,石子最大粒径尺寸不超过结构截面尺寸小边的1/4,同时不 得大于钢筋净距的3/4。振捣时严禁振捣棒撞击钢筋。混凝土自由倾落高度超过2m时,要用溜槽或串筒等工具下料。操作时不得踩钢筋,如发现踩弯和脱扣钢筋,应及时修 正。 2.1. 3.预控蜂窝。 严格控制砼配合比,尤其是水灰比。砼拌合要均匀,搅拌时间要控制好。开始浇筑前,底部应先填50~100mm的与要浇筑砼相同品种的水泥砂浆,底层振捣应认真操作。 施工过程中经常观察模板、支架、堵缝等情况。 2.1.4.预控孔洞。 2.1.4.1.在钢筋密集处,如柱梁及主次梁交叉处浇筑混凝土时,可采用细石混凝土浇筑,使混 凝土充满模板,并认真振捣密实。机械振捣有困难时,可采用人工捣实。 2.1.4.2.预留孔洞处应在两侧同时下料。下部往往浇筑不满,振捣不实,应采取在侧面开口浇 筑的措施,振捣密实后再封好模板,然后往上浇筑,防止出现孔洞。 2.1.4. 3.采用正确的振捣方法,严防漏振: 2.1.4. 3.1.插入式振捣器应采用垂直振捣方法,即振捣棒与混凝土表面垂直或斜向振捣,即振 捣棒与混凝土表面成一定角度,约40°~45°。 2.1.4. 3.2.振捣器插点应均匀排列,可采用行列式或交错式顺序移动,不应混用,以免漏振。 每次移动距离不应大于振捣棒作用半径(R)的1.5倍,一般振捣棒的作用半径为30~ 40cm。振捣器操作时应快插慢拔。 2.1.4. 3.3.控制好下料。要保证混凝土浇筑时不产生离析,混凝土自由倾落高度应不超过2m(浇 筑板时为1m),大于2m时要用溜槽、串筒等下料。 2.1.4. 3. 4.防止砂、石中混有粘土块或冰块等杂物,基础承台梁等采用土模施工时,要注意防 止土块掉入混凝土中,发现混凝土中有杂物,应及时清除干净。

钢筋混凝土结构中钢筋的锈蚀与保护问题

钢筋混凝土结构中钢筋的锈蚀与保护问题 钢筋混凝土结构是现代工程界广泛应用的结构形式之一。这些钢筋混凝土建筑物和构筑物由于自然环境的恶劣或生产工艺的限制,长期受着有害介质的侵蚀作用,造成了钢筋混凝土结构的腐蚀性破坏,其损失是惊人的。因此,钢筋混凝土结构中钢筋的锈蚀与保护是一个十分重要的课题,必须引起工程界技术人员的广泛重视。 一、钢筋锈蚀的基本原理 钢筋混凝土是一种复合材料。在钢筋混凝土结构中,钢筋主要承受拉力,而混凝土则主要承受压力并保护钢筋免受腐蚀及火灾时高温的作用。在这种结构中混凝土是直接与周围介质接触的,若混凝土十分密实并能长期发挥保护钢筋的作用,那么,这种结构将是耐久的。 但是,工程实践中并非任何钢筋混凝土结构都能稳定并长期保护钢筋的。往往出现这样两种情况,一种情况是在结构物建造后不久钢筋很快锈蚀;另一种情况是,要经过一段时间或更长一段时间钢筋才开始锈蚀的。介质不直接破坏混凝土,而是使混凝土液相发生改变,钢筋在其内部发生锈蚀。 当钢筋以水为介质发生锈蚀时,大部分是电化学锈蚀,发生的氧化还原反应过程如下: 1.氯化物的作用。氯化物是一种钢筋的活化剂,当其浓度不高时,亦能使处于碱性混凝土介质中钢筋的钝化膜破坏。这与氯离子的高吸附性有直接关系。它置换吸附的氧破坏钝化膜而导致钢筋发生溃烂锈蚀。 2.钙盐的作用。当含卤气体,如氯化氢、氯气、二氧化氯、溴和碘的蒸气渗入混凝土孔隙时,溶解在其液相中形成酸,该酸又与水泥石中的氢氧化钙、硅酸盐、铝酸盐及其它化合物发生反应生成相应钙盐、硅酸凝胶等水化物,于是混凝土被中和而导致水泥石变质,逐渐丧失钝化钢筋的能力。这种钙盐具有可溶性、吸湿性,在高湿度的条件下其对钢筋的溶蚀作用也是强烈的。 3.PH值大小。混凝土的碱性及其孔隙中的PH值为12-13的氢氧化钙饱和溶液有利于形成和保持钢筋的钝化膜,则钢筋处于高抗腐蚀状态。当混凝土的PH 值由于各种原因降至11.8或更低时,由于不能保存钝化膜,则钢筋的钝化变得不稳定,甚至被破坏。因为混凝土失去了钝化钢筋的性能,导致钢筋处于活化状态并进而发生锈蚀。 二、钢筋锈蚀破坏的形式及其危害 钢筋锈蚀后产生的垢块之体积是其锈蚀层体积的2.5~3倍,因而挤压周围的混凝土并发生超过其抗拉强度的拉应力,结果使保护层沿着锈蚀的钢筋形成裂

钢筋混凝土结构的腐蚀及防护措施(标准版)

钢筋混凝土结构的腐蚀及防护 措施(标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0623

钢筋混凝土结构的腐蚀及防护措施(标准 版) 一.钢筋混凝土结构防腐蚀的意义 钢筋混凝土结构结合了钢筋和混凝土的优点,造价较低,在土建工程中应用范围非常广泛。在钢筋混凝土结构中,钢筋锈蚀是钢筋混凝土结构过早被破坏的主要原因之一。新鲜混凝土是呈碱性的,其PH值一般大于12.5,在此碱性环境中钢筋容易发生钝化作用,使钢筋表面产生一层钝化膜,能阻止混凝土中钢筋的锈蚀。但当有二氧化碳、水汽和氯离子等有害物质从混凝土表面通过孔隙进入混凝土内部时和混凝土材料中的碱性物质中和,从而导致混凝土的PH值降低,就出现PH值小于9这种情况,钢筋表面的钝化膜就会被逐渐破坏,钢筋就会发生锈蚀,并且随着锈蚀的加剧,会导致混凝土保护层开裂,钢筋与混凝土之间的黏结力破坏,钢筋受力截面减少,

结构强度降低等,从而导致结构耐久性的降低。 据调查,我国20世纪90年代前兴建的海港工程,一般10~20年就会出现钢筋严重腐蚀破坏,结构使用寿命基本上都达不到设计基准期要求。我国50年代至70年代建的海港工程,高桩码头不到20年,甚至7~8年就出现严重钢筋锈蚀破坏,海工混凝土结构破坏已成为我国港口建设中不得不重视并迫切需要解决的问题。 国外学者曾用“5倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元;在发现钢筋锈蚀时采取措施需要追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时将追加维修费125美元。我国海洋工程中广泛使用的钢筋混凝土结构因腐蚀引起破坏的情况同样严重。除海洋环境本身属于强腐蚀环境因素外,环境的日益恶化、相关的混凝土结构耐久性规定标准偏低、施工质量不能保证等因素,致使我国混凝土结构大部分在使用10年左右即出现较严重的腐蚀破坏,给国家建设和经济发展造成了巨大的损失。因此,如何采取有效的防腐蚀技术措施,防止钢筋混凝土结构过早出现钢筋锈蚀破坏,确保建

最新标准-普通混凝土用砂、石质量及检验方法标准

JGJ52-2006 普通混凝土用砂、石质量及检验方法标准主编单位:中国建筑科学研究院批准部门:中华人民共和国建设部施行日期:2007 年6月l日 1 总则 1.0.1为在普通混凝土中合理使用天然砂,人工砂和碎石、卵石,保证普通混凝土用砂、石的质量,制定本标准。 1.0.2本标准适用于一般工业与民用建筑和构筑物中普通混凝土用砂的质量要求和检验。 1.0.3对于长期处于潮湿环境的重要混凝土结构所用的砂、石,应进行碱活性检验。 1.0.3 砂和石的质量要求和检验,除应符合本标准外,尚应符合国家现行有关标准的规定。 2 术语、符号 2.1 术语 2.1.1天然砂natural sand 由自然条件作用而形成的,公称粒径小于5mm的岩石颗粒。按其产源不同,可分为河砂、海砂和山砂。 2.1.2 人工砂artificial sand 岩石经除土开采、机械破碎、筛分而成的,公称粒径小于5mm的岩石颗粒。 2.1.3 混合砂mixed sand 由天然砂与人工砂按一定比例组合而成的砂。 2.1.4 碎石crushed stone 由天然岩石或卵石经破碎、筛分而得的,公称粒径大于5mm的岩石颗粒。 2.1.5 卵石gravel 由自然条件作用而形成的,公称粒径大于5.00mm 的岩石颗粒。 2.1.6 含泥量dust content 砂、石中公称粒径小于80μm颗粒的含量。 2.1.7 砂的泥块含量clay lump content in sands 砂中公称粒径大于1.25mm,经水洗、手捏后变成小于630μm 的颗粒的含量。 2.1.8 石的泥块含量clay lump content in stones 石中公称粒径大于5.mm,经水洗、手捏后变成小于2.50mm 的颗粒的含量。 2.1.9 石粉含量crusher dust content 人工砂中公称粒径小于80μm,且其矿物组成和成分与被加工母岩石相同的颗粒含量。 2.1.10 表观密度apparent density 骨料颗粒单位体积(包括内封闭孔隙)的质量。 2.1.11 紧密密度tight density 骨料安规定方法颠实后单位体积的质量。 2.1.12 堆积密度bulk density 骨料在自然堆积状态下单位体积的质量。 2.1.13 坚固性soundness 骨料在气候、环境变化或其它物理因素作用下抵抗破裂的能力。 2.1.14 轻物质light material 砂中表观密度小于2000kg/m3 的物质。

混凝土钢筋锈蚀电位检测报告

钢筋锈蚀电位检测报告 1 概况 光帮桥位于立跃公路上,东西走向,横跨鹤坡塘河,桥梁上部为预应力混凝土简支结构,下部结构为桩柱式桥墩,桥台采用重力式桥台。桥梁跨径布置为:5×20m,横向布置为:0.25m(栏杆)+0.75m(人行道)+14m(行车道)+0.75m(人行道)+0.25m(栏杆)=16m。0#桥台宽16m,地面以上高度为2.75m。 为了掌握结构混凝土的钢筋锈蚀电位检测的方法,受检测中心总工办的委托,于2010年8月26日对该桥0#桥台的钢筋锈蚀电位情况进行模拟检测。 图1.1 桥梁整体照图1.2 0#桥台 2 参照依据与检测方法 2.1 检测依据和参照 (1)《建筑结构检测技术标准》(GB/T 50344-2004); (2)《水运工程混凝土试验规程》(JTJ 270-1998); (3)《公路桥梁承载能力检测评定规程》(报批稿); (4)《上海市政工程检测中心委托单》(委托编号:2010JG00033)。 2.2 钢筋锈蚀电位检测方法原理 此次电位检测采用半电池电位法,半电池电位法是通过测量钢筋的自然腐蚀电位判断钢筋的锈蚀程度。腐蚀电位是钢筋上某区域的混合电位,反映了金属的抗腐蚀能力。混凝土中的钢筋的活化区(阳极区)和钝化区(阴极区)显示出不同的腐蚀电位,钢筋

在钝化时,腐蚀电位升高,电位偏正;由钝态转入活化态(锈蚀)时,腐蚀电位降低,电位偏负。 将混凝土中的钢筋看作是半个电池组,与合适的参比电极(铜/硫酸铜参考电极或其它参考电极)连通构成一个全电池系统,混凝土是电解质,参比电极的电位值相对恒定,而混凝土中的钢筋因锈蚀程度不同产生不同的腐蚀电位,从而引起全电池电位的变化,根据混凝土中钢筋表面各点的电位评定钢筋的锈蚀状态。 2.3 检测仪器 本次检测采用的主要仪器为: (1)KON-XSY型钢筋锈蚀仪(北京康科瑞公司),仪器编号:QS-111,见图2.1。 图2.1 钢筋锈蚀仪 (2)KON-RBL(D+)型钢筋位置及保护层测定仪(北京康科瑞公司),仪器编号:YP-51,见图2.2。

混凝土强度检测试卷及问题解释

混凝土强度检测试题 公司/部门: 姓名:分数: Ⅰ、单选题(每题1分) 1、《回弹法检测混凝土抗压强度技术规程》JGJ/T23-2001 1、计算混凝土强度换算值时,应按下列排列的先后顺序选择测强曲线( )。 (6.1.2) (A)专用曲线、统一曲线、地区曲线 (B)统一曲线、地区曲线、专用曲线 (C)地区曲线、专用曲线、统一曲线 (D)专用曲线、地区曲线、统一曲线[正确] 2、结构或构件的混凝土强度推定值是指相应于强度换算值总体分布中保证率不 低于( )的结构或构件中的混凝土抗压强度值。(7.0.3) (A)85% (B)95%[正确] (C)90% (D)100% 3、回弹值测量完毕后,应在有代表性的位置上测量碳化深度值,每个构件上的 测点数最少的情况下也不应少于( )。 (A)1个 (B)2个[正确] (C)3个 (D)4个 4、某构件10个测区中抽取的3个测区碳化深度平均值分别为 1.5mm、2.0mm、 3.5mm,则该构件碳化深度平均值为( )。 (A)2.5mm[正确] (B)1.5mm (C)2.0mm (D)以上都不是 5、回弹法测强时,相邻两测区的间距应控制在( )以内。(4.1.3) (A)1m (B)0.2m (C)2m[正确] (D)0.5m 6、某工程同批构件共计26根,依据JGJ/T23-2001或DBJ/T13-71-2015的要求,按批量抽检时,抽检数量不得少于( )。(4.1.2) (A)8根 (B)9根 (C)10根[正确] (D)11根。 7、当采用钻芯法进行修正时,芯样的数量不得少于( )。(4.1.5) (A)3个 (B)10个 (C)6个[正确] (D)5个 8、对于泵送混凝土,当其测区碳化深度平均值为 3.0mm时,应( )。(4.1.6) (A)按规程的附录B进行修正 (B)可不进行修正 (C)对回弹值进行修正 (D)采用钻芯法进行修正[正确] 9、回弹测试时,相邻两测点的最小净距( )。(4.2.2) (A)30mm (B)20mm[正确] (C)10mm (D)40mm 10、测点距构件边缘或外露钢筋、预埋件的距离不宜小于( )。(4.2.2)

土木工程毕业论文浅谈钢筋锈蚀对钢筋混凝土桥梁耐久性的影响

浅谈钢筋锈蚀对钢筋混凝土桥梁耐久性的影响 论文摘要:钢筋锈蚀是造成钢筋混凝土桥梁耐久性损伤的最主要和最直接因素,也是混凝土桥梁耐久性破坏的主要形式之一。本文从锈蚀机理、影响因素和影响后果等方面进行了综述性讨论。 钢筋锈蚀是一个比较普遍、并且严重威胁结构安全的耐久性问题。它在影响结构物耐久性因素中,占据主导地位。美国、英国、德国和日本等国每年均花费巨资用于混凝土结构的耐久性修复,其中钢筋锈蚀占有相当大的比例。我国也有相当数量的钢筋混凝土桥梁相继进入老化期,钢筋锈蚀的研究和防治显得非常重要。 钢筋锈蚀是造成钢筋混凝土桥梁耐久性损伤的最主要和最直接因素,也是混凝土桥梁耐久性破坏的主要形式之一。钢筋锈蚀对桥梁结构的破坏分为三个时期:前期是钢筋表面局部锈蚀出现锈斑、锈片等;中期是钢筋整个表面锈蚀,并产生膨胀,与保护层脱离,发生层裂;后期表现为钢筋铁锈进一步膨胀,混凝土本身发生破坏,出现顺筋胀裂,混凝土脱离,直至钢筋不断锈蚀,有效截面不断减小,桥梁结构承载力不断下降,钢筋混凝土构件丧失基本承载能力。 一、钢筋混凝土桥梁中钢筋锈蚀机理 正常情况下,由于初始混凝土的高碱性,钢筋混凝土桥梁结构力筋表面形成一层致密的钝化膜,使其处于钝化状态。但随着环境介质的侵入,钝化膜逐渐遭到破坏,从而导致腐蚀的发

生。 力筋发生锈蚀需要三大基本要素: (一)力筋表面钝化膜的破坏; (二)充足氧的供应; (三)适宜的湿度(RH=60~80%)。 三个要素缺一不可,第一要素为诱发条件,而腐蚀速度则取 决于氧气及水分的供应。 钢筋的锈蚀一般为电化学锈蚀。发生电化学锈蚀必须具备3 个条件: 1、在钢筋表面形成电位差; 2、在阴极部位钢筋表面存在足够的氧气和水; 3、在阳极区,使阳极部位的钢筋表面处于活化状态,即钢筋 表面的钝化膜遭到破坏。 在氧气和水的共同作用下,钢筋表面不断失去电子发生电化 学反应,逐渐被锈蚀,在钢筋表面生成红锈,引起混凝土开 裂。 对于钢筋混凝土桥梁,在一般环境条件下,钢筋的锈蚀通常 由两种作用引起:一种是混凝土碳化作用;一种是氯离子的侵蚀。二氧化碳和氯离子对混凝土本身都没有严重的破坏作用,但是这 两种环境物质都是混凝土中钢筋钝化膜破坏的最重要又最常遇到 的环境介质:混凝土碳化使混凝土孔隙溶液中的Ca(OH)2含量逐 渐减少,PH值逐渐下降,钝化膜逐渐变得不再稳定以至于完全被 破坏,使钢筋处于脱钝状态;周围环境中的氯离子从混凝土表面 逐渐渗入到混凝土内部,当到达钢筋表面的混凝土孔溶液中的游 离氯离子浓度超过一定值(临界浓度)时,即使混凝土碱度再高,pH值大于11.5值,Cl-也能破坏钝化膜,从而使钢筋发生锈蚀。 氯盐引起钢筋锈蚀的发展速度很快,远比碳化锈蚀严重,这种情 况常发生在近海或海洋环境以及冬季经常使用除冰盐的环境。

探讨建筑混凝土质量检测

探讨建筑混凝土质量检测 发表时间:2018-07-20T15:03:18.723Z 来源:《基层建设》2018年第18期作者:刘岳鹏 [导读] 摘要:近几年,混凝土的检测技术得到了进一步提高,尤其是无破损检测技术的不断发展与完善,使检测结果的精度大幅提升,科学适当的检测方法是确保混凝土质量的关键。 东莞华润混凝土有限公司 523170 摘要:近几年,混凝土的检测技术得到了进一步提高,尤其是无破损检测技术的不断发展与完善,使检测结果的精度大幅提升,科学适当的检测方法是确保混凝土质量的关键。只有不断加强混凝土质量检测方法的创新,才能保证整个工程的安全。 关键词:建筑施工;混凝土;质量检测 随着混凝土在工程中的广泛使用,为了有效的保证建筑工程的质量,加强混凝土的质量检测是十分必要的,只有混凝土的质量达到工程所需要的标准,则对工程整体的安全性和使用性才具有重要的意义。科学技术的不断进步,混凝土检测技术得以快速的发展,各种现代化的检测技术和检测方法不断的应用于混凝土检测当中,准确的评定了混凝土的质量,对建筑工程质量的提高具有极其重要的作用。 1 影响混凝土质量的因素 影响混凝土质量的因素较多,如环境、温度、材料和施工技术等。在混凝土浇筑完成后极易产生气泡和裂缝,这为混凝土的质量带来了严重的隐患,会直接影响到整体工程的质量,所以在混凝土浇筑过程中要对质量严加控制,避免这两种隐患的发生,从而保证工程的整体质量,保证其正常的使用及寿命。 材料对混凝土质量的影响是十分关键的,材料的质量是决定混凝土使用功能的关键,所以在材料的选用及检测上要把好关,同时还要做好施工中质量控制措施,这样才能保证整体工程的质量。混凝土在使用过程中,最常见的问题是出现裂缝,这与长时间的使用、外力作用、环境和温度的变化都有关系,但主要原因还是由于材料和施工中的质量控制没有达到规定的标准有关,所以在混凝土施工中,加强材料的检验关和强化施工过程中的规范管理是保证混凝土质量的关键。 混凝土施工过程中常见的技术性影响主要为以下三种: 1.1 材料配比不合理。混凝土的主要成分为水泥、砂子等,如果水泥的标号达不到标准、水灰比配制的不符合要求或是砂石的质量不达标等情况,都会对混凝土的强度产生影响,混凝土的强度达不到规定的标准要求,这样在使用过程中,一旦所受到的收缩力达到所能承受的标准时,则会导致裂缝的发生。 1.2 忽视了温差的影响。混凝土在浇筑完成后,进入养护期内,这时混凝土的强度还没有达到规定的标准,所以要防止昼夜之间的温差过大,一旦温差过大则会使混凝土产生严重的收缩,从而导致裂缝的发生,对混凝土结构的正常使用和寿命都会造成影响。 1.3 模板制作存在问题。模板表面处理不科学,接缝处存在问题会使得混凝土振捣处理时,发生泥浆外漏以及产生气泡,接缝处的混凝土强度受此影响而大大降低,出现裂缝。 除此之外,保养工作若不能按照规定严格操作,也容易造成混凝土裂缝。以上所述的几个方面是影响混凝土质量的主要原因,有必要采取相应措施加以管控。 2 制定混凝土质量检测的计划 自改革开放以来,我国的经济取得快速的发展,各项基础设施建筑都进入了快速发展时期,在建筑工程施工中,混凝土作为工程施工的主要材料,对施工的质量有着直接的影响。所以在建筑施工中,加强对混凝土质量的监测和控制,运用科学的方法加强对混凝土强度的检测工作,保证混凝土的质量,从而确保整体工程的质量具有十分重要意义的。 混凝土的质量检测计划要根据实际的施工情况,选择合适的检测方法来具体制定。在对混凝土总体的质量进行检测前,选择混凝土原料配比相同、施工工艺与龄期相近、检测方法统一的工程作为检测的总体,然后分别对其中的个体进行规划,随机选择样本进行检测,可以增加样本的数量来提高检测的准确度。同时要规划好测区的布置和检测顺序,使检测工作有条不紊地进行。施工单位要选用经过专业培训,取得操作资格证的操作人员进行混凝土质量检测,防止人为的操作失误致使检测结果有偏差。检测前,要对有关混凝土的基础数据进行采集,比如被测结构的设计参数、混合材料的组成和配比、结构的形状等。 3 建筑混凝土抗压强度的检测要点 混凝土的强度是衡量混凝土质量的重要指标,随着检测技术的不断发展,在对混凝土实体强度的检测方法较多,大致有回弹法、钻芯法、超声法、拉拔法及超声回弹综合法等几种。这其中回弹法以其不破坏原有结构,操作简单及具有较好的经济性而广泛的应用于混凝土检测中,其检测的准确率较高,特别对于泵送混凝土其检测准确度能达到百分之九十五以上。 3.1 检测前回弹仪的选用 回弹法的检测原理是通过运用回弹仪来测量混凝土表面的回弹硬度进而推断结构混凝土抗压强度,回弹值越大,表明混凝土的硬度越大,抗压强度也就越高。要选用具备产品合格证、生产许可证和检定单位的检定合格证的回弹仪。在回弹仪使用前,需要对回弹仪按标准方法在钢砧上进行率定,其率定平均值应为80±2,作业的环境温度只能在-4℃~40℃范围内才能取得有效数据。 3.2 检测中的具体做法 回弹法可以对单个结构或构件进行检测,也可以进行批量检测。对于具有相同生产工艺和相同强度等级的建筑混凝土,保证原材料、配合比、成型工艺、养护条件和龄期基本一致,在不少于10件的同类构件中随机抽检的数量要大于同类构件总数的30%。 3.2.1 选定测区。测区要选在构件的对称可侧面上,或者是在同一个可侧面上均匀分布,特别主要再要构件的重点和薄弱部位设置测区。测区必须保证是在清洁、平整、表面无异物、结构紧密,能使回弹仪处于水平方向的混凝土表面。 3.2.2 回弹值的要求。在使用回弹仪检测时,轴线必须始终垂直于混凝土测区的水平面,缓慢施加压力,准确地记录每一次测点的回弹值并精确至1,然后快速复位,对同一测点只能弹击一次,每一个测区应记取16个回弹值。 3.2.3 碳化深度值的要求。在测量碳化深度时使用1%-2%浓度的酚酞酒精溶液,用专业碳化深度测量尺测量碳化深度,测点为不少于测区的30%并取其平均值。 3.3 检测后得出评定结果 最好选用地方测强曲线得到测定混凝土强度值换算表,因为它比国家制定的通用回弹法检测的测强曲线更符合地区的实际情况,充分

钢筋锈蚀对混凝土的影响

混凝土中钢筋腐蚀与防护技术(1) ——钢筋腐蚀危害与对混凝土的破坏作用 混凝土中钢筋锈蚀已成为世界关注的大问题,被认为是当今影响混凝土结构耐久性的首要原因。钢筋锈蚀已经或正在给国民经济带来巨大经济损失。基于此,美国总结正反两个方面的经验教训,提出了“立足前期措施,着眼长远效益”,并强行实施基建工程管理中的“全寿命经济分析法”(LCCA)。目前,我国正处于基本建设**时期,国内外的经验教训应认真吸取,这已不是单纯技术问题。本讲座结合大量国内外新近资料与工程实例,以知识性和使用性为主分5讲系统介绍了钢筋腐蚀危害及对混凝土的破坏作用、钢筋锈蚀的电化学过程及混凝土对钢筋的保护、氯盐对钢筋的腐蚀、中性化的影响、钢筋防腐蚀技术、钢筋锈蚀的检测与判定技术等,供业内人士参考。 ——编者 STEEL CORROSION AND PROTECTIVE TECHNOLOGY IN CONCRETE(1) ——DAMAGE OF STEEL CORROSION AND FAILURE EFFECT ON CONCRETE Hong Naifeng (Central Research Institute of Building & Construction,MMI

Beijing 10 0088) 1 钢筋锈蚀危害与经济损失 世界一些国家的腐蚀损失,平均可占国民经济总产值的2%~4%;其中,被认为与钢筋腐蚀有关者可占40%(至今我国尚无确切统计数据)。 美国1984年报道,仅就桥梁而言,57.5万座钢筋混凝土桥,一半以上出现钢筋腐蚀破坏,4 0%承载力不足和必须修复与加固处理,当年的修复费为54亿美元;1998年报道钢筋混凝土腐蚀破坏的修复费,一年要2?500亿美元,其中桥梁修复费为1?550亿美元(是这些桥初建费用的4倍 );还有报道说,到本世纪末,美国要花4?000亿美元用于修复和重建钢筋腐蚀破坏的工程。如此巨大的经济投入,引起美国朝野人士的震惊与高度重视,并制定法律法规,限制腐蚀破坏的发生和挽回部分经济损失。加拿大早期大量使用“防冰盐”,使钢筋混凝土桥梁等破坏严重。欧洲、英国、澳大利亚、海湾国家等,都有以氯盐为主的钢筋腐蚀破坏问题(英国修复费为每年50亿英镑)。韩国曾发生一系列建筑物破坏、倒塌事件,其中也与“盐害”有关。我国台湾重修澎湖大桥和不断发生的“海砂屋”事件,也是氯盐腐蚀钢筋所造成的。 混凝土耐久性已是当今世界的重大问题,在第二届国际混凝土耐久性会议上,梅塔教授指出:“当今世界混凝土破坏原因,按递减顺序是:钢筋锈蚀、冻害、物理化学作用”。他明确将“钢筋锈蚀”排在影响混凝土耐久性因素的首位。而来自海洋环境和使用“防冰盐”中的氯盐,又是造成钢筋锈蚀的主要原因。当然,混凝土中性化、冻融等也促进钢筋

相关主题
文本预览
相关文档 最新文档