当前位置:文档之家› 人教版八年级上册 13.24 最短路径问题归纳小结

人教版八年级上册 13.24 最短路径问题归纳小结

八年级数学最短路径问题

【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:

①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.

②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.

③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.

④全局最短路径问题 - 求图中所有的最短路径.

【问题原型】“将军饮马”,“造桥选址”,“费马点”.

【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.

【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.

【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

【精品练习】

1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有

一点P ,使PD +PE 的和最小,则这个最小值为( )

A .

B .

C .3 D

2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2

B .32

C .32+

D .4

A

D

E

P

B C

3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )

A .120°

B .130°

C .110°

D .140°

4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .

5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合), 且ED =AE ,则线段AE 的取值范围是 .

6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+)

7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0).

OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______. D

E

A

B

C

B

N

8.已知A (2,4)、B (4,2)

.C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最小值为 ,

此时 C 、D 两点的坐标分别为 .

9.已知A (1,1)、B (4,2).

(1)P 为x 轴上一动点,求PA +PB 的最小值和此时P 点的坐标;

(2)P 为x 轴上一动点,求PB PA 的值最大时P 点的坐标;

(3)CD 为x 轴上一条动线段,D 在C 点右边且CD =1,求当AC +CD +DB 的最小值和此时C 点的坐标;

10.点C 为∠AOB 内一点.

(1)在OA 求作点D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形;

(2)在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.

图①

12.荆州护城河在CC'处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A到B点路径最短?

八年级最短路径问题归纳

八年级最短路径问题归纳 最短路径问题是图论中的一个经典问题,也是计算机科学中的重要研究领域之一。在八年级的学习中,我们也会接触到最短路径问题,并且通过一些简单的算法来解决这个问题。本文将对八年级最短路径问题进行归纳总结,希望能够帮助大家更好地理解和应用这个问题。 一、最短路径问题的定义 最短路径问题是指在一个给定的图中,找出两个顶点之间的最短路径,即路径上的边权之和最小。其中,图由顶点和边组成,顶点表示路径中的点,边表示路径中的通路或连接。 二、最短路径问题的应用 最短路径问题在生活中有着广泛的应用,比如导航系统中的最短路径规划、货物运输中的最短路径选择等等。通过寻找最短路径,可以帮助我们节省时间和资源,提高效率。 三、最短路径问题的解决方法 1. 迪杰斯特拉算法 迪杰斯特拉算法是解决最短路径问题的一种常用算法。该算法通过不断更新起点到各个顶点的最短路径,直到找到终点的最短路径为

止。迪杰斯特拉算法的具体步骤如下: - 初始化起点到各个顶点的距离为无穷大,起点到自身的距离为0;- 选择一个未访问的顶点,更新起点到其他顶点的距离; - 重复上述步骤,直到找到终点的最短路径或所有顶点都被访问过。 2. 弗洛伊德算法 弗洛伊德算法是解决最短路径问题的另一种常用算法。该算法通过不断更新任意两个顶点之间的最短路径,直到更新完所有顶点对之间的最短路径为止。弗洛伊德算法的具体步骤如下: - 初始化任意两个顶点之间的距离,如果两个顶点之间有直接的边,则距离为边的权值,否则距离为无穷大; - 选择一个顶点作为中转点,更新任意两个顶点之间的距离; - 重复上述步骤,直到更新完所有顶点对之间的最短路径。 四、最短路径问题的注意事项 在解决最短路径问题时,需要注意以下几点: 1. 图的表示方式:可以使用邻接矩阵或邻接表来表示图,根据具体的问题选择合适的表示方式。 2. 边的权值:边的权值可以表示两个顶点之间的距离、时间、花费等等,根据具体的问题选择合适的权值。

初中数学人教八年级上册第十三章 轴对称1 课题学习 最短路径问题 教学设计

课题学习最短路径问题教学设计 内容: 利用轴对称研究某些最短路径问题。 内容解析: 最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变换进行研究。 本节课以数学史中的一个经典问题——“将军饮马问题”为载体展开对“最短路径问题”的课题研究,让学生经历将现实问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”(或“三角形的两边之和大于第三边”)问题。 【学习目标】能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想。【学习重点】利用轴对称将最短路径问题转化为“两点之间,线段最短”问题。 【学习难点】如何利用轴对称将最短路径问题转化为线段和最小问题。 【课前准备】三角板、直尺、圆规、铅笔、橡皮擦等 教学问题诊断分析: 最短路径问题从本质上说是最值问题,作为初中学生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手。 解答“当点A,B在直线l的同侧时,如何在l上找到点C,使AC与BC的和最小”,需要将其转化为“直线l异测的两点,与l上的点的线段和最小”的问题,为什么需要这样转化、怎样通过轴对称实现转化,一些学生会存在理解上和操作上的困难。 在证明“最短”时,需要在直线上任意取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,这种思路和方法大部分学生想不到。 在教学过程中,我让学生首先思考“直线l异测的两点,与l上的点的线段和最小”,为学生搭建桥梁。 教学过程设计 引言: 前面我们研究过一些关于“两点的所有线段中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等问题,我们称它们为最短路径问题,这节课我们将学习著名的“将军饮马问题”,从中体会如何用所学知识选择最短路径。首先请同学们独立思考,完成导学案上的第一个板块——自主学习。 “自主学习”板块,让学生先独立思考,独立完成。然后请学生来公布答案,达到复习旧知的目的,为本节课的学习做好铺垫。 一、自主学习 1、如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?

最短路径问题(将军饮马为题) 优秀教案

人教版八年级上册第十三章轴对称课题学习最短路径问题 教学设计

课题 人教版八年级上册第十三章轴对称教具准备多媒体课件,正方体纸盒 13.4课题学习最短路径问题学具准备正方体纸盒,三角板 课时共(1)课时,第(1)课时执教教师 教材分析 本节课是在学生已经学习了“两点之间,线段最短”“垂线段最短”的基础上,借助轴对称研究以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题. 学情分析 最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手。 教学目标 知识与技能 1.能利用轴对称解决简单的最短路径问题。 2.体会图形的变化在解决最值问题中的作用。 3.感悟转化思想。 过程与方法 1.在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力。; 2.渗透数学建模的思想。 情感态度与价 值观 1.通过有趣的问题提高学习数学的兴趣. 2.体验数学学习的实用性,体现人人都学有所用的数学 教学重点利用轴对称将最短路径问题转化为“两点之间,线段最短”问题;培养学生解决实际问题的能力. 教学 难点 路径最短的证明 教学过程设计设计意图 一、以旧引新,激情引趣 1、利用101PPT中本课的一道习题,复习“两点之间,线段最短” 为了激发学生的求知欲,利用蚂蚁爬行最短路径问题激情引趣。 充分利用101PPT学科工具中立体展开还原的动画过程,让学生通过观察纸盒的打开过程,寻找蚂蚁的爬行捷径。从而引出线段公理:两点之间线段最短和垂线段的性质:垂线段最短 让学生体会新知识是在原有知识基础上“生长”出来的。以旧引新,给予学生亲切感,树立学好本节课的信心。

八年级上册数学-最短路径问题

第18讲 最短路径问题 【板块一】“垂线段最短”问题 方法技巧:一动点与一定点连成的线段中,若动点在定直线上,则垂线段最短. 题型一 动点所在直线已知型 【例1】已知等腰△ABC 的面积为4,AB =AC ,BC =8,P 为BC 上一动点,求AP 的最小值. 题型二 动点所在直线隐藏型 【例2】如图,边长为6的等边△ABC ,点E 时对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF ,则在点E 的运动过程中,求DF 的最小. B C 针对练习1 1.如图,△ABC 和△ACD 都是等边三角形,AB =2,△ABC ACD 绕点A 旋转得到△AC ’D ’.AC ’,AD ’分别与BC ,CD 交于E ,F .求△CEF 的周长的最小值. A B D 2.如图,OE 是等边△AOB 的中线,OB =4,C 是直线OE 上一动点,以AC 为边在直线AC 下方作等边△ACD ,连接ED ,下列说法正确的是( ) A .ED 的最小值是2 B .ED 的最小值是1 C .E D 有最大值 D .ED 没有最大值也没有最小值

O A B D E C 【板块二】“将军饮马”问题 方法技巧:定点关于定直线对称转化为两点之间线段最短求最值. 【例3】如图,在平面直角坐标系中,点A (﹣2,4),B (4,2),在x 轴上取一点P ,使点P 到点A 和B 的距离之和最小,则点P 的坐标是( ) A .(﹣2,0) B .(4,0) C .(2,0) D .(0,0) 【例4】如图,AB ⊥BC ,AD ⊥DC .∠BAD =120°,在BC ,CD 上分别找一点M ,N ,当△AMN 周长最小时,求∠AMN +∠ANM 的度数. B N M 针对练习2 1.如图,等腰△ABC 的底边BC 的长为为4cm ,面积是12cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一动点,求△BDM 的周长最小值.

新人教版八年级数学上【教案】课题学习 最短路径问题

新人教版八年级数学上【教案】课题学习最短路径问题课题学习最短路径问题 【教学目标】 教学知识点 能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想. 能力训练要求 在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 情感与价值观要求 通过有趣的问题提高学习数学的兴趣.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有所用的数学. 【教学重难点】 重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题. 难点:如何利用轴对称将最短路径问题转化为线段和最小问题. 突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决. 【教学过程】 一、创设情景引入课题 师:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.

(板书)课题 学生思考教师展示问题,并观察图片,获得感性认识. 二、自主探究合作交流建构新知 追问1:观察思考,抽象为数学问题 这是一个实际问题,你打算首先做什么? 活动1:思考画图、得出数学问题 将A,B 两地抽象为两个点,将河l 抽象为一条直线. 追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗? 师生活动:学生尝试回答, 并互相补充,最后达成共识:(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来 的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(如图). 强调:将最短路径问题抽象为“线段和最小问题” 活动2:尝试解决数学问题 问题1 : 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小? 追问1 你能利用轴对称的有关知识,找到上问中符合条件的点B'吗?

人教版八年级上册 13.24 最短路径问题归纳小结

八年级数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: ①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题. ②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. ③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题 - 求图中所有的最短路径. 【问题原型】“将军饮马”,“造桥选址”,“费马点”. 【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”. 【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

【精品练习】 1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有 一点P ,使PD +PE 的和最小,则这个最小值为( ) A . B . C .3 D 2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2 B .32 C .32+ D .4 A D E P B C

3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( ) A .120° B .130° C .110° D .140° 4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 . 5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合), 且ED =AE ,则线段AE 的取值范围是 . 6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+) 7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0). OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______. D E A B C B N

八年级上第08讲 最短路径问题 讲义+练习

轴对称:最短路径问题

【知识导图】

1.两点之间,线段最短。 2.三角形两边之和大于第三边,两边之差小于第三边。 3.线段垂直平分线上的点与这条线段两个端点的距离相等。 求直线异侧的两点到直线上一点距离的和最小的问题 讲解内容:只要连接这两点,所得线段与直线的交点即为所求的位置。 讲解内容:只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直线的交点即为所求的位置。 如图所示,点A ,B 分别是直线l 同侧的两个点,在l 上找一个点C ,使CA +CB 最短 【答案】作点B 关于直线l 的对称点B',连接AB'与l 交于点C ,则点C 为所求的点。 【解析】在直线l 上任取不同于C 点的C'点,连接AC’,BC’∵点B 和B'关于直线l 对称∴CB=CB’、C'B=C'B'∴CA+CB=CA+CB'=AB'∵CA+CB’

如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AM+NB最短?(假定河的两岸是平行的直线,桥要与河垂直) 【答案】1.将点A沿垂直与河岸的方向平移一个河宽到A', 2.连接A'B交河对岸于点N, 则点N为建桥的位置,MN为所建的桥。 【解析】由平移的性质,得 AM∥A'N且AM=A'N, MN=M'N',AM'∥A'N',AM'=A'N' 所以A、B两地的距:AM+MN+BN=AA'+A'N+NB=AA'+A'B 若桥的位置建在M'N'处,则AB两地的距离为: AM'+M'N'+N'B=A'N'+M'N'+N'B 在△A'N'B中,∵A'N'+N'B>A'B ,M'N'=AA'∴M'N'+A'N'+N'B>AA'+A'B 所以桥的位置建在MN处,AB两地的路程最短。 如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小. 2 例题3

2023学年人教版数学八年级上册压轴题专题精选汇编(最短路径问题)解析版

2023学年人教版数学八年级上册压轴题专题精选汇编 最短路径问题 考试时间:120分钟试卷满分:100分 一.选择题(共10小题满分20分每小题2分) 1.(2分)(2021八上·花都期末)如图点E在等边△ABC的边BC上BE=4 射线CD⊥BC 垂足为点C 点P是射线CD上一动点点F是线段AB上一动点当EP+FP的值最小时BF=5 则AB的长为() A.7B.8C.9D.10 【答案】A 【完整解答】解:作E点关于CD的对称点E' 过E'作E'F⊥AB交于点F 交CD于点P 连接PE ∴PE=PE' ∴EP+FP=PE'+PF≥E'F 此时EP+FP的值最小 ∵△ABC是正三角形 ∴∠B=60° ∵E'F⊥AB ∴∠FE'B=30°

∴BE'=2BF ∵BF=5 BE=4 ∴E'B=10 ∵CE=CE' ∴10=2CE+BE=2CE+4 ∴CE=3 ∴BC=7 故答案为:A. 【思路引导】作E点关于CD的对称点E' 过E'作E'F⊥AB交于点F 交CD于点P 连接PE 此时EP+FP 的值最小由题意得出∠FE'B=30° 则BE'=2BF 再由BF=5 BE=4 得出10=2CE+BE=2CE+4 解出CE=3 即可得出BC=7。 2.(2分)(2022春•定海区期末)如图直线l1l2表示一条河的两岸且l1∥l2.现要在这条河上建一座桥(桥与河的两岸相互垂直)使得从村庄P经桥过河到村庄Q的路程最短应该选择路线() A.路线:PF→FQ B.路线:PE→EQ C.路线:PE→EF→FQ D.路线:PE→EF→FQ 【思路引导】根据两点间直线距离最短使FEPP′为平行四边形即可即PP′垂直河岸且等于河宽接连P′Q即可. 【完整解答】解:作PP'垂直于河岸l2使PP′等于河宽 连接QP′ 与另一条河岸相交于F作FE⊥直线l1于点E 则EF∥PP′且EF=PP′ 于是四边形FEPP′为平行四边形故P′F=PE 根据“两点之间线段最短” QP′最短即PE+FQ最短.

2022-2023学年人教版八年级数学上册《最短路径问题》专题练习(含答案)

最短路径问题专题练习 1.如图,要在街道l设立一个牛奶站O,向居民区A,B提供牛奶,下列设计图形中使OA+OB值最小的是() A.B. C.D. 2.小颖的爸爸要在某条街道l上修建一个奶站P,向居民区A,B提供牛奶,要使点P到A,B的距离之和最短,则下列作法正确的是() A.B. C.D. 3.A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行线,桥与河岸垂直)() A.(BM垂直于a)B.(AM不平行BN)

4.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是() A.9.6B.8C.6D.4.8 5.如图,在△AOB中,∠OAB=∠AOB=15°,OB=6,OC平分∠AOB,点P在射线OC上,点Q为边OA上一动点,则P A+PQ的最小值是() A.1B.2C.3D.4 6.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF 的值最小时,∠AEB的度数为() A.105°B.115°C.120°D.130° 7.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为() A.80°B.90°C.100°D.130° 8.在△ABC中,AB=6,BC=7,AC==4,直线m是△ABC中BC边的垂直平分线,P是直线m.上的一动点,则△APC的周长的最小值为() A.6B.10C.11D.13

人教版数学八年级上册13.4《最短路径问题(2)》名师教案

课题学习最短路径问题〔第二课时〕 造桥选址问题〔邹敏〕 一、教学目标: 〔一〕学习目标 1.熟练应用轴对称变换知识,提高解决实际问题的能力; 2.学会利用平移变换知识解决造桥选址的最短路径问题; 3.体会平移变换在解决最值问题中的作用,感悟转化思想. 〔二〕教学重点 教学重点:利用平移将“造桥选址〞的实际问题转化为“两点之间,线段最短〞问题 〔三〕教学难点 教学难点:如何利用平移将最短路径问题转化为线段和最小问题 二、教学设计 〔一〕课前设计 1.预习任务 ⑴平移不改变图形的和; ⑵三角形三边的数量关系:三角形任意两边的差第三边; ⑶如图,直线AB,CD且AB∥CD,在直线AB上任取不同两点P、Q,过P、Q 分别作CD的垂线,垂足分为M、N,那么PM与QN的大小关系为〔〕A.PM>QN B.PM=QN C.PM<QN D.不能确定 答案:⑴形状,大小;⑵小于;⑶B 2.预习自测 ⑴直线AB上有一点P,当点P在时,P A+PB有最小值,最小值为AB 的值; ⑵直线AB上有一点P,当点P在时,PB-P A等于AB的值;

⑶直线AB 上有一点P ,当点P 在 时,P A -PB 等于AB 的值; 图1图3图2B A P B A P 【知识点】线段的和差 【数学思想】分类讨论,数形结合 【思路点拨】直线AB 上有一点P ,此时点P 与线段AB 的位置关系有两种:①如图1,点在线段AB 上;②如图2和图3,点在线段BA 的延长线上或点在直线AB 的延长线上. 【解题过程】⑴当点P 在线段AB 上时,如图1,P A +PB =AB 即P A +PB 最小值为AB 的值;⑵当点P 在线段BA 的延长线上时,如图2,PB -P A =AB ;⑶当点P 在线段AB 的延长线上时,如图3,P A - PB =AB ; 【答案】⑴线段AB 上;⑵线段BA 的延长线上;⑶线段AB 的延长线上. ⑷如图,点 A 、B 在直线l 的同侧,在直线l 上能否找到一点P ,使得|PB -P A |的值最大? l B A 【知识点】两点之间线段最短,三角形两边的差小于第三边 【思路点拨】当点P 、点A 、点B 不共线时,根据“三角形任意两边的差小于第三边〞 ,那么|PB -P A |<AB ; 当点P 与A 、B 共线,点P 在线段BA 的延长线上时,即点P 为直线AB 与直线l 的交点,那么|PB -P A |=AB . 【解题过程】⑴当点P 在直线l 上且点P 、点A 、点B 不共线时|PB -P A |<AB ;⑵当点P 在线段BA 的延长线与直线l 的交点时,如图,PB -P A =AB ,即 |PB -P A |=AB ; 【答案】如图,连接BA 并延长交直线l 于P ,此时|PB -P A |的值最大.

最短路径问题优质课教学设计一等奖及点评

13.4课题学习最短路径问题(第1课时) 一、内容和内容解析 1、教学内容 «最短路径问题»是人教版八年级上册第十三章第4节第1课时的内容.本节课的主要内容是解决由“将军饮马问题”引出的数学问题“两点在直线同侧求最短路径”以及“两线一点”,“两线两点”等最短路径问题. 2、教学内容解析 本节课是在学生学习了轴对称的知识以及“两点之间,线段最短”,“连接直线外一点与直线上各点的所有线段中,垂线段最短”等知识的基础上,展开了本节课的求最短路径问题,这节课是轴对称知识的一个很好的应用,进一步巩固了轴对称的知识,使轴对称知识更加灵活,并在学生头脑中打下扎实的基础。 最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变换进行研究。 本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)问题. 3、教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短问题”. 二、教学目标及其解析 1、教学目标: (1)理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定。 (2)能利用轴对称解决简单的最短路径问题。 (3)通过独立思考,合作探究,培养学生运用数学知识解决实际问题的能力。 2、目标解析: 要求学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线”,把实际问题抽象为数学的线段和最小问题;能利用轴对称将线段和最小问题转化

人教版八年级数学上册13.4《课程学习 最短路径问题》教学设计(优质获奖)

《课题学习:最短路径问题》教学设计 一、课程标准解读及地位作用 (1)课程标准解读:《课题学习:最短路径问题》属于综合与实践这一部分,这节课就是综合运用所学的数学思想、方 法、知识、技能解决一些生活和社会中的问题,以实际生 活中的问题为载体,以学生自主参与为主的学习活动,是 培养学生应用意识、创新意识、过程经验很重要的载体, 通过课题学习能够把知识系统化,解决一些实际问题。针 对问题情境,学生借助所学知识和生活经验独立思考或与 他人合作,经历发现问题和提出问题、分析问题和解决问 题的全过程,感悟数学各部分内容之间、数学与实际生活 之间及其他学科的联系,激发学生学习数学的兴趣,加深 学生对所学数学内容的理解。这种类型的课程应该“少而 精”的原则,保证每学期至少一次,可以在课堂上完成, 也可以将课内外结合. (2)地位及作用:《课题学习:最短路径问题》位于人教版八年级上第十三章《轴对称》,为让学生能灵活的运用两点之 间线段最短、合理使用轴对称、平移等解决最短路径问题 而设置的一节课。本节课是在学习轴对称、等腰三角形的 基础上,引导学生探究如何利用线段公理解决最短路径问 题。它既是轴对称、平移、等腰三角形知识运用的延续,

又能培养学生自主探究,学会思考,在知识与能力转化上 起到桥梁作用. 二、教学内容和内容解析 1、内容:利用轴对称研究某些最短路径问题. 2、内容解析:最短路径问题在现实生活中经常遇到,初 中阶段,主要以“两点之间,线段最短”“连接直线外 一点与直线上各点的所有线段中,垂线段最短”为知 识基础,有时还要借助轴对称、平移、旋转等进行变 换进行研究. 这节课我以数学史中的一个经典问题---将军饮马问题为载体开展对“最短路径问题”的课题研究,让 学生经历将实际问题抽象为数学的线段和最小值问 题,再利用轴对称将线段和最小值问题转化为“两点 之间,线段最短”问题。基于以上分析,确定本节课 的教学重点:利用轴对称将最短路径问题转化为“两 点之间,线段最短”问题. 三、目标和目标解析 1、目标:能利用轴对称能利用轴对称和平移变换解决简单 的最短路径问题,体会图形的变化在解决最值问题中的 作用,感悟转化思想. 2、目标解析:达成目标的标志是:学生能将实际问题中的 “地点”“河”抽象为数学中的“点”“线”,经历将实际

八年级数学最短路径问题

八年级数学最短路径问题 一、两点在一条直线异侧 例:已知:如图,A,B在直线L的两侧,在L上求一点P, 使得PA+PB最小。 练习、如图,A、B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B 的路径AMNB最短?(假设河的两岸就是平行的直线,桥要与河垂 直) 二、两点在一条直线同侧 例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之与最短. 练习:如图,A、B就是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点。

三、一点在两相交直线内部 例:已知:如图A就是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC,使三角形周长最小、 练习1:已知:如图A就是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC周长最小值为OA、求∠MON的度数。 练习2:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请您帮助她设计一条行走路线,使其所走的总路程最短? 提高训练 一、题中出现一个动点。 1、当题中只出现一个动点时,可作定点关于动点所在直线的对称点,利用两点之间线段最短,或三角形两边之与小于第三边求出最值、 例:如图,在正方形ABCD中,点E为AB上一定点, 且BE=10,CE=14,P为BD上一动点,求PE+PC最小值。

八年级数学上册 最短路径问题专项训练 含答案

最短路径问题专项训练 一、选择题 1.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P 是AD上的一个动点,当PC与PE的和最小时,∠ACP的度数是() A.30°B.45°C.60°D.90° 2.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是( ) A.PA B.PB C.PC D.PD 3.如图,直线是一条河,A、B是两个新农村定居点.欲在l上的某点处修建一个水泵站,直接向A、B两地供水.现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是() A.B.

C . D . 4. 如图,ABC ∆中,BAC 90︒∠=,6AB =,10BC =,8AC =,BD 是ABC ∠的平分线.若P 、Q 分别是BD 和AB 上的动点,则PA PQ +的最小值是( ) A . 125 B .4 C .245 D .5 5.如图,在AOB ∆中,15OAB AOB ∠=∠=︒,6OB =,OC 平分AOB ∠,点P 在射线OC 上,点Q 为边OA 上一动点,则PA PQ +的最小值是( ) A .1 B .2 C .3 D .4 6.如图,正方体的棱长为2,B 为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B 点,则它运动的最短路程为( )

A B .4 C D .5 7.如图,在ABC ∆中,10BC =,CD 是ACB ∠的平分线.若P ,Q 分别是CD 和AC 上的动点,且ABC ∆的面积为24,则PA PQ +的最小值是( ) A . 125 B .4 C .245 D .5 8.如图,在正方形ABCD 中,点E ,F 分别在AB ,CD 上,且BE DF =,点M ,N 分别为AD ,BC 的中点,P 为MN 上的一个动点,则下列线段的长等于BP EP +最小值的是( ) A .AE B .BN C .BE D .AF 二、填空题 9.如图,正方形ABCD 的边长为2,点E 是CD 中点,点P 是对角线AC 上的动点,那么PD PE +的最小值= .

人教版-八年级数学讲义--最短路径问题-(含解析)

人教版-八年级数学讲义-- 最短路径问题-(含解析)本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

第6讲最短路径问题 知识定位 讲解用时:5分钟 A、适用范围:人教版初二,基础较好; B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习最短路径问题,现实生活中经常涉及到选择最短路径问题,最值问题不仅使学生难以理解,也是中考中的一个高频考点。本节将利用轴对称知识探究数学史上著名的“将军饮马问题”。 知识梳理 讲解用时:20分钟 两点之间线段最短 C D A B E A地到B地有3条路线A-C-D-B,A-B,A-E-B,那么选哪条路线最近呢? 垂线段最短 如图,点P是直线L外一点,点P与直

课堂精讲精练 【例题1】 已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB的值最小,则下列作法正确的是() A.B. C.D. 【答案】D 【解析】根据作图的方法即可得到结论. 解:作B关于直线l的对称点,连接这个对称点和A交直线l于P,则PA+PB 的值最小, ∴D的作法正确, 故选:D. 讲解用时:3分钟

解题思路:本题考查了轴对称﹣最短距离问题,熟练掌握轴对称的性质是解题的关键. 教学建议:学会处理两点在直线同侧的最短距离问题. 难度: 3 适应场景:当堂例题例题来源:无年份:2018 【练习】 如图,直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是() A. B. C.D. 【答案】D 【解析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离. 解:作点P关于直线L的对称点P′,连接QP′交直线L于M. 根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短. 故选:D. 讲解用时:3分钟 解题思路:本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别. 教学建议:学会处理两点在直线同侧的最短距离问题. 难度: 3 适应场景:当堂练习例题来源:无年份:2018

相关主题
文本预览
相关文档 最新文档