当前位置:文档之家› 三极管的3个工作区

三极管的3个工作区

三极管的3个工作区
三极管的3个工作区

三极管的3个工作区

三极管的三种状态也叫三个工作区域,即:截止区、放大区和饱和区。

(1)、截止区:三极管工作在截止状态,当发射结电压Ube小于0.6—0.7V的导通电压,发射结没有导通集电结处于反向偏置,没有放大作用。

(2)、放大区:三极管的发射极加正向电压(锗管约为0.3V,硅管约为0.7V),集电极加反向电压导通后,Ib控制Ic,Ic与Ib近似于线性关系,在基极加上一个小信号电流,引起集电极大的信号电流输出。

(3)、饱和区:当三极管的集电结电流IC增大到一定程度时,再增大Ib,Ic也不会增大,超出了放大区,进入了饱和区。饱和时,Ic最大,集电极和发射之间的内阻最小,电压Uce 只有0.1V~0.3V,Uce

由上可见三极管具有“开关”和“放大”两大功能。

从三极管的PN结看三个工作区:

be间和bc间表现为PN结特性,在测量上可等效为二个PN结反串。以前无件紧张时,也有三极管代二极管用的。但二个二极管接成一个三极管来用,书上从没推荐使用。

很多书上也有习题,题目大意是这样的:三极管由二个PN结构成,能否用二个二极管接成一个三极管?

答案是:否。原因:从三极管制造工艺上和电流放大原理看,基区很薄,利于基区少数载流子通过基区而不被中和,而用二极管接成的,基区范围很大,基区的少数载流子在基区有足够的时间和空间被中和。

任何三极管都是由两个PN结组合而成的,PN结实际就是一个二极管,我们知道二极管具有单向导电性,就是说如果P极电压高于N极

电压(这叫正向偏置)电流可以从二极管的P极流向N极,而当N极电压高于P极电压(这叫反向偏置)电流不能从N极流向P极。

当发射结正向偏置、集电结反向偏置,该三极管就工作在放大状态;

当其发射结和集电结都是正向偏置时,该三极管就工作在饱和状态;

当其发射结和集电结都是反向偏置时,该三极管就工作在截止状态。

NPN型三极管是基极为P极,集电极和发射极均为N极的三极管,按上述原理当:

Vb>Ve,Vb>Vc (即发射结、集电结均正偏):饱和状态,且Vb>Vc>Ve(Vce≈0.1~0.3V);Ve>Vb,Vc>Vb (即发射结、集电结均反偏):截止状态,且Vc>Ve>Vb(Vce≈电源电压VCC);

Ve<Vb<Vc(即发射结正偏,集电结反偏):三极管工作在放大状态(Vce介于上两种情况之间)。

三极管的判断方法

三极管的判断方法一,三极管类型

1. 先判定基极b(一般中间的就是):先假定一个管脚是b,把 红表笔接这个b,用黑表笔分别接触另两个管脚,测得或者都是高阻值时,说明假定正确。 2.因为红表笔实际是表电源的负极,所以 当测得都是低阻值时,b是N型材料, 两端是P型材料,就是PNP型。 3.所以当测得都是高阻值时,b是P型材料, 两端是N型材料,就是NPN型。 4.我们一般可以容易找到基极b,但另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO 的方法确定集电极c和发射极e。 (1) 对于NPN型三极管,用手指捏住b极与假设的c极,管脚间利用我们的手指充当电阻的作用,用黑表笔接假设的c 极,红表笔接假设的e极,万用表打到*1K档测量两极间的电阻 Rce;之 后将假 设的c ,e 极对调 再测一

次。虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。 (2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极 管符号中的 箭头方向一 致,所以此时 黑表笔所接 的一定是发 射极e,红表 笔所接的一定是集电极c。 4.直流放大倍数的hFE的测量:先转动开关至晶体管调节 Adj位置上,将红黑测试笔短接,调节欧姆调零电位器,使指针对准300hFE刻度线上,然后转动开关到hFE位置,将要测的晶体管脚分别插入晶体管测试座的ebc管座内,指针偏转所示数值约为晶体管的直流放大倍数?值。N型插入N型插座,P型插入P型插座。 5.

如何快速确定三极管的工作状态三极管的三种工作状态分析判断

如何快速确定三极管的工作状态三极管的三种工作状态分析判断有放大、饱和、截止三种工作状态,放大电路中的三极管是否处于放大状态或处于何种工作状态,对于学生是一个难点。笔者在长期的教学实践中发现,只要深刻理解三极管三种工作状态的特点,分析电路中三极管处于何种工作状态就会容易得多,下面结合例题来进行分析。 一、三种工作状态的特点 1.三极管饱和状态下的特点 要使三极管处于饱和状态,必须基极电流足够大,即IB≥IBS。三极管在饱和时,集电极与发射极间的饱和电压(UCES)很小,根据三极管输出电压与输出电流关系式UCE=EC-ICRC,所以IBS=ICS/β=EC-UCES/β≈EC/βRC。三极管饱和时,基极电流很大,对硅管来说,发射结的饱和压降UBES=0.7V(锗管UBES=-0.3V),而UCES=0.3V,可见,UBE>0,UBC>0,也就是说,发射结和集电结均为正偏。三极管饱和后,C、E 间的饱和电阻RCE=UCES/ICS,UCES 很小,ICS 最大,故饱和电阻RCES很小。所以说三极管饱和后G、E 间视为短路,饱和状态的NPN 型三极管等效电路如图1a 所示。 2.三极管截止状态下的特点要使三极管处于截止状态,必须基极电流IB=0,此时集电极IC=ICEO≈0(ICEO 为穿透电流,极小),根据三极管输出电压与输出电流关系式UCE=EC-ICRC,集电极与发射极间的电压UCE≈EC。 三极管截止时,基极电流IB=0,而集电极与发射极间的电压UCE≈ECO 可见,UBE≤0,UBC1V 以上,UBE>0,UBC 二、确定电路中三极管的工作状态 下面利用三极管三种工作状态的特点和等效电路来分析实际电路中三极管的工作状态。 例题:图2 所示放大电路中,已知EC=12V,β=50,Ri=1kΩ,Rb=220kΩ,Rc=2kΩ,其中Ri 为输入耦合电容在该位置的等效阻抗。问:1.当输入信号最大值为+730mV,最小值为-730mV 时,能否经该电路顺利放大?2.当β=150 时,该电路能否起到正常放大作用?

三极管工作状态 有图

NPN:放大,集电结反偏,发射结正偏; 截止,集电结反偏,发射结反偏; 饱和,集电结正偏,发射结正偏; PNP:放大,集电结正偏,发射结反偏; 截止,集电结正偏,发射结正偏; 饱和,集电结反偏,发射结反偏; 这是我脑子里的东西,你自己看一下是不是相反吧 简单的办法就是判断他们的电位变化的情况。以下以NPN硅管为例,PNP管正好相反。(1)截止,Ube<0.7V,也就是发射结反偏,Ube<0的时候是可靠截止。(2)放大,Ube>0.7V,Uce>Ube,Ubc<0,也就是发射结正偏,集电结反偏。(3)饱和,Ube>0.7V,UceUon,UbUB,极电结正偏UC>UB,饱和 截止状态: 当“≤0时,集电极电流很 小,三极管相当于截止,电源电 压丘几乎全部加在管子两端 放大状态: “从O逐渐增大,集电极电流 J。也按一定比例增加,很小的 I变化引起很大的,;变化,三 极管起放大作用 饱和状态: 三投管饱和时,管子两端压降很 小,电源电压E几乎全部加在集电 极负载电阻磁两端I口越大,控制越 灵敏

关于三极管工作于开关状态的原理解析

关于三极管工作于开关状态的原理解析 晶体三极管的实际开关特性决定于管子的工作状态。晶体三极管输出特性三个工作区,即截止区、放大区、饱和区,如图4.2.1(b)所示。如果要使晶体三极管工作于开关的接通状态,就应该使之工作于饱和区; 要使晶体三极管工作于开关的断开状态,就应该使之工作于截止区,发射极电流iE=0,这时晶体三极管处于截止状态,相当于开关断开。集电结加有反向电压,集电极电流iC=ICBO,而基极电流iB=-ICBO。说明三极管截止时,iB并不是为0,而等于-ICBO。基极开路时,外加电源电压VCC使集电结反向偏置,发射结正向偏置晶体三极管基极电流iB=0时,晶体管并未进入截止状态,这时iE=iC =ICEO还是较大的。晶体管进入截止状态,晶体管基极与发射极之间加反向电压,这时只存在集电极反向饱和电流ICBO,iB =-ICBO,iE=0,为临界截止状态。进一步加大基极电压的绝对值,当大于VBO时,发射结处于反向偏置而截止,流过发射结的电流为反向饱和电流IEBO,这时晶体管进入截止状态iB = -(ICBO+ IEBO),iC= ICBO。发射结外加正向电压不断升高,集电极电流不断增加。同时基极电流也增加,随着基极电流iB 的增加基极电位vB升高,而随着集电极电流iC的增加,集电极电位vC却下降。当基极电流iB增大到一定值时,将出现vBE =vCE的情况。这时集电结为零偏,晶体管出现临界饱和。 如果进一步增大iB ,iB增大,使得集电结由零偏变为正向偏置,集电结位垒降低,集电区电子也将注入基区,从而使集电极电流iC随基极电流iB的增大而增大的速度减小。这时在基区存储大量多余电子-空穴对,当iB继续增大时,iC基本维持不变,即iB失去对iC的控制作用,或者说这时晶体管的放大能力大大减弱了。这时称晶体管工作于饱和状态。一般地说,在饱和状态时饱和压降VBE(sat)近似等于0.7V,VCE(sat)近似等于0.3V。由图4.2.1(a)可看出,集电极电流iC的增加受外电路的限制。由电路可得出iC的最大值为ICM= VCC/ RC。晶体管进入饱和状态,基极电流增大,集电极电流变化很小,即iC=ICS=(VCC-VBE(sat))/RC晶体管处于临界饱和时的基极电流为IBS=ICS/β=(VCC-VBE(sat))/βRC 基极电阻增大,驱动电流不足,特别是晶体管从放大区进入饱和区时时间太长,开关晶体管发热烧坏,因此此电阻的计算为:Rb《=Hfe*(Vb-0.7)/Icm 在简易自动控制电路中,将介绍一些模拟实验电路,利用一些物理现象产生的力、热、声、光、电信号,实现自动控制,以达到某种控制效果。

三极管的工作原理(经典)

三极管的工作原理(转载) 三极管的工作原理 对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。 但三极管厉害的地方在于:它可以通过小电流去控制大电流。 放大的原理就在于:通过小的交流输入,控制大的静态直流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。 所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。 如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。 饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。 在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。 而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。 结构与操作原理

三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn 两种组合。三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集 极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出 npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体, 和二极体的符号一致。在没接外加偏压时,两个pn接面都会形成耗尽区,将中 性的p型区和n型区隔开。 图1 pnp(a)与npn(b)三极管的结构示意图与电路符号。 三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里 我们先讨论最常用的所谓”正向活性区”(forward active),在此区EB极间的pn接 面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管 都以此方式偏压。图2(a)为一pnp三极管在此偏压区的示意图。 EB接面的空乏 区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基 极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大, 故本身是不导通的。图2(b)画的是没外加偏压,和偏压在正向活性区两种情形 下,电洞和电子的电位能的分布图。 三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在 于三极管的两个接面相当接近。以上述之偏压在正向活性区之pnp三极管为例, 射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极 方向扩散,同时也被电子复合。当没有被复合的电洞到达BC接面的耗尽区时, 会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流 到达连结外部的欧姆接点,形成集电极电流IC。 IC的大小和BC间反向偏压的大小 关系不大。基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入 射极的电子流InB? E(这部分是三极管作用不需要的部分)。 InB? E在射极与与电 洞复合,即InB? E=I Erec。pnp三极管在正向活性区时主要的电流种类可以清楚地 在图3(a)中看出。

三极管的工作原理

三极管的工作原理 对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。 但三极管厉害的地方在于:它可以通过小电流去控制大电流。放大的原理就在于:通过小的交流输入,控制大的静态直流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。 所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。 结构与操作原理 三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn 两种组合。三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出 npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体,和二极体的符号一致。在没接外加偏压时,两个pn接面都会形成耗尽区,将中性的p型区和n型区隔开。 图1 pnp(a)与npn(b)三极管的结构示意图与电路符号。

模电中三极管饱和及深度饱和状态的界定

模电中三极管饱和及深度饱和状态的界定 三极管饱和问题总结: 1.在实际中,常用Ib*β=V/R作为判断临界饱和的条件。根据Ib*β=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能达到真正的饱和;倍数越大,饱和程度就越深。 2.集电极电阻越大越容易饱和; 3.饱和区的现象就是:二个PN结均正偏,IC不受IB之控制 问题:基极电流达到多少时三极管饱和? 解答:这个值应该是不固定的,它和集电极负载、β值有关,估算是这样的:假定负载电阻是1K,VCC是5V,饱和时电阻通过电流最大也就是5mA,用除以该管子的β值(假定β=100)5/100=0.05mA=50μA,那么基极电流大于50μA就可以饱和。 对于9013、9012而言,饱和时Vce小于0.6V,Vbe小于1.2V。下面是9013的特性表: 问题:如何判断饱和?

判断饱和时应该求出基级最大饱和电流IBS,然后再根据实际的电路求出当前的基级电流,如果当前的基级电流大于基级最大饱和电流,则可判断电路此时处于饱和状态。 饱和的条件: 1.集电极和电源之间有电阻存在且越大就越容易管子饱和;2.基集电流比较大以使集电极的电阻把集电极的电源拉得很低,从而出现b较c 电压高的情况。 影响饱和的因素:1.集电极电阻越大越容易饱和;2.管子的放大倍数放大倍数越大越容易饱和;3.基集电流的大小; 饱和后的现象:1.基极的电压大于集电极的电压;2.集电极的电压为0.3左右,基极为0.7左右(假设e极接地) 谈论饱和不能不提负载电阻。假定晶体管集-射极电路的负载电阻(包括集电极与射极电路中的总电阻)为R,则集-射极电压Vce=VCC-Ib*hFE*R,随着Ib的增大,Vce减小,当Vce<0.6V时,B-C结即进入正偏,Ice已经很难继续增大,就可以认为已经进入饱和状态了。当然Ib如果继续增大,会使Vce再减小一些,例如降至0.3V甚至更低,就是深度饱和了。以上是对NPN型硅管而言。 另外一个应该注意的问题就是:在Ic增大的时候,hFE会减小,所以我们应该让三极管进入深度饱和Ib>>Ic(max)/hFE,Ic(max)是指在假定e、c极短路的情况下的Ic极限,当然这是以牺牲关断速度为代价的。 注意:饱和时Vb>Vc,但Vb>Vc不一定饱和。一般判断饱和的直接依据还是放大倍数,有的管子Vb>Vc时还能保持相当高的放大倍数。例如:有的管子将Ic/Ib<10定义为饱和,Ic/Ib<1应该属于深饱和了。 从晶体管特性曲线看饱和问题:我前面说过:谈论饱和不能不提负载电阻。现在再作详细一点的解释。 以某晶体管的输出特性曲线为例。由于原来的Vce仅画到2.0V为止,为了说明方便,我向右延伸到了4.0V。 如果电源电压为V,负载电阻为R,那么Vce与Ic受以下关系式的约束:Ic = (V-Vce)/R 在晶体管的输出特性曲线图上,上述关系式是一条斜线,斜率是 -1/R,X轴上的截距是电源电压V,Y轴上的截距是V/R(也就是前面NE5532第2帖说的“Ic(max)是指在假定e、c极短路的情况下的Ic极限”)。这条斜线称为“静态负载线”(以下简称负载线)。各个基极电流Ib值的曲线与负载线的交点就是该晶体管在不同基极电流下的工作点。见下图:

快速确定三极管工作状态的方法

快速确定三极管工作状态的方法 重庆易天龙 三极管有放大、饱和、截止三种工作状态,放大电路中的三极管是否处于放大状态或处于何种工作状态,对于学生是一个难点。笔者在长期的教学实践中发现,只要深刻理解三极管三种工作状态的特点,分析电路中三极管处于何种工作状态就会容易得多,下面结合例题来进行分析。 一、三种工作状态的特点 1.三极管饱和状态下的特点 要使三极管处于饱和状态,必须基极电流足够大,即Is≥IBs。三极管在饱和时,集电极与发射极间的饱和电压(Uces)很小,根据三极管输出电压与输出电流关系式Uce=Ec-IcRc,所以 三极管饱和后,C、E间的饱和电阻RcEs=UcEs/Ics,UcEs很小,Ics最大,故饱和电阻RcEs很小。所以说三极管饱和后C、E问视为短路,饱和状态的NPN型三极管等效电路如图1a所示。 2.三极管截止状态下的特点 三极管截止后,C、E间的截止电阻Rce=UcE/Ic,UcEs很大,等于电源电压,Ics极小,C、E间电阻RcE很大,所以,三极管截止后C、E间视为开路,截止状态的NPN型三极管等效电路如图1b。 3.三极管放大状态下的特点

要使三极管处于放大状态,基极电流必须为:0

三极管状态判断

三极管状态判断 NPN管:放大状态Vc>Vb>Ve,饱和状态Vb>ve,Vb>vc,截止状态Vc=+V,Vb=0 PNP管:放大状态Ve>Vb>Vc,饱和状态VbUce. 当晶体管的Ube增大时,Ic不是明显的增大说明进入饱和状态,对于小功率管,可以认为当Uce=Ube,即Ucb=0时,处于临界饱三极管简介 晶体三极管的结构和类型 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种, 从三个区引出相应的电极,分别为基极b发射极e和集电极c。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。 三极管的封装形式和管脚识别 常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律, 底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。 目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。 晶体三极管的电流放大作用 晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。 晶体三极管的三种工作状态 截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。

三极管原理全总结

1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否则就是反偏。即当P区(阳极)电位高于N区电位时就是正偏,反之就是反偏。例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue发射极正偏。总之,当p型半导体一边接正极、n型半导体一边接负极时,则为正偏,反之为反偏。 NPN和PNP主要是电流方向和电压正负不同。 NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。 PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC

2、三极管的三种工作状态:放大、饱和、截止 (1)放大区:发射结正偏,集电结反偏。对于NPN管来说,发射极正偏即基极电压Ub>发射极电压Ue,集电结反偏就是集电极电压Uc>基极电压Ub。放大条件:NPN管:Uc>Ub>Ue;PNP管:Ue>Ub>Uc。 (2)饱和区:发射结正偏、集电结正偏--BE、CE两PN结均正偏。即饱和 导通条件:NPN管:Ub>Ue,Ub>Uc,PNP型管:Ue>Ub,Uc>Ub。饱合状态的特征是:三极管的电流Ib、Ic 都很大,但管压降Uce 却很小,Uce≈0。这时三极管的c、e 极相当于短路,可看成是一个开关的闭合。饱和压降,一般在估算小功率管时,对硅管可取0.3V,对锗管取0.1V。此时的,iC几乎仅决定于Ib,而与Uce无关,表现出Ib对Ic的控制作用。 (3)截止区:发射结反偏,集电结反偏。由于两个PN 结都反偏,使三极 管的电流很小,Ib≈0,Ic≈0,而管压降Uce 却很大。这时的三极管c、e 极相当于开路。可以看成是一个开关的断开。 3、三极管三种工作区的电压测量 如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表 测基极与射极间的电压Ube。 饱和状态 eb有正偏压约0.65V左右,ce电压接近0V. 放大状态 eb有正偏压约0.6V,ce电压大于0.6V小于电源电压. 截止状态 eb电压低于0.6V,ce电压等于或接近电源. 在实际工作中,可用测量BJT各极间电压来判断它的工作状态。NPN型硅管的典型数据是:饱和状态Ube=0.7V,Uce=0.3V;放大区Ube=0.7V;截止区Ube=0V。这是对可靠截止而言,实际上当Ube<0.5V时,即已进入截止状态。对于PNP管,其电压符号应当相反。 截止区:就是三极管在工作时,集电极电流始终为0。此时,集电极与发射极间电压接近电源电压。对于NPN型硅三极管来说,当Ube在0~0.5V 之间时,Ib很小,无论Ib怎样变化,Ic都为0。此时,三极管的内阻(Rce)很大,三极管截止。当在维修过程中,测得Ube低于0.5V或Uce接近电源电压时,就可 知道三极管处在截止状态。

三极管工作原理及主要参数详解

三极管工作原理及主要参数详解 三极管(全称:半导体三极管,也称双极型晶体管、晶体三极管),是一种控制电流的半 导体器件其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。介绍三极 管的工作原理以及主要参数。 晶体三极管是p型和n型半导体的有机结合,两个pn结之间的相互影响,使pn结的功能 发生了质的飞跃,具有电流放大作用。晶体三极管按结构粗分有npn型和pnp型两种类型。如图2-17所示。(用Q、VT、PQ表示)三极管之所以具有电流放大作用,首先,制造工 艺上的两个特点: (1)基区的宽度做的非常薄; (2)发射区掺杂浓度高,即发射区与集电区相比具有杂质浓度高出数百倍。 晶体三极管的工作原理 三极管工作必要条件是(a)在B极和E极之间施加正向电压(此电压的大小不能超过 1V);(b)在C极和E极之间施加反向电压(此电压应比eb间电压较高);(c)若要取得 输出必须施加负载。 当三极管满足必要的工作条件后,其工作原理如下: (1)基极有电流流动时。由于B极和E极之间有正向电压,所以电子从发射极向基极移动,又因为C极和E极间施加了反向电压,因此,从发射极向基极移动的电子,在高电压 的作用下,通过基极进入集电极。于是,在基极所加的正电压的作用下,发射极的大量电 子被输送到集电极,产生很大的集电极电流。 (2)基极无电流流动时。在B极和E极之间不能施加电压的状态时,由于C极和E极间 施加了反向电压,所以集电极的电子受电源正电压吸引而在C极和E极之间产生空间电荷区,阻碍了从发射极向集电极的电子流动,因而就没有集电极电流产生。 综上所述,在晶体三极管中很小的基极电流可以导致很大的集电极电流,这就是三极管的 电流放大作用。此外,三极管还能通过基极电流来控制集电极电流的导通和截止,这就是 三极管的开关作用(开关特性)。 晶体三极管共发射极放大原理如下图所示: A、vt是一个npn型三极管,起放大作用。 B、ecc 集电极回路电源(集电结反偏)为输出信号提供能量。 C、rc 是集电极直流负载电阻,可以把电流的变化量转化成电压的变化量反映在输出端。

极管工作原理分析,精辟、透彻,看后你就懂

三极管工作原理分析,精辟、透彻,看后你就懂 随着科学技的发展,电子技术的应用几乎渗透到了人们生产生活的方方面面。晶体三极管作为电子技术中一个最为基本的常用器件,其原理对于学习电子技术的人自然应该是一个重点。三极管原理的关键是要说明以下三点: 1、集电结为何会发生反偏导通并产生Ic,这看起来与二极管原理强调的PN结单向导电性相矛盾。 2、放大状态下集电极电流Ic为什么会只受控于电流Ib而与电压无关;即:Ic与Ib之间为什么存在着一个固定的放大倍数关系。虽然基区较薄,但只要Ib为零,则Ic即为零。 3、饱和状态下,Vc电位很弱的情况下,仍然会有反向大电流Ic 的产生。 很多教科书对于这部分内容,在讲解方法上处理得并不适当。特别是针对初、中级学者的普及性教科书,大多采用了回避的方法,只给出结论却不讲原因。即使专业性很强的教科书,采用的讲解方法大多也存在有很值得商榷的问题。这些问题集中表现在讲解方法的切入角度不恰当,使讲解内容前后矛盾,甚至造成讲还不如不讲的效果,使初学者看后容易产生一头雾水的感觉。笔者根据多年的总结思考与教学实践,对于这部分内容摸索出了一个适合于自己教学的新讲解方法,并通过具体的教学实践收到了一定效果。虽然新的讲解方法肯定会有所欠

缺,但本人还是怀着与同行共同探讨的愿望不揣冒昧把它写出来,以期能通过同行朋友的批评指正来加以完善。 一、传统讲法及问题: 传统讲法一般分三步,以NPN型为例(以下所有讨论皆以NPN型硅管为例),如示意图A。1.发射区向基区注入电子;2.电子在基区的扩散与复合;3.集电区收集由基区扩散过来的电子。”(注1) 问题1:这种讲解方法在第3步中,讲解集电极电流Ic的形成原因时,不是着重地从载流子的性质方面说明集电结的反偏导通,从而产生了Ic,而是不恰当地侧重强调了Vc的高电位作用,同时又强调基区的薄。这种强调很容易使人产生误解。以为只要Vc足够大基区足够薄,集电结就可以反向导通,PN结的单向导电性就会失效。其实这正好与三极管的电流放大原理相矛盾。三极管的电流放大原理恰恰要求在放大状态下Ic与Vc在数量上必须无关,Ic只能受控于Ib。 问题2:不能很好地说明三极管的饱和状态。当三极管工作在饱和区时,Vc的值很小甚至还会低于Vb,此时仍然出现了很大的反向饱和电流Ic,也就是说在Vc很小时,集电结仍然会出现反向导通的现象。这很明显地与强调Vc的高电位作用相矛盾。 问题3:传统讲法第2步过于强调基区的薄,还容易给人造成这样的误解,以为是基区的足够薄在支承三极管集电结的反向导

三极管的使用方法

1. 三极管工作状态的判断方法: 分析电路时,判断三极管的功能,如果能够知道该三极管三个管脚的电压和该三极管起得作用(放大还是开关),。对于NPN 而言,如果Uc>Ub>Ue ,该管处于放大状态,放大一定的电流,一般是在模拟电路中起了作用(此时Uce 之间的电压是不确定的);如果Ub>Ue ,Ub>Uc ,该管处于饱和状态,c-e 之间导通,其管压降为0.3-0.7V ,与截止区相对立,此时该三极管起到了开关的作用,一般应用在数字电路中。 如图所示: 对于PNP 而言,当Ue>Ub>Uc,即集电极反偏、发射极正偏,处于放大状态;当Ue>Ub 且Uc>Ub(这时候,Uc ≈Ue),即集电极和发射极都正偏,处于饱和状态。 2.三极管的使用方法: 我们经常在单片机系统中连接三极管起到开关的作用,经典电路如下图所示: ( 如果在单片机系统中出现三极管时,那么该三极管大多数甚至几乎全部情况下都会处于开-关状态。因为单片机输出的都是数字量,要么是0,要么是1,不可能出现别的情况。因此对应的三极管也要么开通,要么关断。 在上面电路中,如果按照开始时说的三极管状态的判别方法,是不行的。因为c 点得工作电压是不确定的(实际上在真正的电路中c 点电压是确定的,但是从电路图中我们看不出来)。真正的判断方法如下:当I/0引脚为高电平时,b 点基极的电流是一定的,那么c 点电流也是一定的,而且是处在了三极管的饱和区,因此b 点的电压为0.7v ,三极管导通,则c 点的电压与e 点压相同(比e 点略大,约为0.5v,即为Uce ),即OUT (输出端处于低电平)端为低电平状态。当I/0引脚为低电平时,NPN 三极管断开,c-e 之间不导通,那么此时c 点(OUT )电位为高电平即VCC 电压。这从而达到了用单片机引脚来控制Vcc 的效果。 综上所述:当I/O 为高电平,b-e 之间有电压,三极管导通,c-e 管压降小,OUT 为低电平(≈0.5);当I/O 为低电平时,b-e 之间没电压,三极管关断,c-e 管压降非常大,OUT 为高电平=Vcc ; 上面就是NPN 的使用方法。我们可以这么理解:在使用NPN 时,要尽可能将e 端接地,当b 端比e 端至少高0.7v 时,管子导通;否则管子断开。 同理,我们可以得出PNP 三极管的使用电路和方法: 放大区 12 3 截止区 3.3 3 饱和区

三极管饱和及深度饱和状态的理解和判断

三极管饱和及深度饱和状态的理解和判断! 三极管饱和问题总结: 1.在实际工作中,常用Ib*β=V/R作为判断临界饱和的条件。根据Ib*β=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能达到真正的饱和;倍数越大,饱和程度就越深。 2.集电极电阻 越大越容易饱和; 3.饱和区的现象就是:二个PN结均正偏,IC不受IB之控制 问题:基极电流达到多少时三极管饱和? 解答:这个值应该是不固定的,它和集电极负载、β值有关,估算是这样的:假定负载电阻是1K,VCC是 5V,饱和时电阻通过电流最大也就是5mA,用除以该管子的β值(假定β=100)5/100=0.05mA=50μA,那么基极电流大于50μA就可以饱和。 对于9013、9012而言,饱和时Vce小于0.6V,Vbe小于1.2V。下面是9013的特性表: 问题:如何判断饱和? 判断饱和时应该求出基级最大饱和电流IBS,然后再根据实际的电路求出当前的基级电流,如果当前的基级电流大于基级最大饱和电流,则可判断电路此时处于饱和状态。 饱和的条件: 1.集电极和电源之间有电阻存在 且越大就越容易管子饱和;2.基集电流比较大以使集电极的电阻把集电极的电源拉得很低,从而出现b较c电压高的情况。 影响饱和的因素:1.集电极电阻 越大越容易饱和;2.管子的放大倍数 放大倍数越大越容易饱和;3.基集电流的大小;

饱和后的现象:1.基极的电压大于集电极的电压;2.集电极的电压为0.3左右,基极为0.7左右(假设e极接地) 谈论饱和不能不提负载电阻。假定晶体管集-射极电路的负载电阻(包括集电极与射极电路中的总电阻)为R,则集-射极电压Vce=VCC-Ib*hFE*R,随着Ib的增大,Vce减小,当Vce<0.6V时,B-C结即进入正偏,Ice已经很难继续增大,就可以认为已经进入饱和状态了。当然Ib如果继续增大,会使Vce再减小一些,例如降至0.3V甚至更低,就是深度饱和了。以上是对NPN型硅管而言。 另外一个应该注意的问题就是:在Ic增大的时候,hFE会减小,所以我们应该让三极管进入深度饱和 Ib>>Ic(max)/hFE,Ic(max)是指在假定e、c极短路的情况下的Ic极限,当然这是以牺牲关断速度为代价的。 注意:饱和时Vb>Vc,但Vb>Vc不一定饱和。一般判断饱和的直接依据还是放大倍数,有的管子Vb>Vc时还能保持相当高的放大倍数。例如:有的管子将Ic/Ib<10定义为饱和,Ic/Ib<1应该属于深饱和了。 从晶体管特性曲线看饱和问题:我前面说过:谈论饱和不能不提负载电阻。现在再作详细一点的解释。 以某晶体管的输出特性曲线为例。由于原来的Vce仅画到2.0V为止,为了说明方便,我向右延伸到了4.0V。如果电源电压为V,负载电阻为R,那么Vce与Ic受以下关系式的约束:Ic = (V-Vce)/R 在晶体管的输出特性曲线图上,上述关系式是一条斜线,斜率是 -1/R,X轴上的截距是电源电压V,Y轴上的截距是V/R(也就是前面NE5532第2帖说的“Ic(max)是指在假定e、c极短路的情况下的Ic极限”)。这条斜线称为“静态负载线”(以下简称负载线)。各个基极电流Ib值的曲线与负载线的交点就是该晶体管在不同基极电流下的工作点。见下图: 图中假定电源电压为4V,绿色的斜线是负载电阻为80欧姆的负载线,V/R=50MA,图中标出了Ib分别等于 0.1、0.2、0.3、0.4、0.6、1.0mA的工作点A、B、C、D、E、F。据此在右侧作出了Ic与Ib的关系曲线。根据这个曲线,就比较清楚地看出“饱和”的含义了。曲线的绿色段是线性放大区,Ic随Ib的增大几乎成线性地快速上升,可以看出β值约为200。兰色段开始变弯曲,斜率逐渐变小。红色段就几乎变成水平了,这就是“饱和”。实际上,饱和是一个渐变的过程,兰色段也可以认为是初始进入饱和的区段。在实际工作中,常用Ib*β=V/R作为判断临界饱和的条件。在图中就是假想绿色段继续向上延伸,与Ic=50MA的水平线相交,交点对应的Ib值就是临界饱和的Ib值。图中可见该值约为0.25mA。由图可见,根据Ib*β=V/R算出的Ib值,只是使晶体管进入了初始饱和状态,实际上应该取该值的数倍以上,才能达到真正的饱和;倍数越大,饱和程度就越深。

图说三极管的三个工作状态

抛开三极管部空穴和电子的运动,还是那句话只谈应用不谈原理,希望通过下面的“图解”让初学者对三极管有一个形象的认识。 三极管是一个以b(基极)电流Ib来驱动流过CE的电流Ic的器件,它的工作原理很像一个可控制的阀门。 图1 左边细管子里蓝色的小水流冲动杠杆使大水管的阀门开大,就可允许较大红色的水流通过这个阀门。当蓝色水流越大,也就使大管中红色的水流更大。如果放大倍数是100,那么当蓝色小水流为1千克/小时,那么就允许大管子流过100千克/小时的水。三极管的原理也跟这个一样,放大倍数为100时,当Ib(基极电流)为1mA时,就允许100mA的电流通过Ice。 有了这个形象的解释之后,我们再来看一个单片机里常用的电路。 图2

我们来分析一下这个电路,如果它的放大倍数是100,基极电压我们不计。基极电流就是10V&pide;10K=1mA,集电极电流就应该是100mA。根据欧姆定律,这样Rc上的电压就是0.1A×50Ω=5V。那么剩下的5V就吃在了三极管的C、E极上了。好!现在我们假如让Rb为1K,那么基极电流就是 10V&pide;1K=10mA,这样按照放大倍数100算,Ic就是不是就为1000mA也就是1A了呢?假如真的为1安,那么Rc上的电压为1A×50Ω=50V。啊?50V!都超过电源电压了,三极管都成发电机了吗?其实不是这样的。见下图: 图3 我们还是用水管流水来比喻电流,当这个控制电流为10mA时使主水管上的阀开大到能流过1A的电流,但是不是就能有1A的电流流过呢?不是的,因为上面还有个电阻,它就相当于是个固定开度的阀门,它串在这个主水管的上面,当下面那个可控制的阀开度到大于上面那个固定电阻的开度时,水流就不会再增大而是等于通过上面那个固定阀开度的水流了,因此,下面的三极管再开大开度也没有用了。因此我们可以计算出那个固定电阻的最大电流10V/50Ω=0.2A也就是200mA。就是说在电路中三极管基极电流增大集电极的电流也增大,当基极电流Ib增大到2mA时,集电极电流就增大到了200mA。当基极电流再增大时,集电极电流已不会再增大,就在200mA不动了。此时上面那个电阻也就是起限流作用了。 上面讲的三极管是工作在放大状态,要想作为开关器件来应用呢?毫无疑问三极管必须进入饱和导通和截止状态。图4所示的电路中,我们从Q的基极注

图说三极管的三个工作状态

抛开三极管内部空穴和电子的运动,还是那句话只谈应用不谈原理,希望通过下面的“图解”让初学者对三极管有一个形象的认识。 三极管是一个以b(基极)电流Ib 来驱动流过CE 的电流Ic 的器件,它的工作原理很像一个可控制的阀门。 图1 左边细管子里蓝色的小水流冲动杠杆使大水管的阀门开大,就可允许较大红色的水流通过这个阀门。当蓝色水流越大,也就使大管中红色的水流更大。如果放大倍数是100,那么当蓝色小水流为1千克/小时,那么就允许大管子流过100千克/小时的水。三极管的原理也跟这个一样,放大倍数为100 时,当Ib(基极电流)为1mA 时,就允许100mA 的电流通过Ice。 有了这个形象的解释之后,我们再来看一个单片机里常用的电路。 图2 我们来分析一下这个电路,如果它的放大倍数是100,基极电压我们不计。基极电流就是10V&pide;10K=1mA,集电极电流就应该是100mA。根据欧姆定律,这样Rc上的电压就是0.1A×50Ω=5V。那么剩下的5V 就吃在了三极管的C、E 极上了。好!现在我们假如让Rb为1K,那么基极电流就是10V&pide;1K=10mA,这样按照放大倍数100算,Ic就是不是就为1000mA 也就是1A了呢?假如真的

为1安,那么Rc上的电压为1A×50Ω=50V。啊?50V!都超过电源电压了,三极管都成发电机了吗?其实不是这样的。见下图: 图3 我们还是用水管内流水来比喻电流,当这个控制电流为10mA 时使主水管上的阀开大到能流过1A 的电流,但是不是就能有1A 的电流流过呢?不是的,因为上面还有个电阻,它就相当于是个固定开度的阀门,它串在这个主水管的上面,当下面那个可控制的阀开度到大于上面那个固定电阻的开度时,水流就不会再增大而是等于通过上面那个固定阀开度的水流了,因此,下面的三极管再开大开度也没有用了。因此我们可以计算出那个固定电阻的最大电流10V/50Ω=0.2A 也就是200mA。就是说在电路中三极管基极电流增大集电极的电流也增大,当基极电流Ib增大到2mA 时,集电极电流就增大到了200mA。当基极电流再增大时,集电极电流已不会再增大,就在200mA 不动了。此时上面那个电阻也就是起限流作用了。 上面讲的三极管是工作在放大状态,要想作为开关器件来应用呢?毫无疑问三极管必须进入饱和导通和截止状态。图4所示的电路中,我们从Q的基极注入电流IB,那么将会有电流流入集电极,大小关系为:IC=βIB 。而至于BJT 发射结电压VBE,我们说这个并不重要,因为只要IB 存在且为正值时,这个结电压便一定存在并且基本恒定(约0.5~1.2V,一般的管子取0.7V左右),也就是我们所讲的发射结正偏。既然UBE是固定的,那么,如果BJT基极驱动信号为电压信号时,就必须在基极串联一个限流电阻,如图5。此时,基极电流为 IB=(Ui-UBE)/RB。一般情况省略RB是不允许的,因为这样的话IB将会变得很大,造成前级电路或者是BJT 的损坏。

三极管在电路中的工作状态以及工作条件

三极管在电路中的工作状态以及工作条件: 三极管有三种工作状态:截止状态、放大状态、饱和状态。当三极管用于不同目的时,它的工作状态是不同的三极管的三种状态也叫三个工作区域即:截止区、放大区和饱和区: (1)、截止区:当三极管b 极无电流时三极管工作在截止状态,c到e之间阻值无穷大,c到e之间无电流通过。 NPN型三极管要截止的电压条件是发射结电压Ube小于0.7V 即Ub-Ue<0.7V PNP型三极管要截止的电压条件是发射结电压Ueb小于0.7V 即Ue-Ub<0.7V (2)、放大区:三极管的b极有电流,Ic和Ie都随Ib改变而变化,即c极电流Ic 和e极电流Ie的大小受b极电流Ib控制。Ib越大,Rce越小,Ice越大;反之Ib 越小,Rce越大,Ice越小。 在基极加上一个小信号电流,引起集电极大的信号电流输出。 NPN三极管要满足放大的电压条件是发射极加正向电压,集电极加反向电压: Ube=0.7V即Ub-Ue=0.7V PNP三极管要满足放大的电压条件是发射极加正向电压,集电极加反向电压: Ueb=0.7V即Ue-Ub=0.7V (3)、饱和区:当三极管的集电结电流IC增大到一定程度时,再增大Ib,Ic也不会增大,超出了放大区,进入了饱和区。饱和时,集电极和发射之间的内阻最小,集电极和发射之间的电流最大。三极管没有放大作用,集电极和发射极相当于短路,常与截止配合于开关电路。 NPN型三极管要满足饱和的电压条件是发射结和集电结均处于正向电压: Ube>0.7V即Ub-Ue>0.7V PNP型三极管要满足饱和的电压条件是发射结和集电结均处于正向电压: Ueb>0.7V即Ue-Ub>0.7V 从三极管的伏安特性可知:其工作区域分截止区、放大区、饱和区;放大区在截止区和饱和区之间,如果静态工作点不合适,偏向截止或饱和区,放大的信号会进入偏向的区域,其信号会产生失真。 NPN:Uce=Uc-Ue>0;PNP:Uce<0

相关主题
文本预览
相关文档 最新文档