当前位置:文档之家› 焊缝余高对焊接接头疲劳强度的影响

焊缝余高对焊接接头疲劳强度的影响

焊缝余高对焊接接头疲劳强度的影响
焊缝余高对焊接接头疲劳强度的影响

焊缝余高对焊接接头疲劳强度的影响

摘要通过测定AQ400NH材料的光滑焊件、余高焊件的疲劳性能、观察断口形貌、绘制S-N曲线以及用AN-SYS有限元程序计算应力分布,研究余高对焊接接头疲劳强度的影响。结果发现,对于光滑焊件,焊接缺陷是影响疲劳强度的主要原因,对于有余高焊件,余高的高度是影响疲劳强度的主要原因,实际应变测量和有限元计算都表明,焊趾部位是应力集中区,应力集中的强度和余高间有线性关系。

焊接结构的疲劳强度,在很大程度上取决于构件应力集中情况。如果焊接构件有应力集中,在受到循环载荷条件下,焊接结构普遍会出现严重的断裂破坏。焊缝几何尺寸及焊接过程中产生的各种缺陷是产生应力集中的主要原因[1,2]。然而这些原因如何影响焊接构件的疲劳寿命,对于一种新材料,或者对于在一种特殊条件下使用的材料来说,应当受到特别的关注。AQ400NH钢是一种耐候材料,在使用结构中,该材料的焊接结构承受着高速动载的作用,使用条件特殊,所以研究产生应力集中的原因、应力集中对该焊件疲劳性能的影响,对提高焊件疲劳寿命具有重要意义。

笔者着眼于焊缝趾部余高与焊接构件应力集中的关系,探讨余高产生的应力集中对该焊件疲劳性能的影响。为此,对这种材料的母材、光滑焊件(余高为零的焊件)、带余高焊件分别进行疲劳试验。绘制它们的S-N曲线;观察静态载荷下焊趾处应力的变化;用ANSYS有限元分析程序计算了各种状态下焊接构件的应力分布状态,以及余高变化产生应力集中的趋势。

1实验部分

1.1主要仪器与设备

电液伺服材料试验机:Instron1251型,英国In-stron公司。

1.2材料成分、力学性能实验所用材料为耐候材料AQ400NH,其主要化学成分见表1,母材与焊件的基本力学性能见表2。

1.3焊接接头几何尺寸

疲劳试件共分为3组,一组为母材试件;一组为光滑焊件,即为焊后去掉余高,并进行了精加工,其表面光洁度与母材试件相同;另一组为带余高焊件。三组试件的名义尺寸为,试样宽度B×厚度W×平行段长度L0:24 mm×12 mm×70 mm。光滑焊件的试样厚度比母材略小。试件接头形式为对接焊接头,其试样形式和焊缝堆高名义尺寸如图1所示。焊接方法为MAG半自动焊接。

焊缝几何参数用焊缝宽度b和余高h表示。带有余高的试件共有5个,试样的焊缝宽度b和余高h的实际尺寸见表3。

1.4 疲劳试验

疲劳方式采用循环应力恒负荷轴向脉动拉伸劳。波形为正弦波;应力比R=0;频率10~20 Hz;循环次数5×104~1×107;应力等级分8个级别。因该材料疲劳性能较为稳定,每个应力级别只做一个试样。试验在Instron 1251试验机上完成,疲劳控制方式为恒应力控制。为了便于比较,将三组疲劳强度与循环受命关系的S-N曲线绘于图2中。三组疲劳试验得到的疲劳极限为:母材试件疲劳极限为σu=425 N/mm2;光滑焊件疲劳极限为σu=410N/mm2;余高焊件疲劳极限为σu=220 N/mm2。光滑焊件的疲劳极限和母材比较接近,而平均余高为1.65 mm焊件,其疲劳极限要明显低得多。

1.5应力集中系数的确定

通过试验的方法,可得到焊接接头处实际应力集中系数[3],即有效应力集中系数kσ按式(1)计算:kσ=σ0/σ’0(1)

式中:σ0—光滑试件的疲劳极限;

σ’0—具有应力集中试件的疲劳极限。

本次试验母材的疲劳极限σu=425 MPa,光滑焊件的疲劳极限是σu=410 MPa,堆高焊件的疲劳极限σu=220 MPa,母材与光滑焊件所产生的实际应力集中系数为kσ

1=1.036 6。母材与焊接后带堆高试件所产生的实际应力集中系数为kσ2=1.931 8。带有余高焊件的应力集中系数接近前者的两倍。

2有限元计算

使用ANSYS有限元程序进行有限元计算。计算焊趾应力时采用二维模型和四边形8结点单元,根据单元要求,输入0.5 mm的厚度,焊件横截面单元分布如图3所示。计算时所加载荷为220 MPa,低于材料的屈服强度,故计算时材料始终处于弹性状态。计算中取材料的弹性模量E=2.1×105MPa,泊松比v=0.33,并假设整个试件内性能相同。计算时焊件的余高是1.65 mm。计算结果表明在焊缝趾部应力最大,最大值达到446 MPa,相当于所加载荷的两倍,结果如图4所示。

3分析与讨论

3.1 S-N曲线分析从图2中看出,母材和光滑焊件的疲劳强度与循环寿命关系差别不是很大,二者的疲劳极限也很接近,只是母材S-N曲线的拐点要比光滑焊件的S-N曲线拐点明显,母材与光滑焊件数据点分散性也很小。余高焊件的S-N曲线与前两者的变化趋势明显不同,数据点分散性增大,曲线没有拐点,疲劳强度随着疲劳寿命的增加明显下降,疲劳极限下降幅度几乎接近50%。根据表1中余高数据有一个波动范围来看,数据点分散可能是余高不同所致。

3.2断裂位置及宏观断口形貌

光滑焊件的断裂位置绝大部分出现在焊缝中,而有余高的焊件,疲劳断裂均无例外地发生在焊趾处,而且断裂源均位于表面焊缝趾部,这说明焊趾处为应力集中最大区域,这一现象恰与计算结果相一致,见图4接头局部应力放大图,它表明有限元计算结果是正确的,用有限元计算方法分析余高焊件应力集中情况是有效性。

观察宏观断口可以发现,光滑焊件断面上的疲劳源内总有微小焊接缺陷或微小气泡(图5),这些缺陷成为疲劳裂纹的裂纹源。而在余高焊件的断口上几乎看不到什么宏观缺陷,疲劳源均从焊缝趾部的某一位置开始(图6)。这表明,同焊接微小缺陷相比,焊趾处应力集中也会成为裂纹源,而且应力集吕晓春,等:焊缝余高对焊接接头疲劳强度的影响63中对焊接结构的危害比微小焊接缺陷要大。当有应力集中存在时,微小焊接

缺陷的有害作用降低到次要位置。当采用合理的工艺降低或消除焊缝中的缺陷后,光滑试样可提高构件的疲劳寿命。而对于有一定余高的焊接构件,即使通过合理的工艺消除焊缝中的缺陷,由于存在应力集中,也不能提高构件的疲劳寿命。因此,要提高焊接构件的疲劳寿命,必须对其进行光滑处理。

3.3有限元计算分析焊缝余高的影响

采用和上面相同的有限元计算方法计算不同余高对焊接构件应力集中的影响。计算中设定余高为5种,分别是0.0、0.1、0.3、0.5、3 mm。计算余高0.0、0.5、1.65、3 mm的应力分布图如图7所示。以余高做变量,焊趾处的应力和余高的变化关系如图8所示,它们之间呈线性关系。从图8中可以看出,在余高是0 mm 时,焊趾处的应力和外载荷大小相同,表明此处没有应力集中。这就说明光滑试样的疲劳极限与母材相同的原因是光滑焊件没有应力集中。当余高是1.65 mm时,焊趾处受到的应力是446 MPa,相当于载荷的两倍。根据本疲劳试验的结果,当余高引起的应力集中出的载荷达到外载荷的2倍时,疲劳裂纹源出现在焊趾处。余高3 mm 时,焊趾处的应力达到605.93 MPa,接近载荷的3倍。表明余高越高,焊趾处的应力也越高。由此可以断定,余高越大,应力集中越严重,导致材料的疲劳寿命越低。而降低余高可以降低应力集中,同时可以提高疲劳寿命。为了降低应力集中的程度,

提高焊接构件的疲劳寿命,在结构焊接完后,应将余高打磨掉,以消除余高引起的应力集中。

比较母材、光滑试样疲劳极限和余高1.65 mm焊趾处的应力可以看出,余高1.65 mm焊件结构焊趾处的最大应力是446 MPa,这个应力和母材、光滑试样疲劳极限相差不多。这就表明,当应力集中使最大应力达到光滑试样的疲劳极限时,有余高的焊接结构发生疲劳断裂。由此可见,应力集中降低疲劳寿命的原因是:尽管外载荷远低于母材的疲劳极限,但应力集中处的应力却能够达到材料的疲劳极限,使材料发生疲劳断裂。

4结论

(1)当焊接接头有1.65 mm的余高时,焊趾处存在的应力集中可以使其疲劳极限下降接近50%,即使焊缝中有微小缺陷,疲劳断裂的裂源也出现在焊趾处;

(2)余高和焊趾处最大应力间存在线性关系,焊趾处的最大应力随余高增加而线性增加;

(3)当应力集中处的应力达到母材的疲劳极限时,焊接构件发生疲劳断裂;(4)将焊接接头的余高除掉,可以消除余高在焊趾处产生的应力集中,光滑焊件的疲劳极限只取决于内部焊接缺陷。there is an linear relation between the strength of stress concentrate and pile high.KEYWORDS fatigue strength,stress concentrate,pile high,FEM吕晓春,等:焊缝余高对焊接接头疲劳强度的影响65

常见的焊接缺陷及缺陷图片

常见的焊接缺陷(1) 常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。

某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣

焊接缺陷分类及预防措施

一、焊接缺陷的分类 焊接缺陷可分为外部缺陷和内部缺陷两种 1.外部缺陷 1)外观形状和尺寸不符合要求; 2)表面裂纹; 3)表面气孔; 4)咬边; 5)凹陷; 6)满溢; 7)焊瘤; 8)弧坑; 9)电弧擦伤; 10)明冷缩孔; 11)烧穿; 12)过烧。 2.内部缺陷 1)焊接裂纹:a.冷裂纹;b.层状撕裂;c.热裂纹;d.再热裂纹。 2)气孔; 3)夹渣; 4)未焊透; 5)未熔合; 6)夹钨; 7)夹珠。 二、各种焊接缺陷产生原因、危害及防止措施 1、外表面形状和尺寸不符合要求 表现:外表面形状高低不平,焊缝成形不良,焊波粗劣,焊缝宽度不均匀,焊缝余高过高或过低,角焊缝焊脚单边或下凹过大,母材错边,接头的变形和翘曲超过了产品的允许范围等。 危害:焊缝成形不美观,影响到焊材与母材的结合,削弱焊接接头的强度性能,使接头的应力产生偏向和不均匀分布,造成应力集中,影响焊接结构的安全使用。

产生原因:焊件坡口角度不对,装配间隙不匀,点固焊时未对正,焊接电流过大或过小,运条速度过快或过慢,焊条的角度选择不合适或改变不当,埋弧焊焊接工艺选择不正确等。 防止措施:选择合适的坡口角度,按标准要求点焊组装焊件,并保持间隙均匀,编制合理的焊接工艺流程,控制变形和翘曲,正确选用焊接电流,合适地掌握焊接速度,采用恰当的运条手法和角度,随时注意适应焊件的坡口变化,以保证焊缝外观成形均匀一致。 2、焊接裂纹 表现:在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏形成的新界面所产生的缝隙,具有尖锐的缺口和大小的长宽比特征。按形态可分为:纵向裂纹、横向裂纹、弧坑裂纹、焊趾裂纹、焊根裂纹、热影响区再热裂纹等。 危害:裂纹是所有的焊接缺陷里危害最严重的一种。它的存在是导致焊接结构失效的最直接的因素,特别是在锅炉压力容器的焊接接头中,因为它的存在可能导致一场场灾难性的事故的发生,裂纹最大的一个特征是具有扩展性,在一定的工作条件下会不断的“生长”,直至断裂。 产生原因及防止措施: (1)冷裂纹:是焊接头冷却到较低温度下(对于钢来说是Ms温度以下)时产生的焊接裂纹,冷裂纹的起源多发生在具有缺口效应的焊接热影响区或有物理化学不均匀的氢聚集的局部地带,裂纹有时沿晶界扩展,也有时穿晶扩展。这是由于焊接接头的金相组织和应力状态及氢的含量决定的。(如焊层下冷裂纹、焊趾冷裂纹、焊根冷裂纹等)。 产生机理:钢产生冷裂纹的倾向主要决定于钢的淬硬倾向,焊接接头的含氢量及其分布,以及接头所承受的拘束应力状态。 产生原因: a.钢种原淬硬倾向主要取决于化学成分、板厚、焊接工艺和冷却条件等。钢的淬硬倾向越大,越易产生冷裂纹。 b.氢的作用,氢是引起超高强钢焊接冷裂纹的重要因素之一,并且有延迟的特征。高强钢焊接接头的含氢量越高,则裂纹的敏感性越强。 c.焊接接头的应力状态:高强度钢焊接时产生延迟裂纹的倾向不仅取决于钢的淬硬倾向和氢的作用,还决定于焊接接头的应力状态。焊接时主要存在的应力有:不均匀加热及冷却过程中所产生的热应力、金属相变时产生的组织应力、结构自身拘束条件等。

焊接接头的几何形状和焊接符号

第四单元 焊接接头的几何形状和焊接符号 目录 简介--------------------------------------------------------------------------------2 焊接接头--------------------------------------------------------------------------2 焊接符号--------------------------------------------------------------------------27 辅助符号--------------------------------------------------------------------------30 焊缝符号的标注-----------------------------------------------------------------33 关键术语及定义-----------------------------------------------------------------78

第四单元 焊接接头几何形状及焊接符号 简介 确定焊接的技术要求是设计的一部分,或是项目工程师职责的一部分。然而,制造人员仍然有责任准确的将图纸要求转化为生产工艺,并准备这些接头。在日 常工作交流中,焊接接头的术语就显得非常重要。准确 地应用术语可以使焊接人员很方便地将装配和焊接过程中 的问题向有关人员提出来。焊接接头术语与辅助的焊接符 号、数据及尺寸之间有着直接的关系。焊接检验员很有必 要掌握以便于沟通。 焊接接头 焊接接头共有五种形式,对接,角接,T形,搭接和 端接接头。如图4.2所示,这五种基本接头形式都有一定 的焊缝和焊缝符号与之对应。根据不同的接头设计,每种 接头形式又形成各种不同的焊缝,并且这些焊缝与每种接 头形式很接近。接头设计确定了其形状,尺寸和结构。 在图4.1的AWS A3.0 (1994 版) 标准术语和定义中 增加了卷边接头和铰接焊接接头。图4.3,卷边接头是五 种基本接头形式中的一种,其形成的焊缝接头中至少要有 一组成件是卷边形状。铰接焊接接头是“有另一工件跨越 对接接头并分别焊接在要被连接的工件上” (见图4.4)。 图4.1-AWS A3.0,标准焊接术语及定义 形成一个接头的每个工件叫焊接件(或焊件),并分为三类,对接焊件,非对接焊件,铰接焊件。图4.4和4.5对每种焊件都有描述。 对接焊件是用一个对接件防止另一焊接件沿垂直壁厚方向移动。例如,对接接头的两个焊件都是对接焊件,T型接头或角接接头中的一个焊接件就是对接焊件。非对接焊件就是一接头焊件可沿垂直其壁厚方向任意移动。例如,搭接接头的两个焊件都是非对接焊件,T型接头或角接接头中的一个焊件就是非对接焊件。 铰接焊件就是跨在对接接头上的工件。图4.4中给出了两个实例,用于连接对接接头的铰接。 焊缝的形式是用接头的几何形状来表示的。接头的几何形状就是焊前的截面尺寸及形状。从截面方向上看一接头时,每个焊件的端部形状常常与其焊缝形式及符号相似。图4.6给出了用于焊接制造中焊缝常见的端部形状。从图4.7到4.11提供的截面图中可发现焊缝符号与各种端部形状组合之间的关系。各种不同端部形状的组合也形成了各种不同的接头形状,即形成了如图4.2所示的五种基本接头形式的各种情况。其它的一些焊缝形式和坡口设计可用它们的结构或者成形的形状来表示,这些形状包括端部的形状或是表面制备的形状。

埋弧焊钢管焊缝余高的控制

埋弧焊钢管焊缝余高的控制 摘要:主要阐述了控制输送用钢管埋弧焊内、外焊缝余高的重要性。焊缝的余高大,则焊缝的应力集中系数大,容易形成应力腐蚀裂纹。外焊缝余高大,不利于防腐;内焊缝余高大,将会增加输送介质的能源损失等。重点介绍了螺旋埋弧焊管内焊缝易出现的“马鞍形”问题。“马鞍形”内焊缝在焊趾处的应力相当大,这对用于输送腐蚀性介质的钢管是最有害的。为了延长钢管的服役年限,必须对焊缝余高进行有效的控制。结合生产实际,提出了输送用钢管埋弧焊焊缝余高的控制措施。 0 前言无论是直缝埋弧焊管(LSAW)还是螺旋缝埋弧焊管(SSAW),对其焊接质量的评价,首先是看内、外焊缝的余高及其形状控制得好不好,焊缝流线是否规整等。焊缝余高大且不是圆滑过渡(即转角半径小),则焊缝焊趾部位的应力集中系数大,对抗SCC不利。此外,外焊缝的余高大,会给管子的防腐作业增加难度,成本增高;内焊的余高大,则对管道输送介质的摩擦阻力大,管输耗能也就大。因此,在生产埋弧焊管时,必须控制内、外焊缝的余高。API 5L标准中规定的焊缝余高只是最低标准,而油气输送管线和海洋用管均将焊缝余高控制在2.5 mm以下。 输送用埋弧焊管的焊缝最大余高,在多个标准中都作了规定,见表1。 1 焊缝余高大的负面影响 1.1焊趾处易形成应力腐蚀裂纹(SCC) 对接接头的应力集中主要是焊缝余高引起的。埋弧焊管对接接头中的工作应力分布如图1所示[1]。 从图1看出,对接接头的焊缝,其焊趾处的应力最大。应力集中系数的大小取决于焊缝余高h、焊趾处夹角θ和转角半径r。焊缝余高h增加,则θ角增加,r值减小,会使应力集

中系数增大。从图1还可得出埋弧焊管对接接头几何尺寸与应力集中系数KT的关系式 为: KT=σmax/σ0焊缝的余高愈大,应力集中程度愈严重,焊接接头的强度反而会降低。焊后削平余高,只要不低于母材,减少应力集中,有时反而可以提高焊接接头的强度。 焊缝的转角半径愈小,应力集中的程度则愈大;反之,应力集中的程度则愈小。因此,对埋弧焊缝的要求:一是余高要小;二是焊缝要圆滑过渡,使转角半径r值增大。 埋弧焊管的焊缝均为对接接头的焊缝,如果不控制好焊缝余高和转角半径,则焊趾处的应力就大,以致焊管在服役过程尤其是在腐蚀介质中,如H2S水溶液、海水、海洋大气等,易在焊趾处产生应力腐蚀裂纹。 焊管在成型和焊接过程中不可避免地会产生残余应力,因此管坯在成型、焊接后要消除残余应力。扩径可消除残余应力,但是残余应力很难完全消除,焊趾处的残余应力也就不可能消除。为了预防在焊趾处产生应力腐蚀裂纹,这就需要控制好成型、焊接时的残余应力,尤其是焊趾处的残余应力。 国外油气输送钢管生产厂家对焊管残余应力都有内控标准。例如,日本NKK公司规定,UOE焊管内表面的残余压应力σr∧100 MPa;日本住友金属公司规定,UOE焊管内表

焊接常见缺陷

焊接缺陷及其成因常见的焊接外部缺陷有:尺寸不符合要求、咬边、焊瘤、弧坑及表面飞溅等。常见的焊缝内部缺陷有:夹渣及气孔等。产生焊缝缺陷的原因可用人、机、料、法、环五大因素查找。其中人是最活跃的因素。有些缺陷是焊工施焊时的习惯性动作所致,或与其尚未克服的瘤疾有关,这主要是电焊工的技术素质及责任心问题。从设备上看,我厂的电焊机均无电流表及电压表,调节手柄的数值只能作参考,因此要严格地执行焊接工艺要求是困难的。从材料上看,钢板无除锈除油工序,焊条夹头不除锈;工艺评定覆盖面不大,因我厂的材料代用较多,如可代Q2352A 钢的就有SM41B、SS41 、BCT3Cπ、RST37 等, 有时自焊, 有时互焊。虽然这些材料成分及性能相近,但是有些还存在较大差异,因此工艺参数应有相应的变化。施焊环境如空气的相对湿度、温度、风速等,都会影响焊接质量,然而有的电焊工却忽视了一点。产生焊接缺陷的原因很多,但只要严格执行焊接工艺就能够最大限度地避免这些缺陷。为了保证焊接质量,焊缝的检验是必不可少的,如焊缝的外观检查、射线探伤及机械性能试验。经验表明,前两者的合格与否都不是后者合格与否的必要条件,只是概率的大小而已。 2. 1 焊缝尺寸不符合要求 2. 1. 1 焊缝宽度过窄这主要是焊接电流较小、焊弧过长或焊速较快造成的。由于形成的金属熔池较小或保持时间较短,不利于钢水流动。我厂进口钢代替Q2352A 钢时常出现这一问题。这是由于进口钢一般比Q2352A 含合金元素要高些,熔点高,需要的熔化热也多。2. 1. 2 焊缝余高过高有时它与前一个问题同时出现。有的焊工片面地认为焊缝高点没关系,所以不习惯于0~1. 5mm 的焊缝余高,多数为上限或超高。但过高会产生应力集中,其主要原因是倒数第二层焊道接头过高,造成盖面层焊道局部超高,有时各层焊接参数不合适,各层累计超高。 2. 1. 3 角焊缝单边或下陷量过大角焊缝单边或下陷量过大造成单位面积上承力过大,使焊接强度降低。在我厂这是个老问题。其原因是坡口不规则、间隙不均匀、焊条与工件夹角不合适以及焊接参数与工艺要求不一致等。 2. 2 弧坑焊接弧坑多出现在列管式换热器管头焊缝或部分角焊缝,有部分弧坑在试水压时渗漏。产生弧坑的原因是熄弧时间过短或电流较大。 2. 3 咬边在我厂大多是局部深度超标的咬边,连续咬边超标的不多。咬边使焊接强度减弱,造成局部应力集中。其主要原因是电弧热量太高,如焊接电流过大,运条速度不当,焊条角度不当等,使电弧将焊缝边缘熔化后没有得到熔敷金属的补充所留下的缺口。 2. 4 焊瘤熔化金属流到加热不足的母材上形成了焊瘤,主要原因是焊接电流过大,焊接熔化过慢或焊条偏斜。 2. 5 严重飞溅比较严重的是那些无探伤要求的设备,直接原因是没按规定使用焊条。受潮或变质的焊条因水分或氧化物在焊接时分解产生大量气体,部分气体溶解在金属熔滴中,在电弧高温作用下,金属熔滴中的气体发生剧烈膨胀,使熔滴炸裂形成飞溅小滴散落在焊缝两侧。 2. 6 夹渣由于焊接电流过小或运条速度过快,金属熔池温度较低,液态金属和熔渣不易分开,或熔渣未来得及浮出,熔池已开始凝固,有时也存在清根不彻底问题。 2. 7 气孔产生气孔的原因很多,但在我厂产生气孔的主要原因是焊材及环境因素。钢板坡口两侧不做除锈处理,Fe3O4 除本身含氧外,还含有一定的结晶水,另外在空气相对湿度较大情况下也有微小的水珠,在熔池冶金过程中,非金属元素形成非金属氧化物,由于气体在金属中的溶解度随温度降低而减少,在结晶过程中部分气体来不及逸出,气泡残留在金属内形成了气孔。 3 克服焊接缺陷应采取的措施 (1) 增强有关人员的责任心,严格执行工作标准和焊接工艺要求。 (2) 经常进行技术培训,提高操作人员及有关人员的技术素质。 (3) 保证焊接设备及附件完好,为执行焊接工艺要求提供先决条件。 (4) 增大工艺评定覆盖面,保证工艺的

常见的焊接缺陷及危害(DOC)

常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态

可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,两侧线状夹渣 钢板对接焊缝X射线照相底片 V型坡口,钨极氩弧焊打底+手工电弧焊,夹钨 (5)裂纹:焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。 焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性

焊接接头与坡口形式

焊接接头和坡口形式 焊接接头形式可分为:对接接头、T形接头、角接接头和搭接接头。 一、对接接头 将两块钢板对在一起焊接,称为对接;一块钢板卷成圆筒后对在一起焊接,也属对接。对接接头容易焊透,受力情况好,应力分布均匀,联接强度高,因而焊接接头质量容易保证。 为了保证焊接质量,必须在焊接接头处开适当的坡口。坡口的主要作用是保证焊透,此外,坡口的存在还可形成足够容积的金属液熔池,以便焊渣浮起,不致造成夹渣。坡口的几何尺寸必须设计好,以便减少金属填充量、减少焊接工作量和减少变形。 对接接头形式如图2-14所示。对于钢板厚度在6 mm以下的双面焊,因其手工焊的熔深可达4 mm,故可以不开坡口,如图2-14(a)所示。 对于厚度在6-40 mm 的钢板,可采用如图2-14(b)所示的V 形坡口,进行双面焊。在无法进行双面焊时,也可采用带垫板(厚度≥3mm)的单面焊。由于垫板的存在,不易被烧穿。

当板厚为12-60mm时,可采用如图2-14(c)示的X形坡口。在板厚相同的情况下,采用X形坡口可减少焊条金属量二分之一左右,而且焊件的变形及所产生的内应力相应小些,因此它多用于厚度较大并变形要求较小的工件。X形坡口有对称的;还有不对称的,即一侧深另一侧浅。较浅的一侧焊接工作量小些 图2-14(d)(e)分别为单U形坡口及双U形坡口,这类坡口的填敷金属量均较V形坡口少些,焊件变形也较小,但其坡口加工较困难,故一般只在较重要的焊接结构时采用。 当对接的两块钢板厚度不相等时,为了防止焊接时薄的一边金属过热,而厚的一边金属难于熔化的现象,避免焊不透或烧穿;为了减少由于接头处厚度不等、刚度不一而产生焊接变形与裂纹的可能性,应采用如图2-15所示的厚度过渡开坡口的形式。

焊缝余高对焊接接头疲劳强度的影响.

焊缝余高对焊接接头疲劳强度的影响 摘要通过测定AQ400NH材料的光滑焊件、余高焊件的疲劳性能、观察断口形貌、绘制S-N曲线以及用AN-SYS有限元程序计算应力分布,研究余高对焊接接头疲劳强度的影响。结果发现,对于光滑焊件,焊接缺陷是影响疲劳强度的主要原因,对于有余高焊件,余高的高度是影响疲劳强度的主要原因,实际应变测量和有限元计算都表明,焊趾部位是应力集中区,应力集中的强度和余高间有线性关系。 焊接结构的疲劳强度,在很大程度上取决于构件应力集中情况。如果焊接构件有应力集中,在受到循环载荷条件下,焊接结构普遍会出现严重的断裂破坏。焊缝几何尺寸及焊接过程中产生的各种缺陷是产生应力集中的主要原因[1,2]。然而这些原因如何影响焊接构件的疲劳寿命,对于一种新材料,或者对于在一种特殊条件下使用的材料来说,应当受到特别的关注。AQ400NH钢是一种耐候材料,在使用结构中,该材料的焊接结构承受着高速动载的作用,使用条件特殊,所以研究产生应力集中的原因、应力集中对该焊件疲劳性能的影响,对提高焊件疲劳寿命具有重要意义。 笔者着眼于焊缝趾部余高与焊接构件应力集中的关系,探讨余高产生的应力集中对该焊件疲劳性能的影响。为此,对这种材料的母材、光滑焊件(余高为零的焊件、带余高焊件分别进行疲劳试验。绘制它们的S-N曲线;观察静态载荷下焊趾处应力的变化;用ANSYS有限元分析程序计算了各种状态下焊接构件的应力分布状态,以及余高变化产生应力集中的趋势。 1实验部分 1.1主要仪器与设备 电液伺服材料试验机:Instron1251型,英国In-stron公司。 1.2材料成分、力学性能实验所用材料为耐候材料AQ400NH,其主要化学成分见表1,母材与焊件的基本力学性能见表2。 1.3焊接接头几何尺寸

焊接缺陷及产生的原因

常见的气焊焊接缺陷及产生的原因 字体: 小中大| 打印发布: 2009-04-29 12:00 作者: webmaster 来源: 本站原创查看: 58次 常见的气焊焊接缺陷可分为外部缺陷和内部缺陷两大类。外部缺陷位于焊缝的外表面,一般用肉眼或低倍放大镜即可以发现。常见的外部缺陷包括焊缝尺寸不符合要求、表面气孔、裂纹、咬边、未焊满、凹坑、烧穿和焊瘤等;内部缺陷位于焊缝内部,需用破坏性试验或无损探伤等方法才能发现,如内部气孔、裂纹、夹渣、未焊透、未熔合等。 一、焊缝尺寸不符合要求 焊缝的尺寸与设计上规定的尺寸不符,或者焊缝成型不良,出现高低、宽窄不一、焊波粗劣等现象。焊缝尺寸不符合要求,不仅影响焊缝的美观,还会影响焊缝金属与母材的结合,造成应力集中,影响焊件的安全使用。 焊缝尺寸不符合要求产生的原因主要有:接头边缘加工不整齐、坡口角度或装配间隙不均匀;焊接工艺参数不正确,如火焰能率过大或过小、焊丝和焊嘴的倾角配合不当、气焊焊接速度不均匀等;操作技术不当,如焊嘴或焊丝横向摆动不一致等。 防止焊缝高低、宽窄不一、焊波粗劣的措施有:正确调整火焰能率:将焊件接头边缘调整齐;气焊过程中焊嘴、焊丝的横向摆动要一致;焊接速度要均匀且不要向熔池内填充过多的焊丝。 二、未焊透 焊接时接头根部未完全熔透的现象称为未焊透,详见图7—1。 未焊透不仅降低了焊接接头的机械性能,而且在未焊透的缺口及末端处形成应力集中,进一步引起裂纹的产生。在重要的焊缝中,若发现有未焊透缺陷,必须铲除,重新补焊。 产生未焊透的原因较多,通常有焊接接头在气焊前未经清理干净,如存在氧化物、油污等;坡口角度过小、接头间隙太小或钝边过厚;焊嘴号码过小,火焰能率不够或焊接速度过快;焊件的散热速度过快,使得熔池存在的时间短,以致填充金属与母材之间不能充分地熔合。 防止未焊透采取的措施,除了选择合理的坡口型式和装配间隙外,应在焊前进行清理,消除坡口两侧的氧化物和油污;根据板厚正确选用相应的焊嘴和焊丝直径;在焊接时选择合理的火焰能率和焊接速度;尤其是对导热快、散热面积大的焊件,要进行焊前预热和在焊接过程中加热焊件。 三、未熔合 熔焊时,焊道与母材之间或焊道与焊道之间,未完全熔化结合的部分称为未熔 合,详见图7—2。

焊接接头及坡口形式

焊接接头及坡口形式 一、 接头的分类 接头是由两个或两个以上零件用焊接方法连接的,焊接 结构通常由若干个焊接接头组成。 型接头(十字) 端接接头 在结构中的作用: (1)工作接头:工作力的传递; (2)联接接头:更主要的作用是作焊接的办法使更多的焊接连接成整体,起连接作用。通常不做强度计算。 (3)蜜封接头:防止泄漏是其主要作用。 1.对接接头 搭接接头角接接头

从受力的角度看,受力状况好,应力集中程度小,材料消耗少,变形也较小。往往在接头开坡口。 2.T型和十字接头 将相互垂直的焊件用角焊缝边接起来的接头,分焊透、 不焊透两种,接头焊透,要根据坡口的T型和十字接头承受 动载能力而定,不焊透的T型和十字接头承受力是不周的。 3.搭接接头。 是指两个焊接部分重叠在一起。搭接接头应力分布不均 匀,强度较低。 4.角接头 是指两个焊件的端面构成大于30。、小于是135。夹角,用焊接连接起来的接头。 5.端接接头 是指将两构件重叠放置或两焊件之间的夹角不大于 30°,用焊接边接起来的接头。 二、坡口的形式和坡口尺寸 1.坡口的形式 主要是保证焊接接头的质量和方便焊接、使焊缝根部焊 透。 选用何种坡口形式,主要取决于焊接的方法、焊接的位置、焊件的厚度、焊缝熔透要求。

选择坡口应注意如下问题: 1)坡口的加工条件; 2)可焊接性; 3)焊接材料的消耗生产成本; 4)焊接变形如何; 常用的坡口形式: 1)I型 2)V型 3)双丫型 4)U型 5)双丫形 2.坡口的作用 1)确保焊接电源深入到坡口根部间隙处; 2)操作清除焊渣; 3)调节熔敷金属比例,提高焊接接头综合性能; 3.坡口的加工 加工方法的选择: (1)剪边:用剪板机剪切加工; 工亦£頊

焊缝余高的要求与处理办法

焊缝余高的要求与处理办法 焊缝余高 英文名称:reinforcement;excess weld metal 定义:焊缝表面两焊趾连线上的那部分金属高度。 1余高的作用 在焊接过程中应该有焊缝余高。因为最后一层起保温和缓冷的作用,对细化晶粒、减少焊接应力起很大作用。同时也是气孔等杂物的收集区。 2余高的坏处 压力容器不希望有突变,造成局部应力集中。另外余高肯定有缺陷,这种缺陷很可能是产生疲劳裂纹的核。 裂纹源→疲劳扩展→断裂。 中国和日本曾经联合做过试验,发现有余高的设备比打磨后没有余高的设备使用寿命短2.0~2.5倍。 3标准对余高的要求 1)JB4732对疲劳设备要求打磨,其它设备有限制范围。基本上是不影响贴片即可,没要求打磨。 2)中国国家标准GB150是这样规定的,见图表格与图:

4欧美国家对余高的要求 打磨。外观质量好是国外产品畅销的原因之一,另外打磨之后能防环境腐蚀、避免产生过大的应力集中、延长了焊缝的使用寿命。 5余高的处理建议 提倡打磨,确实好。 标准是最低要求,所以建议对重要设备或投资较大的设备进行打磨,对投资小的设备就没有必要进行打磨了。

6焊缝余高过大的危害 焊趾处易形成应力腐蚀裂纹对接接头的应力集中主要是焊缝余高引起的,对接接头的焊缝,其焊趾处的应力最大。 焊缝的余高愈大,应力集中程度愈严重,焊接接头的强度反而会降低。焊后削平余高,只要不低于母材,减少应力集中,有时反而可以提高焊接接头的强度。 7外焊缝余高大,不利于防腐 作业时如采用环氧树脂玻璃布进行防腐,外焊缝余高大,将使焊趾处不易压牢。同时,焊缝越高则防腐层就越应加厚,因标准规定防腐层的厚度是以外焊缝的顶点为基准测算的,这就加大了防腐成本。 8内焊缝余高大,增加输送介质的能源损失 输送用焊管内表面若未做涂层防腐处理时,其内焊缝的余高大,则对输送介质的摩擦阻力也大,由此将使输送管线的能耗增加。 9焊缝余高的控制措施 调整好焊接线能量 检查焊接线能量是否合适,一般用焊接接头的酸蚀样来检查。

焊接的六大缺陷产生原因和预防措施大汇总

一、外观缺陷 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边 是指沿着焊趾,在母材部分形成的凹陷或沟槽, 它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。 产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 防止咬边的预防:矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤 焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。 C、凹坑 凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规范太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。

焊接符号大全(详解)

焊接符号大全 焊接符号以标准图示的形式和缩写代码标示出一个焊接接头或钎焊接头完整的信息,如接头的位置、如何制备和如何检测等。焊接符号完整的代码体系在美国焊接学会(AWS)最新版本的《焊接、钎焊与无损检验的标准符号》(ANSI/AWS A2.4)规程中有详细说明。焊接符号包含许多信息,而且相当复杂,实际生产中大多数的焊接设计人员只是使用了其中很少一部分。 符号中的信息和单元 问题1:焊接符号能够提供什么信息? 答:焊接符号能够提供如下信息。接头类型、焊缝坡口形状、焊缝类型、焊接方法、规程或程序、焊缝位置、质量要求、焊缝次序、焊缝尺寸、最终的焊缝轮廓、工艺要求等。 问题2:焊接符号由哪些单元组成? 答:一个焊接符号可以包括如下单元。参考线、箭头、基本焊接符号、尺寸和其他数据、补充符号、完成符号、尾缀、规程、焊接方法或其他。 参考线和箭头 问题3:参考线是什么? 答:参考线是构成一个焊接符号的基础,由水平位置的划线组成。参考线必须画在靠近所要表示的焊接接头符号的旁边。每一个焊接符号单元必须根据符号标准放置在参考线周围一个适当的位置处。水平参考线及焊接符号单元的位置如图1所示。 问题4:焊接符号中各单元的标准位置是如何安排的? 答:图1所示是一条参考线,一些其他的单元标记可以放置在参考线的周围。典型焊接符号显示出各种定位焊缝的一些信息,包括如下。

①尾缀T 只用于特殊的焊缝,例如,焊接方法改变、焊条改变等,可以在图纸上有详细参考说明。如果没有参考意义或无须规范,尾缀可以省略。 ②参考线上的S 记号S取决于焊缝类型,如有坡口焊缝的熔深、填角焊缝的尺寸、塞焊或开槽焊缝的尺寸、点焊或凸焊焊缝的剪切强度等,这个记号一般是位于焊缝符号的左边。 ③记号E 在这里代表一个开坡口焊缝的有效尺寸,也称为焊缝尺寸或焊脚高。有效尺寸的尺度标在圆括号内,无论箭头指向哪里,这个尺寸和坡口总是位于参考线上焊缝符号的左边。 ④R 在这里代表形成所需形状的焊缝数之间的空间,对于对接接头来说是敞开的根部。如果是塞焊或开槽焊缝,R在这里表示填充深度。这个记号位于焊缝符号的中间位置。 ⑤A 在这里表示对接接头的坡口角度(倾斜角),也包括塞焊焊缝的沉入角度。 ⑥F和A之间的水平短线—在这里代表完成的焊缝外形形状。 ⑦F 在这里表示获得所需焊缝外形的方法,焊缝外形可以通过下述方法获得。打磨(G)、机械加工(M)、铲削(C)、锤击(H)、滚轧(R)或者其他(U)。 ⑧L 在这里表示焊缝长度,这个长度标示总是位于焊缝符号的右边。无论箭头位于何处,这个位置总是不变的。 ⑨P 在这里表示当焊接中断时焊缝的中心线与中心线的间距。 ⑩(N)在这里代表点焊、缝焊、栓焊、塞焊、开槽焊或凸焊焊缝所要求的数量。问题5:箭头一般放置在哪里? 答:箭头线位于参考线的一端或另一端,在焊接接头的箭头线一边有一个箭头,这个箭头能指向任何方向,向上、向下或向前、向后。一个焊接符号甚至可以有多个箭头。 问题6:箭头符号告诉人们些什么信息? 答:与箭头相关的符号放置在参考线各自接头一边的上面或下面。参考线的术语“箭头侧”是指箭头指向焊缝接头一侧。位于参考线箭头侧的符号是指接头的箭头侧。位于参考线另一侧的符号是指接头的另一侧。当从图纸的底部观看时,箭头侧总是更靠近观看者。箭头侧和另一侧的例子见图2。 基本符号 问题7:什么是基本的焊接符号? 答:基本的焊接符号如图3所示。

焊缝外观检查标准

焊缝外观检查标准 外观检验不仅是对产品最终焊缝外观寸和表面质量的检验,对产品焊接过程中的每一道焊缝也应进行外观检验,如厚壁焊件进行多层焊时,为防止前道焊道的缺陷带到了下一道,每焊完一道焊道便需进行外观检验。 焊缝外观检验分为:目视检验和尺寸检验 一、焊缝的目视检验 (一)目视检验的方法 采用直接目视检验。焊缝外形应均匀,焊道与焊道及焊道与基本金属之间应平滑过渡。目视检验也称近距离目视检验,是用眼睛直接观察和分辨缺陷的形貌。在检验过程中可采用适当的照明设施,利用反光镜调节照射角度和观察角度,或借助低倍放大镜观察。 (二)目视检验的程序 应对焊接结构的所有可见焊缝进行目视检验。 (三)目视检验的项目 焊接结束后,及时清理焊渣和飞溅,打磨焊道后,按下表中的项目进行检验。

目视检验若发现有裂纹、夹渣、气孔、焊瘤、咬边等不允许存在的缺陷,应清除、补焊、修磨,使焊缝表面质量符合要求。 二、焊缝外形尺寸的检验 焊缝外形尺寸的检验是按图样标注尺寸或技术标准规定的尺寸对实物进行测量检验。通常在目视检验的基础上,选择焊缝尺寸正常部位、尺寸变化的过渡部位和尺寸异常变化的部位进行测量检查,然后相互比较,找出焊缝外形尺寸变化的规律,与标准规定的尺寸对比,从而判断焊缝的外形尺寸是否符合要求。 (一)对接焊缝外形尺寸的检验 对接焊缝的外形尺寸包括:焊缝的余高h、焊缝宽度c、焊缝边缘直线度f、焊缝宽度差和焊缝表面凹凸度。焊缝的余高,焊缝宽度是重点检验的外形尺寸。 1、JB/T7949-1999《钢结构焊缝外形尺寸》就对接焊缝余高、焊缝

宽度作如下规定: I 形坡口对接焊缝,其焊缝宽度c=b+2a 及余高应符合表二中I 形焊缝的规定。 非I 形坡口对接焊缝尺寸 I 形坡口对接焊缝尺寸 非I 形坡口对接焊缝,其焊缝宽度c=g+2a 及余高应符合表二中非I 形焊缝的规定。 对接焊缝余高和宽度的测量方法如下图: a )测较小焊缝余高 b )测较大的焊缝余高 c )测焊缝宽度

焊接表示方法

第一章焊接接头及图样标注 焊接连接形成的焊接接头是焊接结构的最基本要素。焊接接头的设计是在充分考虑结构特点、材料特性、接头工作条件的经济性等的前提下,在首先选定焊接方法之后,正确合理地布置焊缝,确定接头的类型;对于熔焊接头,还需正确地确定坡口形状和尺寸,校核接头的承载能力,最后参照有关国内、国际标准,把焊接接头在结构图样上清楚准确地表示出来。 1.1焊接接头 1.1.1概述 焊接接头是指用焊接方法把金属材料连接起来的接头,简称接头。它是组成焊接结构的最基本要素,在某些情况下,它又是焊接结构的薄弱环节,掌握焊接接头的构造特点、工作性能,对正确设计、制造和使用具有重要意义。 1.1.2焊接接头的基本类型

图1-3 典型焊缝形状及各部分名称 a)V形坡口焊缝b) 凸形角焊缝c)凹形角焊缝 1.2焊接接头的表示方法 1.2.1 焊缝符号 焊缝符号与焊接方法代号是供焊接结构图样上使用的统一符号或代号,也是一种工程语言,世界各国的焊缝符号和焊接方法代号不尽相同,设计人员应该掌握并在自己的设计实践中加以正确运用。我公司是经过DIN6700认证的企业,焊缝标注应依据ISO2553 《焊接、硬钎焊和软钎焊接头在图样上的表示方法》标准进行。 焊缝符号包括基本符号、辅助符号和焊缝尺寸符号。焊缝符号一般由基本符号与指引线组成,必要时还要加上辅助符号、补充符号和焊缝尺寸符号。 (1)基本符号是表示焊缝横截面形状的符号。在ISO2553中规定了20种基本符号,见表1-1。

2) (2)基本符号的组合:由于焊接有时要求从两面进行,因此需要在指引线的两基准线上分别标注出来基本符号。典型的基本符号组合见表1-2。

常见焊接缺陷产生原因及处理办法

以下是焊接缺陷方面的浅析 缺陷产生原因及防止措施 一、缺陷名称:气孔(Blow Hole) 焊接方式发生原因防止措施 手工电弧焊(1)焊条不良或潮湿。 (2)焊件有水分、油污或锈。 (3)焊接速度太快。 (4)电流太强。 (5)电弧长度不适合。 (6)焊件厚度大,金属冷却过速。 (1)选用适当的焊条并注意烘干。 (2)焊接前清洁被焊部份。 (3)降低焊接速度,使内部气体容易逸出。 (4)使用厂商建议适当电流。 (5)调整适当电弧长度。 (6)施行适当的预热工作。 CO2气体保 护焊(1)母材不洁。 (2)焊丝有锈或焊药潮湿。 (3)点焊不良,焊丝选择不当。 (4)干伸长度太长,CO2气体保护不周密。 (5)风速较大,无挡风装置。 (6)焊接速度太快,冷却快速。 (7)火花飞溅粘在喷嘴,造成气体乱流。 (8)气体纯度不良,含杂物多(特别含水分)。 (1)焊接前注意清洁被焊部位。 (2)选用适当的焊丝并注意保持干燥。 (3)点焊焊道不得有缺陷,同时要清洁干净,且使用焊 丝尺寸要适当。 (4)减小干伸长度,调整适当气体流量。 (5)加装挡风设备。 (6)降低速度使内部气体逸出。 (7)注意清除喷嘴处焊渣,并涂以飞溅附着防止剂,以 延长喷嘴寿命。 (8)CO2纯度为99.98%以上,水分为0.005%以下。 埋弧焊接(1)焊缝有锈、氧化膜、油脂等有机物的杂质。 (2)焊剂潮湿。 (3)焊剂受污染。 (4)焊接速度过快。 (5)焊剂高度不足。 (6)焊剂高度过大,使气体不易逸出(特别在焊剂 粒度细的情形)。 (7)焊丝生锈或沾有油污。 (8)极性不适当(特别在对接时受污染会产生气 孔)。 (1)焊缝需研磨或以火焰烧除,再以钢丝刷清除。 (2)约需300℃干燥 (3)注意焊剂的储存及焊接部位附近地区的清洁,以免 杂物混入。 (4)降低焊接速度。 (5)焊剂出口橡皮管口要调整高些。 (6)焊剂出口橡皮管要调整低些,在自动焊接情形适当 高度30-40mm。 (7)换用清洁焊丝。 (8)将直流正接(DC-)改为直流反接(DC+). 设备不良(1)减压表冷却,气体无法流出。 (2)喷嘴被火花飞溅物堵塞。 (3)焊丝有油、锈。 (1)气体调节器无附电热器时,要加装电热器,同时检 查表之流量。 (2)经常清除喷嘴飞溅物。并且涂以飞溅附着防止剂。 (3)焊丝贮存或安装焊丝时不可触及油类。 (2)焊丝突出长度过短。(2)依各种焊丝说明使用。

常见的焊接缺陷及处理办法

常见的焊接缺陷及处理办法 一、外部缺陷 一)、焊缝成型差 1、现象 焊缝波纹粗劣,焊缝不均匀、不整齐,焊缝与母材不圆滑过渡,焊接接头差,焊缝高低不平。 2、原因分析 焊缝成型差的原因有:焊件坡口角度不当或装配间隙不均匀;焊口清理不干净;焊接电流过大或过小;焊接中运条(枪)速度过快或过慢;焊条(枪)摆动幅度过大或过小;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴焊件的坡口角度和装配间隙必须符合图纸设计或所执行标准的要求。 ⑵焊件坡口打磨清理干净,无锈、无垢、无脂等污物杂质,露出金属光泽。 ⑶加强焊接联系,提高焊接操作水平,熟悉焊接施工环境。 ⑷根据不同的焊接位置、焊接方法、不同的对口间隙等,按照焊接工艺卡和操作技能要求,选择合理的焊接电流参数、施焊速度和焊条(枪)的角度。 4、治理措施 ⑴加强焊后自检和专检,发现问题及时处理; ⑵对于焊缝成型差的焊缝,进行打磨、补焊; ⑶达不到验收标准要求,成型太差的焊缝实行割口或换件重焊; ⑷加强焊接验收标准的学习,严格按照标准施工。 二)、焊缝余高不合格 1、现象 管道焊口和板对接焊缝余高大于 3 ㎜;局部出现负余高;余高差过大;角焊缝高度不够或 焊角尺寸过大,余高差过大。 2、原因分析 焊接电流选择不当;运条(枪)速度不均匀,过快或过慢;焊条(枪)摆动幅度不均匀;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴根据不同焊接位置、焊接方法,选择合理的焊接电流参数; ⑵增强焊工责任心,焊接速度适合所选的焊接电流,运条(枪)速度均匀,避免忽快忽慢; ⑶焊条(枪)摆动幅度不一致,摆动速度合理、均匀; ⑷注意保持正确的焊条(枪)角度。 4、治理措施 ⑴加强焊工操作技能培训,提高焊缝盖面水平; ⑵对焊缝进行必要的打磨和补焊; ⑶加强焊后检查,发现问题及时处理; ⑷技术员的交底中,对焊角角度要求做详细说明。 三)、焊缝宽窄差不合格 1、现象 焊缝边缘不匀直,焊缝宽窄差大于 3 ㎜。 2、原因分析 焊条(枪)摆动幅度不一致,部分地方幅度过大,部分地方摆动过小;焊条(枪)角度不合适;焊接位置困难,妨碍焊接人员视线。

(完整word版)焊接接头的种类及接头型式

焊接接头的种类及接头型式 焊接中,由于焊件的厚度、结构及使用条件的不同,其接头型式及坡口形式也不同。焊接接头型式有:对接接头、T形接头、角接接头及搭接接头等。 (一)对接接头 两件表面构成大于或等于135°,小于或等于18 焊接中,由于焊件的厚度、结构及使用条件的不同,其接头型式及坡口形式也不同。焊接接头型式有:对接接头、T形接头、角接接头及搭接接头等。 (一)对接接头 两件表面构成大于或等于135°,小于或等于180°夹角的接头,叫做对接接头。在各种焊接结构中它是采用最多的一种接头型式。 钢板厚度在6mm以下,除重要结构外,一般不开坡口。 厚度不同的钢板对接的两板厚度差(δ—δ1)不超过表1—2规定时,则焊缝坡口的基本形式与尺寸按较厚板的尺寸数据来选取;否则,应在厚板上作出如图1—8所示的单面或双面削薄;其削薄长度L≥3(δ—δ1)。 图1—8 不同厚度板材的对接 (a)单面削薄,(b)双面削薄

表1-2 (二)角接接头 两焊件端面间构成大于30°、小于135°夹角的接头,叫做角接接头,见图1—9。这种接头受力状况不太好,常用于不重要的结构中。 图1—9 角接接头 (a)I形坡口;(b)带钝边单边V形坡口 (三)T形接头

一件之端面与另一件表面构成直角或近似直角的接头,叫做T形接头,见图1—1 0。 图1—10 T形接头 (四)搭接接头 两件部分重叠构成的接头叫搭接接头,见图1—11。 图1—11 搭接接头 (a)I形坡口,(b)圆孔内塞焊;(c)长孔内角焊 搭接接头根据其结构形式和对强度的要求,分为不开坡口、圆孔内塞焊和长孔内角焊三种形式,见图1—11。

相关主题
文本预览
相关文档 最新文档