当前位置:文档之家› 钢筋混凝土连续箱梁桥裂缝宽度计算分析

钢筋混凝土连续箱梁桥裂缝宽度计算分析

钢筋混凝土连续箱梁桥裂缝宽度计算分析
钢筋混凝土连续箱梁桥裂缝宽度计算分析

钢筋混凝土连续箱梁桥裂缝宽度计算分析

摘要:总结了裂缝的分类和影响因素,列举了各个国家规范对连续箱梁桥裂缝宽度计算公式并进行对比。通过实验,验证和分析《中国公路钢筋混凝土及预应力混凝土桥涵设计规范》中裂缝宽度计算理论。

关键字:裂缝,连续刚构桥,箱形截面,裂缝宽度计算

0 引言

连续刚构桥综合了T型钢构和连续梁的受力特点,将主梁做成连续梁体,并与薄壁桥墩固结,形成一种新型体系桥,得到了广泛应用。然而,在实际桥梁服役中,钢筋混凝土结构常出现各种各样的裂缝,不仅影响桥梁的刚度、承载力和耐久性,而且又会给人一种不安全感。

1 裂缝

1.1 裂缝的分类

混凝土结构损伤和破坏一般都是从裂缝开始,所以对混凝土结构的损伤检测也要从裂缝的检测开始。根据不同的前提条件,裂缝的分类不同。按照产生外因可分为:荷载裂缝、温度裂缝、收缩裂缝、基础变形裂缝、钢筋锈蚀裂缝和冻胀裂缝;按照力学特性可分为:弯曲裂缝、剪切裂缝、扭曲裂缝、断开裂缝和局部应力裂缝;按照出现的位置,对箱形截面来说可分为:顶板裂缝、腹板裂缝、底板裂缝和横隔板裂缝[1]。

1.1 影响裂缝产生的因素

混凝土结构裂缝产生原因很多,总的来说可分为两大类[2][4]:

(一)外在荷载引起的裂缝,称为结构性裂缝或者称受力裂缝,其裂缝的分布宽度与荷载大小有关。

(二)变形引起的裂缝,称为非结构性裂缝,如温度变化等,这些因素引起结构变形受到限制时,结构内部就会产生拉应力,当此拉应力达到混凝土抗拉强度极限值时,即会引起混凝土裂缝,裂缝一旦出现,变形得到释放,拉应力也就消失。

2 钢筋混凝土结构裂缝计算方法

目前,国内外对于闭口箱型截面裂缝宽度计算的研究都是通过开口截面(例如矩形、T型和工字型)裂缝宽度计算近似得来的,并且,其中T型截面计算值比较接近箱梁裂缝真实值。以下是不同国家地区裂缝宽度计算的规范公式。

04第四章裂缝宽度计算

第四章 裂缝宽度计算 裂缝宽度计算也是钢筋混凝土构件正常使用极限状态验算的一部分。因为是正常使用状态的验算,所以输入的内力值是标准值,即不考虑荷载分项系数计算出的内力值。 裂缝宽度计算公式为 )07.030(max te s s d c E ρσαω++= 公式符号说明: α——构件受力特征和荷载长期作用的综合影响系数,程序根据受力特征,自动赋值。 c ——最外排纵向受拉钢筋外边缘至受拉区底边的距离。 d ——受拉钢筋直径。 te ρ——纵向受拉钢筋的有效配筋率。 σs ——按荷载标准值计算的构件纵向受拉钢筋应力。 已设计完成的裂缝宽度计算程序包括:轴心受拉裂缝宽度计算、受弯裂缝宽度计算、大偏心受压裂缝宽度计算、偏心受拉裂缝宽度计算等。下面分节介绍。

第一节 轴心受拉裂缝宽度计算 一、 采用公式 该程序可计算矩形截面轴心受拉构件的裂缝宽度,纵向受拉钢筋的应力σs ,采用以下公式: s s A N σ 其中: N ——轴向拉力标准值; s A ——受拉钢筋截面积。 二、 操作方法 图 4-1 矩形截面轴心受拉裂缝宽度计算对话框 使用时,用户点“轴心受拉裂缝宽度计算”菜单项,弹出如图4-1所示

的对话框。在该对话框中,输入项目名称、拉力标准值、混凝土构件截面尺寸值等信息,设定钢筋的级别(则钢筋的弹性模量会自动变化),点取“裂缝宽度计算” 按钮,程序会立即计算出裂缝宽度值,如果用户点“保存文件”按钮,程序就会把已知条件和计算结果保存成一个文件,用户点“退出”按钮,程序退出当前的计算。 第二节 受弯构件裂缝宽度计算 一、 采用公式 该程序可计算矩形截面受弯构件的裂缝宽度,纵向受拉钢筋的应力σs ,采用以下公式: s s A h M 087.0 σ 其中: M ——按荷载标准值计算的弯距标准值; s A ——受拉钢筋截面积。 0h ——截面有效高度。 二、 操作方法

钢筋混凝土构件的变形和裂缝宽度验算

8钢筋混凝土构件的变形和裂缝宽度验算 一、选择题 1.进行变形和裂缝宽度验算时() A.荷载用设计值,材料强度用标准值 B.荷载和标准值,材料强度设计值 C.荷载和材料强度均用设计值 D.荷载和材料强度用标准值 2.钢筋混凝土受弯构件的刚度随受荷时间的延续而() A.增大 B.不变 C.减小 D.与具体情况有关 3.提高受弯构件的刚度(减小挠度)最有效的措施是() A.提高混凝土强度等级 B.增加受拉钢筋截面面积 C.加大截面的有效高度 D.加大截面宽度 4.为防止钢筋混凝土构件裂缝开展宽度过大,可() A.使用高强度钢筋 B.使用大直径钢筋 C.增大钢筋用量 D.减少钢筋用量 5.一般情况下,钢筋混凝土受弯构件是() A.不带裂缝工作的 B.带裂缝工作的 C.带裂缝工作的,但裂缝宽度应受到限制 D.带裂缝工作的,裂缝宽度不受到限制 6.为减小混凝土构件的裂缝宽度,当配筋率为一定时,宜采用() A.大直径钢筋 B.变形钢筋 C.光面钢筋 D.小直径变形钢筋 7.当其它条件相同的情况下,钢筋的保护层厚度与平均裂缝宽度的关系是( ) A.保护层愈厚,裂缝宽度愈大 B.保护层愈厚,裂缝宽度愈小 C.保护层厚度与裂缝宽度无关 D.保护层厚度与裂缝宽度关系不确定 8.计算钢筋混凝土构件的挠度时需将裂缝截面钢筋应变值乘以不均匀系数 ,这是因为()。 A.钢筋强度尚未充分发挥 B.混凝土不是弹性材料 C.两裂缝见混凝土还承受一定拉力 D.钢筋应力与应力不成正比

9.下列表达()为错误。 A.验算的裂缝宽度是指钢筋水平处构件侧表面的裂缝宽度 B.受拉钢筋混凝土应变不均匀系数ψ愈大,表明混凝土参加工作程度愈小 C.钢筋混凝土梁采用高等级混凝土时,承受力提高有限,对裂缝宽度和刚度的影响也很有限 D.钢筋混凝土等截面受弯构件,其截面刚度不随荷载变化,但沿构件长度变化 二、判断题 1.一般来说,裂缝间距越小,其裂缝开展宽度越大。 2.在正常使用情况下,钢筋混凝土梁的受拉钢筋应力越大,裂缝开展宽度也越大。 3.在其它条件不变的情况下,采用直径较小的钢筋可使构件的裂缝开展宽度减小。 4.裂缝间纵向受拉钢筋的应变不均匀系数ψ接近与1时,说明受拉混凝土将完全脱离工作。 5.在钢筋混凝土结构中,提高构件抗裂度的有效办法是增加受拉钢筋用量。 6.无论是受拉构件还是受弯构件,在裂缝出现前后,裂缝处的钢筋应力会发生突变。 7.钢筋混凝土梁抗裂弯矩的大小主要与受拉钢筋配筋率的大小有关。 8.当梁的受压区配有受压钢筋时,可以减小梁在长期荷载作用下的挠度。 9.超过正常使用极限状态所产生的后果较之超过承载力极限状态的后果要严重的多。 三、填空题 1.钢筋混凝土受弯构件的裂缝宽度和挠度是以的应力状态为计算依据的。 2.受弯构件的挠度,在长期荷载作用下将会时间而。着主要是由于影响造成的。 3.裂缝间受拉钢筋应变不均匀系数ψ越大,受弯构件的抗弯刚度越,而混凝土参与受拉工作的程度越。 4.钢筋混凝土梁截面抗弯刚度随弯矩增大而。 5.弹性匀质材料的M-φ关系,当梁的材料和截面尺寸确定后,截面弯抗刚度EI 是,钢筋混凝土梁,开裂后梁的M-φ关系是,其刚度不是,而是随弯矩而变化的值。M小B ,M大B 。 6.减小裂缝宽度最有效的措施是。 7.变形和裂缝宽度控制属于极限状态。应在构件的得到保证的前提下,再验算构件的变形或裂缝宽度。验算时荷载采用,材料强度采用。 8.平均裂缝宽度位置取。

裂缝宽度验算及减小裂缝宽度的主要措施

8.2.5 裂缝宽度验算及减小裂缝宽度的主要措施 对裂缝宽度的限制,应从保证结构耐久性,钢筋不被锈蚀及过宽的裂缝影响结构外观,引起人们心理上的不安两个因素来考虑。 《混凝土结构设计规范》(GB50010)规定,钢筋混凝土构件在荷载的标准组合下,并考虑长期作用影响的最大裂缝宽度,应符合下式规定: (8-20) 式中w max——按荷载的标准组合并考虑长期作用影响计算的构件最大裂缝宽度,按式; w lim——裂缝宽度限值,根据构件所处的环境类别(表8-1)不同,裂缝宽度限值取表8-2中的值。 表8-1 混凝土结构的使用环境类别 表8-2 混凝土结构构件的最大裂缝宽度限值w lim (mm)

《公路钢筋混凝土和预应力混凝土桥涵设计规范》(JTJ023)规定,钢筋混凝土构件在正常使用极限状态下的裂缝宽度,应按作用短期效应组合并考虑长期效应影响进行验算,且不得超过以下规定的限值: 一般环境0.20mm 有气态、液态或固态侵蚀物质环境0.10mm 这里,一般环境系指寒冷和严寒、无侵蚀物质影响的地面和水下及与土直接接触的环境;有气态、液态或固态侵蚀物质环境系指包括海水、使用除冰盐在内及工业污染的环境。 从影响裂缝宽度的主要因素以及两本规范的裂缝宽度计算公式中我们发现,当设计计算发现裂缝宽度超限,或要求减小裂缝宽度时,选择较细直径的钢筋及变形钢筋是最为经济的措施。因为同样面积的钢筋,直径小则其周长与面积比就大,这就增大了钢筋与混凝土间的粘结力,采用变形钢筋亦是这个道理。粘结力大,可使裂缝间距缩短,裂缝即多而密,裂缝间距内钢筋与混凝土之间的变形差就小,裂缝宽度减小。 但是,当采用上述措施仍不能满足要求时,亦可增大钢筋截面面积,从而增大截面的配筋率,减小钢筋的工作应力,减小平均裂缝间距;当然,有时也可采取改变截面形式及尺寸或提高混凝土强度等级等办法。 8.2.6 小结 两本规范的裂缝宽度计算公式相差较大(见表8-3)。从理论基础上看,《混凝土结构设计规范》(GB50010)采用一般裂缝理论,然后通过试验数据统计回归的方法确定其中的系数;《公路钢筋混凝土与预应力混凝土桥涵设计规范》(JTJ023)公式则纯粹是建立在试验统计分析基础上的。但二者所反映的裂缝宽

裂缝宽度验算

15 裂缝宽度验算:B墙8*15 15.1 基本资料 15.1.1 工程名称:一泵房地下室外墙 15.1.2 矩形截面受弯构件构件受力特征系数αcr = 2.1 截面尺寸 b×h = 1000×500mm 15.1.3 纵筋根数、直径:第 1 种:10Φ20 受拉区纵向钢筋的等效直径 deq =∑(ni * di^2) / ∑(ni * υ * di) = 20mm 带肋钢筋的相对粘结特性系数υ = 1 15.1.4 受拉纵筋面积 As = 3142mm 钢筋弹性模量 Es = 200000N/mm 15.1.5 最外层纵向受拉钢筋外边缘至受拉区底边的距离 c = 40mm 纵向受拉钢筋合力点至截面近边的距离 as =50mm ho = 450mm 15.1.6 混凝土抗拉强度标准值 ftk = 2.2N/mm 15.1.7 按荷载效应的标准组合计算的弯距值 Mk = 226kN·m 15.1.8 设计时执行的规范: 《混凝土结构设计规范》(GB 50010-2002),以下简称混凝土规范 15.2 最大裂缝宽度验算 15.2.1 按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率ρte,按下式计算:ρte = As / Ate (混凝土规范 8.1.2-4) 对矩形截面的受弯构件:Ate = 0.5 * b * h = 0.5*1000*500 = 250000mm ρte = As / Ate = 3142/250000 = 0.01257 15.2.2 按荷载效应的标准组合计算的纵向受拉钢筋的等效应力σsk,按下列公式计算:受弯:σsk = Mk / (0.87 * ho * As) (混凝土规范 8.1.3-3) σsk = 226000000/(0.87*450*3142) = 184N/mm 15.2.3 裂缝间纵向受拉钢筋应变不均匀系数ψ,按混凝土规范式 8.1.2-2 计算:ψ = 1.1 - 0.65 * ftk / (ρte * σsk) = 1.1-0.65*2.2/(0.01257*184) = 0.479 15.2.4 最大裂缝宽度ωmax,按混凝土规范式 8.1.2-1 计算: ωmax =αcr * ψ * σsk * (1.9 * c + 0.08 * deq / ρte ) / Es = 2.1*0.479*184*(1.9*40+0.08*20/0.0126)/200000 = 0.188mm<0.2mm 9 裂缝宽度验算:A墙4.9*11.9 9.1 基本资料 9.1.1 工程名称:一泵房地下室外墙 9.1.2 矩形截面受弯构件构件受力特征系数αcr = 2.1 截面尺寸 b×h = 1000×500mm 9.1.3 纵筋根数、直径:第 1 种:8Φ20 受拉区纵向钢筋的等效直径 deq =∑(ni * di^2) / ∑(ni * υ * di) = 20mm 带肋钢筋的相对粘结特性系数υ = 1 9.1.4 受拉纵筋面积 As = 2513mm 钢筋弹性模量 Es = 200000N/mm 9.1.5 最外层纵向受拉钢筋外边缘至受拉区底边的距离 c = 40mm 纵向受拉钢筋合力点至截面近边的距离 as =50mm ho = 450mm 9.1.6 混凝土抗拉强度标准值 ftk = 2.2N/mm 9.1.7 按荷载效应的标准组合计算的弯距值 Mk = 188.86kN·m 9.1.8 设计时执行的规范:

桥梁博士连续梁桥设计建模步骤与桥博建模技巧知识分享

一、桥梁博士连续梁建模步骤 一、Dr.Bridge系统概述 Dr.Bridge系统是一个集可视化数据处理、数据库管理、结构分析、打印与帮助为一体的综合性桥梁结构设计与施工计算系统。该系统适用于钢筋混凝土及预应力混凝土连续梁、刚构、连续拱、桁架梁、斜拉桥等多种桥梁形式的设计与计算分析,不仅能用于直线桥梁的计算,同时还能进行斜、弯和异型桥梁的计算,以及基础、截面、横向系数等的计算。在设计过程中充分发挥了程序实用性强、可操作性好、自动化程度较高等特点,对于提高桥梁设计能力起到了很好的作用。 利用本系统进行设计计算一般需要经过:离散结构划分单元,施工分析,荷载分析,建立工程项目,输入总体信息、单元信息、钢束信息、施工阶段信息、使用阶段信息以及输入优化阶段信息(索结构),进行项目计算,输出计算结果等几个步骤。 二、离散结构与划分单元 1、在进行结构计算之前,首先要根据桥梁结构方案和施工方案,划分单元并对单元和节点编号,对于单元的划分一般遵从以下原则: (1)对于所关心截面设定单元分界线,即编制节点号; (2)构件的起点和终点以及变截面的起点和终点编制节点号; (3)不同构件的交点或同一构件的折点处编制节点号; (4)施工分界线设定单元分界线,即编制节点号;

(5)当施工分界线的两侧位移不同时,应设置两个不同的节点,利用主从约束关系考虑该节点处的连接方式; (6)边界或支承处应设置节点; (7)不同号单元的同号节点的坐标可以不同,节点不重合系统形成刚臂; (8)对桥面单元的划分不宜太长或太短,应根据施工荷载的设定并考虑活载的计算精度统筹兼顾。因为活载的计算是根据桥面单元的划分,记录桥面节点处位移影响线,进而得到各单元的内力影响线经动态规划加载计算其最值效应。对于索单元一根索应只设置一个单元。 2、本例为3x30m的三跨连续梁,截面在支座处加大以抵抗较大建立,同时利于端部锚固区的受力,所以该变截面点处取为单元节点,端点也应取为节点,每跨跨中是取为节点,其余节点是根据计算的精度要求定取。 本例共33个节点,划分为32个单元,离散图如下所示: 三、模型的建立 1、项目的建立

裂缝计算

8.2.2 裂缝宽度计算理论 对于裂缝问题,尽管自20世纪30年代以来各国学者做了大量的研究工作,提出了多种计算理论,但至今对于裂缝宽度的计算理论并未取得一致的看法。这些不同观点反映在各国关于裂缝宽度的计算公式有较大差别。但我们可以从这些不同的观点中理解和体会影响裂缝宽度的各种因素,为我们有效地控制构件的裂缝宽度提供理论基础。 从目前的裂缝计算模式上看,计算理论大致可以分为四类:第一类是经典的粘结—滑移理论;第二类是无滑移理论;第三类是一般裂缝理论;第四类是试验统计模式。目前我国《混凝土结构设计规范》(GB50010)采用的是以一般裂缝理论为指导,结合大量试验结果而形成的裂缝计算公式。而《公路钢筋混凝土与预应力混凝土桥涵设计规范》(JTJ023)结合影响裂缝宽度的各主要因素分析,采用的是以试验统计得到的计算公式。 ◆粘结-滑移理论 粘结—滑移理论是由R. Saligar于1936年根据钢筋混凝土拉杆试验提出的,一种最早的裂缝理论,直至60年代中期这个理论还一直被广泛的接受应用。这一理论认为,裂缝的开展是由于钢筋与混凝土之间不再保持变形协调,出现相对滑移而产生的。因此裂缝宽度等于裂缝间距范围内钢筋和混凝土的变形差。而裂缝的间距取决于钢筋与混凝土间粘结应力的大小与分布。粘结应力越大,混凝土拉应力沿构件纵向从零增大到其极限抗拉强度所需的粘结传递长度会越短,裂缝的间距也就越短,裂缝宽度越小,此时裂缝“密而多”;反之,裂缝“疏而稀”,裂缝宽度越大。由粘结—滑移理论得到的两个基本公式如下(如何根据以上条件推导出来的?) (8-2) (8-3) 式中lm --平均裂缝间距; Wm--平均裂缝宽度; d --纵向受拉钢筋直径; ρte--(=As/Ate )按有效受拉混凝土面积计算的配筋率; ,--平均裂缝间距内钢筋和混凝土的平均拉应变。 Ate--有效受拉区混凝土的截面面积,对受弯构件,取二分之一截面高度以下的面积。 对于矩形截面, Ate=0.5bh; 倒T形截面,则Ate=0.5bh-(bf-b)hf 。 从以上两个公式可以看出,决定裂缝宽度有两个主要因素,一个是d/ρte ,另一个是钢筋的应力水平。 ◆无滑移理论 粘结-滑移理论有一个基本假设,即构件开裂、混凝土回缩后,裂缝截面仍保持为平面。但试验量测表明,裂缝出现后混凝土将产生沿横截面不均匀的回缩变形,钢筋处的裂缝宽度比构件表面的裂缝宽度要小得多,距离钢筋表面越大,裂缝宽度也越大(如图8-6所示)。这一变形分布说明,由于钢筋对混凝土变形的约束作用(该约束作用的范围称作钢筋有效约束区),混凝土在横截面上存在着局部应变梯度,该应变梯度的大小,控制着构件表面的裂

钢筋混凝土梁裂缝计算

有很多人在设计混凝土梁的时候都忘记了验算梁的裂缝和挠度,当然这一定是错误的设计方式,因为某些情况下梁很可能不满足正常使用的要求和耐久性的需求,那么: 第一个问题是:钢筋混凝土梁什么时候是强度控制,什么时候是裂缝控制呢? 一般情况下,经过抗震设计的嵌固层以上的结构(7度以上),其框架梁多属于强度控制,裂缝大都可以满足设计要求,因为地震作用比较大,地震组合需要的强度配筋已经比正常使用状态下的配筋大了,当然地震产生的内力与竖向作用产生的内力之间的比例关系,是决定因素,而并不是说考虑了地震作用就一定能满足裂缝要求。但是对于次梁,地下室等结构的梁构件,由于标准组合比非抗震设计组合的内力不会小很多,因此一般对于非抗震设计的构件而言,正常使用状态的设计对梁的配筋起控制作用,当然这个结论也不绝对,具体分析如下个问题。 第二个问题是:裂缝计算主要与哪些因素有关系? 1.受拉钢筋的应力水平,受拉钢筋的应力与裂缝宽度线性相关,因此控制受拉钢筋在标准组合下的应力水平是控制裂缝宽度的关键因素,国外如ACI,EC等多控制受拉钢筋的应力水平在0.6fy左右,由于我国的荷载分项系数较小,因此受拉钢筋的应力水平比国外稍大,对于HRB400三级钢,25mm左右的直径,正常保护层下的梁而言,应

力水平主要在0.6-0.8区间不等,而这个应力水平将随着钢筋直径,保护层,配筋率,混凝土等级等因素的变化而变化。 2.受拉钢筋配筋率,配筋率是决定钢筋应力有效利用水平的关键因素,因此也是裂缝计算的关键因素之一,统计混凝土规范的计算公式表明,配筋率越大,钢筋应力有效利用的水平越高,裂缝也越容易控制,这里好象存在一个悖论,比如在前提条件相同的情况下,一根400X800的梁裂缝计算不满足要求,而换成350X800裂缝计算却满足要求了,就是因为后者配筋率大了一些,因此钢筋应力水平要求相应放松了的缘故,从本质上说这是混凝土规范裂缝宽度验算公式的“特点”,但是从另一方面来看,“死扣”规范有时候却可以用于优化构件尺寸。 3.保护层厚度,保护层厚度对于裂缝宽度的计算也很敏感,混凝土规范要求保护层厚度的计算区间为20mm-65mm,保护层越大裂缝计算宽度也越大,因此要求钢筋有效利用的应力水平也减小(更严)。 4.钢筋直径,一般情况下小直径钢筋对于控制裂缝宽度有利,比如用32mm直径的钢筋做设计,比25mm直径钢筋做设计,在裂缝宽度控制的情况下,32mm直径钢筋的计算面积要大不少。 5.混凝土强度等级,提高混凝土强度等级对于减小裂缝宽度的贡献很小,一般不推荐。

[混凝土习题集]—8—钢筋混凝土构件的变形和裂缝宽度验算

第八章混凝土构件变形和裂缝宽度验算 一、填空题: 1、钢筋混凝土构件的变形或裂缝宽度过大会影响结构的、性。 2、规规定,根据使用要求,把构件在作用下产生的裂缝和变形控制在 。 3、在普通钢筋混凝土结构中,只要在构件的某个截面上出现的超过混凝土的抗拉强度,就将在该截面上产生方向的裂缝。 4、平均裂缝间距就是指的平均值。 5、平均裂缝间距的大小主要取决于。 6、影响平均裂缝间距的因素有、、、。 7、钢筋混凝土受弯构件的截面抗弯刚度是一个,它随着和而变化。 8、钢筋应变不均匀系数的物理意义是。 9、变形验算时一般取同号弯矩区段截面抗弯刚度作为该区段的抗弯刚度。 10、规用来考虑荷载长期效应对刚度的影响。 二、判断题: 1、混凝土结构构件只要满足了承载力极限状态的要求即可。() 2、混凝土构件满足正常使用极限状态的要为了保证安全性的要求。() 3、构件中裂缝的出现和开展使构件的刚度降低、变形增大。() 4、裂缝按其形成的原因,可分为由荷载引起的裂缝和由变形因素引起的裂缝两大类。() 5、实际工程中,结构构件的裂缝大部分属于由荷载为主引起的。() 6、引起裂缝的变形因素包括材料收缩、温度变化、混凝土碳化及地基不均匀沉降等。() 7、荷载裂缝是由荷载引起的主应力超过混凝土抗压强度引起的。() 8、进行裂缝宽度验算就是将构件的裂缝宽度限制在规允许的围之。() 9、规控制温度收缩裂缝采取的措施是规定钢筋混凝土结构伸缩缝最大间距。() 10、规控制由混凝土碳化引起裂缝采取的措施是规定受力钢筋混凝土结构保护层厚度。() 11、随着荷载的不断增加,构件上的裂缝会持续不断地出现。() L主要取决于荷载的大小。() 12、平均裂缝间距 cr 是所有纵向受拉钢筋对构件截面的配筋率。() 13、有效配筋率 te 14、平均裂缝宽度是平均裂缝间距之间沿钢筋水平位置处钢筋和混凝土总伸长之差。() 15、最大裂缝宽度就是考虑裂缝并非均匀分布,在平均裂缝宽度的基础上乘以一个

预应力混凝土连续梁桥的设计尺寸拟定

预应力混凝土连续梁桥的设计 1.1总体布置 结构总体设计主要包括桥梁跨径分配、主梁截面形式的拟定以及梁高等方面的内容。 1.1.1跨径布置 目前,设计工程师认为预应力混凝土连续梁桥的最大理论跨度为250~300m,经济跨度为100~240m。 –布置原则:减小弯矩、增加刚度、方便施工、美观要求 –不等跨布置——大部分大跨度连续梁边中跨比为0.5~0.8,最好为0.65 –等跨布置——中小跨度连续梁 –短边跨布置——特殊使用要求 1.1.2主梁截面 –板式截面——实用于小跨径连续梁 –肋梁式——适合于吊装 –箱形截面——适合于节段施工 –其它

1.1.3箱梁梁高 梁高——与跨径、施工方法有关 等高度梁——实用于中、小跨径连续梁,一般跨径在50~60米以下变高度梁——实用于大跨径连续梁,100米以上,90%为变高度连续梁 桥型 公路桥铁路桥 支点梁高(m)跨中梁高(m)支点梁高(m)跨中梁高(m) 等高梁(1/15~1/25)l(1/16~1/18)l 变高(折线) 梁(1/16~ 1/20)l (1/22~ 1/28)l (1/12~ 1/16)l (1/22~ 1/28)l 变高(曲线) 梁(1/16~ 1/25)l (1/30~ 1/50)l (1/12~ 1/16)l (1/30~ 1/50)l 对于变高梁,一般对于公路桥,支点梁高是跨中梁高的2~3倍;对于铁路桥,支点梁高是跨中梁高的1.5~2倍。 1.2细部设计 主梁细部设计包括顶板、底板、腹板等部位尺寸的拟定,横隔板的设置,齿块和承托等构件的设计等。 1.2.1顶板、底板及腹板 箱形截面的顶板和底板是结构承受正负弯矩的主要工作部位。当悬臂施工时,箱梁底板特别是靠近桥墩附近的底板将承受很大的压应力。在发生变号弯矩的截面中,顶板和底板也都应各自发挥承压的作用。 (1)顶板 顶板厚度一般考虑两个因素:满足桥面板横向弯矩的要求;满足布置纵向预应力钢束和横向预应力钢束的构造要求。另外传统的设计理念认为,顶板厚度与腹板间距相关。桥面板的悬臂长度也是调节板内弯矩的重要参数,在布置横向预应力时可考虑桥面板的横向坡度和板截面的变高度,以发挥预应力束的偏心效应。中跨跨中顶板厚度一般要求大于d/30(d为箱梁腹板净距)。 (2)底板

预应力混凝土连续梁桥施工阶段的计算

4.12预应力混凝土连续梁桥施工阶段的计算 本节使用一个的采用悬臂施工的三跨连续梁实桥模型来重点介绍MIDAS/Civil的施工阶段分析功能、钢束预应力荷载的输入方法以及查看分析结果的方法等。主要包括分析预应力混凝土结构时定义钢束特性、钢束形状、输入预应力荷载、定义施工阶段等的方法,以及在分析结果中查看徐变和收缩、钢束预应力等引起的结构的应力和内力变化特性的步骤和方法。 图2.1 连续箱梁立面图 4.12.1预应力混凝土连续梁桥的特点 预应力混凝土连续梁桥以结构受力性能好、变形小、伸缩缝少、行车平顺舒适、造型简洁美观、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。连续梁和悬臂梁作比较:在恒载作用下,连续梁在支点处有负弯矩,由于负弯矩的卸载作用,跨中正弯矩显著减小,其弯矩与同跨悬臂梁相差不大;但是,在活载作用下,因主梁连续产生支点负弯矩对跨中正弯矩仍有卸载作用,其弯矩分布优于悬臂梁。虽然连续梁有很多优点,但是刚开始它并不是预应力结构体系中的佼佼者,因为限于当时施工主要采用满堂支架法,采用连续梁费工费时。到后来,由于悬臂施工方法的应用,连续梁在预应力混凝土结构中有了飞速的发展。60年代初期在中等跨预应力混凝土连续梁中,应用了逐跨架设法与顶推法;在较大跨连续梁中,则应用更完善的悬臂施工方法,这就使连续梁方案重新获得了竞争力,并逐步在40—200米范围内占主要地位。无论是城市桥梁、高架道路、山谷高架栈桥,还是跨河大桥,预应力混凝土连续梁都发挥了其优势,成为优胜方案。目前,连续梁结构体系已经成为预应力混凝土桥梁的主要桥型之一。

然而,当跨度很大时,连续梁所需的巨型支座无论是在设计制造方面,还是在养护方面都成为一个难题;而T型刚构在这方面具有无支座的优点。因此有人将两种结构结合起来,形成一种连续—刚构体系。这种综合了上述两种体系各自优点的体系是连续梁体系的一个重要发展,也是未来连续梁发展的主要方向。 4.12.2尺寸拟定原则 一、桥孔分跨 连续梁桥有做成三跨或者四跨一联的,也有做成多跨一联的,但一般不超过六跨。对于桥孔分跨,往往要受到如下因素的影响:桥址地形、地质与水文条件,通航要求以及墩台、基础及支座构造,力学要求,美学要求等。若采用三跨不等的桥孔布置,一般边跨长度可取为中跨的0.5—0.8倍,这样可使中跨跨中不致产生异号弯矩,此外,边跨跨长与中跨跨长之比还与施工方法有着密切的联系,对于采用现场浇筑的桥梁,边跨长度取为中跨长度的0.8倍是经济合理的。但是若采用悬臂施工法,则边跨与中跨的比值为0.42~0.45。本桥采用悬臂施工方法,其跨度组合为:(30+40+30)米。 二、截面立面布置 从预应力混凝土连续梁的受力特点来分析,连续梁的立面应采取变高度布置为宜;在恒、活载作用下,支点截面将出现较大的负弯矩,从绝对值来看,支点截面的负弯矩往往大于跨中截面的正弯矩,因此,采用变高度梁能较好地符合梁的内力分布规律,另外,变高度梁使梁体外形和谐,节省材料并增大桥下净空。但是,在采用顶推法、移动模架法、整孔架设法施工的桥梁,由于施工的需要,一般采用等高度梁。等高度梁的缺点是:在支点上不能利用增加梁高而只能增加预应力束筋用量来抵抗较大的负弯矩,材料用量多,但是其优点是结构构造简单、线形简洁美观、预制定型、施工方便。一般用于如下情况: 1. 桥梁为中等跨径,以40—60米为主。采用等截面布置使桥梁构造简单,施工迅速。由于跨径不大,梁的各截面内力差异不大,可采用构造措施予以调节。 2. 等截面布置以等跨布置为宜,由于各种原因需要对个别跨径改变跨长时,也以等截面为宜。 3. 采用有支架施工,逐跨架设施工、移动模架法和顶推法施工的连续梁桥较多采用等截面布置。 双层桥梁在无需做大跨径的情况下,选用等截面布置可使结构构造简化。

钢筋混凝土梁裂缝计算的一些问题

钢筋混凝土梁裂缝计算的一些问题 有很多人在设计混凝土梁的时候都忘记了验算梁的裂缝和挠度,当然这一定是错误的设计方式,因为某些情况下梁很可能不满足正常使用的要求和耐久性的需求,那么: 第一个问题是:钢筋混凝土梁什么时候是强度控制,什么时候是裂缝控制呢? 一般情况下,经过抗震设计的嵌固层以上的结构(7度以上),其框架梁多属于强度控制,裂缝大都可以满足设计要求,因为地震作用比较大,地震组合需要的强度配筋已经比正常使用状态下的配筋大了,当然地震产生的内力与竖向作用产生的内力之间的比例关系,是决定因素,而并不是说考虑了地震作用就一定能满足裂缝要求。但是对于次梁,地下室等结构的梁构件,由于标准组合比非抗震设计组合的内力不会小很多,因此一般对于非抗震设计的构件而言,正常使用状态的设计对梁的配筋起控制作用,当然这个结论也不绝对,具体分析如下个问题。 第二个问题是:裂缝计算主要与哪些因素有关系? 1.受拉钢筋的应力水平,受拉钢筋的应力与裂缝宽度线性相关,因此控制受拉钢筋在标准组合下的应力水平是控制裂缝宽度的关键因素,国外如ACI,EC等多控制受拉钢筋的应力水平在0.6fy左右,由于我国的荷载分项系数较小,因此受拉钢筋的应力水平比国外稍大,对于HRB400三级钢,25mm左右的直径,正常保护层下的梁而言,应力水平主要在0.6-0.8区间不等,而这个应力水平将随着钢筋直径,保护层,配筋率,混凝土等级等因素的变化而变化。 2.受拉钢筋配筋率,配筋率是决定钢筋应力有效利用水平的关键因素,因此也是裂缝计算的关键因素之一,统计混凝土规范的计算公式表明,配筋率越大,钢筋应力有效利用的水平越高,裂缝也越容易控制,这里好象存在一个悖论,比如在前提条件相同的情况下,一根400X800的梁裂缝计算不满足要求,而换成350X800裂缝计算却满足要求了,就是因为后者配筋率大了一些,因此钢筋应力水平要求相应放松了的缘故,从本质上说这是混凝土规范裂缝宽度验算公式的“特点”,但是从另一方面来看,“死扣”规范有时候却可以用于优化构件尺寸。 3.保护层厚度,保护层厚度对于裂缝宽度的计算也很敏感,混凝土规范要求保护层厚度的计算区间为20mm-65mm,保护层越大裂缝计算宽度也越大,因此要求钢筋有效利用的应力水平也减小(更严)。 4.钢筋直径,一般情况下小直径钢筋对于控制裂缝宽度有利,比如用32mm直径的钢筋做设计,比25mm直径钢筋做设计,在裂缝宽度控制的情况下,32mm直径钢筋的计算面积要大不少。 5.混凝土强度等级,提高混凝土强度等级对于减小裂缝宽度的贡献很小,一般不推荐。 6.设计组合之间的关系,即标准组合与基本组合的比值,一般只考虑恒活的情况下,标准组合的内力约为基本组合的0.75-0.8,处于平均值0.77附近的情况较多,根据这个比例结合钢筋应力的力臂计算值不同以及钢筋应力利用水平,可以估算裂缝宽度设计的钢筋用量和强度设计钢筋用量之间的关系,这对于按照强度计算配筋,用裂缝控制去复核和调整配筋量的设计方式十分有效,掌握这个比例关系,可节约大量钢筋调整时间。 7. 内力调幅系数,利用内力调幅系数,可以减小梁端的配筋,增加跨中的配筋。HiStruct 建议可以采用调幅后的基本组合内力进行强度设计,但是最好不要采用调幅后的标准组合内力进行裂缝宽度验算,这是因为在标准组合内力下梁端并未达到极限承载力还可以继续加载,因此裂缝还会继续发展。HiStruct注:由于PKPM中采用主梁方式建立的次梁,STAWE默认为非调幅梁,因此,可以在特殊构件指定里修改它的属性进行调幅。假如采用PKPM次梁布置的方式,则自动生成的连续次梁就默认为调幅梁,不需要再次指定。PKPM的裂缝计算并不考虑标准组合内力的调幅。

预应力混凝土等截面连续梁桥设计毕业论文用

预应力混凝土等截面连续梁桥 设计原始资料 1.地形、地貌、气象、工程地质及水文地质、地震烈度等自然 情况 (1)气象:天津地区气候属于暖温带亚湿润大陆性季风气候区,部分地区受海洋气候影响。四季分明,冬季寒冷干旱,春季大风频繁,夏季炎热多雨,雨量集中,秋季冷暖变化 显著。年平均气温12.20C,最冷月平均气温-40C,七月平 均气温26.40C。 (2)工程地质:天津地铁一号线经过地区处于海河冲积平原上,地形平坦,地势低平,地下水位埋深较浅,沿线分布 了较多的粉砂、细砂、粉土,均为地震可液化层,局部地 段具有地震液化现象。沿线地层简单,第四系地层广泛发 育,地层分布从上到下依次为人工堆积层、新近沉积层、 上部陆相层、第一海相层、中上部陆相层、上部及中上部 地层广泛发育沉积有十几米厚的软土。 a.人工填土层,厚度5m,?k=100KP a; b.粉质黏土,中密,厚度15m,?k=150 KP a; c.粉质黏土,密实,厚度15m,?k=180KP a;

d.粉质黏土,密实,厚度10m,?k=190KP a。 第一章方案比选 一、桥型方案比选 桥梁的形式可考虑拱桥、梁桥、梁拱组合桥和斜拉桥。任选三种作比较,从安全、功能、经济、美观、施工、占地与工期多方面比选,最终确定桥梁形式。 桥梁设计原则 1.适用性 桥上应保证车辆和人群的安全畅通,并应满足将来交通量增长的需要。桥下应满足泄洪、安全通航或通车等要求。建成的桥梁应保证使用年限,并便于检查和维修。 2.舒适与安全性 现代桥梁设计越来越强调舒适度,要控制桥梁的竖向与横向振幅,避免车辆在桥上振动与冲击。整个桥跨结构及各部分构件,在制造、运输、安装和使用过程中应具有足够的强度、刚度、稳定性和耐久性。 3.经济性 设计的经济性一般应占首位。经济性应综合发展远景及将来的养护和维修等费用。

最大裂缝宽度允许值

最大裂缝宽度允许值 《混凝土结构设计规范》(GBJ 10-89) 钢筋混凝土和预应力混凝土结构构件的裂缝控制等级、混凝土拉应力限制系数αct及最大裂缝宽度允许值,应根据结构构件的工作条件和钢筋种类按表3.3.4采用。对裂缝控制有特殊要求的构件,表3.3.4规定的数值应适当减小;有可靠的工程经验时,对预应力混凝土构件的抗裂要求可适当放宽。 裂缝控制等级、混凝土拉应力限制系数及最大裂缝宽度允许值(mm)表3.3.4 钢筋种类钢筋混凝土结构预应力混凝土结构 结构构件工作条件Ⅰ级钢筋 Ⅱ级钢筋 Ⅲ级钢筋 冷拉Ⅱ级钢筋 冷拉Ⅲ级钢筋 冷拉Ⅳ级钢筋 碳素钢丝 刻痕钢丝 钢绞线 热处理钢筋 冷拔低碳钢丝 室内正常环境 一般构件 三级 0.3 (0.4) 三级 0.2 二级 αct=0.5屋面梁、托梁 三级 0.3 二级 αct=1.0 二级 αct=0.5中级工作制 吊车梁 三级 0.3 二级 αct=0.5 二级 αct=0.3屋架、托架 三级 0.2 二级 αct=0.5 二级 αct=0.3重级工作制 吊车梁 三级 0.3 二级 αct=0.3 一级

露天或室内高湿度环境三级 0.2 二级 αct=0.5 一级 注:①属于露天或室内高湿度环境一栏的结构构件系指:直接受雨淋的构件;无围护结构的房屋中经常受雨淋的构件;经常受蒸汽或凝结水作用的室内构件(如浴室等);与土壤直接接触的构件; ②对处于年平均相对湿度小于60%地区、且可变荷载标准值与恒荷标准值之比大于0.5的受弯构件,其最大裂缝宽度允许值可采用括弧内的数字; ③对承受二台及二台以上的相同吨位、且起重量不大于50t的中级工作制吊车的预应力混凝土等截面高度吊车梁,当采用冷拉Ⅱ、Ⅲ、Ⅳ级钢筋时,可根据使用要求,选用允许出现裂缝的预应力混凝土构件,其正截面的最大裂缝宽度允许值采用0.1mm; ④采用冷拉Ⅱ、Ⅲ、Ⅳ级钢筋的承受重级工作制吊车的预应力混凝土吊车梁,当处于露天或室内高湿度环境,其裂缝控制等级不变,混凝土拉应力限制系数αct应取0.3; ⑤烟囱、筒仓及处于液体压力下的结构构件,其裂缝控制要求应符合现行专门规范的有关规定; ⑥表中预应力结构构件的混凝土拉应力限制系数及最大裂缝宽度允许值仅适用于正截面的验算,斜截面的验算应符合本规范第五章的规定。

裂缝宽度计算理论优缺点

钢筋混凝土裂缝宽度计算理论优缺点 姓名:黄子文专业:水利工程(工程地质方向)学号:2014161403 1、引言 混凝土是当今世界上用量最大、用途最广泛的工程材料。自20世纪80年代我国改革开放以来,我国推行大规模的经济建设、基础设施建设和住宅建设,其中绝大多数都采用混凝土结构或钢筋混凝土结构。随着经济的发展我国已经成为世界上混凝土生产和应用最多的国家,2004年我国水泥的产量达到了9.4亿吨,混凝土的产量约为20亿立方米。 但是,随着大量钢筋混凝土结构的兴建和混凝土技术的进步,过去不太突出的混凝土裂缝问题,近年来却日趋严重。钢筋混凝土结构的裂缝不仅影响到结构的美观,也是结构物的承载能力、耐久性、防水性等各种性能下降的主要原因。当裂缝宽度达到一定的数值时,还可能危及结构的安全。 由于裂缝导致的诸多不利影响,每年在混凝土结构裂缝的预防和修补上要花费大量的人力财力,给国家造成了巨大的经济损失和资源浪费。因此,对于混凝土结构裂缝的研究既符合认识客观世界的要求,也响应了人们改造客观世界的要求,具有重大科研意义和工程意义。 对于混凝土裂缝问题国内外都投入了大量的科研力量。虽然从总体上来说混凝土结构是一种耐久性较好的结构体系。但是由于混凝土材料本身是一种多相的成分复杂、性能多样的复合材料,其均匀性较差,抗拉强度大大低于其抗压强度导致一般混凝土结构都是带裂缝工作的。因此,裂缝也是人们可以接受的混凝土材料特性,问题是如何将其有害程度控制在允许范围之内。为了解决这个问题,国内外学者提出了各种各样的裂缝宽度计算理论。然而,工程师在选择裂缝宽度计算理论时,往往十分重视不同裂缝宽度计算理论的优缺点,以便根据实际的工程选择最合适的宽度计算理论。因此,本文就不同裂缝宽度计算理论的优缺点进行深入的探讨。 2、裂缝宽度计算理论 钢筋混凝土宏观上是钢筋与混凝土组合而成的材料,其裂缝成因是很复杂的。从国内外研究现状来看,对于荷载作用下的裂缝宽度计算理论的研究开展的比较好,主要分为半经验半理论方法和数理统计方法,其中半经验半理论方法又可以细分为粘结滑移理论、无粘结滑移理论和综合理论。基于以上理论出现了多种裂缝宽度计算公式,可以从设计上采取措施,控制其开展宽度值。 至于其他因素引起的裂缝,由于没有合理的裂缝宽度计算方法,则主要从材料选择、构造措施、施工工艺、养护、使用条件等方面综合采取合理的措施,消

第四章 预应力混凝土连续梁桥

4 预应力混凝土连续梁桥 4.1一般规定 4.1.1 预应力混凝土连续梁桥设计应根据桥长、柱高、地基条件等因素合理分联,每联的长度应以结构合理、方便施工、有利使用为原则,在有条件的情况下应考虑景观要求和桥梁整体布局的一致性。 4.1.2主梁应尽量采用一次浇筑混凝土、两端张拉预应力钢筋的施工方式,主梁长度宜控制在120m左右,当确实需要设置长分联时,可以采用分段浇筑混凝土、使用联接器分段张拉预应力钢筋的施工方案,设计时允许在同一截面全部预应力钢筋使用联接器连接,但对主梁截面及配筋应做加强处理。 4.1.3对于匝道桥,为增大刚度、减小扭矩,有条件时尽可能采用墩梁固结或双支座形式。 4.1.4桥梁截面形式可根据桥宽、跨径、施工条件、使用要求等确定为箱形(简称箱梁)或T形(简称T梁)。箱形截面可设计为单箱单室或单箱多室。箱梁翼板长度的确定应以桥面板正、负弯矩相互协调为原则,T梁悬臂长度宜为1.0~1.5m,箱梁悬臂长度宜为1.5~2.5m。当主、引桥结构形式不同时,悬臂板长度宜取得一致。 4.1.5箱梁腹板宽度应由主梁截面抗剪、抗扭、混凝土保护层、预应力钢筋孔道净距和满足混凝土浇筑等要求确定。预应力钢筋净保护层和净距除满足规范外,应考虑纵向普通钢筋和箍筋的占位以及混凝土浇筑的孔隙等因素。箱梁腹板宽度最小值应符合下列要求:

箱梁腹板宽度最小值一览表 4.1.6 悬臂板厚度应视悬臂长度、桥上荷载及防撞护栏碰撞力验算结果而定。根部厚度宜取0.30~0.55m,悬臂板端部厚度一般不应小于0.12m (对有特殊防撞要求的结构,悬臂板端部厚度适当增加,如使用PL2型防撞护栏时悬臂板端部厚度不应小于0.2m)。当悬臂板长度较长时应适当加强悬臂板沿主梁方向钢筋的配置。 4.1.7主梁翼板和顶、底板厚度应根据梁距和箱宽计算确定。同时应满足箱梁顶板厚度不小于0.2m,底板厚度不小于0.18m;T梁顶板厚度不小于0.16m。 4.1.8中支点横梁和端横梁宽度由计算确定,但中支点横梁宽度不应小于2m,端横梁宽度不应小于1.1m,端横梁宽度还应考虑伸缩缝预留槽等构造要求。 4.1.9主梁腹板与顶、底板相接处应设1︰5加腋,箱形截面与支点横梁相接处应设渐变段加厚。箱梁截面与跨间横梁相接处应设0.15m抹角。 4.1.10箱梁底板必须设置排水孔,腹板必须设置通风孔,直径均宜取D=0.1m左右。配有体外预应力钢筋的箱梁应设置检查换索通道。 4.1.11连续梁桥必须设置端横梁及中支点横梁。直线连续箱梁桥跨径小于30m的桥孔可不设跨间横梁;跨径在30~40m之间的桥孔宜设一道跨间横梁;跨径大于40m时宜设三道跨间横梁。曲线连续箱梁桥应根据曲线半径、跨径大小确定跨间横梁个数。连续T梁桥跨径大于25m

梁板裂缝处理方案

预制小箱梁 梁顶裂缝处理方案

目录 1.二绕~成温邛互通主线桥工程概况 (1) 2.裂缝检测情况 (1) 2.1.裂缝情况 (1) 2.2.检测方法 (2) 2.3.检测结果 (4) 3.裂缝成因分析 (5) 4.裂缝处理方案 (6) 4.1.裂缝处理原则与目的 (6) 4.2.方案选取 (6) 4.3.改性环氧树脂胶封闭施工工艺 (6) 4.4.开槽填充处理施工工艺 (6) 4.5.改性环氧化学浆液灌浆施工工艺 (8) 5.修补质量检验及验收 (10)

预制小箱梁顶裂缝处理方案 1.工程概况 XXXX高速公路位于XXXX,主线桥全长1140.1m,全桥左右幅各12联。其中上部结构除左、右幅第5、6联、左幅第12联采用预应力砼现浇连续箱梁外,其余联跨均采用预应力砼预制小箱梁,先简支后桥面连续。下部结构桥台采用肋板台,桥墩采用柱式墩,墩台基础均采用摩擦桩基础。 主线桥预制小箱梁共452片。梁长主要为12.5m、23.8m、25m三种及部分渐变梁长。中梁梁顶宽度分2.4m、2.2m两种,边梁梁顶宽度分2.6m、2.7m两种。中、边梁梁底宽度均为1m。小箱梁顶板厚度均为18cm,腹板厚度为18-25cm渐变,底板厚度为20-25cm渐变。 主线桥预制小箱梁采用C50砼,A s15.2mm钢绞线,后张法两端对称张拉,张拉控制应力为0.73fpk=1358Mpa,钢筋尽保护层厚度为2cm。 2.裂缝检测情况 2.1.裂缝情况 二绕~成温邛互通主线桥XX-X、XX-X预制小箱梁顶面,距梁顶边缘约60cm,距梁端约3-18m范围内出现多条间断发育的纵向裂缝,每条裂缝长约40-80cm,裂缝走势蜿蜒曲折,周围伴生裂缝较少,如下图: 图1 26Y-4梁顶裂缝 图2 25Y-3梁顶裂缝

构件的裂缝宽度及变形计算

第5章构件的裂缝宽度及变形计算 5.1构件的裂缝宽度计算 裂缝的分类: ●荷载作用裂缝:由于荷载作用在结构上导致构件产生的裂缝。主要分为弯曲裂缝,斜裂缝和钢筋与混凝土的粘结撕裂裂缝; ●变形裂缝:除荷载因素以外,由于温度影响,混凝土的收缩影响,结构的支座沉降等因素导致的结构构件中产生的裂缝。 目前,国内外的裂缝宽度计算主要是针对荷载作用下弯曲裂缝宽度进行计算。 1.裂缝开展机理及主要模型 ①粘结滑移模型 1943年由Watstein和Parsens建立了粘结滑移理论,1962年,Hognestad推导出了相应的理论计算公式。如图所示,裂缝处钢筋和混凝土之间发生滑移,靠近裂缝处,钢筋通过粘结应力将受到的拉力的一部分传递给混凝土,使混凝土受拉。 粘结滑移模型

裂缝宽度取为两裂缝间钢筋的伸长量减去混凝土的伸长量。由于混凝土的伸长量很小,忽略不计,则: s t max s max s c E 2f w l σφ ετρ==? ② 无滑移模型 Base 等人与1966年建立了与上述不同的理论,即无滑移理论。该理伦假设在所允许的裂缝宽度范围内,钢筋相对混凝土没有粘结滑移,裂缝宽度在钢筋的表面处为0。 无滑移模型 给出的最大裂缝宽度计算公式为: s 2 max s 1 E h w K c h σ=?? 式中:c -保护层厚度; K -钢筋品种系数; h 1-受拉钢筋重心到截面中和轴之间的距离; h 2-最外边缘受拉纤维到截面中和轴之间的距离。 ③ 组合模型 Bianchini 等人1968年讨论了裂缝的开展机理,建立了粘结滑移—无滑移组合模型。

组合模型 Beeby 于1979年建立考虑多种因素影响的受弯构件裂缝宽度计算公式: cr m cr 312w c h x αεα= -??+ ? -?? cr α-钢筋表面到裂缝宽度计算点的距离; h -构件截面高度; m ε-相邻裂缝间钢筋的平均应变 x -截面的受压区高度; ④ 断裂力学方法 Bazant 和Oh 于1983年采用断裂力学的能量判据和强度判据对钢筋的裂缝间距和裂缝宽度进行了理论研究,建立了最大裂缝宽度计算公式: ( ) ()1 ,max 4.531 2s 3159 2.880.0002t w φ φεφφ =+++ 式中: 1φ-保护层厚度与中性轴至受拉面距离的比值; 2φ-钢筋周围平均有效混凝土面积与钢筋锚筋的比值; 3φ-中性轴到受拉面与中性轴到钢筋距离的比值。 ⑤ 数理统计方法

相关主题
文本预览
相关文档 最新文档