当前位置:文档之家› 免疫荧光原位杂交的原理应用

免疫荧光原位杂交的原理应用

免疫荧光原位杂交的原理应用
免疫荧光原位杂交的原理应用

荧光原位杂交技术编辑

荧光原位杂交技术(Fluorescence in situ hybridization, FISH)是根据已知微生物不同分类级别上种群特异的DNA序列,以利用荧光标记的特异寡聚核苷酸片段作为探针,与环境基因组中DNA分子杂交,检测该特异微生物种群的存在与丰度。

1特点编辑原位杂交的探针按标记分子类型分为放射性标记和非放射性标记。用同位素标记的放射性探针优势在于对制备样品的要求不高,可以通过延长曝光时间加强信号强度,故较灵敏。缺点是探针不稳定、自显影时间长、放射线的散射使得空间分辨率不高、及同位素操作较繁琐等。采用荧光标记系统则可克服这些不足,这就是FISH技术。

荧光原位杂交技术FISH技术作为非放射性检测体系,具有以下优点

1、荧光试剂和探针经济、安全;

2、探针稳定,一次标记后可在两年内使用;

3、实验周期短、能迅速得到结果、特异性好、定位准确;

4、FISH可定位长度在1kb的DNA序列,其灵敏度与放射性探针相当;

5、多色FISH通过在同一个核中显示不同的颜色可同时检测多种序列;

6、既可以在玻片上显示中期染色体数量或结构的变化,也可以在悬液中显示间期染色体DNA的结构。

缺点:不能达到100%杂交,特别是在应用较短的cDNA探针时效率明显下降。

2简介编辑1969年,Gall和Pardue等首次将同位素探针用于原位杂交实验,获得成功。1987年,染色体原位抑制杂交法的创建,使FISH 技术得以迅速发展。随后,Cremer等用生物素和汞或氨基乙酰荧光素等非放射性物质标记探针,创立了双色FISH技术。1990年,Nederlof 等用3种荧光素成功探测出了3种以上的靶位DNA 序列,从而宣告了多色FISH 技术的问世。

FISH技术是一种非放射性分子遗传学实验技术,其基本原理是将直接与荧光素结合的寡聚核苷酸探针或采用间接法用生物素、地高辛等标记的寡聚核苷酸探针与变性后的染色体、细胞或组织中的核酸按照碱基互补配对原则进行杂交,经变性—退火—复性—洗涤后即可形成靶DNA 与核酸探针的杂交体,直接检测或通过免疫荧光系统检测,最后在荧光显微镜下显影,即可对待测DNA进行定性、定量或相对定位分析。

FISH技术有以下几点优势:①安全、快速、灵敏度高;②探针能较长时间保存;③多色标记,简单直观;④可用于中期染色体及间期细胞的分析;⑤可应用于新鲜、冷冻或石蜡包埋标本以及穿刺物和脱落细胞等多种物质的检测。

3原理编辑基本原理

荧光原位杂交技术问世于70年代后期,其曾多用于染色体异常的研究,近年来随着FISH 所应用的探针钟类的不断增多,特别是全Cosmid探针及染色体原位抑制杂交技术的出现,使FISH技术不仅在细胞遗传学方面,而且还广泛应用于肿瘤学研究,如基因诊断基因定位等。原有的放射性同位素原位杂交技术存在着较多缺点,诸如每次检验均需重新标记探针,已标记的探针表现出明显的不稳定性,需要较和时间的曝光时间和对环境的污染等。在观察结果时,需要较多的分裂进行统计学分析。此外,由于放射性银粒和染色体聚集的不同平面,可能引起计数上的误差等。与之比FISH则具有①操作操作简便,探针标记后稳定,一次标记后可使用二年.②方法敏感,能迅速得到结果.③在同一标本上,可同时检测几种不同探针.④不仅可用于分裂期细胞染色体数量或结构变化的研究,而且还可用于间期细胞的染色体数量及基因改变的研究。

荧光原位杂交技术是一种重要的非放射性原位杂交技术。它的基本原理是:如果被检测的染

色体或DNA纤维切片上的靶DNA与所用的核酸探针是同源互补的,二者经变性-退火-复性,即可形成靶DNA与核酸探针的杂交体。将核酸探针的某一种核苷酸标记上报告分子如生物素、地高辛,可利用该报告分子与荧光素标记的特异亲和素之间的免疫化学反应,经荧光检测体系在镜下对待测DNA进行定性、定量或相对定位分析。

技术要点

FISH选用的标本可以是分裂期细胞染色体也可以是间期细胞.间期细胞可以是冰冻切片,也可以是细胞滴片或印片。生物素(Biotin),地高辛(digoxigenin),dinitrophenyl(DNP),aminoacetyl fluorine(AAF)等均可用于探针标记。前两者较为常用,通常采用切口平移法(Nick translation)或随机引物法(Random Primer)对探针标记。在已知探针DNA结构及序列情况下也可采用PCR或RNA逆转录法标探针。通常用于Biotin 标记的探针应大于1000bp以下的探针,不易标记成功。对PCR技术来标记。近年来,Vysis 公司成功的生产些大片段的DNA探针(100-400kb)。由于控针较长故可将荧光物质直接标记在核苷酸上,这不仅使杂交过程进一步简化,而且杂交信号更强。如探针是具有重复序列的DNA或粘粒、Y AC探针,在杂交液中加上用超声断碎的人体胎盘组织DNA或Cot DNA,以阴断探针和染色质之间非特异性的结合。

荧光信号在高压汞灯产生的短波激发光下常引起荧光信号淬灭的发生,可将DAPI或PI稀释于P-phenlenediomine的甘油缓冲液中。任何荧光显微镜均可用于观察FISH信号,但对单拷贝探针的信号需要质量较好的荧光显微镜。如采用双色或多色滤光片可以同时观察FITC、Texas-Red等多种颜色的FISH信号,不论是染色体还是单拷贝基因的FISH信号均可用高度敏感和高分辨率的彩色胶片摄取,也可通过CCD(charge coupled device)的照相系统或Laser Scanning Confocal Imaging System(激光扫描共焦成像系统)将摄取的信号储存在计算机内,经软件处理后,将信事情显示在荧光屏上。由于有多种方法标记DNA探针,故一次杂交可以同时观察多个探针的信号,如两个不同的探针分别用Biotin和Digoxigenin标记,杂交后用avidin-FITC和抗-Dig-Texas-Red分别与探针上的Biotin 和Digoxigenin结合,应用双色滤光片,在显微镜下就可以同时看见带有绿色荧光的FITC和红色荧光的Texas-Red信号。同理,采用三种或三种以上不同的半抗原,如Biotin,DIG和DNP等标记探针,然后用多种不同颜色的荧光素,如FITC(绿色),Rhodamine(红色),AMA或Cascade Blue(兰色)等结合抗体进行检测,可同时得到多种不同颜色的荧光信号,如采用不同的排列组合,最多可同时检测7种不同的探针。由于常规的荧光显微镜的照像系统,彩色胶片不易多次曝光,限制了这种联合标探针的应用,使用Digital Imaging Camera System或CCD照像系统,先分别多次摄取灰色的影像关储存在计算机内,而后冠以人为的颜色,运用软件系统事例各次得到的影像,最终形成一个复合的多颜色的图像。

此外,对已做过G显带的染色体片子用75%酒精或甲醇褪色后,可再做FISH这样可更清晰的辩认各条染体及染色色体结构异常(包括某些复杂的易位,插入,倒位等)FISH和G显带技术结合不仅可以用新近G带处理过的片子,而且还可用陈旧的G带片子。因此,FISH 技术可成功的帮助细胞遗传学家做出回顾性分析。

FISH技术和RFLP(Restrict Fragment Lenth Polymorphysim)结合,可以更精确地描述原必于染色体长短臂等结构改变和染色体梳型或复制片段的性质。FISH和细胞免疫化这技术结合,可以同时用多种颜色反应检测不同的核苷酸链和蛋白质,这样可以在单个细胞内同时找到基因的位点,转录和翻译和产物,有助于对核甙酸结构与功能以及基因表达产物之间关系的研究。在基因图谱绘制中,FISH和Linkage mapping结合起来,即使对具有高度多形态的基因位点也能较精确地定下来。

4应用编辑该技术不但可用于已知基因或序列的染色体定位,而且也可用于未克隆基因或遗传标记及染色体畸变的研究。在基因定性、定量、整合、表达等方面的研究中颇具优势。

FISH的临床应用

在细胞遗传学检查中,重复序列的探针应用最多,它们是α卫星DNA、β-卫星DNA和经典卫星DNA探针。α卫星DNA探针主要检测人染色体的着丝粒。β卫星DNA位于顶端着丝粒染色体及号染色体的异染色体质周围.经典卫星DNA(classic-saiellite DNA)有着AATGG 短片段重复,位于染色体1、9、15、16和Y染色体长臂异染色质周围。后两种探针除去可用于染色体数目检查外,还可用于上述部位精细改变的检查。三种探针产生的荧光信号都在染色体着丝粒或附,因此常用于鉴定,羊水细胞可不培养直接作FISH检查,发现在21三体Down氏综合片)18三体(Edward综合征),13体(Patau 综合征),45、XO(turner 氏综合征)和47XXY(Klinfelter综合征)。

FISH在白血病方面和应用较为方泛的是慢性粒细胞白血病bcr/abl易位DNA探针,采用Digoxigenin标记于22号染色体上的bcr基因,用Biotin标记位于9号染色体上的Abl基因,然后用红绿二种不同颜色的荧光素检测,慢料常有染色体易位t(9;22)(q34;q11)而引起bcr和Abl基因的融合,这时不需要检测分裂中期细胞,在间期细胞中就可以见到二种颜色讯号的混合,从而可以确定是Ph阳性细胞。这特别适合化疗后缓解的CML,极易发现残存的白血病细胞。其它如t(15;17)易位DNA探针,t(18;21)易位DNA探针分别可用于急性早幼粒白血病(APL)和急性粒细胞白血病(AML)的诊断。此外在白血病的诊断方面,还有等位17号染色体长臂iso(17q),16号染色体长臂间倒位inv(16)探针等,都有商业出售。在实体肿瘤方面,应用较为广泛的是HER-2/neu基因探针。乳腺癌细胞中Her/2-neu基因的扩增常预示着患者预后较差。在FISH技术之前的所有测定基因扩增的方法,都是采用经典的分子生物学方法South blotting等),但这些方法与FISH相比,不仅费时费力,而且也不可能在细胞水平上观察到基因扩增的状态。FISH技术的更大优点是可以在间期细胞核上观察到DNA扩增的直接证据,而且间期细胞核所显示出的护增DNA荧光信号其数量多少及荧光强度常与DNA扩增的水平有关。1998年美国政府FDA批准了作为基因治疗的一种单克隆抗体Herceptin),可配合化疗来治疗部分晚期转移性乳腺癌病人,约25-30%的乳腺癌病人有HER-2/neu基因的扩增和/或过度表达。这部分病人适合Herceptin治疗、FDA在此前一些时候批准了Vysis公司的HER-2/neu基因DNA探针在乳腺癌临床诊断上的应用。HER-2/neu基因的扩增或过表达也见于卵巢癌、子宫内膜癌、涎腺肿瘤及胃癌等恶性肿瘤。可以预,在不久的将来Herceptin和HER-2/neu基因DNA探针可用于这些肿瘤的治疗和诊断。其它一些实体瘤的肿瘤的肿瘤基因的探针如N-myc,C-myc,CyclinD1等虽有商业出售,但目前还未用于临床。

FISH在细胞遗传学研究的应用

染色体x,y,21,18和13的数量变化常与先天性疾病有关。采用染色体着丝粒重复序列DNA 作为探针,可以确定分裂细胞或间期细胞这些染色体的数目止,如采用21号染色体的涂抹(painting)探针,根据标记区域的大小可检测出Down氏综合征的发生。

实体肿瘤的染色体研究比较困难,这是由于获取足够量的分裂期肿瘤细胞比较困难。使用染色体着丝特异探针,对间期细胞进行染色体数量变异分析,可获得较好的结果。因此FISH 技术十分有助于肿瘤细胞遗传细胞遗传学的研究。Hopman采用FISH技术研究膀胱癌,发现9号染色体的丢失。FISH检测的结果与流式细胞仪分析的结果完全一致。Waldman等发现染色体数目的改变和肿瘤的分化及分期有着密切关系,如7号染色体啬常见于有较高的Brdard分级和有较高的PCNA标记指数的晚期、恶性度高的肿瘤.Waldman认为这一现象可涉及到7号染色体上某些特殊基因的表达增加或被抑制。采用多种染色体探针,以不同的颜色标记,更适合于实体肿瘤染色体数目改变的异质性研究。

对于G或Q显带难以确定的染色体结构改变,运用FISH技术可以帮助解决。许多不能归类的标记染色体,FISH技术可以确定畸变的来源,如Miura等报告21例非小细胞肺癌

(NSCLC)的染色体改变,其中一例有2个标记染色体,用FISH检测后证实是来自9号染色体的短臂梁色体上微细带的丢失,普通显带常不易发现,用特定的基因探针检测时,在正常应该有荧光信号的部位如不出现信号,表示有染色体的丢失。Lux等用Ankyrin基因作探针,检测遗传性球殂红细胞增多症病人的染色体和间期细胞,发现有这个基因的缺失。Taguchi等采用靠近3p21带附近的6个不同位点的探会,比较异常和正常3号染色体,确定胸膜间皮瘤有3p21带的缺失并推测这个区域可能存在重要的抑癌基因,为了进一步的分子生物学研究提供了重要线索。选择按一定顺序排列的基因探针,可以帮助确定染色体倒位,尤其是臂间倒位的性质,如急性白血病有16号染色体的倒位,选择两个分别位于断裂点近端和远端的粘粒探针,同时用16号染色体着丝位探针,正常细胞荧光信号的次序是:粘粒-粘粒-着丝粒,而白血病细胞的信号的次改变为粘粒-着丝粒-粘粒。

杂交细胞通常是含有单个人类染色体啮齿动物细胞。这种杂交细胞常用于绘制基因图谱或生产单个染色体特DNA库。杂交细胞在培养过程中,人体染色体极易丢失或发生染色体重排,因此,需要对杂交细胞定期进行细胞遗传学检查,采用人体组DNA作为探针或相应人体染色体涂抹探针,可以很主便的检测这些改变。

FISH在基因图谱绘制的应用

采用FISH技术,不仅可以直接确定某一DNA链在染色体上的位置,而且诮用多种颜色荧光素的标记控针,还提供了一个简单的确定基因顺序的方法。可用不同颜色荧光素标记两个不同的DNA链,而且他们在染色体上的距离大于1Mbp时,可以依据不同探针信号的排列关系分辨他们在染色体上的顺序。采用5-Burd处理的细胞,可以获得高分辨显带的染色体,从而增加DNA链标记到染色体上的分辨能力。如果使用间期细胞,两个DNA链的距离可以缩短至50Kbp,这个间距是染色体上的分辨距离的二十分之一。不同探针的次序可以通过测量其间期细胞的距离来确定。

确定DNA链在染色体上精细位置,适用于检查某些特殊的染色体易位和缺失,如涉及11号染色体q23的易位常见于急性白血t(4;11)见于急性淋巴细胞白血病(ALL),t(6;11),5(9;11)见于急性粒细胞白血病(AML),t(11;19)见于急淋和急粒两种白血病。

标记同一DNA链与不同种必细胞的染色体杂交,可以找出不同种属之间的同源基因以及基因在染色休上的位置,从而了解种属之间的进化关系。

FISH用于基因扩增的检测

DNA扩增通常表现为异常的显带区域(ABRS)或异染质区(HSRS)以及无着丝微小体(DM),这些基因扩增的细胞遗传学表现在许多恶性肿瘤中。搞清楚肿瘤细胞中物定DNA链(基因)的扩增,有助于了解肿瘤的恶性增生过程。在肿留细胞中某些肿瘤因(Oncogene)的扩增,可作为预测肿瘤进展及预后的临床指征。如FISH能有效地在染色体上定位扩增的特定DNA,特别是当细胞遗传学发现在HSR或ABRS来源及位置,推测可能扩增的肿瘤基因,从而有目的检测某些基因,并能很快得到直接清晰的基因扩增的信息。Cherif等在结肠腺癌细胞中,采用FISH技术发现C-myc的扩增,而且C-myc扩增链是重排在19号染色体的长臂上。染色体上策细带的丢失,普通显带不易发现,用特定的基因探针检测时,在正常应该有荧光信号的部位如不出现信号,表示有染色体的丢失。用Ankyrin基因作探会,检测遗传性球殂红细胞增多症病人的染色体和间期细胞,发现有这个基因的缺失。有学者用FISH技术在37例B细胞淋巴瘤中发现21例(56。8%)存在6q23-24的缺失,故认为这一改变对淋巴瘤诊断有实际应用值。

免疫荧光操作步骤及注意事项

免疫荧光操作步骤及注意事项 免疫荧光技术是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术。它是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光基团,再用这种荧光抗体(或抗原)作为探针检查细胞或组织内的相应抗原(或抗体)。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位,以及利用定量技术(比如流式细胞仪)测定含量。 紫外光激发荧光物质放射荧光示意图 免疫荧光实验的主要步骤包括细胞片制备、固定及通透(或称为透化)、封闭、抗体孵育及荧光检测等。细胞片制备(通俗的说法是细胞爬片)是免疫荧光实验的第一步,细胞片的质量对实验的成败至关重要,原因很简单,如果发生细胞掉片,一切都无从谈起。这一步关键的是玻片(Slides or Coverslips)的处理以及细胞的活力,有人根据成功经验总结出许多有益的细节或小窍门,非常值得借鉴。固定和通透步骤最重要的是根据所研究抗原的性质选择适当的固定方法,合适的固定剂和固定程序对于获得好的实验结果是非常重要的。免疫荧光中的封闭和抗体孵育与其它方法(如ELISA或Western Blot)中的相同步骤是类似的,最重要的区别在于免疫荧光实验中要用到荧光抗体,因此必须谨记避光操作,此外抗体浓度的选择可能更加关键。最后需要注意的是,标记好荧光的细胞片应尽早观察,或者用封片剂封片后在4?或-20?避光保存,以免因标记蛋白解离或荧光减弱而影响实验结果。

由于操作步骤比较多,同时在分析结果时无法像WB那样可以根据分子量的大小区分非特异性识别,所以要得到一个完美的免疫荧光实验结果,除了需要高质量的抗体,以及对实验条件进行反复优化外,还必须设立严谨的实验对照。总之,免疫荧光实验从细胞样品处理、固定、封闭、抗体孵育到最后的封片及观察拍照,每步都非常关键,需要严格控制实验流程中每个步骤的质量,才能最终达到你的实验目的。 基本实验步骤: (1) 细胞准备。对单层生长细胞,在传代培养时,将细胞接种到预先放置有处理过的盖玻片的培养皿中,待细胞接近长成单层后取出盖玻片,PBS洗两次;对悬浮生长细胞,取对数生长细胞,用PBS离心洗涤(1000rpm,5min)2次,用细胞离心甩片机制备细胞片或直接制备细胞涂片。 (2) 固定。根据需要选择适当的固定剂固定细胞。固定完毕后的细胞可置于含叠氮纳的PBS中4?保存3个月。PBS洗涤3×5 min. (3) 通透。使用交联剂(如多聚甲醛)固定后的细胞,一般需要在加入抗体孵育前,对细胞进行通透处理,以保证抗体能够到达抗原部位。选择通透剂应充分考虑抗原蛋白的性质。通透的时间一般在5-15min.通透后用PBS洗涤3×5 min. (4) 封闭。使用封闭液对细胞进行封闭,时间一般为30min. (5) 一抗结合。室温孵育1h或者4?过夜。PBST漂洗3次,每次冲洗5min. (6) 二抗结合。间接免疫荧光需要使用二抗。室温避光孵育1h.PBST漂洗3次,每次冲洗5min后,再用蒸馏水漂洗一次。 (7) 封片及检测。滴加封片剂一滴,封片,荧光显微镜检查。 (一)细胞准备 用于免疫荧光实验的细胞可以是直接生长在盖玻片上的贴壁细胞,也可以是经过离心后涂片的悬浮细胞或者是将取自体内的组织细胞悬液离心后涂片。贴壁良好

荧光原位杂交技术FISH

荧光原位杂交技术FISH 1 目的 通过FISH实验检测两条Brd2基因cRNA探针的效价。 2材料与仪器 2.1材料 件为:95℃预变性3 min;95℃变性30 s;50℃退火45 s;72℃延伸45 s;循环30次; 72℃再延伸8 min。 2) 将所有PCR产物经1%琼脂糖凝胶电泳检测,采用凝胶回收试剂盒回收并纯化PCR产 物,并用微量分光光度计测定其浓度。 3) 进行体外转录反应合成Brd2 cRNA探针,20 μL体外转录反应体系如下:RNase

inhibitor 1μL,10×NTP dig labeling mixture 2μL,10×transcription buffer 2μL,Template DNA 13μL,RNA polymerase 2μL。 4) 37℃水浴孵育2 h,取0.5μL于1%琼脂糖凝胶电泳检测。 5) 加入2μL无RNase污染的Dnase I 37℃水浴孵育15 min来消化模板DNA。 6) 加入EDTA 0.8μL,加入5.6μL NH4Oac终止反应,再加入56μL无水乙醇并混匀,于 -80℃放置20 min。 7) 15000 r/min,4℃离心15 min,弃上清,加入700μL 80%的无水乙醇混匀,15000 r/min,4℃ 离心10 min沉淀RNA。 8) 干燥后用DEPC处理的水50μL溶解RNA。合成的两条探针经1%琼脂糖凝胶电泳鉴 定并用微量分光光度计测定探针浓度,于-80℃保存备用。 3.2荧光原位杂交实验检测探针的效果 1) 正常C57BL/6小鼠用1%戊巴比妥钠深麻后,依次以30 mL 0.01 mol/L DEPC-PBS和 100 mL含4%多聚甲醛的磷酸缓冲液(PB)行左心室灌注,小心剥离脑组织,于4℃环境下用上述相同固定液进行后固定过夜,后将组织转移浸没于含30%蔗糖的PB溶液中脱水至沉底。 2) 最后取出组织用OTC包埋,冰冻切片机连续切片至需要的层面,切片厚度30 μm。 3) 选取上述脑组织切片于室温条件下经含有2%H2O2的0.1 mol/L DEPC-PB处理10 min 以阻断内源性过氧化物酶,再用0.1mol/L DEPC-PB室温漂洗10 min,接着用含 0.3%Triton X-100的0.1 mol/L DEPC-PB处理20 min,在用乙酰化液处理10 min,后 于0.1mol/L DEPC-PB中清洗2次,每次10 min,后加入预杂交液,60℃预杂交1 h 以封闭非特异结合位点。 4) 分别于两组切片中加入探针并使探针终浓度为1 μg/mL。于60℃杂交炉中恒温孵育 16-20 h,同时设立省略探针的空白对照,以上操作严格在无RNA酶环境下进行。 5) 杂交后组织切片置于wash buffer中60℃浸洗2次,每次20 min,接着切片在RNase buffer中室温孵育5 min,后加入终浓度为20 μg/mL的RNase,37℃作用30 min以消化未结合的cRNA探针。 6) 接下来恒温37℃条件下依次用2×SSC,0. 2×SSC溶液各浸洗切片2次,每次20 min, 再在TS7.5溶液中室温孵育5 min,后置于TBS溶液中室温封闭1 h,加入地高辛抗体(POD-anti-DIG,1:100)室温孵育过夜。

直接免疫荧光法测抗原

直接免疫荧光法测抗原 基本原理 将荧光素标记在相应的抗体上,直接与相应抗原反应。其优点是方法简便、特异性高,非特异性荧光染色少。缺点是敏感性偏低;而且每检查一种抗原就需要制备一种荧光抗体。此法常用于细菌、病毒等微生物的快速检查和肾炎活检、皮肤活检的免疫病理检查。 试剂与仪器 l 磷酸盐缓冲盐水(PBS):0.01mol/L,pH7.4 l 荧光标记的抗体溶液:以0.01mol/L,pH7.4的PBS进行稀释 l 缓冲甘油:分析纯无荧光的甘油9份+ pH9.2 0.2M碳酸盐缓冲液1份配制 l 搪瓷桶三只(内有0.01mol/L,pH7.4的PBS 1500ml) l 有盖搪瓷盒一只(内铺一层浸湿的纱布垫) l 荧光显微镜 l 玻片架 l 滤纸 l 37℃温箱等。 实验步骤 1. 滴加0.01mol/L,pH7.4的PBS于待检标本片上,10min后弃去,使标本保持一定湿度。 2. 滴加适当稀释的荧光标记的抗体溶液,使其完全覆盖标本,置于有盖搪瓷盒内,保温一定时间(参考:30min)。 3. 取出玻片,置玻片架上,先用0.01mol/L,pH7.4的PBS冲洗后,再按顺序过0.01mol/L,pH7.4的PBS三缸浸泡,每缸3-5 min,不时振荡。 4. 取出玻片,用滤纸吸去多余水分,但不使标本干燥,加一滴缓冲甘油,以盖玻片覆盖。 5. 立即用荧光显微镜观察。观察标本的特异性荧光强度,一般可用“+”表示: (-)无荧光;(±)极弱的可疑荧光;(+)荧光较弱,但清楚可见;(++)荧光明亮;(+++

--++++)荧光闪亮。待检标本特异性荧光染色强度达“++”以上,而各种对照显示为(±)或(-),即可判定为阳性。 注意事项 1. 对荧光标记的抗体的稀释,要保证抗体的蛋白有一定的浓度,一般稀释度不应超过1:20,抗体浓度过低,会导致产生的荧光过弱,影响结果的观察。 2. 染色的温度和时间需要根据各种不同的标本及抗原而变化,染色时间可以从10 min到数小时,一般30 min已足够。染色温度多采用室温(25℃左右),高于37℃可加强染色效果,但对不耐热的抗原(如流行性乙型脑炎病毒)可采用0-2℃的低温,延长染色时间。低温染色过夜较37℃30 min效果好的多。 3. 为了保证荧光染色的正确性,首次试验时需设置下述对照,以排除某些非特异性荧光染色的干扰。 (1)标本自发荧光对照:标本加1-2滴0.01mol/L,pH7.4的PBS。 (2)特异性对照(抑制试验):标本加未标记的特异性抗体,再加荧光标记的特异性抗体。 (3)阳性对照:已知的阳性标本加荧光标记的特异性抗体。 如果标本自发荧光对照和特异性对照呈无荧光或弱荧光,阳性对照和待检标本呈强荧光,则为特异性阳性染色。 4. 一般标本在高压汞灯下照射超过3min,就有荧光减弱现象,经荧光染色的标本最好在当天观察,随着时间的延长,荧光强度会逐渐下降。

荧光原位杂交技术及其应用

荧光原位杂交技术及其应用 摘要:荧光原位杂交技术是一种非常有用的分子细胞遗传学工具,特别是对一些染色体数目异常和复杂染色体异常的诊断,架起了染色体显带技术和分子遗传学之间的桥梁。本文主要就荧光原位杂交技术的发展历程、探针制备和临床应用做一简单的综述。 关键词:FISH;荧光原位杂交;临床应用;产前诊断;肿瘤 Fluorescence in situ hybridization and applications SUN Jingjing,YAN Shouqing (College of Animal Science and Veterinary Medicine,Jilin University,Changchun 130062,China) Abstract:FISH is a powerful molecular cytogenetic technique which allows rapid detection of numerical and complex chromosome aberrations on interphase cells and metaphase spreads, bridging the gap between conventional chromosome banding analysis and molecular genetic DNA studies. This review gives a brief overview of the historical developments of FISH techniques and applications in clinic genetic diagnostics. Key words:FISH; Fluorescence in situ hybridization; Clinical applications; Prenatal diagnosis; Tumor DNA荧光原位杂交(fluorescence in situ hybridization,FISH)技术是一种应用非放射性荧光物质依靠核酸探针杂交原理在核中或染色体上显示DNA序列位置的方法[1]。该技术具有快速、安全、灵敏度高以及探针可长期保存等特点,目前已广泛应用于细胞遗传学、肿瘤生物学、基因定位、基因作图、基因扩增,产前诊断及哺乳动物染色体进化研究等领域。 1 FISH技术的产生 1969年Gall和Pardue利用放射性同位素标记的DNA探针检测细胞制片上非洲爪蟾细胞核内的rDNA获得成功之后,Pardue等同年又以小鼠卫星DNA为模板,利用体外合成的含3H 的RNA为探针成功地与中期染色体标本进行了原位杂交,从而开创了RNA-DNA的同位素原位杂交技术[2],但是没有得到广泛应用。1974年Evans第一次将染色体显带技术和原位杂交技术结合起来,提高了基因定位的准确性。1981年,Langer等首次采用生物素标记的核苷酸探针(bio-dUTP)成功地进行了染色体原位杂交,建立了非放射性原位杂交技术(Nonisotopic in situ hybridization),至此,以荧光标记的探针在细胞制片上进行基因原位杂交的技术建立起来。1985年这项技术被引进到植物。1986年,Cremer与Licher等分别证实了荧光原位杂交技

深圳市活水床旁干式荧光免疫分析仪 产品技术要求

医疗器械产品技术要求编号: 干式荧光免疫分析仪 2. 性能指标 2.1外观与结构 2.1.1 外形应平整,表面不应有明显的凹凸痕、划痕、裂纹、变形、霉斑、锋棱、毛刺。表面镀层不应起泡、龟裂和脱落。 2.1.2 外表的各处文字、符号应完整,标记应清晰、准确、牢固。 2.1.3 紧固件连接应可靠、不得有松动。 2.1.4 运动部件应平稳,不应有卡滞、突跳。 2.2功能指标 2.2.1 分析仪具备自检功能; 2.2.2 对反应区温度进行即时监控,不在设置范围时分析仪会有警告; 2.2.3 分析仪应具有ID卡信息读取功能; 2.2.4 应可输入并保存病人信息; 2.2.5 数据显示,分析仪测试结束后,显示屏结果项中可查询项目名称、检测结果、单位; 2.2.6 自动打印和保存数据功能; 2.2.7故障提示:分析仪对操作错误、机械及电路故障应有相应提示和自动做出应急反应的功能; 2.2.8 可以通过GPRS或WIFI信号上传仪器相关信息。 2.3 性能指标 2.3.1 反应区温度准确度和波动度 仪器反应区具备控温功能,仪器设定的温度范围(25℃~37℃),当设置值在该范围内,连续设置温度跨度不小于 3.0℃时,准确性在±0.5℃内,测试值波动度不超过1.0℃。 2.3.2 通道内精密度 分析仪测定结果的变异系数CV≤2%。

2.3.3 通道间精密度 分析仪各通道测定结果的变异系数CV值应≤4%。 2.3.4 线性范围 在[0.25,20]线性范围内: a)线性相关系数r不小于0.990; b)线性相对偏差应不超过±10%。 2.3.5 稳定性 分析仪开机处于稳定工作状态后第4个小时、第8个小时的测试结果与稳定工作状态初始时的测试结果的相对偏倚α≤±5%。 2.3.6 准确度 分析仪测定结果的相对偏差B≤±3%。 2.4 数据接口 2.4.1串口; 2.4.2网络接口; 2.4.3 GPRS网络模块; 2.4.4传输协议:LIS数据是通过ASTM协议传输; 2.4.5存储格式:db。 2.5 用户访问控制 2.5.1用户类型及权限:1-3级用户类型:1级为普通用户,2级为管理员用户,3级为设备维护人员用户; 2.5.2用户身份鉴别方法:用户名和密码; 2.5.3用户访问:通过用户名和密码控制用户使用本仪器,用户类型包括普通用户和管理员,以上用户类型输入正确的用户名和密码可以使用本仪器,除以上用户类型外,不可使用本仪器。 2.6 环境试验 仪器环境试验应符合GB/T 14710-2009中气候环境试验I组,机械环境试验Ⅱ组的要求及表1中的规定。运输试验、电源电压适应能力试验应分别符合GB/T 14710-2009中第4章、第5章的规定。 表1环境试验

免疫组化与免疫荧光的区别

免疫组化与免疫荧光 一、两者都是蛋白定位的检测(也就是确定蛋白是表达在细胞核/浆/膜)。 二、区别是: 1、概念和基本原理 免疫组织化学又称免疫细胞化学,是指带显色剂标记的特异性抗体在组织细胞原位通过抗原抗体反应和组织化学的呈色反应,对相应抗原进行定性、定位、定量测定的一项新技术。它把免疫反应的特异性、组织化学的可见性巧妙地结合起来,借助显微镜的现像和放大作用,在细胞,亚细胞水平检测各种抗原物质,并可在原位显示相应的基因和基因表达产物。免疫组织化学技术现已有:免疫荧光组织(细胞)化学技术、免疫酶组织(细胞)化学技术、亲和组织化学技术、免疫金银及铁标记免疫组织化学技术等。 免疫荧光组织(细胞)化学技术是采用荧光素标记的已知抗体(或抗原)作为探针,检测待测组织、细胞标本中的靶抗原(或抗体),形成的抗原抗体复合物上带有荧光素,在荧光显微镜下,由于受高压汞灯光源的紫外光照射,荧光素发出明亮的荧光,这样就可以分辨出抗原(或抗体)的所在位置及其性质,并可利用荧光定量技术计算抗原的含量。以达到对抗原物质定位、定性、定量测定的目的。 2、标本制作: 免疫荧光一般用冰冻切片,减少杂质干扰;而酶免疫组化一般用石蜡切片或冰冻切片均可以。 3、实验步骤:免疫荧光染色步骤简单,而酶免疫组化方法较为复杂,多了DAB显色过程。 4、染色后的标本保存:免疫荧光染色后的标本一般短时间拍照,时间长了荧光衰退;而酶免疫组化染色标本可以长期保存。 5、免疫组化结果除了知道蛋白是在细胞浆还是细胞膜表达高些,还可以用软件做相对定量分析。 6、免疫荧光得到的图片是彩色的,漂亮些,可以发高档次文章。 免疫学三大工具:免疫组化、Western、ELISA,分别用于定位,定性和定量。

荧光原位杂交技术原理及操作步骤

1974年Evans首次将染色体显带技术和染色体原位杂交联合应用,提高了定位的准确性。20世纪70年代后期人们开始探讨荧光标记的原位杂交,即FISH技术。1981年Harper 成功地将单拷贝的DNA序列定位到G显带标本上,标志着染色体定位技术取得了重要进展。20世纪90年代,随着人类基因组计划的进行,由于绘制高分辨人类基因组图谱的需要,FISH 技术得到了迅速的发展和广泛应用。 1.原理 FISH(fluorescence in situ hybridization)技术是一种重要的非放射性原位杂交技术。它的基本原理是:如果被检测的染色体或DNA纤维切片上的靶DNA与所用的核酸探针是同源互补的,二者经变性-退火-复性,即可形成靶DNA与核酸探针的杂交体。将核酸探针的某一种核苷酸标记上报告分子如生物素、地高辛,可利用该报告分子与荧光素标记的特异亲和素之间的免疫化学反应,经荧光检测体系在镜下对待测DNA进行定性、定量或相对定位分析。2.实验流程 FISH样本的制备→探针的制备→探针标记→杂交→染色体显带→荧光显微镜检测→结果分析。 3.特点 原位杂交的探针按标记分子类型分为放射性标记和非放射性标记。用同位素标记的放射性探针优势在于对制备样品的要求不高,可以通过延长曝光时间加强信号强度,故较灵敏。缺点是探针不稳定、自显影时间长、放射线的散射使得空间分辨率不高、及同位素操作较繁琐等。采用荧光标记系统则可克服这些不足,这就是FISH技术。FISH技术作为非放射性检测体系,具有以下优点:1、荧光试剂和探针经济、安全;2、探针稳定,一次标记后可在两年内使用;3、实验周期短、能迅速得到结果、特异性好、定位准确;4、FISH可定位长度在1kb的DNA序列,其灵敏度与放射性探针相当;5、多色FISH通过在同一个核中显示不同的颜色可同时检测多种序列;6、既可以在玻片上显示中期染色体数量或结构的变化,也可以在悬液中显示间期染色体DNA的结构。 缺点:不能达到100%杂交,特别是在应用较短的cDNA探针时效率明显下降。 4.应用 该技术不但可用于已知基因或序列的染色体定位,而且也可用于未克隆基因或遗传标记及染色体畸变的研究。在基因定性、定量、整合、表达等方面的研究中颇具优势。 荧光原位杂交FISH操作规程 一、主要试剂 1变性液20SSC 4mlddH2O 8ml甲酰胺28ml 2PBD液1000ml 20SSC中加入1.25gTween20 二、操作流程 1 硅化玻片切片烤片60过夜 2 脱蜡入水斜置切片空干 3 2SSC洗涤三次每次5min下简写为35 4 0.2M HCl处理室温10接步骤3 5 0.25mg/ml 蛋白酶K处理室温1530接步骤3 6 切片入20梯度酒精脱水各2空干 7 切片入85变性液8 8 迅速入20梯度酒精脱水各2空干 9 杂交液85变性50冰浴10滴加至切片加盖玻片37过夜 10 反应体系中加入等体积的甲酰胺4510

免疫荧光技术的实验方法及其分类

免疫荧光技术的实验方法及其分类 一、免疫标记法及其分类 1.荧光免疫法 原理是应用一对单克隆抗体的夹心法。底物用磷酸-4-甲基伞形酮,检测产物发出的荧光,荧光强度与Mb浓度呈正比,可在8min 内得出结果。结果以Mb每小时释放的速率表示(△Mb)表示。该法重复性好,线性范围宽,具有快速、敏感、准确的特点。 以双抗夹心法为例,首先将特异性抗体与固相载体连接,形成固相抗体。除去未结合抗体,然后加受检标本,使其中的蛋白抗原与固相抗体形成抗原抗体复合物。洗涤除去未结合物,接着加入荧光标记的抗体,使之与抗原特异性结合,形成抗体—抗原—抗体复合物。最后根据荧光强度,即可对蛋白抗原进行定量。 传统的荧光免疫法受本底荧光的干扰较大,时间分辨荧光免疫测定法是以具有特长寿命的稀土金属如铕,作为标记物,加入正常液后激发测定,能有效去除短寿命本底荧光的干扰。

2.放射免疫法 放射免疫法是以过量的未标记抗原与放射性物质标记的抗原,竞争性地与抗体结合,形成有放射性的抗原—抗体复合物与无放射性的抗原—抗体复合物,并有过剩的标记抗原与未标记的抗原。然后通过离心沉淀等方法,将抗原—抗体复合物与游离抗原分离,分别测定其放射性强度与标准曲线比较,即可对未标记的待测抗原进行定量。 RIA法测定血清蛋白灵敏度高、特异性强,可准确定量到ng/ml 水平。但早期的方法操作麻烦,耗时长,且有放射性污染。近年来,随着单克隆抗体的应用,RIA的灵敏度又有了较大提高,且操作大为简化,并已有商品试剂盒供应,使用方便。 3.酶联免疫法(ELISA) ELISA法有竞争法和夹心法两种。竞争法是基于标准或血清Mb 和微孑L板上包被的Mb竞争性地与单克隆抗体相结合的原理而建立,该法的最低检测限为10μg/L,线性范围达1 000ug/L。夹心ELISA 法与EIA具有良好的相关性(r=0.92)。ELISA法具有灵敏度高,特异性强,精密度好,操作简单,适用于多份标本的检测,不需特殊仪器设备等优点,易于推广普及。但不适合急诊的快速检测。

荧光仪使用说明书A1版本 2015-7

干式荧光免疫分析仪 使用说明书 【生产企业】 【注册地址】 【生产地址】 【联系方式】 【售后服务单位】 【医疗器械生产企业许可证编号】 【产品注册证】 【产品标准编号】 【说明书批准及修改日期】 1

前言 本手册完全按照国家技术监督局发布的GB/T 9969-2008《工业产品使用说明书总则》,国家药品监督管理局发布的《医疗器械说明书管理规定》进行编写,符合企业标准。本手册所述内容完全与本系列干式荧光免疫分析仪情况相符合。若有修改,本公司将不再另行通知。 本手册根据产品的特点和需要描述出主要结构、性能、型式、规格和安装、使用、操作、维护、保养和贮存等方法,以及保护操作者和产品安全措施,详细内容请见各章节。 本手册由xx公司编写,版权所有,未经许可不得翻印、删改。 本手册内容本公司有最终解释权。

用户安全提示 ※请您在仪器使用之前,仔细阅读本《使用说明书》后再进行仪器的使用。※仅限经培训合格的专门技术人员才能使用本仪器。

禁止翻滚 温度范围 湿度范围 ◆不要用湿手插拔电源,可能会触电。 ◆不要损坏电线和连接电缆等,不要踩踏、扭曲、拉扯电线和电缆, 如果电线和电缆折断会发生触电或引发火灾。 ◆不要用已经损坏的电线和连接电缆等,可能会发生触电、或引发火

灾。 ◆不要用设计要求以外的其他电线和电缆,如果电容量小,会引发火 灾。 ◆有异常动作时,应立即停止操作。 ◆当感觉到有烧焦味或异味等,异常错误时,立刻关掉电源,拔下电 源线。 ◆必须使用有良好接地的电源插座,否则当仪器出现漏电时,会引起 触电。 ◆使用和操作时应遵照“用户使用手册”的规定或指导。 ◆不要用松脂油、苯等化学试剂清洁外部的污渍,因为它可能引起颜 色和形状的变化,用软布或湿布擦洗,对于严重的污渍,用清洗剂或75%的酒精清洁。 ◆如遇到螺钉或金属物掉进仪器内,以立即停止操做作,请有资质的 维修人员将金属物取出后再开始操作,否则可能会引起仪器故障。 ◆不要把试剂和水等放到仪器台面上,避免液体漏进仪器内部,对仪 器造成损坏。

荧光原位杂交技术的发展及在植物中的应用

细胞遗传学课程论文 题目:荧光原位杂交技术的发展 及在植物中的应用 姓名:秦冉 学号:11316040 荧光原位杂交技术的发展及在植物中的应用 摘要: 荧光原位杂交技术(fluorescence in situ hybridization,FISH)是20世纪80年代末发展起来的一种非放射性原位杂交技术。该技术因其具有灵敏度高、特异性强、定位准确、快速有效、安全直观等特点而被应用于很多领域。本文简要介绍了荧光原位杂交在染色体制片技术、探针类型及探针标记方法方面的发展,概述了荧光原位杂交技术在基因定位,远缘杂种的鉴定及外源染色质的检测等方面的应用。 关键词:荧光原位杂交技术;染色体制片技术;探针标记方法;基因定位 The development of fluorescence in situ hybridization and its application in plant Abstract: Fluorescence in situ hybridization(FISH) is a non radioactive in situ hybridization technique developed in the late 1980s. Because of its characteristics:high sensitivity, strong specificity, accurate positioning, fast, safe and effective, it can be used in many fields.This paper briefly introduces the development of FISH in plant including the chromosomal technique, probe type and labeling method, then summarizes the application of FISH in gene mapping, identification of the distant hybrid and detection of the alien chromatin, etc. Keywords: fluorescence in situ hybridization; chromosomal technique; probe method; gene mapping 前言 荧光原位杂交技术是20世纪80年代末发展起来的一种非放射性原位杂交技术[1]。其基本原理为:根据核普酸碱基互补配对原则, 使荧光标记的探针序列与靶DNA序列进行杂交, 然后用合适的检测方法将荧光信号检出, 达到基因定位的目的。因其具有灵敏度高、特异性强、定位准确、快速有效、安全直观等特点而被应用于很多领域。自从Rayburn等[2]于1985年首次将原位杂交技术应用于植物染色体研究后,该技术便在植物学研究中得到了广泛的应用。主要是由于以下几方面的原因:①FISH 的灵敏度接近同位素标记探针杂交[3-4],在安全性,空间分辨率,速度和探针的稳定性等比放射性同位素标记探针杂交更具优越性;②运用不同荧光色素标记的探针可同时检测一个细胞核中2种或更多的核甘酸序列;③DNA 序列能被定位在目标范围从载玻片上分散的中期细胞染色体到悬浮固定保存细胞三维结构的间期核中[5];④探针标记和荧光试剂从商业上可得,而且使FISH过程直接可靠;⑤荧光显微镜和数字成像系统在过去20 多年中不断改进;⑥特殊种属的全基因组,完整染色体,染色体亚区域或单拷贝序列能在多种探针混合运用情况下出现特异信号;⑦未标记的基因组DNA 通过探针预杂交抑制重复序列,对定位象柯斯质粒这样一类含大插入探针的特定序列是至关重要的。来。FISH技术的程序较复杂,主要流程包括染色体标本的制备,探针的制备、纯化与检测,染色体与探针的变性,原位杂交,杂交后洗脱,杂交信号的检测和放大,荧光显微镜观察、照相。 随着FISH 技术的不断发展,衍生了染色体原位抑制(CISS)技术、间期核FISH、引物原位标记或DNA 合成(PRINS)技术等,并且发展出M-FISH、3D-FISH、Rx-FISH 技术、CGH 以

荧光原位杂交实验(FISH)

荧光原位杂交实验(FISH) 荧光原位杂交(Fluorescence in situ hybridization FISH)是一门新兴的分子细胞遗传学技术,是20世纪80年代末期在原有的放射性原位杂交技术的基础上发展起来的一种非放射性原位杂交技术。目前这项技术已经广泛应用于动植物基因组结构研究、染色体精细结构变异分析、病毒感染分析、人类产前诊断、肿瘤遗传学和基因组进化研究待许多领域。 1实验方法原理: 荧光原位杂交(Fluorescence in situ hybridization FISH)是一门新兴的分子细胞遗传学技术,是20世纪80年代末期在原有的放射性原位杂交技术的基础上发展起来的一种非放射性原位杂交技术。目前这项技术已经广泛应用于动植物基因组结构研究、染色体精细结构变异分析、病毒感染分析、人类产前诊断、肿瘤遗传学和基因组进化研究待许多领域。FISH 的基本原理是用已知的标记单链核酸为探针,按照碱基互补的原则,与待检材料中未知的单链核酸进行异性结合,形成可被检测的杂交双链核酸。由于DNA分子在染色体上是沿着染色体纵轴呈线性排列,因而可以探针直接与染色体进行杂交从而将特定的基因在染色体上定位。与传统的放射性标记原位杂交相比,荧光原位杂交具有快速、检测信号强、杂交特异性高和可以多重染色等特点,因此在分子细胞遗传学领域受到普遍关注。 杂交所用的探针大致可以分类三类:1)染色体特异重复序列探针,例如α卫星、卫星III 类的探针,其杂交靶位常大于1Mb,不含散在重复序列,与靶位结合紧密,杂交信号强,易于检测;2)全染色体或染色体区域特异性探针,其由一条染色体或染色体上某一区段上极端不同的核苷酸片段所组成,可由克隆到噬菌体和质粒中的染色体特异大片段获得;3)特异性位置探针,由一个或几个克隆序列组成。 探针的荧光素标记可以采用直接和间接标记的方法。间接标记是采用生物素标记DNA探针,杂交之后用藕联有荧光素亲和素或者链霉亲和素进行检测,同时还可以利用亲和素-生物素-

干式荧光免疫分析仪产品技术要求haomai

干式荧光免疫分析仪 适用范围:配套本公司的荧光免疫层析试剂盒,用于医疗机构体外定量检测人体样本中抗原/抗体的含量。 2.1 使用条件 a)环境温度:10℃~30℃; b)相对湿度:10%~80%; c)大气压力:860hpa~1060hpa; d)电源要求:AC220V±22V,50Hz±1Hz。 2.2 外观 a) 分析仪外形应平整,表面不应有明显的凹凸痕、划痕、裂纹、变形、 霉斑、锋棱、毛刺。表面镀层不应起泡、龟裂和脱落; b) 分析仪外表的各处文字、符号应完整,标记应清晰、准确、牢固; c) 分析仪的金属零件不应有锈蚀及其他机械损伤; d) 分析仪的开关、按键及开启装置的操作应灵活可靠,零部件应紧固 无松动。 2.3 性能

2.3.1 最低响应值 0.5ng/L的荧光素Alexa flow对应的校准荧光卡(其制备方法及赋值过程见附录B)C1的值≥本底噪声的2倍。 1.3.2 重复性 检测5ng/L的荧光素Alexa flow对应的校准荧光卡C2的重复性:变异系数(CV)≤10%。 2.3.3 线性范围 以校准荧光卡(C1~C5)为检测对象,在0.5ng/L~200ng/L内,线性相关系数r≥0.975,线性偏差不超过±15%。 2.3.4 稳定性 分析仪开机处于工作状态第4小时、第8小时的测试结果与第1小时的测试结果的相对偏差在±15%范围内。 2.3.5 准确度 分析仪与C反应蛋白(CRP)测定试剂盒(荧光免疫层析法)配合使用,使用商业质控品进行测试,相对偏差应不大于15%。 2.4 功能 2.4.1 仪器可以把试剂ID芯片中的参数按项目分类依次存入仪器中。 2.4.2 具备显示、储存、查询、打印功能,可外接网络。 2.5 安全要求 应符合GB4793.1-2007《测量、控制和实验室用电气设备的安全要求第1部分:通用要求》和YY 0648-2008《测量、控制和实验室用电气设备的安全要求第2-101部分:体外诊断(IVD)医疗设备的专用要求》的规定,见附录A、附录B。

LUMINEX技术原理及应用

Luminex的基本原理及应用 传统的蛋白质分析主要采用双抗体夹心ELISA法。此法长期以来被视为蛋白质定量分析的“标准方法”。ELISA可以用来准确测定大批量生物样品,但每次实验只能分析一个目标分子,而不具备同时分析多种目标分子的能力。在ELISA基础上发展出的 luminex技术,不仅同样通过双抗体选择而具有高特异性,同时也具有ELISA的高通量、操作简便、测量准确等优点,而且可以在一次实验中完成对多种目标分子的分析,从而改变了过去的分析模式,建立了更加高效快速的分析平台。Luminex技术原理,在近年发表的文章中已有过详细的介绍和说明。Luminex 技术应用微球和流式细胞仪的原理。微球内部含有三种荧光免疫荧光,通过荧光不同的比例可以区分500种不同的微球。每种微球可以用来检测一种不同的蛋白或基因。因此,利用微球技术,可以同时检测高达500个蛋白或基因。该技术利用荧光编码的微球共价交联单克隆抗体,与被测定的目标分子结合后,加入荧光素标记的检测抗体,再通过激光扫描荧光编码来识别单个微球和测量“检测荧光”强度来确定被测分子的浓度。在使用相同抗体对的条件下,luminex技术的测量结果在准确度、精确度、灵敏度方面与ELISA均可达到相似的水平。Luminex应用的荧光编码微球带有针对不同目标分子的特异性抗体,不同的微球在一定程度上可以自由组合,这样在一次实验中可以同时完成多个目标分子的分析。多目标分子的同时测定可以大大减少生物样品的消耗量,节省成本和测定时间,并且使多种目标分子之间相关性的分析更加准确。很多公司已经开始提供Luminex试剂盒,用于基础和临床医学研究以及临床检测。目前,Luminex 试剂盒已经可以检测500多种蛋白质分子,包括细胞因子、激素、自身抗体、肿瘤标志物等。 Luminex常见问题及解答 LUMINEX应用于哪些领域? 生物医学研究,生物标记物开发,临床检测等领域。Luminex技术主要用于蛋白和核酸检测分析。 LUMINEX敏感性如何? 灵敏度取决于开头的质量。对于同样的抗体对,Luminex检测的灵敏度高于ELISA技术。一般检测灵敏度在pg级。 对不同类型的样品制备和样品量的要求是怎样的? 血清、血浆是常用的样本,每次检测需要10ul,每次可以检测多个蛋白。 从各种细胞或组织中提取的蛋白也可以用Luminex技术检测,制备方法与ELISA、Western Blot完全一样。 一般可以检测到多少基因或蛋白的表达信息? 检测蛋白和基因的数目主要取决于试剂盒。蛋白质检测目前最高可以达到50个左右,基因检测最高达500个。 如何保证检测结果的特异性? 检测的特异性取决于抗体高特异性。试剂几乎全部来源于美国大公司,产品经过了严格的质量控制。同时,我们检测公司也有近15年的经验、严格的操作程序和质量控制体系。 客户自己提供抗体,是否可以进行LUMINEX检测? Luminex和ELISA检测试剂都需要两个配套的特异性抗体。我们公司具有开发Luminex试剂盒的经验。但是,需要一系列的开发工作才能保证结果的特异性、重复性和可靠性。 除了蛋白,LUMINEX技术是否还可以用于其它指标的检测? 可以用于基因表达,基因多态性和HLA配型分析。

荧光原位杂交技术(FISH)常见问答

荧光原位杂交技术(FISH)常见问答 对于FISH操作来说,那些因素比较重要? 在FISH中最重要的因素是温度、光照、湿度和各种试剂的PH值。温度和湿度直接影响着探针和目标DNA的杂交效率;光照影响了荧光染料的强度;各种试剂pH是否符合要求直接关系到FISH的稳定性。 在夏季成功检测的同一探针和样本为什么在冬季就得不到理想的效果? 发生上述现象最大的可能是FISH操作的环境温度发生了变化导致的。在我国,冬季普遍比夏季寒冷,低的环境温度使FISH得不到良好的杂交效率。此外,探针的保存不当也容易引起荧光素的萃灭而导致效果不佳。因此保证FISH操作中的温度非常重要。 该如何保证FISH操作中的温度? 最佳的措施是使用一些FISH的专用仪器进行操作。如果是手工操作,首先要对FISH操作过程中可能使用的一些仪器进行温控能力的检查,诸如水浴锅、孵箱,对其中不符合要求的要进行更换(疾病诊断中的探针要求温控精度在1度以内)。其次,要尽可能地保持操作环境温度在20度以上,对于在冬季进行的FISH 操作尤为重要。此外对于需要预热以达到要求温度的试剂,在使用前必须使用温度计对其进行测温。同时检测的样本最好不能超过4块。操作中的行动一定要迅速。操作者还往往忽视一些小部件的温度,诸如载玻片和盖玻片。特别是在冬季,盖玻片本身温度就低,加之探针的量本就不多(10ul),因此事先没有预热的盖玻片会使得杂交液的温度急剧下降严重地影响了探针和目标DNA的杂交效率。因此对上述小部件的预热也能有效地提高FISH的杂交效果。 使用荧光显微镜观察结果时,最初有清晰而明亮的信号。但随后信号急剧衰减。几分钟后信号就消失了。这是探针本身的质量问题吗? 在正常情况下,目前的商业化探针即使是杂交后,如果保存适当,荧光信号能保持半年以上。出现上述情况主要的原因是操作观察的过程中或是探针的保存过程中没有采取严格的避光措施。阳光或是强的灯光都会使荧光染料发生急剧的淬灭,从而造成了观察结果的不稳定。因此在操作和观察时,尽可能在暗室中操作。也可以在封片观察时加入一定的antifade(抗淬灭剂)以延缓荧光素的淬灭。 如何配制各种试剂呢? 强烈建议使用去离子水配制各种所需的试剂。此外,配制后使用pH计检测是否符合要求。配制的各种试剂都要采用超纯级的要求。每次FISH使用新的试剂,旧的试剂最好弃置不用。洗脱液和变性液当天用当天配。 直标型探针和间标型探针有何不同?为什么我们要选择直标型探针? 所谓的直标型探针是指DNA探针共价连接着荧光素基团;间标型探针则是指DNA探针先与某个半抗原连接,诸如生物素或地高辛,然后半抗原与荧光素基团连接从而形成探针-半抗原-荧光素基团,类似“三明治”的复合物。与间标型探针相比,直标型探针具有低背景、高特异性的特点。随着荧光染料和荧光检测技术的不断发展,直标型探针的灵敏度也不断提高。因而在FISH检测领域,尤其是在疾病分型领域,探针大多采用直标型设计。 我能对同一样本进行多次的FISH操作吗? 在多数情况下,如果FISH操作没有得到正常的结果,我们可以将探针洗去,然后使用同样的探针进行再次的杂交。如果我们使用的是直标型探针,还可以使用不同探针对同一样本进行反复杂交。针对不同的样本,处理方法略有不同。

免疫荧光原理

免疫荧光(Immunofluorescence, IF)原理 免疫荧光技术是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术。它是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光基团,再用这种荧光抗体(或抗原)作为探针检查细胞或组织内的相应抗原(或抗体)。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位,以及利用定量技术(比如流式细胞仪)测定含量。 紫外光激发荧光物质放射荧光示意图 免疫荧光实验的主要步骤包括细胞片制备、固定及通透(或称为透化)、封闭、抗体孵育及荧光检测等。细胞片制备(通俗的说法是细胞爬片)是免疫荧光实验的第一步,细胞片的质量对实验的成败至关重要,原因很简单,如果发生细胞掉片,一切都无从谈起。这一步关键的是玻片(Slides or Coverslips)的处理以及细胞的活力,有人根据成功经验总结出许多有益的细节或小窍门,非常值得借鉴。固定和通透步骤最重要的是根据所研究抗原的性质选择适当的固定方法,合适的固定剂和固定程序对于获得好的实验结果是非常重要的。免疫荧光中的封闭和抗体孵育与其它方法(如ELISA或Western Blot)中的相同步骤是类似的,最重要的区别在于免疫荧光实验中要用到荧光抗体,因此必须谨记避光操作,此外抗体浓度的选择可能更加关键。最后需要注意的是,标记好荧光的细胞片应尽早观察,或者用封片剂封片后在4℃或-20℃避光保存,以免因标记蛋白解离或荧光减弱而影响实验结果。 由于操作步骤比较多,同时在分析结果时无法像WB那样可以根据分子量的大小区分非特异性识别,所以要得到一个完美的免疫荧光实验结果,除了需要高质量的抗体,以及对实验条件进行反复优化外,还必须设立严谨的实验对照。总之,免疫荧光实验从细胞样品处理、固定、封闭、抗体孵育到最后的封片及观察拍照,每步都非常关键,需要严格控制实验流程中每个步骤的质量,才能最终达到你的实验目的。 基本实验步骤: (1)细胞准备。对单层生长细胞,在传代培养时,将细胞接种到预先放置有处理过的盖玻片的培养皿中,待细胞接近长成单层后取出盖玻片,PBS洗两次; 对悬浮生长细胞,取对数生长细胞,用PBS离心洗涤(1000rpm,5min)2次,用细胞离心甩片机制备细胞片或直接制备细胞涂片。 (2)固定。根据需要选择适当的固定剂固定细胞。固定完毕后的细胞可置于含叠氮纳的PBS中4℃保存3个月。PBS洗涤3×5 min。 (3)通透。使用交联剂(如多聚甲醛)固定后的细胞,一般需要在加入抗体孵育前,对细胞进行通透处理,以保证抗体能够到达抗原部位。选择通透剂应充分考虑抗原蛋白的性质。通透的时间一般在5-15min。通透后用PBS洗涤3×5 min。

免疫荧光技术

免疫荧光技术(Immunofluorescence technique)又称荧光抗体技术,是标记免疫技术中发展最早的一种。它是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术。很早以来就有一些学者试图将抗体分子与一些示踪物质结合,利用抗原抗体反应进行组织或细胞内抗原物质的定位。它是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光基团,再用这种荧光抗体(或抗原)作为探针检查细胞或组织内的相应抗原(或抗体)。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位。 一、基本原理: 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素,制成荧光抗体,再用这种荧光抗体(或抗原)作为探针检测组织或细胞内的相应抗原(或抗体)。在组织或细胞内形成的抗原抗体复合物上含有标记的荧光素,利用荧光显微镜观察标本,荧光素受外来激发光的照射而发生明亮的荧光(黄绿色或橘红色),可以看见荧光所在的组织细胞,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 二、应用范围: 其应用范围极其广泛,可以测定内分泌激素、蛋白质、多肽、核酸、神经递质、受体、细胞因子、细胞表面抗原、肿瘤标志物、血药浓度等各种生物活性物质。根据诊断类别,又可分为传染性疾病、内分泌、肿瘤、药物检测、免疫学、血型鉴定等。 三、基本实验步骤:

1、细胞准备。对单层生长细胞,在传代培养时,将细胞接种到预先放置有处理过的盖玻片的培养皿中,待细胞接近长成单层后取出盖玻片,PBS洗两次;对悬浮生长细胞,取对数生长细胞,用PBS离心洗涤(1000rpm,5min)2次,用细胞离心甩片机制备细胞片或直接制备细胞涂片。 2、固定。根据需要选择适当的固定剂固定细胞。固定完毕后的细胞可置于含叠氮纳的PBS中4℃保存3个月。PBS洗涤3×5min. 3、通透。使用交联剂(如多聚甲醛)固定后的细胞,一般需要在加入抗体孵育前,对细胞进行通透处理,以保证抗体能够到达抗原部位。选择通透剂应充分考虑抗原蛋白的性质。通透的时间一般在5-15min.通透后用PBS洗涤3×5min. 4、封闭。使用封闭液对细胞进行封闭,时间一般为30min. 5、一抗结合。室温孵育1h或者4℃过夜。PBST漂洗3次,每次冲洗5min. 6、二抗结合。间接免疫荧光需要使用二抗。室温避光孵育1h.PBST漂洗3次,每次冲洗5min后,再用蒸馏水漂洗一次。 7、封片及检测。滴加封片剂一滴,封片,荧光显微镜检查。 四、注意事项: 1、染完之后没有封片前直接照一些,因为有的时候可能封片会出现问题,再想照反而没有了,另外不要拖太长时间,荧光会崔灭的。 2、荧光的片子一定要避光保存,保存的好的话,过一段时间仍然能照出很好的片子。

相关主题
文本预览
相关文档 最新文档