当前位置:文档之家› 组合计数问题的基本方法--递推

组合计数问题的基本方法--递推

组合计数问题的基本方法--递推
组合计数问题的基本方法--递推

组合计数问题的基本方法——递推(学生版)

一、基础问题呈现

1.欲登上第10级台阶,若每步只能跨上一级或两级,则不同上台阶的方法数为【 】.

A.144

B.122

C.89

D.55

2.五个人排成一列,重新站队时,若各人都不站在原来的位置上,则不同站队的方法数为【 】.

A.60

B.44

C.36

D.24

3.若用四种不同颜色给四边形的四n 个顶点染色,每点染一种颜色,相邻的顶点染不同的颜色,则不同的染色方法数为【 】.

A.84

B.72

C.48

D.24

4.甲、乙、丙、丁四人相互传球,第一次甲传给乙、丙、丁中的任一人,第二次由拿球者再传给其他人中任一人,这样共传了四次,则第四次球恰传回到甲的方法数为【 】.

A.42

B.27

C.24

D.21

5.甲、乙二人拿两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数时,原掷骰子的人再继续掷;若掷出的点数不是3的倍数时就由对方接着掷.若第一次由甲开始掷,则第六次恰由甲掷的概率为【 】. A.365729 B.364729 C.122243 D.121243

二、推广问题解决

6.欲登上第n 级楼梯,如果每步只能跨上一级或两级,求不同的方法数.

7.已知n 个人排成一列,重新站队时,各人都不站在原来的位置上,求不同的方法数.

8.用m (3)m ≥种不同颜色给n (3)n ≥边形n A A A 21的n 个顶点染色,每点染一种颜色,相邻的顶点染不同的颜色,求不同的染色方法数.

9.有*()m m N ∈个人相互进行*

()n n N ∈次传球,由甲先传,第一次甲传给其他1-m 个人中的任一人,第二次由拿球者再传给其他人中任一人,求这样经过n 次传球,球回到甲手中的传球方法数.

10.甲、乙二人拿两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数时,原掷骰子的人再继续掷.若掷出的点数不是3的倍数时就由对方接着掷,第一次由甲开始掷,求第n 次仍由甲掷的概率n P .

三、能力问题测评

11.如图,将F E D C B A ,,,,,这六个区域着四种不同的颜色,每个区域着一种颜色,且相

邻区域着不同的颜色,不同着色方法数为____________.

12.由0和1组成的长度为n 的排列中,没有两个1相连的排列个数记为n a (例如,排列00101,10010的长度均为5),则8a =____________.

13.现有甲、乙两人轮流掷一枚质地均匀的正方体骰子,规定:如果某人某一次掷出1点,那么下一次就继续 由此人掷;如果某人掷出的是其他的点数,那么就由另一个人来掷.若第一次由甲掷,则第n 次仍由甲掷的 概率为____________.

14.从集合}4,3,2,1{=A 中任取五个数(可重复)排成一个五位数,要求首位只能排1,且任意相邻两位置不 能排同一数,则末位恰也是1的五位数的个数为____________.

15.若设集合}10,,2,1{ =A ,则满足“每个子集至少有2个元素,且每个子集中任意两个元素之差的绝对值均大于1.”的A 的子集个数为____________.

16.设集合}10,,2,1{ =A ,则满足“每个子集至少有2个元素,且每个子集中任意两个元素之差的绝对值均大于1.”的A 的子集个数____________.

17.质点X 按以下规则在,A B 两点间移动:规则①:若质点X 在B 处,则一秒后必移到A 处;规则②:若质点X 在A 处,则一秒后分别以

12的概率移到A 处或B 处.现在,质点X 在A 处,求“第n 秒质点X 在A 处”的概率.

18.用“12?”纸牌若干张,放在一个图形上,要求“不空、不超、不重叠”,满足这种条件的叫做一种“完全覆盖”.问用“12?”纸牌,覆盖“2n ?”图形有多少种覆盖方法?

19.已知集合}4,3,2,1{=A .若每次从A 中随机地取出一个数(可以重复取数),当某一次取出的数与上一 次取出的数之和为质数时,停止取数,求最后一次取到的数是1的概率.

20.设十进制n 位正整数中任何相邻两位数字(从左至右)不出现12的数有n a 个.

(1)求n a 的表达式; (2)求证:)1(2

11-+n n a a 是完全平方数. F E D C B A

组合计数问题的基本方法——递推(教师版)

一、基础问题呈现

1.欲登上第10级台阶,若每步只能跨上一级或两级,则不同上台阶的方法数为【 C 】.

A.144

B.122

C.89

D.55

2.五个人排成一列,重新站队时,若各人都不站在原来的位置上,则不同站队的方法数为【 B 】.

A.60

B.44

C.36

D.24

3.若用四种不同颜色给四边形的四n 个顶点染色,每点染一种颜色,相邻的顶点染不同的颜色,则不同的染色方法数为【 A 】.

A.84

B.72

C.48

D.24

4.甲、乙、丙、丁四人相互传球,第一次甲传给乙、丙、丁中的任一人,第二次由拿球者再传给其他人中任一人,这样共传了四次,则第四次球恰传回到甲的方法数为【 D 】.

A.42

B.27

C.24

D.21

5.甲、乙二人拿两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数时,原掷骰子的人再继续掷;若掷出的点数不是3的倍数时就由对方接着掷.若第一次由甲开始掷,则第六次恰由甲掷的概率为【 D 】. A.365729 B.364729 C.122243 D.121243

二、推广问题解决

6.欲登上第n *

()n N ∈级楼梯,如果每步只能跨上一级或两级,求不同的方法数.

解:设走n 级有n a 种走法,这些走法可按第一步来分类,

第一类:第一步是一步一级,则余下的1-n 级有1-n a 种走法;

第二类:第一步是一步两级,则余下的2-n 级有2-n a 种走法,

所以21--+=n n n a a a ,又易得2,121==a a ,由递推可得n a .

注:在数列{}n a 中,2,121==a a ,且21--+=n n n a a a ,求n a .

7.已知n *()n N ∈个人排成一列,重新站队时,各人都不站在原来的位置上,求不同的方法数. 解:设满足条件的站队方式有n a 种,现在通过合理分步,恰当分类来找出递推关系:

第一步:第一个人不站在原来的第一个位置,有1-n 种站法.

第二步:假设第一个人站在第二个位置,则第二个人的站法又可以分为两类:第一类,第二个人恰好站在第一个位置,则余下的2-n 个人有2-n a 种站队方式;第二类,第二个人不站在第一个位置,则就是第二个人不站在第一个位置,第三个人不站在第三个位置,第四个人不站在第四个位置,……,第n 个人不站在第n 个位置,所以有1-n a 种站队方式.

由分步计数原理和分类计数原理,便可得递推关系:))(1(12--+-=n n n a a n a ,显然,1,021==a a ,由递推可得n a .

注:在数列{}n a 中,120,1a a ==,且))(1(12--+-=n n n a a n a ,求n a .

8.用m (3)m ≥种不同颜色给n (3)n ≥边形n A A A 21的n 个顶点染色,每点染一种颜色,相邻的顶点染不同的颜色,求不同的染色方法数.

解:设不同的染色方法有n a 种,现在通过合理分布,恰当分类来找出递推关系:

第一步:染1A ,有m 种染法;

第二步:染2A ,有1-m 种染法;

同理,染13,,-n A A 均有1-m 种染法;

最后染n A ,若n A 与1-n A 不同色,则仍有1-m 种染法,相乘得1)1(--n m m 种染法,但要去掉n A 与1

A 同色的染法数,此时将n A 与1A 看成一个点,得出需要排除的染法数为1-n a ,故有11)

1(----=n n n a m m a .由递推可得n a .

注:在数列{}n a 中,31(1)(2)6a m m m =

--,且11)1(----=n n n a m m a (4)n ≥,求n a (3)n ≥. 9.有*()m m N ∈个人相互进行*()n n N ∈次传球,由甲先传,第一次甲传给其他1-m 个人中的任一人,第

二次由拿球者再传给其他人中任一人,求这样经过n 次传球,球回到甲手中的传球方法数.

解:设不同的传球方法共有n a 种,现在我们来通过合理分步,恰当分类找出递推关系:

第一步进行第一次传球:甲传给其他人,有1-m 种传球方法;

第二步进行第二次传球:拿球者把球传给其他人,仍有1-m 种传球方法;

同理,第三次、第四次、……、第1-n 次传球都有1-m 种传球方法;

最后进行第n 次传球,由于只能传给甲,故只有一次传球方法,相乘得1)1(--n m 种传球方法,但要注意第1-n 次传球不能传给甲,否则就不存在第n 次传球,因此要去掉第1-n 次传球,球恰好传给甲的传球方

法数,这就是由甲先传,经过1-n 次传球后球又回到甲手中的传球方法,显然,这里有1-n a 种传球方法,故有递推关系:11)1(----=n n n a m a ,由递推可得n a .

注:在数列{}n a 中,10a =,且11)1(----=n n n a m a (2)n ≥,求n a .

10.甲、乙二人拿两颗骰子做抛掷游戏,规则如下:若掷出的点数之和为3的倍数时,原掷骰子的人再继续掷.若掷出的点数不是3的倍数时就由对方接着掷,第一次由甲开始掷,求第n 次仍由甲掷的概率n P .

解:连续掷两次骰子,点数之和为3的倍数的概率为313612=,不是3的倍数的概率为3

2311=-,又第n 次由甲掷这一事件,包括第1-n 次由甲掷,第n 次继续由甲掷这一事件以及第1-n 次由乙掷,第n 次由甲掷这一事件,并且这两个事件是互斥的,而第1-n 次由甲掷的概率为1-n P ,由乙掷的概率为11--n P ,故有递推关系),2(,3

232)1(3231111+---∈≥+-=-+=

N n n P P P P n n n n ,又11=P ,从而有)21(31211--=--n n P P ,由递推可得n P .(事实上,111[1()]23n n P -=+-). 三、能力问题测评

11.如图,将F E D C B A ,,,,,这六个区域着四种不同的颜色,每个区域着一种颜色,且相

邻区域着不同的颜色,不同着色方法数为____________. 120

12.由0和1组成的长度为n 的排列中,没有两个1相连的排列个数记为n a (例如,排列00101,10010的长度均为5),则8a =____________. 55

13.现有甲、乙两人轮流掷一枚质地均匀的正方体骰子,规定:如果某人某一次掷出1点,那么下一次就继续 由此人掷;如果某人掷出的是其他的点数,那么就由另一个人来掷.若第一次由甲掷,则第n 次仍由甲掷的 概率为____________. ])32(1[21

1--+n

14.从集合}4,3,2,1{=A 中任取五个数(可重复)排成一个五位数,要求首位只能排1,且任意相邻两位置不 能排同一数,则末位恰也是1的五位数的个数为____________. 21

15.若设集合}10,,2,1{ =A ,则满足“每个子集至少有2个元素,且每个子集中任意两个元素之差的绝对值均大于1.”的A 的子集个数为____________.

解:设n a 为集合},,2,1{n 的符合题意的子集个数,则}2,1,,,2,1{++k k k 的符合题意的子集可分为两类:第一类子集中不含2+k ,这类子集有1+k a 个;第二类子集含2+k ,这类子集或为},,2,1{k 的相应子

F E D C B A

小学奥数之递推法

小学奥数之递推法 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

五年级下册奥数知识点:递推方法 计数方法与技巧(递推法概念) 计数方法与技巧(递推法例题) 例1:的乘积中有多少个数字是奇数? 分析与解答: 如果我们通过计算找到答案比较麻烦,因此我们先从最简单的情况入手。 9×9=81,有1个奇数; 99×99=99×(100-1)=9900-99=9801,有2个奇数; 999×999=999×(1000-1)=99900-999=998001,有3个奇数; …… 从而可知,999…999×999…999的乘积中共有10个奇数。 例题2: 分析与解答: 这道题我们可以采用分别求出每个数的立方是多少,再求和的方法来解答。但是,这样计算的工作量比较大,我们可以从简单的情况开始研究。

例题3: 2000个学生排成一行,依次从左到右编上1~2000号,然后从左到右按一、二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的离开队伍,…… 按这个规律如此下去,直至当队伍只剩下一人为止。问:这时一共报了多少次最后留下的这个人原来的号码是多少分析与解答: 难的不会想简单的,数大的不会想数小的。我们先从这2000名同学中选出20人代替2000人进行分析,试着找出规律,然后再用这个规律来解题。 这20人第一次报数后共留下10人,因为20÷2=10 ,这10人开始时的编号依次是:2、4、6、8、10、12、14、16、18、20,都是2的倍数。 第二次报数后共留下5人,因为10÷2=5 ,这5人开始时的编号依次是: 4、8、12、16、20,都是4的倍数,也就是2×2的倍数。 第三次报数后共留下2人,因为5÷2=2 ……1 ,这2人开始时的编号依次是: 8、16,都是8的倍数,也就是2×2×2的倍数。 第四次报数后共留下1人,因为2÷2=1 ,这1人开始时的编号是:16,都是8的倍数,也就是2×2×2×2的倍数。 由此可以发现,第n次报数后,留下的人的编号就是n个2的连乘积,这是一个规律。 2000名同学,报几次数后才能只留下一个同学呢?

组合数公式

组合数公式 目录[隐藏] 组合数公式和变换技巧 组合变换技巧举例 组合数公式和变换技巧 组合变换技巧举例 [编辑本段] 组合数公式和变换技巧 一、组合数定义。 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. 二、组合公式。 有时候也表示成: c(n,m)=p(n,m)/m!=n!/((n-m)!*m!) 三、组合性质。 c(n,m)=c(n,n-m); [编辑本段]

组合变换技巧举例 。有朋友给出了两道题: 1、设15000件产品中有1000件次品,从中拿出150件,求得到次品数的期望和方差? 2、设某射手对同一目标射击,直到射中R次为止,记X为使用的射击次数,已知命中率为P,求E(X)、D(X)。 这两题都要用到一些技巧。我先列出几个重要公式,证明过程中提供变换技巧,然后把这两个题目作为例题。 先定义一个符号,用S(K=1,N)F(K)表示函数F(K)从K=1到K=N求和。(我不会用求和的符号) 公式1: C(M-1,N-1)+C(M-1,N)=C(M,N) 证明:方法1、可直接利用组合数的公式证明 方法2、(更重要的思路) C(M,N)是从M个物品中任选N个的方法。 从M个物品中任意指定一个。则选出N个的方法中,包含这一个的有C(M-1,N-1)种,不包含这一个的有C(M-1,N)种。 因此,C(M-1,N-1)+C(M-1,N)=C(M,N) 公式2: S(K=N,M)C(K-1,N-1)=C(M,N)(M》=N) 证明:C(M,N)是从M个物品中任选N个的方法。 从M个物品中任意指定M-N个,并按次序编号为第1到第M-N号,而其余的还有N个。 则选出N个的方法可分类为: 包含1号的有C(M-1,N-1)种; 不包含1号,但包含2号的有C(M-2,N-1)种; 。。。。。。 不包含1到M-K号,但包含M-K+1号的有C(K-1,N-1)种 。。。。。。 不包含1到M-N-1号,但包含M-N号的有C(N,N-1)种不包含1到M-N号的有C(N,N)种,而C(N,N)=C(N-1,N-1) 由于两种思路都是从M个物品中任选N个的方法,因此 S(K=N,M)C(K-1,N-1)=C(M,N) 公式3: S(K=0,N)C(P,K)*C(Q,N-K)=C(P+Q,N)(P,Q)=N) 证明:一批产品包含P件正品和Q件次品,则从这批产品中任选N件的选法为C(P+Q,N)。而公式里面的K表示选法中正品数量,

小学奥数计数问题之递推法例题讲解【三篇】

小学奥数计数问题之递推法例题讲解【三篇】 分析与解答: 这道题我们可以采用分别求出每个数的立方是多少,再求和的方法来解答。但是,这样计算的工作量比较大,我们可以从简单的情况开始研究。 【第三篇】 例题:2000个学生排成一行,依次从左到右编上1~2000号,然后从左到右按一、二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的离开队伍,…… 按这个规律如此下去,直至当队伍只剩下一人为止。问:这时一共报了多少次?最后留下的这个人原来的号码是多少? 分析与解答: 难的不会想简单的,数大的不会想数小的。我们先从这2000名同学中选出20人代替2000人进行分析,试着找出规律,然后再用这个规律来解题。 这20人第一次报数后共留下10人,因为20÷2=10 ,这10人开始时的编号依次是:2、4、6、8、10、12、14、16、18、20,都是2的倍数。 第二次报数后共留下5人,因为10÷2=5 ,这5人开始时的编号依次是:4、8、12、16、20,都是4的倍数,也就是2×2的倍数。 第三次报数后共留下2人,因为5÷2=2 ……1 ,这2人开始时的

编号依次是:8、16,都是8的倍数,也就是2×2×2的倍数。 第四次报数后共留下1人,因为2÷2=1 ,这1人开始时的编号是:16,都是8的倍数,也就是2×2×2×2的倍数。 由此可以发现,第n次报数后,留下的人的编号就是n个2的连乘积,这是一个规律。 2000名同学,报几次数后才能只留下一个同学呢? 第一次:2000÷2=1000 第二次:1000÷2=500 第三次:500÷2=250 第四次:250÷2=125 第五次:125÷2=62 ……1 第六次:62÷2=31 第七次:31÷2=15 ......1 第八次:15÷2=7 (1) 第九次:7÷2=3 ......1 第十次:3÷2=1 (1) 所以共需报10次数。 那么,最后留下的同学在一开始时的编号应是: 2×2×2×…×2=1024(号)

组合数的计算公式

组合导学案 课题:组合数的计算公式 课型:新授 执笔: 审核: 使用时间: 一、学习目标 1、 掌握组合数的计算公式 2、 组合数公式的应用 二、重点难点 1、 组合数的计算公式 2、 用组合数的计算公式解决相关问题 三、学习内容 组合数的计算与选排列数的计算有紧密联系.对于n 个元素中选k 个的选排列,可以 分两步完成.第一步,在n 个元素中选出k 个构成一个组,这是一个组合问题,共可以构成 个组;第二步,对每一组中的 个元素作全排列,每一组的排列数是 个.根据分步计数法和乘法原理,选排列数 k n A =k n C k k A , 所以 k n C = , 以选排列数计算公式代入,即得组合数计算公式 k n C = 四、探究分析 1、把下面的问题归结为排列或组合问题,如果是组合问题请根据公式计算结果: (1)在人数为50人的班级中,选举正、副班长、学习委员、生活委员和文体委员各一人组成班委,求可能的组成方案数. (2)在人数为50人的班级中,选举5人组成班委,求班委可能的组成方案数. (3)由12人组成的篮球队中,需选5人作为首发阵容,求可组成多少个不同的首发阵容.又在50名啦啦队员中要挑选20人前往助阵,有几种挑选方案? (4)10份内容相同的信函,发给20个人中的10人,每人一份,有几种发信的方案? 方法总结: 2、计算: (1)26C ; (2)37C ; (3)3 100C . 方法总结:

课堂训练 1.把下面的问题能归结为排列或组合问题吗?如果能,请写出排列数或组合数的记号,如果不能,请说明理由,组合问题请计算结果: (1)在人数为60人的班级中,分成各30名学生的两个助残公益活动小组,可以有多少种分 法? (2)有一个由6人组成的全能乐队,每人都能演奏6种乐器.要挑选5名队员参加某次演出, 可以组建多少种不同的演出阵容? (3)6个朋友互相握手道别,共握手多少次? (4)5道习题任意选做3题,有多少不同的选法? (5)10支球队进行循环赛,共需安排多少场比赛? (6)某种饮料是混合四种原料配制而成.现在每种原料都有9种不同品牌可供选择,共有几 种选择原料的方案? (7)正16边形有几条对角线?课后作业 1、把下列问题归结为排列或组合问题并计算结果 (1)某次文艺汇演欲从20个节目中选出15个节目参加正式演出,则不同的节目单共有多少种?(2)10份相同的纪念品送给12个人中的10个人,每人一份,有几种分配方案? 2、某小组有男生3人,女生5人,现从中选出3人,要求男、女生都有,则共的选法有多少种?教学后记

小学奥数之递推法

五年级下册奥数知识点:递推方法 计数方法与技巧(递推法概念) 计数方法与技巧(递推法例题) 』眇严99汽严哪匕I 例1: '的乘积中有多少个数字是奇数? 分析与解答: 如果我们通过计算找到答案比较麻烦,因此我们先从最简单的情况入手9X 9= 81,有1个奇数; 99 X 99= 99 X (100 —1) = 9900 - 99 = 9801,有2 个奇数; 999X 999= 999X (1000 —1) = 99900 —999= 998001,有3个奇数; 从而可知,999…999X 999…999的乘积中共有10个奇数。 例题2: 计算13 + 23+ 3S+43+ 5S+63+卢十丽十声十1用的 值。 分析与解答: 这道题我们可以采用分别求出每个数的立方是多少,再求和的方法来解答。但是,这样计算的工作量比较大,我们可以从简单的情况开始研究。 例题3: 2000个学生排成一行,依次从左到右编上1?2000号,然后从左到右按一、 二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的离开队伍,……按这个规律如此下去,直至当队伍只剩下一人为止。问:这时一共报了多少次?最后留下的这个人原来的

号码是多少? 分析与解答: 难的不会想简单的,数大的不会想数小的。我们先从这2000名同学中选出20人代替2000人进行分析,试着找出规律,然后再用这个规律来解题。 这20人第一次报数后共留下10人,因为20-2= 10,这10人开始时的编号依次是:2、4、6、8 10、12、14、16、18、20,都是2的倍数。 第二次报数后共留下5人,因为10十2= 5,这5人开始时的编号依次是:4、8、12、16、20,都是4的倍数,也就是2X 2的倍数。 第三次报数后共留下2人,因为5-2= 2……1 ,这2人开始时的编号依次是:8、16,都是8的倍数,也就是2X2X2的倍数。 第四次报数后共留下1人,因为2十2= 1,这1人开始时的编号是:16,都是8的倍数,也就是2X 2X 2X 2的倍数。 由此可以发现,第n次报数后,留下的人的编号就是n个2的连乘积,这是一个规律。 2000名同学,报几次数后才能只留下一个同学呢? 第一次:2000- 2= 1000 第二次:1000- 2= 500 第三次:500- 2= 250 第四次:250- 2= 125

排列组合公式_排列组合计算公式

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n 分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-08 13:30 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如 9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法? 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

7-6-4 计数之递推法.教师版

前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用. 对于某些难以发现其一般情形的计数问题,可以找出其相邻数之间的递归关系,有了这一递归关系就可以利用前面的数求出后面未知的数,这种方法称为递推法. 【例 1】 每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子来.如果一个人 在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子? 【考点】计数之递推法 【难度】3星 【题型】解答 【解析】 第一个月,有1对小兔子;第二个月,长成大兔子,所以还是1对;第三个月,大兔子生下一对小 兔子,所以共有2对;第四个月,刚生下的小兔子长成大兔子,而原来的大兔子又生下一对小兔子,共有3对;第五个月,两对大兔子生下2对小兔子,共有5对;……这个特点的说明每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,所以每月的兔子数为上月的兔子数与上上月的兔子数相加. 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12 兔子对数:---1---1---2---3---5---8--13--21--34--55--89—144,所以十二月份的时候总共有144对兔子. 【答案】144 【例 2】 树木生长的过程中,新生的枝条往往需要一段“休息”时间供自身生长,而后才能萌发新枝.一棵树 苗在一年后长出一条新枝,第二年新枝“休息”,老枝依旧萌发新枝;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则依次“休息”.这在生物学上称为“鲁德维格定律”.那么十年后这棵树上有多少条树枝? 【考点】计数之递推法 【难度】3星 【题型】解答 【解析】 一株树木各个年份的枝桠数,构成斐波那契数列:1,2,3,5,8,13,21,34,55,89,……所以 十年后树上有89条树枝. 【答案】89 【例 3】 一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法? 【考点】计数之递推法 【难度】4星 【题型】解答 例题精讲 教学目标 7-6-4.计数之递推法

排列组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

排列数、组合数公式与二项式定理的应用

排列数、组合数及二项式定理整理 慈济中学全椒 1、排列数公式 m n A =)1()1(+--m n n n Λ=!! )(m n n -.(n ,m ∈N*,且m n ≤). 2、排列恒等式 (1) 1(1)m m n n A n m A -=-+;(2) 1m m n n n A A n m -= -;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5) 1 1m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +?+?++?=+-L . 3、组合数公式 m n C =m n m m A A =m m n n n ???+--ΛΛ21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 4、组合数的两个性质 (1) m n C =m n n C - ; (2) m n C +1 -m n C =m n C 1 +. 5、排列数与组合数的关系 m m n n A m C =?! . 6、二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L 【注】: 1.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 2.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。

排列组合公式 全

排列组合公式 排列定义??? 从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。排列的全体组成的集合用 P(n,r)表示。排列的个数用P(n,r)表示。当r=n时称为全排列。一般不说可重即无重。可重排列的相应记号为 P(n,r),P(n,r)。 组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合 有记号C(n,r),C(n,r)。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式

3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数 集合A为数字不重复的九位数的集合,S(A)=9! 集合B为数字不重复的六位数的集合。 把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3! 这时集合B的元素与A的子集存在一一对应关系,则 S(A)=S(B)*3! S(B)=9!/3! 这就是我们用以前的方法求出的P(9,6) 例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法? 设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。把集合B分为子集的

计数问题之递推法例题讲解【三篇】

计数问题之递推法例题讲解【三篇】 这道题我们可以采用分别求出每个数的立方是多少,再求和的方法来解答。但是,这样计算的工作量比较大,我们可以从简单的情况开始研究。 【第三篇】 例题:2000个学生排成一行,依次从左到右编上1~2000号,然后从左到右按一、二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的离开队伍,…… 按这个规律如此下去,直至当队伍只剩下一人为止。问:这时一共报了多少次?最后留下的这个人原来的号码是多少? 分析与解答: 难的不会想简单的,数大的不会想数小的。我们先从这2000名同学中选出20人代替2000人进行分析,试着找出规律,然后再用这个规律来解题。 这20人第一次报数后共留下10人,因为20÷2=10 ,这10人开始时的编号依次是:2、4、6、8、10、12、14、16、18、20,都是2的倍数。 第二次报数后共留下5人,因为10÷2=5 ,这5人开始时的编号依次是:4、8、12、16、20,都是4的倍数,也就是2×2的倍数。 第三次报数后共留下2人,因为5÷2=2 ……1 ,这2人开始时的编号依次是:8、16,都是8的倍数,也就是2×2×2的倍数。

第四次报数后共留下1人,因为2÷2=1 ,这1人开始时的编号是:16,都是8的倍数,也就是2×2×2×2的倍数。 由此可以发现,第n次报数后,留下的人的编号就是n个2的连乘积,这是一个规律。 2000名同学,报几次数后才能只留下一个同学呢? 第一次:2000÷2=1000 第二次:1000÷2=500 第三次:500÷2=250 第四次:250÷2=125 第五次:125÷2=62 ……1 第六次:62÷2=31 第七次:31÷2=15 ......1 第八次:15÷2=7 (1) 第九次:7÷2=3 ......1 第十次:3÷2=1 (1) 所以共需报10次数。 那么,最后留下的同学在一开始时的编号应是: 2×2×2×…×2=1024(号)

几个常用组合数公式.资料

几个常用组合数公式.

⑸①几个常用组合数公式 ②常用的证明组合等式方法例. i. 裂项求和法. 如:(利用) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法. v. 递推法(即用递推)如:. vi. 构造二项式. 如: 证明:这里构造二项式其中的系数,左边为 ,而右边 四、排列、组合综合. 1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法. ③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n个不同元素排成一列,要求其中某个元素必相邻的排列有个.其中是一个“整体排列”,而则是“局部排列”. 又例如①有n个不同座位,A、B两个不能相邻,则有排列法种数为.

②有n件不同商品,若其中A、B排在一起有. ③有n件不同商品,若其中有二件要排在一起有. 注:①③区别在于①是确定的座位,有种;而③的商品地位相同,是从n件不同商品任取的2个,有不确定性. ④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”. 例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?(插空法),当n –m+1≥m, 即m≤时有意义. ⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则. ⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全 排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n个元素排 成一列,其中m个元素次序一定,共有种排列方法. 例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法? 解法一:(逐步插空法)(m+1)(m+2)…n = n!/ m!;解法二:(比例分配法). ⑦平均法:若把kn个不同元素平均分成k组,每组n个,共有. 例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有 (平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? () 注意:分组与插空综合. 例如:n个元素全排列,其中某m个元素互不相邻且顺序 不变,共有多少种排法?有,当n –m+1 ≥m, 即m≤时有意义.

五年级奥数计数问题之递推法例题讲解【六篇】

五年级奥数计数问题之递推法例题讲解【六篇】 这道题我们可以采用分别求出每个数的立方是多少,再求和的方法来解答。但是,这样计算的工作量比较大,我们可以从简单的情况开始研究。 【第三篇】 例题:2000个学生排成一行,依次从左到右编上1~2000号,然后从左到右按一、二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的离开队伍,…… 按这个规律如此下去,直至当队伍只剩下一人为止。问:这时一共报了多少次?最后留下的这个人原来的号码是多少? 分析与解答: 难的不会想简单的,数大的不会想数小的。我们先从这2000名同学中选出20人代替2000人进行分析,试着找出规律,然后再用这个规律来解题。 这20人第一次报数后共留下10人,因为20÷2=10 ,这10人开始时的编号依次是:2、4、6、8、10、12、14、16、18、20,都是2的倍数。 第二次报数后共留下5人,因为10÷2=5 ,这5人开始时的编号依次是:4、8、12、16、20,都是4的倍数,也就是2×2的倍数。 第三次报数后共留下2人,因为5÷2=2 ……1 ,这2人开始时的编号依次是:8、16,都是8的倍数,也就是2×2×2的倍数。

第四次报数后共留下1人,因为2÷2=1 ,这1人开始时的编号是:16,都是8的倍数,也就是2×2×2×2的倍数。 由此可以发现,第n次报数后,留下的人的编号就是n个2的连乘积,这是一个规律。 2000名同学,报几次数后才能只留下一个同学呢? 第一次:2000÷2=1000 第二次:1000÷2=500 第三次:500÷2=250 第四次:250÷2=125 第五次:125÷2=62 ……1 第六次:62÷2=31 第七次:31÷2=15 ......1 第八次:15÷2=7 (1) 第九次:7÷2=3 ......1 第十次:3÷2=1 (1) 所以共需报10次数。 那么,最后留下的同学在一开始时的编号应是: 2×2×2×…×2=1024(号) 【第四篇】 例题:平面上有10个圆,最多能把平面分成几部分? 分析与解答: 直接画出10个圆不是好办法,先考虑一些简单情况。 一个圆最多将平面分为2部分; 二个圆最多将平面分为4部分; 三个圆最多将平面分为8部分; 当第二个圆在第一个圆的基础上加上去时,第二个圆与第一个圆有2个交点,这两个交点将新加的圆弧分为2段,其中每一段圆弧都

高中数学排列组合相关公式

排列组合 排列定义:从n 个不同的元素中,取r 个不重复的元素,按次序排列,称为从n 个中取r 个的无重排列。排列的全体组成的集合用 P(n,r)表示。 组合定义:从n 个不同元素中取r 个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n 个中取r 个的无重组合。组合的个数用C(n,r)表示。 一、排列组合部分是中学数学中的难点之一,原因在于 (1)从千差万别的实际问题中抽象出几种特定的数学模型,需要 较强的抽象思维能力; (2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解; (3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大; (4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。 二、两个基本计数原理及应用 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在 第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同12n N m m m =+++L 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做

第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 具体情况分析 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 占了这两个位置 . 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中 间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 443

排列组合公式排列组合计算公式

排列组合公式/排列组合计算公式 2008-07-08 13:30 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数 A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,

个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟” A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法 解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”

组合与组合数公式及性质

组合与组合数公式及性质 达标要求 1.理解组合的概念. 2.掌握组合数公式. 3.理解排列与组合的区别和联系。 4.熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的 应用问题. 基础回顾 1.组合的概念:一般地,从n 个不同元素中取出m (m n ≤)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. 2.组合数的概念:从n 个不同元素中取出m (m n ≤)个元素的所有组合的个数,叫做 从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示.. 3.组合数的公式: (1)(2)(1)!m m n n m m A n n n n m C A m ---+== 或()!!! m n n C m n m =-(,n m N +∈且m n ≤) 4.组合数性质: (1)m n m n n C C -= (2)111m m m n n n C C C ++++= 典型例题 例题1 4名男生和6名女生选三人,组成三人实践活动小组。 (1) 共有多少种选法 (2) 其中男生甲不能参加,有多少种选法 (3) 若至少有1个男生,问组成方法共有多少种 解:(1) 共有310120C =种。 (2) 共有3984C =种 (3) 解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女, 分别有34C ,2146C C ,1246C C , 所以一共有3211244646100C C C C C ++=种方法. 解法二:(间接法)33106100C C -= 例题2 100件产品中有合格品90件,次品10件,现从中抽取4件检查. (1) 都不是次品的取法有多少种 (2) 至少有1件次品的取法有多少种

排列组合方法大全

排列组合方法归纳大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m 1种不同的方法,在第2类办法中有 m种不同的 2 方法,…,在第n类办法中有 m种不同的方法, n 那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m 1种不同的方法,做第2步有 m种不同的方法,…, 2 做第n步有 m种不同的方法,那么完成这件事共 n 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是

分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求, , 以 先排末位共有13 C 然后排首位共有14 C 最后排其它位置共有34A 由分步计数原理得1134 3 4 288C C A 练习题:7种不同的花种在排成一列的花盆里,若 两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 443

例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部 进行自排。由分步计数原理可得共有522 522480 A A A 种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种 解:分两步进行第一步排2个相声和3个独唱共有5 5 A种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4 6 A不同的方法,由分步计数原理,节目的不同顺序共有 54 56 A A种

小学数学计数之递推法.教师版

7-6-4. 计数之递推法 教学目标 前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用. 对于某些难以发现其一般情形的计数问题,可以找出其相邻数之间的递归关系,有了这一递归关系就可以利用前面的数求出后面未知的数,这种方法称为递推法. 【例1】每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子来.如果一个人在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子? 【考点】计数之递推法【难度】 3 星【题型】解答 【解析】第一个月,有1对小兔子;第二个月,长成大兔子,所以还是 1 对;第三个月,大兔子生下一对小兔子,所以共有 2 对;第四个月,刚生下的小兔子长成大兔子,而原来的大兔子又生下一对小兔子,共有 3 对;第五个月,两对大兔子生下 2 对小兔子,共有 5 对;??这个特点的说明每月的大兔子数为上月 的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,所以每月的兔子数为上月的兔子数 与上上月的兔子数相加.依次类推可以列出下表:经过月数:---1---2---3---4---5---6---7---8---9---10---11---12 兔子对数:---1---1---2---3---5---8--13--21--34--55--89 —144,所以十二月份的时候总共有144 对兔子. 例 2 】树木生长的过程中,新生的枝条往往需要一段“休息”时间供自身生长,而后才能萌发新枝.一棵树苗在一年后长出一条新枝,第二年新枝“休息”,老枝依旧萌发新枝;此后,老枝与“休息”过一年的 枝同时萌发,当年生的新枝则依次“休息”.这在生物学上称为“鲁德维格定律”.那么十年后这棵树 上有多少条树枝? 考点】计数之递推法【难度】 3 星【题型】解答 解析】一株树木各个年份的枝桠数,构成斐波那契数列:1,2,3,5,8,13,21,34,55,89,??所以 十年后树上有89 条树枝. 答案】89 例3】一楼梯共10 级,规定每步只能跨上一级或两级,要登上第10 级,共有多少种不同走法? 考点】计数之递推法【难度】 4 星【题型】解答 答案】144

奥数:排列组合的基本理论和公式

一、排列组合的基本理论和公式,排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。 (一)两个基本原理是排列和组合的基础: (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+m3+…+m n种不同方法。 (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×m3×…×m n种不同的方法。 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。

3 C表示从5个元素中取出3个,总共有多少种不同的取5 法。这是组合的运算。例如:从5个人中任选三个人去参加比赛,共有几种选法?这就是从5个元素中取出3个的组合运算。可表示为3 C。其计算过程是35C=5!/[3!×(5-3)!] 5 叹号代表阶乘,5!=5×4×3×2×1=120,3!=3×2×1=6,(5-3)!=2!=2×1=2,所以3 C=5!/[3!×(5-3)!]=120/(6×2)=10 5 针对上面例子,就是从5个人中任选三个人去参加比赛,共有10几种选法。 排列组合公式: 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。n—元素的总个数;r—参与选择的元素个数。 !—阶乘,如 9!=9×8×7×6×5×4×3×2×1。 举例: Q1:有从1到9共计9个号码球,请问,可以组成多 少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序 有要求的,既属于“排列P”计算范畴。

相关主题
文本预览
相关文档 最新文档