当前位置:文档之家› 小学奥数 计数之递推法 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数 计数之递推法 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  计数之递推法 精选练习例题 含答案解析(附知识点拨及考点)
小学奥数  计数之递推法 精选练习例题 含答案解析(附知识点拨及考点)

前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.

对于某些难以发现其一般情形的计数问题,可以找出其相邻数之间的递归关系,有了这一递归关系就可以利用前面的数求出后面未知的数,这种方法称为递推法. 【例 1】 每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子来.如果一个人

在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子? 【考点】计数之递推法 【难度】3星 【题型】解答

【解析】 第一个月,有1对小兔子;第二个月,长成大兔子,所以还是1对;第三个月,大兔子生下一对小

兔子,所以共有2对;第四个月,刚生下的小兔子长成大兔子,而原来的大兔子又生下一对小兔子,共有3对;第五个月,两对大兔子生下2对小兔子,共有5对;……这个特点的说明每月的大兔子数为上月的兔子数,每月的小兔子数为上月的大兔子数,即上上月的兔子数,所以每月的兔子数为上月的兔子数与上上月的兔子数相加. 依次类推可以列出下表: 经过月数:---1---2---3---4---5---6---7---8---9---10---11---12

兔子对数:---1---1---2---3---5---8--13--21--34--55--89—144,所以十二月份的时候总共有144对兔子.

【答案】144

【例 2】 树木生长的过程中,新生的枝条往往需要一段“休息”时间供自身生长,而后才能萌发新枝.一棵树

苗在一年后长出一条新枝,第二年新枝“休息”,老枝依旧萌发新枝;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则依次“休息”.这在生物学上称为“鲁德维格定律”.那么十年后这棵树上有多少条树枝? 【考点】计数之递推法 【难度】3星 【题型】解答

【解析】 一株树木各个年份的枝桠数,构成斐波那契数列:1,2,3,5,8,13,21,34,55,89,……所以

十年后树上有89条树枝.

【答案】89

【例 3】 一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法? 【考点】计数之递推法 【难度】4星 【题型】解答

例题精讲

教学目标

7-6-4.计数之递推法

【解析】 登 1级 2级 3级 4级 ...... 10级

1种方法 2种 3种 5种 ...... ?

我们观察每级的种数,发现这么一个规律:从第三个数开始,每个数是前面两个数的和;依此规律我们就可以知道了第10级的种数是89.其实这也是加法的运用:假如我们把这个人开始登楼梯的位置看做A 0,那么登了1级的位置是在A 1,2级在A 2... A 10级就在A 10.到A 3的前一步有两个位置;分别是A 2 和A 1 .在这里要强调一点,那么A 2 到A 3 既然是一步到了,那么A 2 、A 3之间就是一种选择了;同理A 1 到A 3 也是一种选择了.同时我们假设到n 级的选择数就是An .那么从A 0 到A 3 就可以分成两类了:第一类:A 0 ---- A 1 ------ A 3 ,那么就可以分成两步.有A 1×1种,也就是A 1 种;(A 1 ------ A 3 是一种选择)第二类:A 0 ---- A 2 ------ A 3, 同样道理 有A 2 .类类相加原理:A 3 = A 1 +A 2,依次类推An = An -1 + An -2.

【答案】89

【巩固】一楼梯共10级,规定每步只能跨上一级或三级,要登上第10级,共有多少种不同走法? 【考点】计数之递推法 【难度】4星 【题型】解答

【解析】 登 1级 2级 3级 4级 5级 ...... 10级

1种方法 1种 2种 3种 4种...... ?

我们观察每级的种数,发现这么一个规律:从第三个数开始,每个数是前面相隔的两个数的和;依此规律我们就可以知道了第10级的种数是28.

【答案】28

【例 4】 1×2的小长方形(横的竖的都行)覆盖2×10的方格网,共有多少种不同的盖法. 【考点】计数之递推法 【难度】4星 【题型】解答

【解析】 如果用12?的长方形盖2n ?的长方形,设种数为n a ,则11a =,22a =,对于3n ≥,左边可能竖放1个

12?的,也可能横放2个12?的,前者有-1n a 种,后者有-2n a 种,所以-1-2n n n a a a =+,所以根据递推,

覆盖210?的长方形一共有89种.

【例 5】 用13?的小长方形覆盖38?的方格网,共有多少种不同的盖法? 【考点】计数之递推法 【难度】5星 【题型】解答

【解析】 如果用13?的长方形盖3n ?的长方形,设种数为n a ,则11a =,21a =,32a =,对于4n ≥,左边可能竖

放1个13?的,也可能横放3个13?的,前者有-1n a 种,后者有-3n a 种,所以-1-3n n n a a a =+,依照这

【答案】13

【例 6】 有一堆火柴共12根,如果规定每次取1~3根,那么取完这堆火柴共有多少种不同取法? 【考点】计数之递推法 【难度】4星 【题型】解答

【解析】 取1根火柴有1种方法,取2根火柴有2种方法,取3根火柴有4种取法,以后取任意根火柴的种

【答案】927

【巩固】 一堆苹果共有8个,如果规定每次取1~3个,那么取完这堆苹果共有多少种不同取法? 【考点】计数之递推法 【难度】4星 【题型】解答

【解析】 取1个苹果有1种方法,取2个苹果有2种方法,取3个苹果有4种取法,以后取任意个苹果的种

【答案】81

【例 7】 有10枚棋子,每次拿出2枚或3枚,要想将10枚棋子全部拿完,共有多少种不同的拿法? 【考点】计数之递推法 【难度】4星 【题型】解答

【解析】 本题可以采用递推法,也可以进行分类讨论,当然也可以直接进行枚举.

(法1)递推法.假设有n 枚棋子,每次拿出2枚或3枚,将n 枚棋子全部拿完的拿法总数为n a 种. 则21a =,31a =,41a =.

由于每次拿出2枚或3枚,所以32n n n a a a --=+(5n ≥).

所以,5232a a a =+=;6342a a a =+=;7453a a a =+=;8564a a a =+=;9675a a a =+=;10787a a a =+=.

即当有10枚棋子时,共有7种不同的拿法. (法2)分类讨论.

由于棋子总数为10枚,是个偶数,而每次拿2枚或3枚,所以其中拿3枚的次数也应该是偶数.由于拿3枚的次数不超过3次,所以只能为0次或2次. 若为0次,则相当于2枚拿了5次,此时有1种拿法;

若为2次,则2枚也拿了2次,共拿了4次,所以此时有2

4

6C =种拿法. 根据加法原理,共有167+=种不同的拿法.

【例 8】 如下图,一只蜜蜂从A 处出发,回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆

行,共有多少种回家的方法? 【考点】计数之递推法 【难度】4星 【题型】解答

B

A A

B 1

3

5

794

6821

2

3

5

8

132134

55

89

1

【解析】 蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”这意味着它只能从小号码的蜂房爬近相

邻大号码的蜂房.明确了行走路径的方向,就可以运用标数法进行计算.如右图所示,小蜜蜂从A 出发到B 处共有89种不同的回家方法.

【答案】89

【巩固】小蜜蜂通过蜂巢房间,规定只能由小号房间进入大号房间问小蜜蜂由A 房间到达B 房间有多少种

方法? 【考点】计数之递推法 【难度】4星 【题型】解答 【解析】 斐波那契数列第八项.21种.

【答案】21

【例 9】 如下图,一只蜜蜂从A 处出发,回到家里B 处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆

行,共有多少种回家的方法? 【考点】计数之递推法 【难度】4星 【题型】解答

【解析】 按照蜜蜂只能从小号码的蜂房爬近相邻大号码的蜂房的原则,运用标号法进行计算.如右图所示,

小蜜蜂从A 出发到B 处共有296种不同的回家方法.

【答案】296

【例 10】 对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到得数为1

操作停止.问经过9次操作变为1的数有多少个? 【考点】计数之递推法 【难度】4星 【题型】解答 【解析】 可以先尝试一下,倒推得出下面的图:

2410131112

5

1430283164

32

1516

76

8

3

4

2

1

其中经1次操作变为1的1个,即2, 经2次操作变为1的1个,即4, 经3次操作变为1的2个,是一奇一偶,

以后发现,每个偶数可以变成两个数,分别是一奇一偶,每个奇数变为一个偶数,于是,经1、2、…次操作变为1的数的个数依次为:1,1,2,3,5,8,…

这一串数中有个特点:自第三个开始,每一个等于前两个的和,即即经过9次操作变为1的数有34个.

为什么上面的规律是正确的呢?

道理也很简单. 设经过n 次操作变为1的数的个数为n a ,则1a =1,2a =1,3a =2,… 从上面的图看出,1n a +比n a 大.

一方面,每个经过n 次操作变为1的数,乘以2,就得出一个偶数,经过1n +次操作变为1;反过来,每个经过1n +次操作变为1的偶数,除以2,就得出一个经过n 次操作变为1的数. 所以经过n 次操作变为1的数与经过1n +次操作变为1的偶数恰好一样多.前者的个数是n a ,因此后者也是n a 个. 另一方面,每个经过n 次操作变为1的偶数,减去1,就得出一个奇数,它经过1n +次操作变为1,反过来.每个经过1n +次操作变为1的奇数,加上1,就得出一个偶数,它经过n 次操作变为1. 所以经过n 次操作变为1的偶数经过1n +次操作变为1的奇数恰好一样多. 而由上面所说,前者的个数就是1n a -,因此后者也是1n a -.

经过n +1次操作变为1的数,分为偶数、奇数两类,所以11n n n a a a +-=+,即上面所说的规律的确成立.

【答案】34

【例 11】 有20个石子,一个人分若干次取,每次可以取1个,2个或3个,但是每次取完之后不能留下

质数个,有多少种方法取完石子?(石子之间不作区分,只考虑石子个数) 【考点】计数之递推法 【难度】5星 【题型】解答

【解析】 如果没有剩下的不能使质数这个条件,那么递推方法与前面学过的递推法相似,只不过每次都是前

面3个数相加.现在剩下的不能是质数个,可以看作是质数个的取法总数都是0,然后再进行递推.

【答案】25

【考点】计数之递推法 【难度】5星 【题型】填空

【解析】 把20、0和20以内不是3或4的倍数的数写成一串,用递推法把所有的方法数写出来:

【答案】54

【例 12】 4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作

为第一次传球,第五次传球后,球又回到甲手中,问有多少种传球方法? 【考点】计数之递推法 【难度】5星 【题型】解答

【解析】 设第n 次传球后,球又回到甲手中的传球方法有n a 种.可以想象前1n -次传球,如果每一次传球都

任选其他三人中的一人进行传球,即每次传球都有3种可能,由乘法原理,共有113

33333n n --???=()个…(种)

传球方法.这些传球方法并不是都符合要求的,它们可以分为两类,一类是第1n -次恰好传到甲手中,这有1n a -种传法,它们不符合要求,因为这样第n 次无法再把球传给甲;另一类是第1n -次传球,球不在甲手中,第n 次持球人再将球传给甲,有n a 种传法.根据加法原理,有1113

3333n n n n a a ---+=???=(个…).

由于甲是发球者,一次传球后球又回到甲手中的传球方法是不存在的,所以10a =.

利用递推关系可以得到:2303a =-=,33336a =?-=,4333621a =??-=,533332160a =???-=.

这说明经过5次传球后,球仍回到甲手中的传球方法有60种. 本题也可以列表求解.

由于第n 次传球后,球不在甲手中的传球方法,第1n +次传球后球就可能回到甲手中,所以只需求出第四次传球后,球不在甲手中的传法共有多少种.

从表中可以看出经过五次传球后,球仍回到甲手中的传球方法共有60种.

【答案】60

【巩固】五个人互相传球,由甲开始发球,并作为第一次传球,经过4次传球后,球仍回到甲手中.问:共

有多少种传球方式? 【考点】计数之递推法 【难度】5星 【题型】解答

【解析】 递推法.设第n 次传球后球传到甲的手中的方法有n a 种.由于每次传球有4种选择,传n 次有4n 次

可能.其中有的球在甲的手中,有的球不在甲的手中,球在甲的手中的有n a 种,球不在甲的手中的,下一次传球都可以将球传到甲的手中,故有1n a +种.所以14n n n a a ++=.

由于10a =,所以12144a a =-=,232412a a =-=,343452a a =-=.即经过4次传球后,球仍回到甲手中的传球方法有52种.

【答案】52

点A出发恰好跳10次后落到E的方法总数为种.

【考点】计数之递推法【难度】5星【题型】填空

【关键词】清华附中

【解析】可以使用递推法.

回到A跳到B或H跳到C或G跳到D或F停在E 1步 1

2步 2 1

3步 3 1

4步 6 4 2

5步10 4

6步20 14 8

7步34 14

8步68 48 28

9步116 48

其中,第一列的每一个数都等于它的上一行的第二列的数的2倍,第二列的每一个数都等于它的上一行的第一列和第三列的两个数的和,第三列的每一个数都等于它的上一行的第二列和第四列的两个数的和,第四列的每一个数都等于它的上一行的第三列的数,第五列的每一个数都等于都等于它的上一行的第四列的数的2倍.这一规律很容易根据青蛙的跳动规则分析得来.

所以,青蛙第10步跳到E有48296

?=种方法.

【答案】96

【巩固】在正五边形ABCDE上,一只青蛙从A点开始跳动,它每次可以随意跳到相邻两个顶点中的一个上,一旦跳到D点上就停止跳动.青蛙在6次之内(含6次)跳到D点有种不同跳法.

【考点】计数之递推法【难度】5星【题型】填空

A

B

E

C D

【解析】采用递推的方法.列表如下:

跳到A跳到B跳到C停在D跳到E

1步 1 1

2步 2 1 1

3步 3 1 2

4步 5 3 2

5步8 3 5

6步13 8 5

其中,根据规则,每次可以随意跳到相邻两个顶点中的一个上,一旦跳到D点上就停止跳动.所以,每一步跳到A的跳法数等于上一步跳到B和E的跳法数之和,每一步跳到B的跳法数等于上一步跳到A和C的跳法数之和,每一步跳到C的跳法数等于上一步跳到B的跳法数,每一步跳到E的跳法数等于上一步跳到A的跳法数,每一步跳到D的跳法数等于上一步跳到C或跳到E的跳法数.

【答案】12

【例 14】 有6个木箱,编号为1,2,3,……,6,每个箱子有一把钥匙,6把钥匙各不相同,每个箱子

放进一把钥匙锁好.先挖开1,2号箱子,可以取出钥匙去开箱子上的锁,如果最终能把6把锁都打开,则说这是一种放钥匙的“好”的方法,那么“好”的方法共有 种. 【考点】计数之递推法 【难度】5星 【题型】填空 【关键词】迎春杯,中年级组,决赛

【解析】 (法1)分类讨论.如果1,2号箱中恰好放的就是1,2号箱的钥匙,显然不是“好”的方法,所以“好”

的方法有两种情况:

⑴1,2号箱的钥匙恰有1把在1,2号箱中,另一箱装的是3~6箱的钥匙. ⑵1,2号箱的钥匙都不在1,2号箱中.

对于⑴,从1,2号箱的钥匙中选1把,从3~6号箱的钥匙中选1把,共有248?=(种)选法,每一种选法放入1,2号箱各有2种放法,共有8216?=(种)放法.

不妨设1,3号箱的钥匙放入了1,2号箱,此时3号箱不能装2号箱的钥匙,有3种选法,依次类推,可知此时不同的放法有3216??=(种). 所以,第⑴种情况有“好”的方法16696?=(种).

对于⑵,从3~6号箱的钥匙中选2把放入1,2号箱,有4312?=(种)放法.不妨设3,4号箱的钥匙放入了1,2号箱.

此时1,2号箱的钥匙不可能都放在3,4号箱中,也就是说3,4号箱中至少有1把5,6号箱的钥匙.

如果3,4号箱中有2把5,6号箱的钥匙,也就是说3,4号箱中放的恰好是5,6号箱的钥匙,那么1,2号箱的钥匙放在5,6号箱中,有224?=种放法;

如果3,4号箱中有1把5,6号箱的钥匙,比如3,4号箱中放的是5,1号箱的钥匙,则只能是5号箱放6号箱的钥匙,6号箱放2号箱的钥匙,有212?=种放法;

同理,3,4号箱放5,2号箱或6,1号箱或6,2号箱的钥匙,也各有2种放法. 所以,第⑵种情况有“好”的放法()1242222144?++++=(种). 所以“好”的方法共有96144240+=(种).

(法2)递推法.设第1,2,3,…,6号箱子中所放的钥匙号码依次为1k ,2k ,3k ,…,6k .当箱子数为n (2n ≥)时,好的放法的总数为n a .

当2n =时,显然22a =(11k =,22k =或12k =,21k =).

当3n =时,显然33k ≠,否则第3个箱子打不开,从而13k =或23k =,如果13k =,则把1号箱子和3号箱子看作一个整体,这样还是锁着1,2两号钥匙,撬开1,2两号箱子,那么方法有2a 种;当23k =也是如此.于是2n =时的每一种情况对应13k =或23k =时的一种情况,这样就有3224a a ==.

当4n ≥时,也一定有n k n ≠,否则第n 个箱子打不开,从而1k 、2k 、……、1n k -中有一个为n ,不论其中哪一个是n ,由于必须要把该箱子打开才能打开n 号箱子,所以可以将锁着这把钥匙的箱子与第n 号箱子看作1个箱子,于是还是锁着1k 、2k 、……、1n k -这()1n -把钥匙,需要撬开1,2两号箱子,所以每种情况都有1n a -种.所以()11n n a n a -=-. 所以,6542554543225!240a a a a ==?=

=???=?=,即好的方法总数为240种.

【答案】240

开,则说这是一种放钥匙的“好”的方法,那么“好”的方法共有 种.

【考点】计数之递推法 【难度】5星 【题型】填空

【解析】 递推法.设第1,2,3,…,6号箱子中所放的钥匙号码依次为1k ,2k ,3k ,…,6k .当箱子数为n (2n ≥)

时,好的放法的总数为n a .

当2n =时,显然22a =(11k =,22k =或12k =,21k =).

当3n =时,显然33k ≠,否则第3个箱子打不开,从而13k =或23k =,如果13k =,则把1号箱子和3号箱子看作一个整体,这样还是锁着1,2两号钥匙,撬开1,2两号箱子,那么方法有2a 种;当23k =也是如此.于是2n =时的每一种情况对应13k =或23k =时的一种情况,这样就有3224a a ==.

当4n ≥时,也一定有n k n ≠,否则第n 个箱子打不开,从而1k 、2k 、……、1n k -中有一个为n ,不论其中哪一个是n ,由于必须要把该箱子打开才能打开n 号箱子,所以可以将锁着这把钥匙的箱子与第n 号箱子看作1个箱子,于是还是锁着1k 、2k 、……、1n k -这()1n -把钥匙,需要撬开1,2两号箱子,所以每种情况都有1n a -种.所以()11n n a n a -=-. 所以,109829989876543229!=725760a a a a ==?==???????=?,即好的方法总数为725760

种.

【答案】725760

小学奥数知识点归纳和总结

小学奥数知识点归纳和总结 二年级奥数知识点分类: 一、运算符号类 二、规律填数类 三、规律画图类 四、年龄问题类 五、间隔问题类(含植树问题及智力计数) 六、周期问题类 七、有序思考类 八、时钟问题类 九、推理及思维训练类(包含算式类) 十、和差问题类 十一、和倍问题类 十二、差倍问题类 十三、一笔画类 十四、移动变换类 十五、智力趣味类(包含巧切西瓜) 十六、鸡兔同笼类 十七、盈亏问题类 十八、应用类(含数量关系、重叠问题、) 三年级奥数知识点分类: 一、计算类 计算是数学学习的基本知识,也是学好奥数的基础。能否又快又准的算出答案,是历年数学竞赛考察的一个基本点。三年级的计算包括:速算与巧算、数列规律、数列求和、等差数列的和等。 二、应用题类 从三年级起,大量的奥数专题知识都是所有年级所有竞赛考试中必考的重点知识。学生们一定要在各个应用题专题学习的初期打下良好的基础。 (1)和倍、差倍问题: 用线段标识等方法揭示这两类问题中各种数量关系,和倍问题:小数=和÷(倍数+1)。三、差倍问题: 小数=差÷(倍数-1) (2)年龄问题: 教授解决年龄问题的主要方法:和倍、差倍方法;画图线段标示法。 (3)盈亏问题: 介绍盈亏问题的主要形式 (双盈、双亏、一盈一亏) 分配总人数=盈亏总额÷两次分配数之差。 (4)植树问题: 总长、株距、棵树三要素之间的数量关系:总长=株距×段数,封闭图形:棵数=段数不封闭图形:

两头都栽:棵数=段数+1 两头都不栽:棵数=段数-1 一头栽一头不栽:棵数=段数 (5)鸡兔同笼问题: 介绍鸡兔同笼问题的由来和主要形式,揭示鸡兔同笼问题中的数量关系,假设法(6)行程问题: 相遇问题、追及问题等,相遇时间=总路程÷速度和,追及时间=距离÷速度差。 (7)周期问题 (8)还原问题 (9)归一问题 (10)体育比赛中的数学、趣题巧解几何类 三年级学校的学习中就会涉及到一些简单的图形求周长和面积了,那么在奥数中图形问题涉及到的是巧求周长、巧求矩形面积数论类 现在三年级也开始涉及到了数论了,是比较简单的能被2、3、5整除的性质、奇数和偶数、余数与周期问题。 四年级奥数知识点分类: 1.圆周率常取数据 3.14×1=3.14 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.15×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 2.常用特殊数的乘积 125×8=1000 25×4=100 125×3=375 625×16=10000 7×11×13=1001 25×8=200 125×4=500 37×3=111 3.100内质数: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 4.单位换算: 1米=3尺=3.2808英尺=1.0926码 1公里=1000米=2里 1码=3英尺=36英寸 1海里=1852米=3.704里=1.15英里 1平方公里=1000000平方米=100公顷 =4平方里=0.3861平方英里 1平方米=100平方分米=10000平方厘米

小学奥数计数练习题:排列与组合

小学奥数计数练习题:排列与组合经典的排列与组合奥数题及答案 问题:小明所在的班级要选出4名中队长,要求每位同学在选票上写上名字,也能够写自己的名字。结果全班的每位同学都在自己的选票上写了4个互不相同的名字。当小明把同学们的选票收集后发现一个有趣的现象:就是任意取出2张选票,一定有且只有一个人的名字同时出现在2张选票上。请问:小明所在的班级共有多少人? 总体逻辑思路:首先,假设题目所说的情况存有。然后,得出班级人数。最后,构造出一个例子,说明确实存有这种情况。 我们先来证明这个班每个人都恰好都被选了4次。 思路简介:我们首先用反证法证明没有人被选了4次以上。因为平均每人被选了4次,既然没有人被选了4次以上,肯定也不存有被选了4次以下的人。所以,能够得到每个人恰好被选了4次。 首先证明没有人被选了4次以上,我们用反证法。 假设有一个人被选了4次以上(因为很容易证明这个班的人数肯定很多于7人,所以我们能够假设有一个人被选了4次以上),我们设这个人为A同学。接下来我们来证明这种情况不存有。 把所有选择A同学的选票集中到一起,有5张或5张以上。方便起见,我们把这些选票编号,记为A1选票,A2选票,A3选票,A4选票,A5选票,…。意思就是选择A同学的第1张选票,选择A同学的第2张选票,…。 这些选票都选择了A同学。因为任意2张选票有且只有1个人相同,所以这些选票上除了A同学外,其他都是不同的人。 我们还能够证明,这些并不是全部的选票,不是太难,就不证明了。

既然这些(所有选A同学的选票)不是全部的选票,我们再拿一张没有选择A同学的选票。方便起见,称之为B选票。 根据任意2张选票有且只有1个人相同,A1选票上必有一个人和B选票上的一个人是相同的,而且这个人不是A同学。 同样道理,第A2、A3、A4、A5、…上也必有一个人和B选票上的一个人是相同的,而且这个人不是A同学。 因为B选票上只有4个不同的人,而A1、A2、…,的数量大于4.所以,A1、A2、A3、…选票中至少有2张选票,除了A同学外还有一个共同的候选人。根据任意2张选票有且只有1个人相同,我们知道这是不能够的。 所以,没有人被选了4次以上。 因为平均每人被选4次,既然没有人被选4次以上,当然也就不可能有人被选4次以下。 所以,每个人恰好被选了4次!

小学奥数 几何计数 专题

1.掌握计数常用方法; 2.熟记一些计数公式及其推导方法; 3.根据不同题目灵活运用计数方法进行计数. 本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想. 一、几何计数 在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成 2 1223(2)2 n n n ++++= ++……个部分;n 个圆最多分平面的部分数为n(n-1)+2;n 个三角形将平面最多分成3n(n-1)+2部分;n 个四边形将平面最多分成4n(n-1)+2部分…… 在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解. 排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关. 教学目标 知识要点 几何计数

二、几何计数分类 数线段:如果一条线段上有n+1个点(包括两个端点)(或含有n个“基本线段”),那么这n+1个点把这条线段一共分成的线段总数为n+(n-1)+…+2+1条 数角:数角与数线段相似,线段图形中的点类似于角图形中的边. 数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE上有15条线段,每条线段的两端点与点A相连,可构成一个三角形,共有15个三角形,同样一边在BC上的三角形也有15个,所以图中共有30个三角形. 数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n条线段,纵边上共有m条线段,则图中共有长方形(平行四边形)mn个. 例题精讲 【例 1】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层,共用了多少根小 棍?(4级) 【例 2】用3根等长的火柴可以摆成一个等边三角形.如图用这样的等边三角形拼合成一个更大的等边三 角形.如果这个大等边三角形的每边由20根火柴组成,那么一共要用多少根火柴?(4级) 【巩固】用三根火柴可拼成一个小“△”,若用108根火柴拼成如图所示形状的大三角形,请你数一数共有多

小学奥数奥数计数问题

乘法原理:如果完成一件事需要n个步骤,其中,完成第一步有m1 种不同的方法,完成第二步有m2 种不同的方法,…… 完成第n步有m n种不同的方法,那么完成这件事情共有m1 ×m2 ×……×m n种不同的方法。 例1 上海到天津每天有 2 班飞机,4 趟火车,6 班汽车,从天津到北京有 2 班汽车。假期小茗有一次长途旅游,他 从上海出发先到天津,然后到北京,共有多少种走法? 例2 “IMO”是国际奥林匹克的缩写,把这 3 个字母用红、黄、蓝三种颜色的笔来写,共有多少种写法? 【巩固】在日常生活中,人们用来装饭、菜的有餐碗和餐盘,用来吃饭的有餐勺、餐叉和餐筷。如果一种装饭菜的和一种吃饭的餐具配作一套,那么以上这些可以组成不重复的餐具多少套? 例3 小红、小明准备在5×5的方格中放黑、白棋子各一枚,要求两枚不同的棋子不在同一行也不在同一列,共有多少种方法? 【巩固】右图中共有 16 个方格,要把 A、B、C、D 四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?

例4 用数字0,1,2,3,4,组成三位数,符合下列条件的三位数各多少个? ①各个位上的数字允许重复;②各个位上的数字不允许重复; 【巩固】由数字 0、1、2、3 组成三位数,问:①可组成多少个不同的三位数?②可组成多少个没有重复数字的三位数? 【拓展】由数字 1、2、3、4、5、6 共可组成多少个没有重复数字的四位奇数? 例5 把1~100 这100 个自然数分别写在100 张卡片上,从中任意选出两张,使他们的差为奇数的方法有多少种? 小结:应用乘法原理解决问题时要注意: ①做一件事要分成几个彼此互不影响的独立的步骤来完成; ②要一步接一步的完成所有步骤; ③每个步骤各有若干种不同的方法。 加法原理:一般地,如果完成一件事有 k 类方法,第一类方法中有 m1 种不同做法,第二类方法中有 m2 种不同做法,…,第 k 类方法中有 mk 种不同的做法,则完成这件事共有:N=m1+m2+…+mk种不同的方法.例6 学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150 本,不同的科技书200 本,不同的小说100 本.那么,小明借一本书可以有多少种不同的选法?

小学奥数中的涂色问题

小学奥数中的涂色问 题 Revised on November 25, 2020

涂色问题的常见方法 与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。 一、区域涂色问题 1、根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本 方法。 例1、用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种 4种方法,接着给③号涂色方法有34种涂法,根据分步计数原理,不同的涂色方法有5434240 ???= 2、根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再 用加法原理求出不同的涂色方法种数。 例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有4 4 A; ① ②③④ ⑤⑥

(2)③与⑤同色、④与⑥同色,则有4 4A ; (3)②与⑤同色、③与⑥同色,则有44A ; (4)③与⑤同色、② 与④同色,则有4 4A ;(5)②与④同色、③与⑥同 色,则有44A ; 所以根据加法原理得涂色方法总数为54 4A =120 例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4 2) 区域3与5必须同色,故有3 4A 种; 3) 当用四种颜色时,若区域2与4同色, 4) 则区域3与5不同色,有4 4A 种;若区域3与5同色,则区域2与 4不同色,有44A 种,故用四种颜色时共有24 4A 种。由加法原理可知满足题意的着色方法共有34A +244A =24+2 24=72 3、根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。

小学奥数数论专题知识总结

数论基础知识 小学数论问题,起因于除法算式:被除数÷除数=商……余数 1.能整除:整除,因数与倍数,奇数与偶数,质数与合数,公因数与公倍数,分解质因数等; 2.不能整除:余数,余数的性质与计算(余数),同余问题(除数),物不知数问题(被除数)。 一、因数与倍数 1、因数与倍数 (1)定义: 定义1:若整数a能够被b整除,a叫做b的倍数,b就叫做a的因数。 定义2:如果非零自然数a、b、c之间存在a×b=c,或者c÷a=b,那么称a、b是c的因数,c是a、b 的倍数。 注意:倍数与因数是相互依存关系,缺一不可。(a、b是因数,c是倍数) 一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。 一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。 (2)一个数的因数的特点: ①最小的因数是1,第二小的因数一定是质数; ②最大的因数是它本身,第二大的因数是:原数÷第二小的因数 (3)完全平方数的因数特征: ①完全平方数的因数个数是奇数个,有奇数个因数的数是完全平方数。 ②完全平方数的质因数出现次数都是偶数次; ③1000以内的完全平方数的个数是31个,2000以内的完全平方数的个数是44个,3000以内的完 全平方数的个数是54个。(312=961,442=1936,542=2916) 2、数的整除(数的倍数) (1)定义: 定义1:一般地,三个整数a、b、c,且b≠0,如有a÷b=c,则我们就说,a能被b整除,或b能整除a,或a能整除以b。 定义2:如果一个整数a,除以一个整数b(b≠0),得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。(a≥b) (2)整除的性质: 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。 如果a能被b整除,c是整数,那么a×c也能被b整除。 如果a能被b整除,b又能被c整除,那么a也能被c整除。 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。 (3)一些常见数的整除特征(倍数特征): ①末位判别法 2、5的倍数特征:末位上的数字是2、5的倍数。 4、25的倍数特征:末两位上的数字是4、25的倍数。 8、125的倍数特征:末三位上的数字是8、125的倍数。 ②截断求和法(从右开始截) 9(及其因数3)的倍数特征:一位截断求和 99(及其因数3、9、11、33)的倍数特征:两位截断求和 999(及其因数3、9、27、37、111、333)的倍数特征:三位截断求和 ③截断求差法(从右开始截) 11的倍数特征:一位截断求差 101的倍数特征:两位截断求差 1001(及其因数7、11、13、77、91、143)的倍数特征:三位截断求差

小学奥数知识点汇总基础知识点

小学奥数知识点汇总 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等

22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等

小学奥数30个经典知识点汇编大全知识分享

小学奥数知识点汇编大全(含30个经典知识模块) 1.和差倍问题 和差问题和倍问题差倍问题 已知条件几个数的和与差几个数的和与倍数几个数的差与倍数 公式适用范围已知两个数的和,差,倍数关系 公式①(和-差)÷2=较小数 较小数+差=较大数 和-较小数=较大数 ②(和+差)÷2=较大数 较大数-差=较小数 和-较大数=较小数 和÷(倍数+1)=小数 小数×倍数=大数 和-小数=大数 差÷(倍数-1)=小数 小数×倍数=大数 小数+差=大数 关键问题求出同一条件下的 和与差和与倍数差与倍数 2.年龄问题的三个基本特征: ①两个人的年龄差是不变的; ②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是发生变化的; 3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。 关键问题:根据题目中的条件确定并求出单一量; 4.植树问题 基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树 基本公式棵数=段数+1 棵距×段数=总长棵数=段数-1 棵距×段数=总长棵数=段数

棵距×段数=总长 关键问题确定所属类型,从而确定棵数与段数的关系 5.鸡兔同笼问题 基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来; 基本思路: ①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样): ②假设后,发生了和题目条件不同的差,找出这个差是多少; ③每个事物造成的差是固定的,从而找出出现这个差的原因; ④再根据这两个差作适当的调整,消去出现的差。 基本公式: ①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数) 关键问题:找出总量的差与单位量的差。 6.盈亏问题 基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量. 基本题型: ①一次有余数,另一次不足; 基本公式:总份数=(余数+不足数)÷两次每份数的差 ②当两次都有余数; 基本公式:总份数=(较大余数一较小余数)÷两次每份数的差 ③当两次都不足; 基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差 基本特点:对象总量和总的组数是不变的。 关键问题:确定对象总量和总的组数。 7.牛吃草问题 基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。 基本特点:原草量和新草生长速度是不变的; 关键问题:确定两个不变的量。 基本公式: 生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);

小学奥数50道练习题及答案解析

小学奥数50道练习题及答案解析 50道奥数题及答案解析 1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元? 2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克? 3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米? 4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱? 5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计) 6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组? 7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的

存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨? 8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米? 9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米? 11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃? 12.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队? 13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克? 14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回

人教版小学数学知识点大全

小学数基础知识点大全一 正整数: 用来表示物体个数的1、2、3、4、5……叫做正整数。相邻的两个正数整数之间相差1。0: 0是一个数,是一个自然数,也是一个整数,但不是正整数或负整数。 0既可以表示“没有”,也可以作为某些数量的界限,如0o C等。 0是一个偶数。0不能作除数,不能作分母,也不能作比的后项。 负整数: 像-l、-2、-3、-4、-5……这样的数就叫做负整数。相邻的两个负整数之间也是相差1。整数:像…,-3,-2,-1,0,1,2,3,…这样的数统称整数。 整数包括负整数、0和正整数。 整数的个数是无限的。自然数是整数的一部分。 自然数:用来表示物体个数的0、l、2、3、4、5、6、7……叫做自然数。自然数包括0和正整数。 正数:正数包括正整数、正分数、正小数、正百分数等。 负数:负数包括负整数、负分数、负小数、负百分数等。负数可以表示相反意义的量。 数对:用数对表示位置时,第一个数表示列,第二个数表示行。 数的读法和写法: 读、写者都要从高位到低位,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个0。不管读和写都要进行分级。如534007000602读作:五千三百四十亿零七百万零六百零二 分数:表示把“单位1”平均分成若干份,表示这样的一份或几份的数,叫做分数。表示其 中一份的数叫做分数单位。例如:7 12的分数单位是1 12 ,它有7个这样的分数单位。 真分数:分子比分母小的分数叫真分数。真分数小于1。

假分数:分子大于或等于分母的分数叫做假分数。假分数大于或等于1。 带分数:一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。 分数的基本性质: 一个分数的分子、分母同时乘上或除以相同的数(零除外),分数的大小不变,这叫做分数的基本性质。 小数:小数是分数的一种特殊形式。但是不能说小数就是分数。 循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。 纯循环小数:循环节从小数部分第一位开始的循环小数,叫做纯循环小数。例如0.3g、0.24g g 混循环小数:循环节不是从小数部分的第一位开始循环的循环小数,叫混循环小数。例如0.25g、 g g 0.423 有限小数:小数的小数部分的位数是有限的,这样的小数叫做有限小数。 无限小数:小数的小数部分的位数是无限的,这样的小数叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率 也是无限小数,它是无限不循环小数。小数的基本性质: 小数的末尾添上0或去掉0,小数的大小不变,这叫做小数的基本性质。小数的基本性质与分数的基本性质是一致的。 小学数基础知识点大全二 减法:被减数-减数=差。减法是加法的逆运算。 乘法:求几个相同加数的和的简便运算,叫做乘法。因数×因数=积 除法:被除数÷除数=商。除法是乘法的逆运算。 加、减法的运算定律: 加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c) 减法的运算定律:a-b-c=a-(b+c)

小学二年级奥数第二讲 数数与计数(一)练习+答案

第二讲数数与计数(一) 数学需要观察.大数学家欧拉就特别强调观察对于数学发现的重要作用,认为“观察是一件极为重要的事”.本讲数数与计数的学习有助于培养同学们的观察能力.在这里请大家记住,观察不只是用眼睛看,还要用脑子想,要充分发挥想像力. 例1 数一数,图2-1和图2-2中各有多少黑方块和白方块? 解:仔细观察图2-1,可发现黑方块和白方块同样多.因为每一行中有4个黑方块和4个白方块,共有8行,所以: 黑方块是:4×8=32(个) 白方块是:4×8=32(个) 再仔细观察图2-2,从上往下看: 第一行白方块5个,黑方块4个; 第二行白方块4个,黑方块5个; 第三、五、七行同第一行, 第四、六、八行同第二行; 但最后的第九行是白方块5个,黑方块4个.可见白方块总数比黑方块总数多1个. 白方块总数:5+4+5+4+5+4+5+4+5=41(个) 黑方块总数:4+5+4+5+4+5+4+5+4=40(个) 再一种方法是: 每一行的白方块和黑方块共9个.

共有9行,所以,白、黑方块的总数是: 9×9=81(个). 由于白方块比黑方块多1个,所以白方块是41个,黑方块是40个. 例2 图2-3所示砖墙是由正六边形的特型砖砌成,中间有个“雪花”状的墙洞,问需要几块正六边形的砖(图2-4)才能把它补好? 解:仔细观察,并发挥想象力可得出答案,用七块正六边形的砖可把这个墙洞补好.如果动手画一画,就会看得更清楚了. 例3将8个小立方块组成如图2-5所示的“丁”字型,再将表面都涂成红色,然后就把小立方块分开,问: (1)3面被涂成红色的小立方块有多少个? (2)4面被涂成红色的小立方块有多少个? (3)5面被涂成红色的小立方块有多少个? 解:如图2-6所示,看着图,想像涂色情况.当把整个表面都涂成红色后,只有那些“粘在一起”的面(又叫互相接触的面),没有被涂色.每个小立方体都有6个面,减去没涂色的面数,就得涂色的面数.每个小立方体涂色面数都写在了它的上面,参看图2-6所示.

小学奥数教师版-7-1-1 加法原理之分类枚举(一)

7-1-1.加法原理之分类枚举(一) 教学目标 1.使学生掌握加法原理的基本内容; 2.掌握加法原理的运用以及与乘法原理的区别; 3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则. 加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致. 知识要点 一、加法原理概念引入 生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决. 例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法? 分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法. 在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数. 二、加法原理的定义 一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理. 加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”. 分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则: 1完成这件事的任何一种方法必须属于某一类; 2分别属于不同两类的两种方法是不同的方法. 只有满足这两条基本原则,才可以保证分类计数原理计算正确. 运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”. 三、加法原理解题三部曲 1、完成一件事分N 类; 2、每类找种数(每类的一种情况必须是能完成该件事); 3、类类相加 枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.

小学奥数知识总结手册

小学(数学)奥数知识总结手册 目录 1、和差倍问题 2、年龄问题的三个基本特征: 3、归一问题的基本特点: 4、鸡兔同笼问题 5、植树问题 6、盈亏问题 7、牛吃草问题 8、周期循环与数表规律 9、平均数 9、抽屉原理 10、定义新运算 11、加法乘法原理和几何计数 12、数列求和 13、二进制及其应用 14、质数与合数 15、约数与倍数 16、余数及其应用 17、余数、同余与周期 18、数的整除 19、分数与百分数的应用 20、分数拆分 21、分数大小的比较 22、完全平方数 23、比和比例 24、综合行程 25、工程问题 26、逻辑推理 27、立体图形 28、几何面积 29、时钟问题—快慢表问题

30、时钟问题—钟面追及 31、浓度与配比 32、经济问题 33、简单方程 34、不定方程 35、循环小数 1、和差倍问题 2、年龄问题的三个基本特征: ①两个人的年龄差是不变的; ②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是发生变化的; 3、归一问题的基本特点: 问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。关键问题:根据题目中的条件确定并求出单一量; 4、鸡兔同笼问题 基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

基本思路: ①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样): ②假设后,发生了和题目条件不同的差,找出这个差是多少; ③每个事物造成的差是固定的,从而找出出现这个差的原因; ④再根据这两个差作适当的调整,消去出现的差。 基本公式: ①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) ②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数) 关键问题:找出总量的差与单位量的差。 5、植树问题 6、盈亏问题 基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量. 基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量. 基本题型: ①一次有余数,另一次不足; 基本公式:总份数=(余数+不足数)÷两次每份数的差 ②当两次都有余数; 基本公式:总份数=(较大余数一较小余数)÷两次每份数的差 ③当两次都不足; 基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差 基本特点:对象总量和总的组数是不变的。 关键问题:确定对象总量和总的组数。

【小学数学】小学奥数所有知识点大汇总(最全)

1.和差倍问题 和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数一、和差倍问题 (一)和差问题:已知两个数的和及两个数的差 ;求这两个数。 方法① :(和-差)÷2= 较小数 ;和 -较小数 =较大数 方法② :(和+ 差)÷2=较大数 ;和- 较大数 =较小数 例如:两个数的和是 15;差是 5; 求这两个数。方法:(15-5)÷2=5 (; 15+5)÷2=10 . (二)和倍问题:已知两个数的和及这两个数的倍数关系;求这两个数。 方法:和÷(倍数 +1)=1 倍数(较小数) 1 倍数(较小数)×倍数 = 几倍数(较大数) 或和 -1 倍数(较小数) = 几倍数(较大数) 例如:两个数的和为 50;大数是小数的 4 倍 ;求这两个数。 方法: 50÷( 4+1) =10 10×4=40 (三)差倍问题:已知两个数的差及两个数的倍数关系 ;求这两个数。 方法:差÷(倍数 -1 )=1 倍数(较小数) 1 倍数(较小数)×倍数 = 几倍数(较大数) 或和 -倍数(较小数) =几倍数(较大数) 例如:两个数的差为 80;大数是小数的 5 倍 ;求这两个数。 方法: 80÷( 5-1)=20 20×5=100 和与差和与倍数差与倍数 2.年龄问题的三个基本特征: ①两个人的年龄差是不变的 ; ②两个人的年龄是同时增加或者同时减少的 ;

③两个人的年龄的倍数是发生变化的 ; 两人年龄的倍数关系是变化的量 ; 解答年龄问题的一般方法是: 几年后年龄 =大小年龄差÷倍数差 -小年龄 ; 几年前年龄 =小年龄 -大小年龄差÷倍数差. 3.归一问题的基本特点:问题中有一个不变的量 ;一般是那个“单一量”题;目一般用“照这样的速度”??等词语来表示。 关键问题:根据题目中的条件确定并求出单一量 ; 4.植树问题 基本类型在直线或者不封闭的曲线上植树;两端都植树在直线或者不封闭的曲线上植 树 两端都不植树在直线或者不封闭的曲线上植树;只有一端植树封闭曲线上植树 三、植树问题 (一)不封闭型(直线)植树问题 1、直线两端植树:棵数 =段数 +1=全长÷株距+1 ; 全长=株距×(棵数-1 ); 株距=全长÷(棵数-1 ); 2、直线一端植树:全长=株距×棵数; 棵数 =全长÷株距 ; 株距 =全长÷棵数 ; 3 、直线两端都不植树:棵数 =段数-1= 全长÷株距 -1 ; 株距=全长÷(棵数 +1 ) (二)封闭型(圆、三角形、多边形等)植树问题 棵数 =总距离÷棵距; 总距离 =棵数×棵距;

小学奥数计数知识练习题整理

小学奥数计数知识练习题整理 整理的相关资料,希望对您有所帮助。 【篇一】 小虫爬行 小格纸上有一只小虫,从直线AB上一点O出发,沿方格纸上的横线或竖线爬行.方格纸上每小段的长为1厘米.小虫爬过若干小段后仍回到直线AB上,但不一定回到O点.如果小虫一共爬过3厘米,那么小虫爬行路线有多少种? 考点:加法原理. 分析:当小虫第一步向上爬行时,第二步有三个可行的方向:向下、向左或向右.若第二步向下,则第三步有左、右两个方向;若第二步向左或向右,则第三步都只能向下.故共有2+1+1=4(种)路线.显然小虫第一步向下爬行也有4种路线. 当小虫第一步向左爬行时,它的第二步可以有四个方向.当它第二步向上或向下时,第三步只能向下或向上一种选择;当它第二步向左或向右时,都还有向左向右两种选择.故一共有2+2×2=6(种)路线.显然当小它第一步向右爬行时,也有6种路线. 综上所述,小虫可以选择路线一共有4×2+6×2=20(种). 解答:解:4×2+6×2 =8+12 =20(种). 答:小虫爬行路线有20种. 点评:考查了加法原理,解题的关键是按照题目的要求,渐次地寻找到不同走法的种数,并在相应的位置上记录下来. 【篇二】 计数类问题:加法原理奥数题专项训练 加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么

完成这件任务共有:m1+m2.......+mn种不同的方法。 关键问题:确定工作的分类方法。 基本特征:每一种方法都可完成任务。 如果一个大于9的整数,其每个数位上的数字都比它右边数位上的数字小,那么我们称它为”迎春数”.那么,小于2008的”迎春数”共有个。 【答案解析】 这是一道组合计数问题. 方法一:枚举法――按位数分类计算. 一、两位数中,”迎春数”个数 (1)十位数字是1,这样的”迎春数”有12,13,…,19,共8个; (2)十位数字是2,这样的”迎春数”有23,…,29,共7个; (3)十位数字是3,这样的”迎春数”有34,…,39,共6个; (4)十位数字是4,这样的”迎春数”有45,…,49,共5个; (5)十位数字是5,这样的”迎春数”有56,…,59,共4个; (6)十位数字是6,这样的”迎春数”有67,68,69,共3个; (7)十位数字是7,这样的”迎春数”有78,79,共2个; (8)十位数字是8,这样的”迎春数”只有89这1个; (9)没有十位数字是9的两位的”迎春数”; 所以两位数中,”迎春数”共有36个. 二、三位数中,”迎春数”个数 (1)百位数字是1,这样的”迎春数”有123-129,134-139,…,189,共28个; (2)百位数字是2,这样的”迎春数”有234-239,…,289,共21个; (3)百位数字是3,这样的”迎春数”有345-349,…,389,共15个; (4)百位数字是4,这样的”迎春数”有456-459,…,489,共10个; (5)百位数字是5,这样的”迎春数”有567-569,…,589,共6个; (6)百位数字是6,这样的”迎春数”有678,679,689,共3个; (7)百位数字是7,这样的”迎春数”只有789,这1个; (8)没有百位数字是8,9的三位的”迎春数”;

小学奥数计数原理

计数原理 知识纵横: 如果完成一件事情,有几类不同的方法,而且每类方法中又有几种可能的方法,那么求完成这件事的方法总数,即各类方法的总和,就是我们要掌握的加法原理。 加法原理:完成某件事情,如果有几类方法,而在第一类方法中有m1种方法,第二类方法中有m2种方法……第n类有m n种,那么完成这件事的方法总数可以表示为m1+ m2+ m3+…+m n。 完成一件事,需要分几个步骤来完成,而完成每步又有几种不同的方法,要求完成这件事的方法的总数,应当将各步骤方法总数相乘,这就是我们应掌握的乘法原理。 乘法原理:完成一件事需要分成几个步骤,第一步有m1种方法,第二步有m2种方法,第三步有m3种方法……第n步有m n种方法,那么完成这件事共有m1×m2×m3×…×m n种不同的方法。 例题求解: 【例1】 10个人进行乒乓球比赛,每两个人之间比赛一场,问:一共要比赛多少场? 【例2】一天有6节不同的课,这一天的课表有多少种排法? 【例3】 1000至1999这些自然数中,个位数大于百位数的有多少个? 【例4】 4只鸟飞入4个不同的笼子里,每只小鸟都有自己的一个笼子(不同的鸟,笼子也不同),每个笼子只能进一只鸟。若都不飞进自己的笼子里去,有种不同的飞法。 【例5】如果组成三位数abc的三个数字a,b,c中,有一个数字是另外两个数字的乘积,则称它为“特殊数”。在所有的三位数中,共有个“特殊数”。

【例6】如下图所示,用红、绿、蓝、黄四种颜色,涂编号为1、2、3、4的长方形,使任何相邻的两个长方形的颜色都不相同,一共有多少种不同的涂法? 【例7】恰有两位数字相同的三位数共有多少个? 基础夯实 1、一件工作可以用3种方法完成,有5人会用第1种方法完成,有4人会用第2种方法完成,有6人会用第3种方法完成。选出一个人来完成这项工作共有多少种选法? 2、一件工序可以分3步方法完成,有5人会做第1步,有4人会做第2步,有6人会做第3步,每个人只会做一步。选出三个人来完成这组工序共有多少种选法? 3、用1、2、3、 4、5这五个数字组成的不含重复数字的四位数有多少个?其中有多少个偶数? 4、有20个队参加篮球比赛,比赛先分三组,第一组7个队,第二组6个队,第三组7

(完整版)小学数学必背知识点汇总汇总

小学数学必背知识点汇总 基本性质 ※小数的基本性质:在小数末尾添上零或者去掉零,小数的大小不变。 ※分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。 ※比的基本性质:比的前项和后项都乘以或者除以相同的数(零除外),比值不变。 ※比例的基本性质:在比例里,两个外项的积等于两个内项的积。 ※比例尺=图上距离÷实际距离(单位要相同) ※商不变的性质:在除法里,被除数和除数都乘以或者除以相同的数(零除外),商的大小不变。 一.公式 长方体有12条棱:4条长,4条宽,4条高,六个面; 正方本有12条棱:每条棱都相等,有六个面,每个面都相等。 长立方体体积=长×宽×高正方体体积=棱长×棱长×棱长圆柱体体积=半径2× ×高

圆锥体体积=半径2× ×高 × 税后利息=本金×存款时间×利率×(1-20%)二.运算意义

三.运算定律及性质 加法交换律:a +b =b +a 加法结合律:a +b +c =a +(b+c 加减法的速算法:a -b =a -c -d 、 a+b =a +c +d 减法的性质:a -b -c =a -(b +c )乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c 乘法分配律:(a+b ×c=a×c+b×c 积不变的性质:a×b=(a×c×( b÷c 除法的性质:a÷b÷c=a÷(b×c 商不变的性质:a÷b=(a÷c ÷(b÷c、a÷b=(a×c ÷(b×c 四.数的整除 1.约数和倍数:如果数 a 能被数 b 整除,a 就叫做 b 的倍数,b 就叫做 a 的约数。 (如:20÷5=4 20是5的倍数;5是20的约数)

相关主题
文本预览
相关文档 最新文档