当前位置:文档之家› 铝合金材料论文材料成型论文

铝合金材料论文材料成型论文

铝合金材料论文材料成型论文
铝合金材料论文材料成型论文

铝合金材料在锻造中的应用

1 引言

铝是地壳中分布最广、储量最多的金属元素之一。铝工业的整个发展历史不过两百年,但由于铝及铝合金具有一系列优异特性,发展速度非常快,已广泛应用于交通运输、包装容器、建筑装饰、航空航天、机械电气等行业,成为发展国民经济与提高人民物质生活和文化生活水平的重要基础材料。铝及铝合金材料的主要加工方法有:铸造、锻造、冲压、挤压以及深加工。近年来,随着对节能、环保、安全要求的不断提升,锻造铝业呈现增长态势。以日本为例,2004年锻造铝悬挂部件产品数量达到了2000年的5倍,用铝减轻汽车重量的策略已经从汽车发动机部分扩展到车身部分[1]。

2 铝合金锻造的优越性

2.1 重量轻。铝的密度为2.7 kg/dm3,与铜(密度为8.9 kg/dm3)或铁(密度为7.8 kg/dm3)比较,约为它们的1/3。在相同条件下,铝合金车身与含铜耐磨钢车身相比,重量可减轻35%以上。由于重量减轻,在同样牵引力的条件下,铝合金车体可增加运量10%,节能9.6%—12.5%[2]。所以铝及铝合金材料是航空航天和现代交通运输轻量化、高速化的关键材料。

2.2 强度好。虽然纯铝的力学性能不如钢铁,但其比强度高,可以添加铜、镁、锰、铬等合金元素,制成铝合金并经热处理后而得到较高的强度。

2.3 加工容易。铝及铝合金不仅可以切削加工,还可以进行塑性加工。铝的延展性优良,易于挤出形状复杂的中空型材,适于拉伸加工及其他各种冷热塑性成形。目前许多铝合金都可以锻造,包括2000系列/7000系列高强度合金、6000系列/5000系列抗腐蚀合金和4000系列耐磨合金[2]。铝合金材料可

以在液压机和机械压力机上锻造,液压机速度慢,适合锻造形状复杂或者较薄的零件;机械压力机速度快,适合锻造大锻件。铝合金锻件内部质量高,力学性能好,具有高可靠性。

2.4 美观,适于各种表面处理。铝及铝合金表面有氧化膜,呈银白色,相当美观。如果经过氧化处理,其表面的氧化膜更牢固。而且还可以用染色和涂刷等方法,制造出各种颜色和光泽的表面。

此外,铝及铝合金还具有耐腐蚀性、良好的导热性和导电性、良好的耐药性等优点。

3 锻造用铝合金的应用

锻造铝的传统应用主要集中在跑车或低油耗的汽车上,制造的部件有活塞、轮圈、气门拨杆、悬挂件等重要结构受力件。由于材料成本高、制造工艺复杂而导致锻造铝件生产成本上升,从而阻碍了锻造铝件的应用。目前许多国家都在积极研发高强度材料,研究锻造工艺,以降低锻造铝件生产成本。

3.1 锻造铝在汽车轮圈上的应用

自美国铝业公司采用高强度、抗腐蚀的铝合金,用锻造工艺生产铝合金轮圈推向市场以来,其优良的性能受到市场的广泛关注。经过几年的发展,锻造铝合金轮圈不仅应用于小汽车、摩托车,而且已成功应用于货车、大客车等重型车。汽车锻造铝合金轮圈与传统的钢轮圈及铸造铝轮圈相比具有以下的性能优点:a.锻造(含锻旋)铝合金轮圈的机械性能比铸造铝合金轮圈高。与铸铝轮圈相比,其优点见下表:

b.用锻造、锻旋工艺生产的铝合金轮圈重量轻,与铸造铝轮圈相比,重量可减轻25%-30%。减轻了汽车的自重,行车时的控制性好。可以节省燃油、减少污染,提高车辆性能,用于货车可增加载货量。

c.锻造铝合金轮圈的散热性好,其温度比钢轮圈平均低25%,可降低热量对轮胎的损害,据国外报道,一辆重型车一年可节省轮胎费用5 000美元。由于锻造铝合金轮圈温度低,可延长刹车系统的寿命,提高刹车效率和安全性。

d.锻造铝合金轮圈圆度好,轮胎耐磨性强、不易漏气。

e.据国外资料报道,安装在钢轮圈的新轮胎每只约230-260美元,平均运驶5万公里以后不能翻新;安装在锻造铝合金轮圈上的新轮胎,每只翻新费用为100美元,行驶5万公里以后,可再翻新两次。

f.锻造铝合金轮圈晶粒组织细密,可得到最好的表面处理效果,能保持洁白外观,不易腐蚀。

3.2 锻造铝在悬臂零件中的应用

传统悬挂零件大多为铸铁件,用铝替代铸铁可减轻重量,在制造工艺上就由铝锻造、铸造锻造复合工艺代替了铸铁工艺。有两种6000系列的铝合金通常应用在锻造铝悬臂零件上,常用的铝合金材料为6061。采用6061铝合金锻造工艺生产的悬臂零件比铸铁件减轻大约35%-40%的重量,比铸铝件减轻25%的重量。锻造铝悬臂件的强度比铸造铝高,而且其延展性和韧性也比铸造铝好,锻造还可以使材料得到可靠的内部质量。铝合金锻造与铸造复合制造也是常用的可获得高性能产品的方法。这种工艺首先熔化金属,然后精炼和去除杂质,以一定速度保持内外温度统一冷却,材料铸造成棒材。在这种情况下,铸造的冷却速度比一般低高压铸造的冷却速度要快,铸造环境也要更稳定。生产的坯

料质量高,而后经过锻造成形,锻造生产的产品内部质量高,可以制造出高强度、高韧性和高可靠性的悬臂零件。目前,部分汽车下臂、上臂、横梁、转向节以及盘式制动器卡爪已采用铝合金锻件,这在轻量化和减少振动上取得了很大进展,今后有进一步发展的倾向[2]。

3.3 锻造铝在摩托车工业中的应用

锻造铝合金代替钢材生产摩托车零部件不仅不增加材料成本,而且还可以使摩托车的自重减轻、能耗下降、运输能力提高,使摩托车更具市场竞争力。近几年来,由于强度和重量减轻的要求,摩托车许多部件包括轮毂、活塞、主轴和连杆等受力部件和转动部件都是改用包括钛合金或铝合金在内的轻金属锻件。以摩托车活塞为例:制造活塞除了需要考虑其重量、强度特性外,还要考虑其滑动性能、热传导系数和线膨胀系数等特性,综合这些因素,在摩托车上采用锻铝活塞最合适了。传统的铸铝件已经应用很多年了,最近其锻铝件应用正在迅猛增加。实践证明,使用锻铝活塞发动机功率可以增强10%[3]。

3.4 铝合金的粉末锻造

铝合金的粉末锻造是粉末冶金与塑性加工的组合技术,是利用传统的粉末冶金法于室温完成预成形体之后,再将之加热以热锻消除预成形体的孔洞而做成坯料或最终制品。与粉末挤出法比较起来,并不需要大型的挤压设备,材料成品率高、成形后的切削也少,因此生产的总耗能得以下降,可以降低制造成本。汽油发动机用活塞目前所要求的性能用铝合金铸造法大致就可以满足了,但要满足发动机的高输出性能以及提高内燃机效率、减少废气排放、降低噪音等高标准要求,则以铸造为基础的技术显然难以达到。研究表明:用高强度铝合金粉末锻造的活塞可以将传统技术不能同时实现的轻量化和高性能化成为可能。

急冷凝固铝合金具有高温强度与疲劳强度俱优的特点,若用它做锻造铝合金活塞材料,位于低温部位的活塞销孔凸台与活塞裙部就不用说,位于高温处的活塞头与环槽岸厚度也可以大大降低,活塞整体的轻量化设计就变得可行。目前,高强度铝合金粉末锻造的活塞已进入实用化阶段。以铝合金粉末锻造法开发的高强度高韧性铝合金适用于飞机、运输车辆的高强度与耐久性的零件与高速运动零件制造。

4 铝合金锻造的发展方向

随着技术的进步和新型铝合金材料的开发利用,锻造铝产品将会有更大的提升空间,铝合金锻件必将得到更广泛的应用。锻造铝的发展方向为:复合材料锻件;粉末冶金和喷射成型的高强耐热合金锻件;超高强、高韧性航空航天结构锻件;超大型高性能模锻件;高强、超薄精密锻件;高精度多向模锻件;具有特种性能或功能的大型模锻件。

目前,我国已掀起了铝加工发展的第三次高潮,在建和拟建大批具有一定规模和高装备水平的挤压生产线、精密模锻生产线、深加工生产线,同时大力开发新产品和新技术,不断提高质量,提高生产效率和经济效益。可以预料,铝及铝合金工业将成为我国的支柱产业之一,我国将成为世界铝及铝工业大国、强国。

材料成型及控制工程专业毕业设计(论文)外文翻译

中文2500字 本科毕业设计翻译 学生姓名:***** 班级:*****班 学号:***** 学院:材料科学与工程学院 专业:材料成型及控制工程 指导教师:***** 副教授 2011年3月25日

Section 4 – Die Design and Construction Guidelines for HSS Dies General Guidelines for Die Design and Construction Draw Dies Higher than normal binder pressure and press tonnage is necessary with H.S.S. in order to maintain process control and to minimize buckles on the binder. Dies must be designed for proper press type and size. In some cases, a double action press or hydraulic press cushion may be required toachieve the necessary binder forces and control. Air cushions or nitrogen cylinders may not provide the required force for setting of draw beads or maintaining binder closure if H.S.S. is of higher strength or thickness. Draw beads for H.S.S. should not extend around corners of the draw die. This will result in locking out the metal flow and cause splitting in corners of stamping. D raw beads should “run out” at the tangent of the corner radius to minimize metal compression in corners, as shown in figure 16 on page 47. Better grades of die material may be necessary depending on the characteristics of the HSS, the severity of the part geometry, and the production volume. A draw die surface treatment, such as chrome plating, may be recommended for outer panel applications. Form and Flange Dies Part setup in form and flange dies must allow for proper overbend on all flanges for springback compensation. Springback allowance must be increased as material strength increases; 3 degrees for mild steels, but 6 degrees or more

材料成型基础论文

材料成型基础论文------铸造工艺之砂型铸造 铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。铸造毛坯因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了时间.铸造是现代制造工业的基础工艺之一。铸件自浇注冷却的铸型中取出后,有浇口、冒口及金属毛刺披缝,砂型铸造的铸件还粘附着砂子,因此必须经过清理工序。进行这种工作的设备有抛丸机、浇口冒口切割机等。砂型铸件落砂清理是劳动条件较差的一道工序,所以在选择造型方法时,应尽量考虑到为落砂清理创造方便条件。有些铸件因特殊要求,还要经铸件后处理,如热处理、整形、防锈处理、粗加工等。 铸造是比较经济的毛坯成形方法,对于形状复杂的零件更能显示出它的经济性。如汽车发动机的缸体和缸盖,船舶螺旋桨以及精致的艺术品等。有些难以切削的零件,如燃汽轮机的镍基合金零件不用铸造方法无法成形。另外,铸造的零件尺寸和重量的适应范围很宽,金属种类几乎不受限制;零件在具有一般机械性能的同时,还具有耐磨、耐腐蚀、吸震等综合性能,是其他金属成形方法如锻、轧、焊、冲等所做不到的。因此在机器制造业中用铸造方法生产的毛坯零件,在数量和吨位上迄今仍是最多的。 铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。 铸造机械一般按造型方法来分类,习惯上分为普通砂型铸造和特种铸造。普通砂型铸造包括湿砂型、干砂型、化学硬化砂型铸造三类。特种按造型材料的不同,又可分为两大类:一类以天然矿产砂石作为主要造型材料,如熔模铸造、壳型铸造、负压铸造、泥型铸造、实型铸造、陶瓷型铸造等;一类以金属作为主要铸型材料,如金属型铸造、离心铸造、连续铸造、压力铸造、低压铸造等。 铸造工艺有与其他工艺不同的特点,主要是适应性广、需用材料和设备多、污染环境。铸造工艺会产生粉尘、有害气体和噪声对环境的污染,比起其他机械制造工艺来更为严重,需要采取措施进行控制。 砂型铸造 砂型铸造——在砂型中生产铸件的铸造方法。 钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。 砂型铸造所用铸型一般由外砂型和型芯组合而成。为了提高铸件的表面质量,常在砂型.剂,另外还加有便于施涂的载体(水或其他溶剂)和各种附加物。 砂型铸造的优缺点 (1) 优点 a.金属型冷却速度较快,铸件组织较致密,可进行热处理强化,力学性能较好。 b.金属型铸造,铸件质量稳定,表面粗糙度优于砂型铸造,废品率低。 c.劳动条件好,生产率高,工人易于掌握。 (2) 缺点 a.金属型导热系数大,充型能力差。 b.金属型本身无透气性。必须采取相应措施才能有效排气。

金属材料论文金属材料工程论文

金属材料论文金属材料工程论文: 谈几种金属材料的焊接 摘要:金属材料的焊接性,俗称可焊性,是指在一定焊接技术条件下,获得优质焊接接头的难易程度,金属材料对焊接加工适应性。金属材料的焊接性主要决定于焊接接头的组织及其性能。本文主要阐述了碳钢、低合金结构钢、不锈钢、铸铁等金属材料的焊接技术。 Abstract: Welding of metallic materials, commonly known as weldability, is access to quality ease of welded joints under certain welding conditions, also is metal material adaptability in the welding process. Welding of metallic materials is mainly determined by the organization and properties of welded joints. This article focuses on the welding technology of the carbon steel, low alloy steel, stainless steel, cast iron and other metal materials. 关键词:金属;材料;焊接 Key words: metal;material;welding 中图分类号:TG44 文献标识码:A文章编号:1006-4311(2010)33-0266-01 1碳钢的焊接技术

材料成型毕业论文范文2篇

材料成型毕业论文范文2篇 材料成型毕业论文范文一:金属材料加工中材料成型与控制工程 摘要:本文以金属材料为例,对材料成型与控制工程中的加工技术进行细化分析,首先,理论概述了金属材料的选材原则,然后具体分析了铸造成型、挤压与锻模塑性成型、粉末冶金以及机械加工四种加工方法,旨在为相关工作人员提供有借鉴性的参考资料,进一步提高我国制造业的加工水平与整体质量。 关键词:材料成型;控制工程;金属材料;加工工艺 0引言 对于我国制造业而言,材料成型与控制工程是其实现长期健康发展的根本保障,不仅如此,材料成型与控制工程也是我国机械制造业的关键环境,因此,相关企业必须对其给予高度重视。无论是电力机械制造,还是船只等交通工具制造,均离不开材料成型与控制工程,材料成型与控制技术的水平与质量将会直接决定机械制造水平与质量。因此,对材料成型与控制工程中的金属材料加工技术进行细化分析,具有非常重要的现实意义。 1金属材料选材原则 在金属复合材料成型加工过程中,将适量的增强物添加于金属复合材料中,可以在很大程度上高材料的强度,优化材料的耐磨性,但与此同时,也会在一定程度上扩大材料二次加工的难度

系数,正因此,不同种类的金属复合材料,拥有不同的加工工艺以及加工方法。例如,连续纤维增强金属基复合材料构件等金属复合材料便可以通过复合成型;而部分金属复合材料却需要经过多重技术手段,才能成型,这些成型技术的实践,需要相关工作人员长期不断加以科研以及探究,才能正式投入使用,促使金属复合材料成型加工技术水平与质量实现不断发展与完善。由于成型加工过程中,如果技术手段存在细小纰漏,或是个别细节存在问题,均会给金属基复合材料结构造成一定的影响,导致其与实际需求出现差异,最终为实际工程预埋巨大的风险隐患,诱发难以估量的后果。所以,相关工作人员在对金属复合材料进行选材过程中,必须准确把握金属材料的本质以及复合材料可塑性,只有这样,才能保证其可以顺利成型,并保证使用安全。 2金属材料加工方法 2.1机械加工成型 当前,金属材料成型与控制工程中,应用最为广泛的金属切割刀具便是金刚石刀具,以金刚石刀具对铝基复合材料进行精加工,与其他金属基复合材料,例如,钻、铣以及车等,均是现代社会中广而易见的。铝基复合材料的金刚石刀具加工形式可以细化为三种:其一,车削形式;其二,铣削形式;其三,钻削形式。其中,钻削即通过镶片麻花钻头对铝基复合材料进行加工,常见的有b4c以及sic颗粒钻削,然后添加适量的外切削液,可以有效强化铝基复合材料。铣削即通过 1.5%-2.0%(w+c)粘结剂,8.0%-8.5%pcd的端面铣刀对铝基复合材料进行加工,常见的有sic 颗粒铣削增强铝基复合材料,然后添加适量的切削液进行冷却。

论文篇-材料成型及控制工程导论-论文

材料成型及控制工程导论论文 材控试一班蒲东林 ·中文摘要:材料成型及控制工程是研究热加工改变材料的微观结构、宏观性能和表面形状,研究热加工过程中的相关工艺因素对材料的影响,解决成型工艺开发、成型设备、工艺优化的理论和方法;研究模具设计理论及方法,研究模具制造中的材料、热处理、加工方法等问题。是国民经济发展的支柱产业。本专业培养具备材料科学与工程的理论基础、材料成型加工及其控制工程、模具。 ·关键词:材料成型及控制工程机械模具和焊接设计制造金属压力加工方向 一.材料成型与控制工程包括两个大方向:模具和焊接。 模具也包括好几个方向,有塑料模具、冲压模具、铸造、锻造等。塑料模具包括:注塑、吹塑、挤塑、吸塑等,注塑模具学校开设得最多,应用也最广。冲压模具包括:冲孔,落料,拉伸,弯曲,翻边,复合等。材料成型与控制工程(成型加工及模具CAD/CAM方向),培养目标具有培养具备金属、塑料等材料的产品、工艺与模具方面的知识,能运用计算机技术进行产品、工艺与模具的设计、运用数控加工技术进行成型模具的制造,能从事产品及模具的试验研究、生产管理、经营销售等方面的高级工程技术人才。主要课程包含金属成形工艺及模具、塑料成型工艺及模具、塑料制品装潢与设计、模具材料及热处理、模具制造技术、数控加工、产品造型设计、模具计算机辅助设计(CAD)、模具计算机辅助制造(CAM)、成型过程计算机辅助分析(CAE)、成型设备及计算机控制、创新设计、模具市场营销、模具生产管理等。毕业后可以在各行业从事与材料加工工程有关的金属与塑料产品、工艺、模具的计算机辅助设计,计算机辅助制造、数控加工,试验开发、质检分析、管理营销、教育科研等工作。 二.材料成型与控制工程(材料加工控制及信息化方向) 材料成型与控制工程(材料加工控制及信息化方向)培养具备材料加工基本原理、计算机控制及信息学科的知识和技能,掌握材料加工成形过程的自动化与人工智能、专家信息系统的建立与开发、机械零件及工模具的计算机辅助设计与制造、新材料制备与加工、先进成形加工技术与设备、材料组织与性能的分析及控制等专业知识,能够从事材料加工、计算机和信息技术应用领域的产品和技术开发、设计制造、质量控制、经营管理等方面的高级工程技术人才。主要学习

金属材料小论文

专业小论文 材料科学是21世纪四大支柱学科之一,而金属材料工程则是材料科学中一个重要的专业方向。众所周知,金属工具的制造和使用标志着人类文明的一个重大的进步。从青铜到钢铁,再到当今形形色色的合金材料,人类在自身不断进步的同时,从未放松过对金属材料的研究与开发。金属材料工程是国家重点支持的研究方向,每年都有大量的资金投入,成果也很显著。该专业研究范围很广,可以说所有的金属元素都在其研究范围之内。目前国内主要侧重于铁合金铝合金以及其他一些特种金属材料的研究与开发。 金属材料工程是一门实用性很强的专业,通过对金属材料制备工艺及其原理的探究,研究成果可以直接应用于现实生产,所取得的进展和人民群众的日常生活密切相关。喜欢理论研究的人可以在此发挥自己的才能,在这里有广阔的理论研究空间。材料技术人员虽然掌握了许多种金属材料的制备工艺,但至今还没有完全弄清楚其中的道理,而从理论上阐明这一切对材料科学的进一步发展意义非凡。于是从中也演化出计算机模拟各种原子分子的相互作用,从而设计出符合要求的材料,这对现实生产有着极其重要的指导作用。近年来,这一领域还有许多新的发展,比如储氢材料摩擦材料以及和纳米技术相结合的协同材料等等。 金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属合金金属间化合物和特种金属等。人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。我们对金属材料的认识应从以下几个方面开始: 一、分类 金属材料通常分为黑色金属、有色金属和特种金属材料。 ①黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含铁小于2%~4%的铸铁, 含碳小于2%的碳铁,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。 ②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、半 金属、贵金属稀有金属和稀土金属等。有色金属的强度和硬度一般比纯金属高,并且电阻大电阻温度系数小。 ③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工 艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减震阻尼等特殊功能合金等。金属材料按生产成型工艺又分为铸造金属、变形金属、喷射成形金属,以及粉末冶金材料。铸造金属通过铸造工艺成型,主要有铸钢、铸铁和铸造、有色金属及合金。变形金属通过压力加工如锻造轧制冲压等成型,其化学成分与相应的铸造金属略有不同。喷射成型金属是通过喷射成型工艺制成具有一定形状和组织性能的零件与毛胚。金属材料的性能可分为工艺性能和使用性能两种。 二、性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。材料的工艺性能指材料适应冷、热加工方法的能力。

材料成型及控制工程专业职业规划

材料成型及控制工程专业职 业规划 一、前言 每个人心里都藏有一个对未来的憧憬:有的人把这这些憧憬 显露出来,就成为一个人的雄途大志;有的人愿意把这些理想似的 东西深藏在自己的心中,就会变得韬光养晦;也有的人喜欢应时变 换自己的目标,可以及时的适应社会。总而言之,对于未来的憧憬,就好比每个人未来的路,用一句经典话说:“走自己的路, 让别人说去吧!”当然对于这些理想,必须具备有一个基础,也就 是自己的硬实力和软实力。我一直相信世界上的每一条路都是经 过无数人去走才开拓出来的,而不是我们自己所能办到的,但是,能走上这条路并不断走下去的人必将成为这条路上的领军人物。 所以,做好选择,不断坚持就会有收获。面对现今这样的一个就 业形势,作为一名大学生不能坐以待业,必须给自己一个规划, 最起码要对得起自己的这么多年的寒窗苦读。经过对《大学生职业发展与就业指导教程》课程的学习,我有了一个比较初步的就业规划。所以,作为我们大一,我们更要面对现实准确地给自己定位,只 有如此,我们才能在这个竞争强烈的社会中找到我们自己发展的空间。 二、自我分析与评价

首先要正确看待自己。在这里,我们的基础都差不多,不管 你在高中是多么出色还是落后。。。在这里我们都是普通人,一 切从0开始。 我?我不就是我?这是我一直以来的想法,对于未来,我曾经 也有过憧憬,什么主席,总理,我可没想过,我小小的愿望和理 想就是能够做一名地方官员,造福一方百姓。可是时代在变,我 进入长春工业大学,慢慢的我也就失去积极战斗的心了,只顾学习,到头来学了什么不知道,会什么?不知道。整个人浑浑噩噩的。当看到自我分析时,一时间都不知该如何是好,最后决定还是先 做职业量表。 分最高的三种分别是: I.R.S 个人特质: 接着看一看用橱窗分析法来分析的结果, “公开我”:我是材料专业的学生,学的是材料成型与控制 专业,我有上进心对自己充满自信。相信自己未来会有一番作为 的! “隐私我”:我的脾气不好,虽然我已经很努力去改正了。 同时我比较粗心,有时还自以为是; 当然我还有很多没有暴露出来的优点:比如我做事坚持到底,不成功就成仁,做事雷厉风行,可能和性格有关系。 “潜在我”:这个部分不好写,刚才的量表显示我在操作能

金属材料性能论文金属材料的论文

船电101 李伟聪09 何碧枢11 关于“金属材料的力学性能”的论文 金属材料的力学性能 金属材料的力学性能是指金属材料在外力作用下抵抗变形或破坏的能力,如强度、硬度、弹性、塑性、韧性等。这些性能是化工设备设计中材料选择及计算时决定许用应力的依据。 ㈠强度 材料的强度是指材料抵抗外加载荷而不致失效破坏的能力. 一般来讲,材料强度仅指材料在达到允许的变形程度或断裂前所能承受的最大应力,像弹性极限、屈服点、抗拉强度、疲劳极限和蠕变极限等。材料在常温下的强度指标有屈服强度和抗拉(压)强度。 屈服强度表示材料抵抗开始产生大量塑性变形的应力。抗拉强度表示材料抵抗外力而不致断裂的最大应力。在工程上,不仅需要材料的屈服强度高,而且还需要考虑屈服强度与抗拉强度的比值(屈强比),根据不同的设备要求,其比值应适当。屈强比较小材料制造的零件具有较高的安全可靠性,因为在工作时万一超载,也能由于塑性变形使金属的强度提高而不致立刻断裂。但如果屈强比太低,则材料强度的利用率会降低。因此,过大、过小的屈强比都是不适宜的。 在化工炼油设备中,很多零部件是长期在高温下工作的,对于制造这些零部件的金属材料的屈服限ss、抗拉强度限sb都会发生显著变化,必须考虑温度对力学性能的影响。通常随着温度升高,金属的强度降低而塑性增加。另外,金属材料在高温长期工作时,在一定应力下,会随着时间

的延长缓慢地不断发生塑性变化的现象,称为“蠕变”现象。例如,高温高压蒸汽管道虽然其承受的应力远小于工作温度下材料的屈服点,但在长期的使用中则会产生缓慢而连续的变形使管径日趋增大,最后可能导致破裂。材料在高温条件下抵抗这种缓慢塑性变形的能力,用蠕变极限sn表示。蠕变极限是指试样在一定温度下和在规定的持续时间内,产生的蠕变变形量(总的或残余的)或第Ⅱ阶段的蠕变速度等于某规定值时的最大应力。 对于长期承受交变应力作用的金属材料,还有考虑“疲劳破坏”。所谓“疲劳破坏”是指金属材料在小于屈服强度极限的循环载荷长期作用下发生破坏的现象。疲劳断裂与静载荷下断裂不同,无论在静载荷下显示脆性或韧性的材料,在疲劳断裂时,都不产生明显的塑性变形,断裂是突然发生的,因此具有很大的危险性,常常造成严重的事故。金属材料在循环应力下,经受无限次循环而不发生破坏的最大应力称为“疲劳强度”,以sr(见(a)式)表示,称为应力循环系数或应力比,在对称循环时,(r=-1)表示。对于一般钢材,以106~107次不被破坏的应力,作为疲劳强度。㈡硬度硬度是指固体材料对外界物体机械作用(如压陷、刻划)的局部抵抗能力。它是由采用不同的试验方法来表征不同的抗力。硬度不是金属独立的基本性能,而是反映材料弹性、强度与塑性等的综合性能指标。在工程技术中应用最多的是压入硬度,常用的指标有布氏硬度(HB)、洛氏硬度(HRC、HRB)和维氏硬度(HV)等。所得到的硬度值的大小实质上是表示金属表面抵抗压入物体(钢球或锥体)所引起局部塑性变形的抗力大小。一般情况下,硬度高的材料强度高,耐磨性能较好,而切削加工性

材料成型及控制工程毕业论文

化学沉积中磷含量Ni-W- P合金晶化 及耐蚀性研究 作者姓名安宁 专业材料成型及控制工程06-1 指导教师宏 专业技术职务教授

目录 摘要 (1) 第一章绪论 (3) 1.1化学镀技术的研究及发展趋势 (3) 1.1.1 化学镀的基本原理 (3) 1.1.2 化学镀镀液组成及作用 (4) 1.1.3 化学镀技术研究概述 (6) 1.1.4 化学镀技术在国的发展 (8) 1.1.5 化学镀技术的应用 (9) 1.1.6 化学镀的发展趋势 (10) 1.2化学沉积层晶化转变机理 (11) 1.3企业设备腐蚀的现状及危害 (11) 1.4本文的目的、意义及研究容 (12) 1.4.1 研究目的及意义 (12) 1.4.2 研究容 (12) 第二章混晶态Ni-W-P合金镀层的制备与实验方法 (14) 2.1实验材料与仪器 (14) 2.2化学镀镀液的组成及配制工艺 (14) 2.2.1 化学镀镀液的组成 (14) 2.2.2 化学镀镀液的配制工艺 (14) 2.3实验方法 (14) 2.3.1 镀前处理 (15) 2.3.2 化学沉积过程 (15) 2.4沉积层检测及性能测试 (15) 2.4.1 沉积层的结构测试 (15) 2.4.2 沉积层的形貌观察及成分测试 (16) 2.4.3 沉积层耐蚀性能测试 (17) 2.4.4 热处理后沉积层的性能测试 (17) 第三章实验结果与分析 (19) 3.1化学沉积中磷含量Ni-W-P合金镀层的微观分析 (19) 3.1.1 镀层的X射线(XRD)衍射分析 (19) 3.1.2 镀层热处理前后的表面形貌及成分分析 (23) 3.1.3 镀层的晶化过程及晶粒尺寸 (25) 3.2热处理前后镀层耐蚀性分析 (26) 第四章结论 (28)

关于材料成型的论文

关于材料成型的论文 浅析pc材料特性及成型工艺 【摘要】PC虽有很多优点,但其的一些特点限制了其在工程塑料方面的应用。文章利用相容剂,采用两步试验合成工艺,经过试验确定了ABS含量以及增容剂对合金材料的影响,合成了高性能的PC/ABS合金材料。 【关键词】聚碳酸酯;成型条件;工程塑料 聚碳酸酯PC以良好的尺寸稳定性、耐热耐化学性,以及较好的机电性能,被广泛的 应用于汽车、飞机、电子、电气、家用电器、信息、机械等领域。但由于脂肪族和脂肪族 -芳香族聚碳酸酯的机械性能较低,流动性差,使得其加工困难,难于制成大型制品,且 制品残余应力大,易发生应力开裂。除此之外,PC的耐溶剂性和耐磨损性较差,且价格偏高,从而限制了其在工程塑料方面的应用。因此,对PC进行改性已成为业内急需解决的 问题。PC的共混合金化法是目前常用的PC改性方法之一,它能够有效的改善PC的性能,使得PC能够在工程塑料方面领域更为广泛的应用。 一、PC 聚碳酸酯化学和物理特性 聚碳酸酯 PC 树脂是一种性能优良的热塑性工程塑料,具有突出的抗冲击能力,耐蠕 变和尺寸稳定性好,耐热、吸水率低、无毒、介电性能优良,是五大工程塑料中唯一具有 良好透明性的产品,也是近年来增长速度最快的通用工程塑料。目前广泛应用于汽车、电 子电气、建筑、办公设备、包装、运动器材、医疗保健等领域,随着改性研究的不断深入,正迅速拓展到航空航天、计算机、光盘等高科技领域。 PC是一种非晶体工程材料,具有特别好的抗冲击强度、热稳定性、光泽度、抑制细菌特性、阻燃特性以及抗污染性。PC的缺口伊估德冲击强度otched Izod impact stregth 非常高,并且收缩率很低,一般为0.1%~0.2%。 PC有很好的机械特性,但流动特性较差,因此这种材料的注塑过程较困难。在选用何种品质的 PC材料时,要以产品的最终期望为基准。如果塑件要求有较高的抗冲击性,那么就使用低流动率的PC材TodayHot料;反之,可以使用高流动率的PC材料,这样可以优化注 塑过程。 二、PC注塑选材 PC有很好的机械特性,但流动特性较差,因此这种材料的注塑过程较困难。在选用何种品质的PC材料时,要以产品的最终期望为基准。如果塑件要求有较高的抗冲击性,那 么就使用低流动率的PC材料;反之,可以使用高流动率的PC材料,这样可以优化注塑过程。PC的最大特征是非晶型透明塑料,成型后的尺寸稳定性好,从低温到高温均能保持稳定的机械强度,它的拉伸与形变特性比较接近金属材料,存在着明显的弹性极限。因此PC

材料成型毕业论文范文2篇

材料成型毕业论文范文2 篇 材料成型毕业论文范文一:金属材料加工中材料成型与控制工程 摘要:本文以金属材料为例,对材料成型与控制工程中的加工技术进行细化分析,首先,理论概述了金属材料的选材原则,然后具体分析了铸造成型、挤压与锻模塑性成型、粉末冶金以及机械加工四种加工方法,旨在为相关工作人员提供有借鉴性的参考资料,进一步提高我国制造业的加工水平与整体质量。 关键词:材料成型;控制工程;金属材料;加工工艺 0 引言 对于我国制造业而言,材料成型与控制工程是其实现长期健康发展的根本保障,不仅如此,材料成型与控制工程也是我国机械制造业的关键环境,因此,相关企业必须对其给予高度重视。无论是电力机械制造,还是船只等交通工具制造,均离不开材料成型与控制工程,材料成型与控制技术的水平与质量将会直接决定机械制造水平与质量。因此,对材料成型与控制工程中的金属材料加工技术进行细化分析,具有非常重要的现实意义。 1金属材料选材原则 在金属复合材料成型加工过程中,将适量的增强物添加于金属复合材料中,可以在很大程度上高材料的强度,优化材料的耐磨性,但与此同时,也会在一定程度上扩大材料二次加工的难度

系数,正因此,不同种类的金属复合材料,拥有不同的加工工艺以及加工方法。例如,连续纤维增强金属基复合材料构件等金属复合材料便可以通过复合成型; 而部分金属复合材料却需要经过多重技术手段,才能成型,这些成型技术的实践,需要相关工作人员长期不断加以科研以及探究,才能正式投入使用,促使金属复合材料成型加工技术水平与质量实现不断发展与完善。由于成型加工过程中,如果技术手段存在细小纰漏,或是个别细节存在问题,均会给金属基复合材料结构造成一定的影响,导致其与实际需求出现差异,最终为实际工程预埋巨大的风险隐患,诱发难以估量的后果。所以,相关工作人员在对金属复合材料进行选材过程中,必须准确把握金属材料的本质以及复合材料可塑性,只有这样,才能保证其可以顺利成型,并保证使用安全。 2金属材料加工方法 2.1机械加工成型当前,金属材料成型与控制工程中,应用最为广泛的金属切割刀具便是金刚石刀具,以金刚石刀具对铝基复合材料进行精加工,与其他金属基复合材料,例如,钻、铣以及车等,均是现代社会中广而易见的。铝基复合材料的金刚石刀具加工形式可以细化为三种:其一,车削形式; 其二,铣削形式; 其三,钻削形式。其中,钻削即通过镶片麻花钻头对铝基复合材料进行加工,常见的有b4c 以及sic 颗粒钻削,然后添加适量的外切削液,可以有效强化铝基复合材料。铣削即通过1.5%- 2.0%(w+c) 粘结剂,8.0%-8.5%pcd 的端面铣刀对铝基复合材料进行加工,常见的有sic 颗粒铣削增强铝基复合材料,然后添加适量的切削液进行冷却。

材料成形原理 论文

如何改进凝固过程中的问题 王迪阳 1006032036 材控(2)班 摘要:在当今金属工业不断发展的情况下,研究金属凝固过过程中的问题对于材料的利用和产品的质量都有一定的意义,因此研究如何让改进凝固过程中的问题尤为重要。 关键字:凝固晶粒金属 正文:晶粒形态的控制主要是通过形核过程的控制实现的。促进形核的方法包括浇注过程控制方法、化学方法、物理方法、机械方法、传热条件控制方法等。(1)控制浇注条件①低的浇注温度。熔体的过热度较小,与浇道内壁接触就能产生大量的游离晶粒。有助于已形成的游离晶粒的残存,这对等轴晶的形成和细化有利。②合理的浇注工艺。强化液流冲刷型壁能扩大并细化等轴晶区。③合理控制冷却条件。④选用合适的铸型。 (2)加入生核剂——孕育处理 孕育—向液态金属中添加少量物质以达到增加晶核数、细化晶粒、改善组织之目的的一种方法。变质—加入少量物质通过元素的选择性分布而改变晶体的生长形貌,如球化或细化。 a)直接作为外加晶核; b)通过与液态金属的相互作用而产生非均匀晶核; -能与液相中某些元素组成较稳定的化合物;-通过在液相中造成大的微区富集而使结晶相提前弥散析出 c) 加入强成分过冷元素生核剂。 -溶质富集、成分过冷会抑制晶体生长,促进非均匀形核导致晶粒细化。 (3)动态晶粒细化。熔体在凝固过程中存在长时间、激烈的对流→晶粒或枝晶脱落、破碎、游离、增殖。振动--机械振动、电磁振动、音频或超声波振动;搅拌--机械、电磁搅拌; 旋转振荡-周期性地改变铸型的旋转方向和旋转速度。 非规则共晶一般由金属-非金属(非小平面-平面)相或非金属-非金属(小平面-小平面)相组成,如Fe-C , Al-Si合金。小平面相的各向异性使晶体长大具有强烈的方向性。固-液界面为特定的晶面,长大过程中虽然共晶两相也依靠液相中原子扩散而协同长大,但固-液界面不平整,不规则。小平面的长大属二维生长,它对凝固条件的反应极其敏感,因此非规则共晶组织的形态多种多样。缩颈”现象:溶质浓度再分配→界面前沿液态金属凝固点降低→实际过冷度减小。溶质偏析程度越大,实际过冷度就越小,其生长速度就越缓慢。晶体根部紧靠型壁,溶质在液体中扩散均化的条件最差,偏析程度最为严重,生长受到强烈抑制。 远离根部,界面前方的溶质易于通过扩散和对流而均匀化,面临较大的过冷,其生长速度要快得多。故在晶体生长过程中将产生根部“缩颈”现象,生成头大根小的晶粒。 熔点最低而又最脆弱的缩颈极易断开,晶粒自型壁脱落而导致晶粒游离。铸件中三晶区的形成相互联系、彼此制约。 稳定凝固壳层的产生决定着表面细晶粒区向柱状晶区的过渡,而阻止柱状晶区进一步发展的关键则是中心等轴晶区的形成。晶区的形成和转变是过冷熔体独立形核能力和各种形式晶粒游离、漂移与沉浮的程度这两个基本条件综合作用的结果。决定了铸件中各晶区的相对大小和晶粒的粗细。 铸件宏观凝固组织的控制。铸件结晶组织对铸件质量和性能的影响,表面

金属材料性能论文金属材料的论文

金属材料性能论文金属材料的论文: 浅谈“金属材料的力学性能”教学单元中的实验教学 “金属的力学性能”是“金属材料与热处理基础”教学单元中的重要内容,在“金属的力学性能”教学单元中涉及的实验较多,教材通过各种试验机的实验结果分别说明各力学性能指标的测定,但对于大多数中职学校来说,由于条件限制,教学方法普遍采用讲授法,这些试验机也只能是教材上的图片,根本无法演示,更谈不上让学生动手。为此,学生对这些概念是听得云里雾里的,难以理解。在多年的教学实践中,笔者认为,在实验设备缺乏的情况下,仍可进行实验教学,且效果较好,以下作一说明,供同行参考。 一、巧设演示,引出概念 恰当的课堂演示可以把一些深奥难懂的问题直观地反映出来,使学生通过感性认识加深对知识的理解,从而达到深入浅出的教学效果。 例如,在讲授“强度”“韧性”的概念时,可以分别做以下演示实验。 演示1取一段100mm长Φ0.6mm的细铁丝和100mm长 Φ0.9mm的焊锡丝,徒手对拉,锡丝很容易拉断而细铁丝拉不断。 说明细铁丝在拉力(静载荷)作用下更难断裂,即抵抗能力更强。由此引出“强度”的概念,学生便容易理解。

演示2用手指轻弹橡皮泥和粉笔,结果是橡皮泥产生了弯曲但并没有断裂,粉笔立即断成两截飞出。 说明在冲击载荷的作用下粉笔的抵抗能力更弱,由此引出“冲击韧性”的概念。这样学生就能从感受中理解概念。 再如,在讲到材料的硬度时,可用一简单的实验求证课本知识:找 一把小刀切削橡皮擦和铅笔。小刀可以轻而易举地切削橡皮擦,而切削铅笔却要花较大的力气。说明橡皮擦的硬度低,而铅笔的硬度高。在讲到材料硬度的测定方法时,我准备了一块橡皮泥、一块橡皮擦、一块和一把小刀,先将橡皮泥和橡皮擦放到一位同学的手中,要求判断其硬度,说明判断方法;再将小石块和小木块放到这位同学的手中,要 求判断其硬度,并说明判断方法。学生根据生活常识很自然得出如下结论:前者用手捏(压痕法)得出橡皮擦更硬,后者用小刀划(划痕法)得 出石块更硬。接下来再讲授“布氏硬度测量法”等相关内容时,学生便不难理解了。 事实证明,这种简单的演示实验,对帮助学生理解和掌握概念能起到很好的作用。通过加强实验,不仅可以使学生具备一定的感性认识。更重要地是使学生进一步理解物理概念和定理是怎样在实验基础上 建立起来的,从而有效地帮助学生形成概念,导出规律,掌握理论,正确而深刻地领会物理知识。 二、合理运用多媒体教学手段,强化实验演示效果

铝合金材料论文材料成型论文

铝合金材料论文材料成型论文: 铝合金材料在锻造中的应用 [摘要]采用铝合金锻造工艺生产的铝合金锻件主要用做重要受力结构件。以铝合金锻造在汽车轮圈、悬挂零件以及摩托车中的应用,说明了发展锻造铝业的必要性。 [关键词]铝合金;锻造工艺;锻造优越性 [中图分类号]TH142.2 [文献标识码] A [文章编号]1008-4738(2008)02-0109-02 1 引言 铝是地壳中分布最广、储量最多的金属元素之一。铝工业的整个发展历史不过两百年,但由于铝及铝合金具有一系列优异特性,发展速度非常快,已广泛应用于交通运输、包装容器、建筑装饰、航空航天、机械电气等行业,成为发展国民经济与提高人民物质生活和文化生活水平的重要基础材料。铝及铝合金材料的主要加工方法有:铸造、锻造、冲压、挤压以及深加工。近年来,随着对节能、环保、安全要求的不断提升,锻造铝业呈现增长态势。以日本为例,2004年锻造铝悬挂部件产品数量达到了2000年的5倍,用铝减轻汽车重量的策略已经从汽车发动机部分扩展到车身部分[1]。 2 铝合金锻造的优越性

2.1 重量轻。铝的密度为2.7 kg/dm 3,与铜(密度为8.9 kg/dm 3)或铁(密度为7.8 kg/dm 3)比较,约为它们的1/3。在相同条件下,铝合金车身与含铜耐磨钢车身相比,重量可减轻35%以上。由于重量减轻,在同样牵引力的条件下,铝合金车体可增加运量10%,节能9.6%—12.5%[2]。所以铝及铝合金材料是航空航天和现代交通运输轻量化、高速化的关键材料。 2.2 强度好。虽然纯铝的力学性能不如钢铁,但其比强度高,可以添加铜、镁、锰、铬等合金元素,制成铝合金并经热处理后而得到较高的强度。 2.3 加工容易。铝及铝合金不仅可以切削加工,还可以进行塑性加工。铝的延展性优良,易于挤出形状复杂的中空型材,适于拉伸加工及其他各种冷热塑性成形。目前许多铝合金都可以锻造,包括2000系列/7000系列高强度合金、6000系列/5000系列抗腐蚀合金和4000系列耐磨合金[2]。铝合金材料可以在液压机和机械压力机上锻造,液压机速度慢,适合锻造形状复杂或者较薄的零件;机械压力机速度快,适合锻造大锻件。铝合金锻件内部质量高,力学性能好,具有高可靠性。 2.4 美观,适于各种表面处理。铝及铝合金表面有氧化膜,呈银白色,相当美观。如果经过氧化处理,其表面的氧化膜更牢固。而且还可以用染色和涂刷等方法,制造出各种颜色和光泽的表面。

金属材料论文

金属材料科学概论 内容摘要:本文简单地介绍了金属材料的概念、特质及其性能,着重阐述了金属材料的分类、金属材料科学的制备及合成以及金属材料的成型工艺, 同时就金属材料的应用及发展前景提出了看法。 关键词:金属材料;发展和兴起;概念;分类;性能;制备及合成;成型;应用 一、金属材料简介 1、金属材料的概念 金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。 2、金属材料的分类 金属材料的分类可按照成分和用途分为两大类。其中按金属成份分类可分为钢铁、有色(非铁)金属和复合金属材料三大类;按材料用途分类可分为结构材料和工程材料。 (一)、金属材料的成分分类 (1)钢铁 钢铁可细分为以下几种:工业纯铁、碳钢、合金钢和铸铁四种。其中工业纯铁为含碳约在0.01% 以下的铁一碳合金;碳钢为含碳在0.01-1.5% 间的铁-碳合金;合金钢为含镍、铬、钨、钒、钛、钴、铜、锰、硅等合金元素的铁一碳合金;铸铁为含碳2.0-4.0% 间的铁一碳合金(也可含其它合金元素)。 (2)有色(非铁)金属 有色(非铁)金属可分为重有色金属、轻有色金属、稀有和难熔金属、稀土金属、稀散金属、贵金属和放射性金属七大类。重有色金属为铜、铅、锌、镍、锡等及其合金;轻有色金属为铝、镁、钛、铍等及其合金;稀有、难熔金属为钨、钼、铂、铌、铪、钒、铬等及其合金;稀土金属为镧、铈、镨、钕、钷、钐等;稀散金属为镓、铟、铊等;贵金属为金、银、铂族金属及其合金;放射性金属为铀、钍、镭。 (3)复合金属材料 复合金属材料主要为以下几种:镀层一镀锌铁皮、钢丝, 镀锡铁皮( 马口铁) 等;渗层一渗铬、渗铝钢板、钢管等;包层一包铜钢丝, 包镍( 及镍合金) 钢板, 农用钢板等;机械混合合金——银一钨、铜一钨合金, 硬质合金, 金属陶瓷等;纤维增强合金一铍丝增强铝合金, 钨丝增强高温合金, 碳、硼丝增强合金等。(二)、金属材料的用途分类 (1)结构材料 结构材料可主要分为三类:一类为结构钢, 不锈钢, 耐热钢, 耐酸钢, 弹簧钢, 轴承钢, 工具钢, 模具钢, 铸铁( 包括可锻铸铁, 球墨铸铁等) ;第二类为结构用的铝、镁、钦、铜等及其合金;第三类为复合材料一纤维增强, 复层, 蜂窝结构

材料成型技术论文

材料成型技术 课程论文 题目:熔融沉积制造-FDM 系(部): 专业: 学生姓名:学号: 完成时间:201 年月日

前言 快速成型技术(Rapid Prototyping)是 20 世纪80年代中后期发展起来的一项新型的造型技术。RP技术是将计算机辅助设计(CAD) 、计算机辅助制造(CAM) 、计算机数控技术(CNC) 、材料学和激光结合起来的综合性造型技术。RP经过十多年的发展 ,已经形成了几种比较成熟的快速成型工艺光固化立体造型( SL —Stereo lithography) 、分层物体制造(LOM —Laminated Object Manufacturing)选择性激光烧结(SLS—Selected Laser Sintering)和熔融沉积造型( FDM —Fused Deposition Modeling)等。这四种典型的快速成型工艺的基本原理都是一样的 ,但各种方法各有其特点。FDM (Fused Deposition Modeling)工艺是由美国学者Scott Crump于1988年研制成功,其后由Stratasys公司推出商品化的3D Modeler 1000、1100和FDM 1600、1650等系列产品。后来清华大学研究开发出了与其工艺原理相近的MEM(Melted Extrusion Modeling)工艺及系列产品。[1]目前,FDM工艺已经广泛应用于汽车领域,如车型设计的检验设计、空气动力评估和功能测试;也被广泛应用于机械、航空航天、家电、通信、电子、建筑、医学、办公用品、玩具等产品的设计开打过程,如产品外观评估、方案选择、装配检查、功能测试、用户看样订货、塑料件开模前检验设计以及少量产品制造等。用传统方法需机几个星期、几个月才能制造的复杂产品原型,用FDM成型法无需任何道具和模具,可快速完成。

金属材料论文

我身边的材料 ————金属材料 摘要:金属材料是人类使用最早并且与我们生活最密切相关的材料。文章介绍了金属材料的分类,性质,应用,前景,并将一些新兴的金属材料做了简单的介绍。 关键词:金属材料;性质;新兴金属材料;金属基复合材料 金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。 人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。 金属材料通常分为黑色金属、有色金属和特种金属材料。①黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳 2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。 ②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。 金属材料的性能一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属对各种加工工艺方法所表现出来的适应性称为工艺性能,主要有以下四个方面:⑴切削加工性能;⑵可锻性; ⑶可铸性;金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括机械性能、物理性能、化学性能等。金属材料的性能决定着材料的适用范围及应用的合理性。金属材料的性能主要分为四个方面,即:机械性能、化学性能、物理性能、工艺性能。金属材料使用性能的好坏,决定了它的使用范围与使用寿命。金属材料在载荷作用下抵抗破坏的性能,称为机械性能(或称为力学性能)。金属材料的机械性能是零件的设计和选材时的主要依据。外加载荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求的机械性能也将不同。常用的机械性能包括:强度、塑性、硬度、冲击韧性、多次冲击抗力和疲劳极限等。化学性能:金属与其他物质引起化学反应的特性称为金属的化学性能。在实际应用中主要考虑金属的抗蚀性、抗氧化性(又称作氧化抗力,这是特别指金属在高温时对氧化作用的抵抗能力或者说稳定性),以及不同金属之间、金属与非金属之间形成的化合物对机械性能的影响等等。在金属的化学性能中,特别是抗蚀性对金属的腐蚀疲劳损伤有着重大的意义;物理性能:金属的物理性能主要考虑:⑴密度⑵熔点⑶热膨胀性⑷磁性能⑸电学性能(主要是电导率); 新兴金属材料介绍: 1、金属基复合材料 金属基复合材料起源于20 世纪50 年代末或60 年代初期,它是一种把金属作为基体和增强材料进行复合加工而制成的一种材料。基体可以是铜、铝、镁以及金属间化合物等。增强材料的种类也很多,可以是碳化硅、碳纤维以及氧化铝等。它除了具有很高的韧性和可塑性之外,还能耐高温,且导电性能良好,可抗辐射,阻隔性能良好不吸潮。正是由于这些优良的特性,使得它经过了几十年的发展成为了如今最炙手可热的复合材料之一。由于金属基复合材料的性能优秀,所以它能够被运用到了各个行业。比如汽车行业中的柴油机活塞、Al 发动机组的缸体驱动轴、连杆等;还有航空航天行业。比如战隼战机的机腹尾翼以及燃料通

相关主题
文本预览
相关文档 最新文档