当前位置:文档之家› 空间二连杆机器人的动力学建模及其动态过程仿真

空间二连杆机器人的动力学建模及其动态过程仿真

空间二连杆机器人的动力学建模及其动态过程仿真
空间二连杆机器人的动力学建模及其动态过程仿真

空间二连杆机器人的动力学建

及其动态过程仿真

作者:td

一引言

1.机器人机械臂的运动学与动力学分析方法

目录

空间二连杆机器人的动力学建模 (1)

及其动态过程仿真 (1)

作者:td (1)

一引言 (1)

1.1用户界面模块(ADAMS/View) (4)

1.2求解器模块(ADAMS/Solver) (5)

1.3后处理模块(ADAMS/PostProcessor) (6)

二.空间二连杆机器人adams建模仿真 (6)

2.1空间二连杆串联机器人 (6)

在ADAMS中用长方形连杆模拟机械臂,对两自由度的机械臂分别进行运动学分析动力学分析。 (6)

2.1.1运动学分析 (6)

2.1.2运动学分析 (9)

机器人的运动学和动力学既包含有一般机械的运动学、动力学内容,又反映了机器人的独特内容。工业机器人的运动学主要讨论了运动学的正问题和逆问题。假设一个构型已知的机器人,即它的所有连杆长度和关节角度()1q t ,()2q t ,()3q t …()n q t ,…都是已知的,其中n 为自由度数,那么计算机器人末端执行器相对于参考坐标系的位姿就称为运动学的正问题分析。换言之,如果已知机器人所有的关节变量,用正运动学方程就能计算任一瞬间机器人的位姿。然而,如果希望机器人的末端执行器到达一个期望的位姿,就必须要知道机器人操作臂每一个连杆的几何参数和所有关节的角矢量()12,,T

n q q q q =???利用操作臂连杆几何参数和末端执行器期望的位姿来求解关节角矢量是运动学逆问题。运动学正问题可以利用齐次变换法来求解。设i 杆坐标系相对于基座坐标系的位姿齐次变换矩阵是b

i T ,则

1231b

i n n T A A A A A -=?????? ()11-

式中i A 为i 杆坐标系相对于1i -杆坐标系的坐标变换矩阵。相对于正运动学方程,机器人逆运动学方程显得更为重要。由于按给定末端执行器的位姿求解关节变量是在关节空间中进行非线性方程的求解,其中涉及多值性和奇异现象,因此,这一逆问题成为机器人运动学中的一个重要内容。机器人的控制器将用这些方程来计算关节值,并以此来运行机器人到达期望的位姿。机器人逆问题可有多种解法,如逆变换法、旋量代数法、数值迭代法、几何法等,其中Jaeobian 矩阵的速算法占有重要的地位。机器人作为多自由度可编程的工作系统,在运动学中研究的内容还有末端操作器运动规划、工作空间确定、位姿精度分析与补偿等。目前,对于一般机器人运动学的逆问题大部分都得到了解决,但是,对于有任意结构和有冗余自由度机器人的运动学逆问题,研究得还不够充分。

机器人操作臂的动力学建模主要是研究各主动关节的驱动力与操作臂运动的关系。机器人操作臂是一个十分复杂的动力学系统。机器人动力学方程的非线性特点和强耦合性使得对它的研究十分困难和复杂。目前人们已经提出了许多种动力学建模方法,分别基于不同的力学方程和原理。C .T .Lin ,Calafiore 等对Newton —Euler 动力学建模方法和Lagrange 方法在简化递推过程及减少运算次数上做了不少有益的工作;有些学者从计算机符号代数方向推导并行算法来进行研究;T .R .Kane 等发展了利用偏速度和广义力建模的Kane 方程法;有些学者利用广义d ’Alembert 原理来进行建模;还有人研究用图论进行机器人动力学分析的方法。其中以Newton —Euler 动力学建模方法及d ’Alembert 建模方法(或以这两种方法为基础)应用最为普遍。Newton —Euler 方法具有递推的形式,非常适合于数值计算,与

Lagrange方法相比效率要高很多,它是至今最有效、也是使用最广泛的一种方法。但实现经典控制的动力学实时算法还有待继续研究和改进。考虑到构件的弹性变形,近年来,有限元法、结构动力学与多体系统动力学理论相继被引入到机器人动力学的研究中,并已取得一些研究成果。对于关节柔性机器人以及考虑到运动副间隙影响的机器人动力学问题,目前国内外研究得还比较少。

2.Simulink介绍

简介

Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。

功能

Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。

Simulink是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。.

构架在Simulink基础之上的其他产品扩展了Simulink多领域建模功能,也提供了用于设计、执行、验证和确认任务的相应工具。Simulink与MATLAB紧密集成,可以直接访问MATLAB 大量的工具来进行算法研发、仿真的分析和可视化、批处理脚本的创建、建模环境的定制以及信号参数和测试数据的定义。

特点

具有丰富的可扩充的预定义模块库和交互式的图形编辑器来组合和管理直观的模块图;

它以设计功能的层次性来分割模型,实现了对复杂设计的管理;通过Model Explorer 导航、创建、配置、搜索模型中的任意信号、参数、属性来生成模型代码。

它提供API用于与其他仿真程序的连接或与手写代码集成并使用Embedded MATLAB?模块在Simulink和嵌入式系统执行中调用MATLAB算法。在Simulink中可使用定步长或变步长运行仿真,根据仿真模式(Normal,Accelerator,Rapid Accelerator)来决定以解释性的方式运行或以编译C代码的形式来运行模型。

它具有图形化的调试器和剖析器来检查仿真结果,诊断设计的性能和异常行为。并可访问MATLAB从而对结果进行分析与可视化,定制建模环境,定义信号参数和测试数据。

3.ADAMS软件简介

ADAMS是以计算多体系统动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件,利用它可以建立复杂机械系统的运动学和动力学模型,其模型可以是刚体的,也可以是柔性体,以及刚柔混合体模型。如果在产品的概念设计阶段就采取ADAMS进行辅助分析,就可以在建造真实的物理样机之前,对产品进行各种性能测试,达到缩短开发周期、降低开发成本的目的。

ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。

1.1用户界面模块(ADAMS/View)

ADAMS/View是ADAMS系列产品的核心模块之一,采用以用户为中心的交互式图形环境,将图标操作,菜单操作,鼠标点击操作与交互式图形建模,仿真计算,动画显示,优化设计,X-Y曲线图处理,结果分析和数据打印等功能集成在一起。

ADAMS/View采用简单的分层方式完成建模工作。采用Parasolid内核进行实体建模,并提供了丰富的零件几何图形库,约束库和力/力矩库,并且支持布尔运算,支持FORTRAN/77和FORTRAN/90中的函数。除此之外,还提供了丰富的位移函数,速度函数,加速度函数,接触函数,样条函数,力/力矩函数,合力/力矩函数,数据元函数,若干用户子程序函数以及常量和变量等[3]。

ADAMS/View模块界面如图1.1所示。

图1.1 ADAMS/View界面

1.2求解器模块(ADAMS/Solver)

ADAMS/Solver是ADAMS系列产品的核心模块之一,是ADAMS产品系列中处于心脏地位的仿真器。该软件自动形成机械系统模型的动力学方程,提供静力学,运动学和动力学的解算结果。ADAMS/Solver有各种建模和求解选项,以便精确有效地解决各种工程应用问题。

ADAMS/Solver可以对刚体和弹性体进行仿真研究。为了进行有限元分析和控制系统研究,用户除要求软件输出位移,速度,加速度和力外,还可要求模块输出用户自己定义的数据。用户可以通过运动副,运动激励,高副接触,用户定义的子程序等添加不同的约束。用户同时可求解运动副之间的作用力和反作用力,或施加单点外力。

1.3后处理模块(ADAMS/PostProcessor)

MDI公司开发的后处理模块ADAMS/Postprocessor,用来处理仿真结果数据,显示仿真动画等。既可以在ADAMS/View环境中运行,也可脱离该环境独立运行。

ADAMS/PostProcessor的主要功能是为观察模型的运动提供了所需的环境,用户可以向前,向后播放动画,随时中断播放动画,而且可以选择最佳观察视角,从而使用户更容易地完成模型排错任务;为了验证ADAMS仿真分析结果数据的有效性,可以输入测试数据,并测试数据与仿真结果数据进行绘图比较,还可对数据结果进行数学运算,对输出进行统计分析;用户可以对多个模拟结果进行图解比较,选择合理的设计方案;可以帮助用户再现ADAMS中的仿真分析结果数据,以提高设计报告的质量;可以改变图表的形式,也可以添加标题和注释;可以载入实体动画,从而加强仿真分析结果数据的表达效果;还可以实现在播放三维动画的同时,显示曲线的数据位置,从而可以观察运动与参数变化的对应关系。

二.空间二连杆机器人adams建模仿真

2.1空间二连杆串联机器人

在ADAMS中用长方形连杆模拟机械臂,对两自由度的机械臂分别进行运动学分析动力学分析。

2.1.1运动学分析

下面是建立模型并对模型进行

设置分析的详细过程。

(1)启动ADAMS/View,在欢迎对

话框中选择新建模型,模型取名为

Robot_arm,并将单位设置为MMKS,

然后单击OK。

(2)打开坐标系窗口。按下

2.1创建连杆设置 2.2 孔设置

F4键,或者单击菜单【View】→【Coordinate Window】后,打开坐标系窗口。当鼠标在图形区移动时,在坐标窗口中显示了当前鼠标所在位置的坐

(3)创建机械臂关节1(连杆)。单击方形杆按钮,勾选连杆的长、宽、深

选项,分别将其设置为50.0cm、4.0cm、4.0cm,如图2.1所示。在图形区单击鼠标左键,然后将连杆拖至水平位置时,在单击鼠标左键。

(4)在方形杆的右端面打孔。在几何建模工具栏单击打孔按钮,将

径Radius设置为1.0cm,深度设置为1.0cm,如图2.2所示。然后通过菜单栏,选择修改工作平面为YOZ平面。在图形区模型附近单击鼠标左键,

在与方形杆的YOZ平面上单击鼠标左键。然后可以通过【Edit】→【Move】修改孔的位置到(500,0.0,0.0),如图2.3

所示。

(5)用(3)的方法在关节1右端孔中

心处创建关节2,如图2.4所示。然后通

过【Edit】→【Move】修改关节2与方

形杆右端面重合。

2.3孔的位置

(6)如步骤(5),在连杆二的左端面

创建1kg的球体,用于模拟机械手抓取

物体的状况。

2.4 二连杆模型

(7)添加约束。在关节1的左端与大地之

间添加转动副,在关节1与关节2结合处添加转动副。单击工具栏中的旋转副按钮,并将创建旋转副的选项设置为2Bod-1Loc 和Normal Grid,然后在图形区单击关节1和大地,之后需要选择一个作用点,将鼠标移动到关节1的Marker1处出现center 信息时,按下鼠标左键后就可以创建旋转副,旋转副的轴垂直于工作栅格。然后用同样的方法创建关节1与关节2之间的旋转副,如图 2.5所示。

2.5创建旋转副

2.6 旋转驱动设置

(8)按同样方法在连杆2与小球之间添加固

定副。

(9)添加驱动。在运动副1(Joint1)和运

动副2(Joint2)上分别添加旋转驱动。单击

主工具栏的旋转驱动按钮,然后在选择上

面创建的旋转副1,然后在图形区单击鼠标

右键,在快捷菜单中中选择Modify,在编辑

对话框中将驱动函数设置为10d*sin(time),

如图2.6所示。用同样的方法在旋转副2上创建

旋转驱动,并将驱动函数设置为10d*time*(-1)。

(10)运行仿真计算。单击主工具栏的仿真计算

按钮,将仿真类型设置为Default,仿真时间End

Time设置为25,仿真步数Steps设置为500,然 2.7 末端运动轨迹

后单击运行按钮进行仿真计算。

(11)绘制运动轨迹。单击菜单【Review】→【Create Trace Spline】,然后选择小球中心的Marker点,再选择关节1与大地的铰接点,鼠标移动到Joint1处,单击鼠标右键,在弹出对话框中选择ground,单击OK创建运动轨迹,如图2.7所示。

2.8 后处理模块界面

(12)结果后处理。按下键盘上的F8键,界面将从View模块直接进入到PostProcess模块,后处理模块界面如图2.8所示。

在后处理模块,通过菜单【View】→【Load Animation】可以载入动画。在仿真动画中可以播放两种动画,一种是在时间域内进行的运动学和动力学仿真计算动画;另一种是在频率域内的,播放通过现行化或者在震动模块中的计算模型

的振型动画。单击播放按钮后开始播放动画,如果在播放同时按下记录按钮,在播放动画的同时也将动画保存到动画文件中,动画文件位于ADAMS的工作目录下。

2.9 机械臂末端速度曲线

在后处理模块中,通过菜单【View】→【Load Plot】,通过选择相应的选项,绘制出相应的结果曲线。如果2.9、2.10所示,分别绘制出机械臂末端点的速度曲线和加速度曲线。

2.10 机械臂末端加速度曲线

2.1.2运动学分析

(1)创建机械臂模型。按照2.1.1节的(1)~(6)步创建同样的机械臂,

并添加运动副约束。

(2)添加驱动。与运动分析不同,动力学分析添加的驱动为单分量力矩。单击工具栏上的单分量力矩选项,将选项设置为Space Fixed、Normal to Grid

和Constant,然后勾选Torque项并输入1,然后在图形区单击关节1,再在其上单击任何一点。用同样的方法添加关节2的驱动,并将其值设置为-2,如图2.11所示。

(3)运动学计算仿真。单击

菜单【Simulate】→【Iteractive

Controls】,打开交互式仿真控制

对话框,在对话框中将仿真时间

End Time设置为10,仿真步数

Steps设置为5000,仿真类型Type

设置为Dynamic,单击仿真计算

按钮,观看仿真动画,模型将在

重力和驱动力矩作用下运动。

2.11 添加单分量力矩

(4)绘制运动轨迹。单击菜单【Review】→【Create Trace Spline】,然后选择

关节2右端面的Marker点,再选择关

节1与大地的铰接点,鼠标移动到Joint1

处,单击鼠标右键,在弹出对话框中选

择ground,单击OK创建运动轨迹,如

图2.12所示。

(5)结果后处理。在后处理模块,

通过菜单【View】→【Load Animation】

可以载入动画。单击播放按钮后开始播

放动画,在播放同时按下记录按钮,将动画保存到动画文件中。

2.11末端运动轨迹

2.13 机械臂x方向末端速度曲线

在后处理模块中,通过菜单【View】→【Load Plot】,通过选择相应的选项,绘制出相应的结果曲线。如果2.13、2.14所示,分别绘制出小球的速度曲线和加速度曲线。

2.14 机械臂末端x方向加速度曲线

三.空间二连杆机器人Simulink 建模仿真

1.模型参数的确

由于Newton —Euler 方法适合于数值计算,且具有概念

清晰,推导形式化的优点。而空间二连杆连杆数目较少,在此可以选用

Newton —Euler 方法建立运动学和动力学模型。

为了便于和adams 模型计算结果相比较,

以验证matlab 建模的正确性,matlab 模型的参数均采用adams 中设置的模型参数。右图是模型连杆构件和小球细节图。

三.连杆及小球参数:

根据adams 建立的模型,测量连杆及小球的质量,长度,半径等参数如下。

2.运动学分析

2.1杆端加速度关系推导

如右图所示,杆一和杆二构成开环矢量, 312R R R =+;

令连杆1长1L ,连杆2长2L ;由图(2)可见只要设1R 方向和X 轴正向成1θ(theta1,逆时针),2R 方向和Z 轴正向成2θ(theta2,逆时针),即可表示出杆端P 点的运动学方程。

图(1)

因此得坐标关系式:

()()()()()()()112211122122cos sin sin sin sin cos cos P P P x L L y L L z L θθθθθθθ=?+??????=?-??????

=???

对其求一次导得速度方程:

312R R R =+

()()()()()()()()()()()()1112221122111122212121

222sin cos sin sin cos cos cos cos sin sin sin P P P dx L L L dt dy L L L dt dz L dt ωθωθθωθθωθωθθωθθωθ??

=??-+???+?????????=??-???+?????????=-??????

求二次导得加速度方程:

312V V V =+ 方程(1):

()()()()()()()()()22

111122122212

2212

sin sin cos cos sin sin sin P d x L L L L dt αθαθθαθθωθθ=-+++- ()()()()()221222112211112cos cos sin sin cos L L L ωωθθωθθωθ+--

方程(2):

()()()()()()222

111111222122212

cos sin cos cos sin cos P d y L L L L dt

αθωθαθθωθθ=--+ ()()()()()()222112212122112sin cos sin cos sin sin L L L ωωθθωθθθθα+??++

方程(3):

()()22222222

cos sin P

L L dt

ωθαθ=-- 2.2连杆1质心加速度关系推导

设连杆1质心距端点距离为c r ,xyz 各方向的加速度分别为cx a ,cy a ,cz a 。

连杆1在平面 Oxy 内作平面运动,质心C 点的加速度即为向心加速度与切向加

速度的合成。但该方法相对较繁琐,同2.1,可以用矢量方程求导得到。如图,有矢量方程:

112

c R R =

将其展开为坐标分量式,然后求一次,二次导得到其

加速度关系,如2.1所示过程,最后得到连杆1质心

C 的加速度方程如下式:

连杆1质心的加速度方程 方程(4):

()()21111cos sin cx c c a r r θωθα=--

方程(5)

()()21111sin cos cy c c a r r θωθα=--

以及方程

0cz a =

(注:其中0cz

a =,很明显可以得到,

在程序中没有把cz a 作为新的变量,即没有第三个方程)

2.3连杆2质心加速度关系推导 如右图,有1OD D R R R =+

同2.1,2.2所示过程,用矢量求导的方法得到连杆2质心D 点的加速度方程如下: 由此得到 方程(6)

()()()()()()1111212212

sin sin cos cos sin D

Dx D D a L r r dt

αθαθθαθθ==-++ ()()()()()()()()

2222211221121111sin sin 2cos cos sin sin cos D D D r r r L ωθθωωθθωθθωθ+-+--

方程(7)

()()()()()()2221111112212212

cos sin cos cos sin cos D

Dy D D d y a L L r r dt

αθωθαθθωθθ==--+()()()()()()221121212112sin cos sin cos sin sin D D D r r r ωωθθωθθθθα+??++

方程(8)

()()22

22222

cos sin D Dz D D d z a r r dt

ωθαθ==--

3.动力学分析

采用Newton —Euler 方法建立动力学模型。首先分析连杆1的受力,建立其动力

学方程;其次分析连杆2受力,建立其动力学方程;最后分析小球受力,建立其动力学方程。

3.1连杆1的动力学模型

如右图所示是连杆1的受力分析图:(在本例中关节1处01Z M 和关节2处21R M 各是电机输入力

矩)

由于连杆1做定轴转动,故可用定轴转动刚体动力学分析方法建立其动力学模型。即:

__ ; out total mass out total J M m a F α==

代入本例中各力,且结合21212121,;,V R V R F F M M 和21212121,;,X Y X Y F F M M 的

关系:()()()()()()()()21211211212112112121121121211211sin cos cos sin M sin cos M cos sin X V R Y V

R X V R Y V R F F F F F F M M M M θθθθθθθθ=?+?????=-?+?????

=?+?????

=-?+??? 故可得连杆1的动力学方程:

方程(9):

()()101211211sin cos cx x V R m a F F F θθ=+?+?

方程(10):

()()101211211cos sin cy y V R m a F F F θθ=-?+?

方程(11):

10121z z m g F F =+

方程(12):

()()()010112111sin sin X z c z c M F r F L r θθ-??+?-?

()()211211sin cos 0V R M M θθ+?+?=

方程(13):

()()()01211211011cos sin cos Y V R Z c M M M F r θθθ-++

()()2111cos 0Z c F L r θ--=

方程(14):

()()()110121*********sin sin Z z z x c V c y c J M M F r F L r F r αθθ=++-?--

即:

()()()()()()()()()()()()()()10121121110121121110121010112111211211012112110112111110sin cos cos sin sin sin sin cos 0cos sin cos cos 0cx x V R cy y V R z z X z c z c V R Y V R Z c Z c Z m a F F F m a F F F m g F F M F r F L r M M M M M F r F L r J M θθθθθθθθθθθθα=+?+?=-?+?=+-??+?-?+?+?=-?+?+--==()()()121011211011 sin sin z z x c V c y c M F r F L r F r θθ??????????????????????++??-?--??

3.2连杆2的动力学模型

如右图,连杆2的底端受到连杆1的反作用力,顶端受到小球(机械手所夹物体)的作用力。

3.2.1先分析连杆2的加速度运动方程。

将12123232,;,V R V R F F F F 分别分解到X ,Y 轴上。得到

()()()()()()()()12121121121211213232132132321321sin cos cos sin sin cos cos sin X V R Y V R X

V R Y

V R F F F F F F F F F F F F θθθθθθθθ=?+?????=-?+?????=?+?????

=-?+???

且注意到12123232,;,V R V R F F F F 和21212323,;,V R V R F F F F 是作用力和反作用力的关系。因此

1221122132233223 V V R R V V R

R F F F F F F F F =-????=-?

???=-??=-??,方程中用21212323,;,V R V R F F F F 分别代替12123232,;,V R V R F F F F 。得到 方程(15)

()()()()22123121231sin cos DX V V R R m a F F F F θθ=-+?-+?

方程(16)

()()()()22123121231cos sin DY V V R R m a F F F F θθ=+?-+?

方程(17)

223212DZ Z Z m a F F m g =---

3.2.2

然后分析连杆2的刚体转动方程。 注意到连杆1在XOY 平面转动的同时,带动连杆2的关节点一起运动,设角速度为1ω;而连杆2相对连杆1在竖直平面内又做转动运动,设角速度为2ω。因此连杆2的绝对角速度是角速度矢量1ω和角速度矢量

2ω的叠加。而描述刚体的转动需要的是本体坐标系下的角速度矢量

body ω,故在连杆2上建立本体坐标系,各个坐标系的关系如上图所示。

从图中可以看出本体坐标系可用zyx 顺序旋转的欧拉角来描述本体坐标系相对惯性系的姿态。即本体坐标系可由惯性系先绕z 轴顺时针旋转

12

πθ-,再绕坐标

系2的Y 轴逆时针旋转2θ得到。故可用姿态旋转矩阵把1ω分解到本体坐标系中。即有如下函数关系:

()()()()1221221cos 0 -sin 0 1 0sin 0 cos bodyx bodyy bodyz ωθθωθθω---????????=????????

?

??? 1111cos sin 022-sin cos 0220 0 1 ππθθππθθ??????

????----?? ? ? ? ?????????????????

????----??

? ? ? ???????????

????????()()21121-sin 000

cos θωωθω??

??????=?

???????????

而2ω就在本体坐标系上,故不必转换。

故绝对角速度矢量在本体坐标系上的分量式为:

()()()()2121222121-sin -sin 000cos cos abos bodyx abos bodyy abos bodyz ωθωθωωωωθωθωω---????????????????=+=??????????????

?????

????? 已知欧拉方程在刚体固连系下的分量式为

J J T ωωω?+=

展开式为

()()()x x y z y z x y y z x x z y z z x y x y z

J J J T J J J T J J J T ωωωωωωωωω--=--=--= 其中,,x y z J J J 已经在adams 中测出。由力的受力分析图可以得出在本体坐标系下

, , x y z T T T 的计算式。

将各分力对连杆2的质心取矩,并将各力矩投影到体坐标系的坐标轴上,得到

()()()()2321223212cos sin x V V Z Z T M M M M θθ=-+?++?

()23221-r - r R D R D F L F +??

()()()21232122322r cos -r cos y R R V D V D T M M F F L θθ=--+??-??()()()2122322r sin -r sin Z D Z D F F L θθ-??+??

()()()()2321223212 sin cos z V V Z Z T M M M M θθ=-+?-+?

最后,把()()21221-sin ; = ; =cos x y z ωθωωωωθω=以及, , x y z T T T 的表达式代入上式得到连杆2的转动方程。

方程(18)

()()()()()12221212sin cos -cos x y z J J J αθθωωωωθ---

()()()()()232122*********cos sin -r - r V V Z Z R D R D M M M M F L F θθ=-+?++?+??

方程(19)

()()()()221222123212sin cos r cos y z x R R V D J J J M M F αωθθθ+-=--+?? ()()()()()23222122322-r cos r sin -r sin V D Z D Z D F L F F L θθθ-??-??+??

方程(20)

()()()()()()12221212cos sin sin z x y J J J αθθωωωωθ----

()()()()2321223212sin cos V V Z Z M M M M θθ=-+?-+?

3.3小球的运动学和动力学方程 3.3.1小球的运动学方程

小球的运动学参量在小球半径R3不是很大时,其实和杆端的运动学参量差不多,如果为了精确计算,那么需要写出小球的运动学方程。小球的运动学方程和杆端的运动学方程大同小异,只要把L2替换为(L2+R3)即可。

方程(21)

()()()()()()()()211112*********

sin sin cos cos sin ball

d x L L r L r dt αθαθθαθθ=-++++ ()()()()

222321sin sin L r ωθθ++-()()()()()()()22122321123211112cos cos sin sin cos L r L r L ωωθθωθθωθ++-+-

方程(22)

()()()()()22111111223212

cos sin cos cos ball

d y L L L r dt

αθωθαθθ=--+ ()()()223221sin cos L r ωθθ++

()()()()()()()()()22321122312123211

2sin cos sin cos sin sin L r L r L r ωωθθωθθθθα++??++++方程(23)

()()()()22

232222322

cos sin P d z L r L r dt

ωθαθ=-+-+ 也可把方程(1),(2),(3)的杆端的加速度看成小球的加速度,相应只要把2L 的数值取成23L r +即可(即如果想要同时知道杆端和小球的加速度,那么可以把以上三个方程添加进入;如果只要知道其一,这三个方程可以去掉)。 3.3.2小球的动力学方程

3.3.2.1

首先分析小球的加速度方程

小球受力如图示,从图中可以很容易得到小球

系统动力学模型部分集

第10章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1节系统动力学概述 1.1 概念 系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算

机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下: 1)人才培养

02-课件:5-4 机器人动力学建模(牛顿-欧拉法)

连杆动力学方程(牛顿-欧拉递推方法) 将机器人的连杆看成刚体,其质心加速度、总质量、角速度、 角加速度、惯性 张量与作用力矩满足如下关系: 牛顿第二定律 (力平衡方程) ()/ci i ci i ci d m dt m ==f v v 欧拉方程 (力矩平衡方程)()()/c c c ci i i i i d dt ==+?i i i n I ωI ω ωI ω

连杆动力学方程(牛顿-欧拉递推方法)

欧拉方程公式推导 v 为质心移动速度(移动时与惯性力相关)坐标系旋转时,惯性张量不是常量()()/c c c ci i i i i d dt ==+?i i i n I ωI ωωI ω ()() =[()] =[] =()c c c ci i i i c c i i i c c i i i c c i i i d d dt dt S ==+++?+?i i i i i i i i i n I ωI ωωI I ωωωI I ωωωI I ωωI ω ()()g d m dt =?+??+N I ωωI ωρ×v

力和力矩平衡方程 i i+1i-1iP i+1i fi i n i i f i+1i n i+1连杆i 在运动情况下,作用在上面 的合力为零,得力平衡方程式 (暂时不考虑重力): (将惯性力作为静力来考虑) 1 11f f R f +++=-i i i i ci i i i

力和力矩平衡方程 作用在连杆i 上的合力矩等于零,得力矩平衡方程式:1111111i i i i i i i i i ci i i i ci ci i i i +++++++=- -?-?n n R n r f P R f 将上式写成从末端连杆向内迭代的形式:111i i i i i i i ci +++=+f R f f 1111111i i i i i i i i i i i i ci ci ci i i i +++++++=++?+?n R n n r f P R f 利用这些公式可以从末端连杆n 开始,顺次向内递推直至到操作臂的基座。

工业机器人静力及动力学分析

注:1)2008年春季讲课用;2)带下划线的黑体字为板书内容;3)公式及带波浪线的部分为必讲内容第3章工业机器人静力学及动力学分析 3.1 引言 在第2章中,我们只讨论了工业机器人的位移关系,还未涉及到力、速度、加速度。由理论力学的知识我们知道,动力学研究的是物体的运动和受力之间的关系。要对工业机器人进行合理的设计与性能分析,在使用中实现动态性能良好的实时控制,就需要对工业机器人的动力学进行分析。在本章中,我们将介绍工业机器人在实际作业中遇到的静力学和动力学问题,为以后“工业机器人控制”等章的学习打下一个基础。 在后面的叙述中,我们所说的力或力矩都是“广义的”,包括力和力矩。 工业机器人作业时,在工业机器人与环境之间存在着相互作用力。外界对手部(或末端操作器)的作用力将导致各关节产生相应的作用力。假定工业机器人各关节“锁住”,关节的“锁定用”力与外界环境施加给手部的作用力取得静力学平衡。工业机器人静力学就是分析手部上的作用力与各关节“锁定用”力之间的平衡关系,从而根据外界环境在手部上的作用力求出各关节的“锁定用”力,或者根据已知的关节驱动力求解出手部的输出力。 关节的驱动力与手部施加的力之间的关系是工业机器人操作臂力控制的基础,也是利用达朗贝尔原理解决工业机器人动力学问题的基础。 工业机器人动力学问题有两类:(1)动力学正问题——已知关节的驱动力,求工业机器人系统相应的运动参数,包括关节位移、速度和加速度。(2)动力学逆问题——已知运动轨迹点上的关节位移、速度和加速度,求出相应的关节力矩。 研究工业机器人动力学的目的是多方面的。动力学正问题对工业机器人运动仿真是非常有用的。动力学逆问题对实现工业机器人实时控制是相当有用的。利用动力学模型,实现最优控制,以期达到良好的动态性能和最优指标。 工业机器人动力学模型主要用于工业机器人的设计和离线编程。在设计中需根据连杆质量、运动学和动力学参数,传动机构特征和负载大小进行动态仿真,对其性能进行分析,从而决定工业机器人的结构参数和传动方案,验算设计方案的合理性和可行性。在离线编程时,为了估计工业机器人高速运动引起的动载荷和路径偏差,要进行路径控制仿真和动态模型的仿真。这些都必须以工业机器人动力学模型为基础。 工业机器人是一个非线性的复杂的动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间。因此,简化求解过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 在这一章里,我们将首先讨论与工业机器人速度和静力学有关的雅可比矩阵,然后介绍工业机器人的静力学问题和动力学问题。

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

第二章:动力学系统的微分方程模型

第二章:动力学系统的微分方程模型 利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。 在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。 §2.1 动力学系统统基本元件 任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。 1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。 惯量(质量)= ) 加速度(力(2 /) s m N 惯量(转动惯量)= ) 角加速度(力矩(2/) s rad m N ? 2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。 对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。 x k F ?= 这里k 称为弹簧刚度,x ?是弹簧相对于原长的变形量,弹性力的方向总是指向弹簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。 3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。阻尼力通常表示为: α x c R = 阻尼力的方向总是速度方向相反。当1=α,为线性阻尼模型。否则为非线性阻 尼模型。应注意当α等于偶数情况时,要将阻尼力表示为: ||1--=αx x c R 这里的“-”表示与速度方向相反

机器人系统常用仿真软件介绍

1 主要介绍以下七种仿真平台(侧重移动机器人仿真而非机械臂等工业机器人仿真): 1.1 USARSim-Unified System for Automation and Robot Simulation USARSim是一个基于虚拟竞技场引擎设计高保真多机器人环境仿真平台。主要针对地面机器人,可以被用于研究和教学,除此之外,USARSim是RoboCup救援虚拟机器人竞赛和虚拟制造自动化竞赛的基础平台。使用开放动力学引擎ODE(Open Dynamics Engine),支持三维的渲染和物理模拟,较高可配置性和可扩展性,与Player兼容,采用分层控制系统,开放接口结构模拟功能和工具框架模块。机器人控制可以通过虚拟脚本编程或网络连接使用UDP协议实现。被广泛应用于机器人仿真、训练军队新兵、消防及搜寻和营救任务的研究。机器人和环境可以通过第三方软件进行生成。软件遵循免费GPL条款,多平台支持可以安装并运行在Linux、Windows和MacOS操作系统上。 1.2 Simbad Simbad是基于Java3D的用于科研和教育目的多机器人仿真平台。主要专注于研究人员和编程人员热衷的多机器人系统中人工智能、机器学习和更多通用的人工智能算法一些简单的基本问题。它拥有可编程机器人控制器,可定制环境和自定义配置传感器模块等功能,采用3D虚拟传感技术,支持单或多机器人仿真,提供神经网络和进化算法等工具箱。软件开发容易,开源,基于GNU协议,不支持物理计算,可以运行在任何支持包含Java3D库的Java客户端系统上。 1.3 Webots Webots是一个具备建模、编程和仿真移动机器人开发平台,主要用于地面机器人仿真。用户可以在一个共享的环境中设计多种复杂的异构机器人,可以自定义环境大小,环境中所有物体的属性包括形状、颜色、文字、质量、功能等也都可由用户来进行自由配置,它使用ODE检测物体碰撞和模拟刚性结构的动力学特性,可以精确的模拟物体速度、惯性和摩擦力等物理属性。每个机器人可以装配大量可供选择的仿真传感器和驱动器,机器人的控制器可以通过内部集成化开发环境或者第三方开发环境进行编程,控制器程序可以用C,C++等编写,机器人每个行为都可以在真实世界中测试。支持大量机器人模型如khepera、pioneer2、aibo等,也可以导入自己定义的机器人。全球有超过750个高校和研究中心使用该仿真软件,但需要付费,支持各主流操作系统包括Linux, Windows和MacOS。 1.4 MRDS-Microsoft Robotics Developer Studio MRDS是微软开发的一款基于Windows环境、网络化、基于服务框架结构的机器人控制仿真平台,使用PhysX物理引擎,是目前保真度最高的仿真引擎之一,主要针对学术、爱好者和商业开发,支持大量的机器人软硬件。MRDS是基于实时并发协调同步CCR(Concurrency and Coordination Runtime)和分布式软件服务DSS(Decentralized Software Services),进行异步并行任务管理并允许多种服务协调管理获得复杂的行为,提供可视化编程语言(VPL)和可视化仿真环境(VSE)。支持主流的商业机器人,主要编程语言为C#,非商业应用免费,但只支持在Windows操作系统下进行开发。 1.5 PSG-Player/Stage/Gazebo

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

简单串联机器人ADAMS仿真

机械系统动力学 简化串联机器人的运动学与动力学仿真分析 学院:机械工程学院 专业:机械设计制造 及其自动化 学生姓名: 学号: 指导教师: 完成日期: 2015.01.09

摘要 在机器人研究中,串联机器人研究得较为成熟,其具有结构简单、成本低、控制简单、运动空间大等优点,已成功应用于很多领域。本文在ADAMS 中用连杆模拟两自由度的串联机器人(机械臂),对其分别进行运动学分析、动力学分析。得出该机构在给出工作条件下的位移、速度、加速度曲线和关节末端的运动轨迹。 关键词:机器人;ADAMS;曲线;轨迹 一、ADAMS软件简介 ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.) (现已并入美国MSC公司)开发的虚拟样机分析软件。目前,ADAMS已经被全世界各行各业的数百家主要制造商采用。ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。 二、简化串联机器人的运动学仿真 (1)启动ADAMS/View。 在欢迎对话框中选择新建模型,模型取名为robot,并将单位设置为MMKS,然后单击OK。 (2)打开坐标系窗口。 按下F4键,或者单击菜单【View】→【Coordinate Window】后,打开坐标系窗口。当鼠标在图形区移动时,在坐标窗口中显示了当前鼠标所在位置的坐标值。

动力学主要仿真软件

车辆动力学主要仿真软件 1960年,美国通用汽车公司研制了动力学软件DYNA,主要解决多自由度无约束的机械系统的动力学问题,进行车辆的“质量-弹簧-阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学与运动学问题的简便形式。 随着多体动力学的诞生与发展,机械系统运动学与动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N、Orlandeo与,研制的ADAMS软件,能够简单分析二维与三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR 刚性积分算法,采用稀疏矩阵技术提高计算效率。1977年,美国Iowa 大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学与动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLR早在20世纪70年代,Willi Kortüm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna(1977)、MEDYNA(1984),以及最终享誉业界的SIMPACK(1990)、随着计算机硬件与数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MEDYNA软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACK软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPACK软件中将多刚体动力学与有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACK算法技术的优势,成功地将控制系统与多体计

机器人机械臂运动学分析(仅供借鉴)

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

动力学主要仿真软件

车辆动力学主要仿真软件 1960年,美国通用汽车公司研制了动力学软件DYNA,主要解决多自由度无约束的机械系统的动力学问题,进行车辆的“质量-弹簧-阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的诞生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAMS软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR 刚性积分算法,采用稀疏矩阵技术提高计算效率。1977年,美国Iowa 大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLR早在20世纪70年代,Willi Kortüm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA(1984),以及最终享誉业界的SIMPACK(1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MEDYNA软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACK软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPACK软件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACK算法技术的优势,成功地将控制系统和多体

弹簧阻尼系统动力学模型adams仿真设计

震源车系统动力学模型分析报告 一、项目要求 1)独立完成1个应用Adams 软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams 的命令文件,命令文件要求清楚、简洁。 1K 1 C 2K 2C 3 C 3 K 3 M 1 M 2M 二、建立模型 1)启动admas ,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X 和Y 分别设置成750mm 和500mm ,间距(Spacing )中的X 和Y 都设置成50mm 。然后点击“OK ”确定。如图2-1所表示。 图 2-1 设置工作网格对话框

2)在ADAMS/View零件库中选择矩形图标,参数选择为“on Ground”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“New Part”建立part-2、part-3、part-4,得到图形如2-3所示, 图 2-2 图 2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图 2-4 创建弹簧阻尼器 4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。

基于动力学模型的轮式移动机器人运动控制_张洪宇

文章编号:1006-1576(2008)11-0079-04 基于动力学模型的轮式移动机器人运动控制 张洪宇,张鹏程,刘春明,宋金泽 (国防科技大学机电工程与自动化学院,湖南长沙 410073) 摘要:目前,对不确定非完整动力学系统进行设计的主要方法有自适应控制、预测控制、最优控制、智能控制等。结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器的设计和研究进展进行综述,并分析今后的重点研究方向。 关键词:轮式移动机器人;动力学模型;运动控制;非完整系统 中图分类号:TP242.6; TP273 文献标识码:A Move Control of Wheeled Mobile Robot Based on Dynamic Model ZHANG Hong-yu, ZHANG Peng-cheng, LIU Chun-ming, SONG Jin-ze (College of Electromechanical Engineering & Automation, National University of Defense Technology, Changsha 410073, China) Abstract: At present, methods of non-integrity dynamic systems design mainly include adaptive control, predictive control, optimal control, intelligence control and so on. Based on analyzing the recent results in modeling of WMR dynamics, a survey on motion control of WMR based on dynamic models was given. In addition, future research directions on related topics were also discussed. Keywords: Wheeled mobile robot; Dynamic model; Motion control; Non-integrity system 0 引言 随着生产的发展和科学技术的进步,移动机器人系统在工业、建筑、交通等实际领域具有越来越广泛的应用和需求。进入21世纪,随着移动机器人应用需求的扩大,其应用领域已从结构化的室内环境扩展到海洋、空间和极地、火山等环境。较之固定式机械手,移动机器人具有更广阔的运动空间,更强的灵活性。移动机器人的研究必须解决一系列问题,包括环境感知与建模、实时定位、路径规划、运动控制等,而其中运动控制又是移动机器人系统研究中的关键问题。故结合WMR动力学建模理论的研究成果,对基于动力学模型的WMR运动控制器设计理论和方法的研究进展进行研究。 1 WMR动力学建模 有关WMR早期的研究文献通常针对WMR的运动学模型。但对于高性能的WMR运动控制器设计,仅考虑运动学模型是不够的。文献[1]提出了带有动力小脚轮冗余驱动的移动机器人动力学建模方法,以及WMR接触稳定性问题和稳定接触条件。文献[2]提出一种新的WMR运动学建模的方法,这种方法是基于不平的地面,从每个轮子的雅可比矩阵中推出一个简洁的方程,在这新的方程中给出了车结构参数的物理概念,这样更容易写出从车到接触点的转换方程。文献[3]介绍了与机器人动作相关的每个轮子的雅可比矩阵,与旋转运动的等式合并得出每个轮子的运动方程。文献[4]基于LuGre干摩擦模型和轮胎动力学提出一种三维动力学轮胎/道路摩擦模型,不但考虑了轮胎的径向运动,同时也考虑了扰动和阻尼摩擦下动力学模型,模型不但可以应用在轮胎/道路情况下,也可应用在对车体控制中。在样例中校准模型参数和证实了模型,并用于广泛应用的“magic formula”中,这样更容易估计摩擦力。在文献[5]中同时考虑运动学和动力学约束,其中提出新的计算轮胎横向力方法,并证实了这种轮胎估计的方法比线性化的轮胎模型好,用非线性模型来模拟汽车和受力计算,建立差动驱动移动机器人模型,模型本身可以当作运动控制器。 2 WMR运动控制器设计的主要发展趋势 在WMR控制器设计中,文献[6]给出了全面的分析,WMR的反馈控制根据控制目标的不同,可以大致分为3类:轨迹跟踪(Trajectory tracking)、路径跟随(Path following)、点镇定(Point stabilization)。轨迹跟踪问题指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随给定的参考轨迹。路径跟随问题是指在惯性坐标系中,机器人从给定的初始状态出发,到达并跟随指定的几何 收稿日期:2008-05-19;修回日期:2008-07-16 作者简介:张洪宇(1978-)男,国防科学技术大学在读硕士生,从事模式识别与智能系统研究。 ,

一种自行车机器人动力学分析和仿真

一种自行车机器人的动力学分析与仿真 邹俊 (北京邮电大学自动化学院,北京100876) 摘要:自行车是一种高效而且环保的交通工具。但自行车动力学特征较为复杂,从控制学角度说,其本身就是一个欠驱动的不稳定系统。行驶中的自行车的动力学模型相对复杂,受外界因素干扰很大,如不同的地面情况和风速的影响,很难完全模拟。因此,自行车的自动控制的发展是一项具有挑战意义的主题。本文提出了一种自行车机器人的建模方法并设计了车把控制器,并用仿真实验验证了其正确性。 关键词:自行车机器人;自动控制;稳定性 中国图书分类号:TP273.5 Modeling and Simulation of Autonomous Bicycle Abstract: Bicycle is an efficient and environment-friendly transport. However, the dynamics of bicycle is complicated. From the control point of view, it is an under actuated nonholonomic system. The dynamics of bicycle is relatively complicated, and very susceptible to disturbance from outside, such as different ground conditions and wind speed, and it is difficult to fully simulate. Thus, the development of automatic control for driving a bicycle is a challenging theme. This paper presents a dynamic model of bicycle and designs a steer controller. Simulation is performed to prove the validity of this controller. Key words: Autonomous Bicycle; Automatic Control; Stability 0引言 自行车是一种高效而且环保的交通工具。自从1818年,德国人德莱斯(Baron Karivon Drais)在法国巴黎发明了带车把的木制两轮自行车以来,自行车给人类的生活带来了极大的便利,同时,人们也在对其进行不断的改进[1][2]。2006年,日本著名的机器人“村田顽童”更是向人们展示了行走坡道和S型平衡木、倒车行走,检测障碍物,进入车库,手机遥控操作,发声、播放音乐等功能。到目前为止,自行车机器人已经取得一定的研究成果,其研究内容主要围绕动力学建模和提出新的控制算法两方面内容展开的。 自行车与倒立摆有很大的相似性,然而前者动力学特性更加复杂,可以利用模糊神经网络控制、非线性控制等控制方法来建模和设计控制器。同时,自行车机器人还涉及到传感器技术、自适应控制、机械力学、无线通信等众多学科。因此,无论在理论和实践中都具有十分重要的意义。 1动力学分析及建模

空间二连杆机器人的动力学建模及其动态过程仿真

空间二连杆机器人的动力学建 模 及其动态过程仿真 作者:td 一引言 1.机器人机械臂的运动学与动力学分析方法 目录 空间二连杆机器人的动力学建模 (1) 及其动态过程仿真 (1) 作者:td (1) 一引言 (1) 1.1用户界面模块(ADAMS/View) (4) 1.2求解器模块(ADAMS/Solver) (5) 1.3后处理模块(ADAMS/PostProcessor) (6) 二.空间二连杆机器人adams建模仿真 (6) 2.1空间二连杆串联机器人 (6) 在ADAMS中用长方形连杆模拟机械臂,对两自由度的机械臂分别进行运动学分析动力学分析。 (6) 2.1.1运动学分析 (6) 2.1.2运动学分析 (9)

机器人的运动学和动力学既包含有一般机械的运动学、动力学内容,又反映了机器人的独特内容。工业机器人的运动学主要讨论了运动学的正问题和逆问题。假设一个构型已知的机器人,即它的所有连杆长度和关节角度()1q t ,()2q t ,()3q t …()n q t ,…都是已知的,其中n 为自由度数,那么计算机器人末端执行器相对于参考坐标系的位姿就称为运动学的正问题分析。换言之,如果已知机器人所有的关节变量,用正运动学方程就能计算任一瞬间机器人的位姿。然而,如果希望机器人的末端执行器到达一个期望的位姿,就必须要知道机器人操作臂每一个连杆的几何参数和所有关节的角矢量()12,,T n q q q q =???利用操作臂连杆几何参数和末端执行器期望的位姿来求解关节角矢量是运动学逆问题。运动学正问题可以利用齐次变换法来求解。设i 杆坐标系相对于基座坐标系的位姿齐次变换矩阵是b i T ,则 1231b i n n T A A A A A -=?????? ()11- 式中i A 为i 杆坐标系相对于1i -杆坐标系的坐标变换矩阵。相对于正运动学方程,机器人逆运动学方程显得更为重要。由于按给定末端执行器的位姿求解关节变量是在关节空间中进行非线性方程的求解,其中涉及多值性和奇异现象,因此,这一逆问题成为机器人运动学中的一个重要内容。机器人的控制器将用这些方程来计算关节值,并以此来运行机器人到达期望的位姿。机器人逆问题可有多种解法,如逆变换法、旋量代数法、数值迭代法、几何法等,其中Jaeobian 矩阵的速算法占有重要的地位。机器人作为多自由度可编程的工作系统,在运动学中研究的内容还有末端操作器运动规划、工作空间确定、位姿精度分析与补偿等。目前,对于一般机器人运动学的逆问题大部分都得到了解决,但是,对于有任意结构和有冗余自由度机器人的运动学逆问题,研究得还不够充分。 机器人操作臂的动力学建模主要是研究各主动关节的驱动力与操作臂运动的关系。机器人操作臂是一个十分复杂的动力学系统。机器人动力学方程的非线性特点和强耦合性使得对它的研究十分困难和复杂。目前人们已经提出了许多种动力学建模方法,分别基于不同的力学方程和原理。C .T .Lin ,Calafiore 等对Newton —Euler 动力学建模方法和Lagrange 方法在简化递推过程及减少运算次数上做了不少有益的工作;有些学者从计算机符号代数方向推导并行算法来进行研究;T .R .Kane 等发展了利用偏速度和广义力建模的Kane 方程法;有些学者利用广义d ’Alembert 原理来进行建模;还有人研究用图论进行机器人动力学分析的方法。其中以Newton —Euler 动力学建模方法及d ’Alembert 建模方法(或以这两种方法为基础)应用最为普遍。Newton —Euler 方法具有递推的形式,非常适合于数值计算,与

基于SIMULINK悬架系统动力学仿真分析

研究生课程论文答题本科目:汽车动力学 授课教师:乔维高 年级专业: 学生姓名: 学生学号: 是否进修生?是□否■

基于SIMULINK 悬架系统动力学仿真分析 (武汉理工大学汽车工程学院) 摘 要:汽车行驶平顺性的优劣直接影响到乘员的乘坐舒适性,并影响车辆动力性和经济性的发挥,是车辆在市场竞争中争夺优势的一项重要性能指标。因而如何最大限度地降低汽车在行驶过程中所产生的振动,成为汽车行业的研究重点。本文以某轿车为例,对其进行力学分析,建立四自由度半振动微分方程,以不同等级路面和不同车速下的随机路面激励谱作为输入,利用Matlab/Simulink 仿真软件建立了动态模型,进行计算机仿真,并分析了动力学参数的改变对汽车行驶平顺性影响。 关键词:悬架系统;平顺性;仿真 Suspension System dynamic simulation analysis Based on SIMULINK Abstract: Car Ride will directly affect occupant comfort and affect vehicle dynamics and economy of the play, is a vehicle to compete for advantage in the market competition is an important performance indicators. So how to minimize vibration during driving cars produced, became the focus of the automotive industry research. Taking a car, for example, its mechanics analysis, four and a half degrees of freedom vibration differential equations, random road pavement and different levels of excitation spectra under different speed as the input, using Matlab/Simulink simulation software to establish a dynamic model for computer simulation and analysis of the changing dynamics of the parameters affecting the car ride comfort. Key words: Suspension System ;riding comfort; dynamic simulation 1 汽车动力学振动模型的建立 四自由度半车模型既能表征车身的质心加速度和速度的变化,又能表征车身绕其质心轴的俯仰角加速度和角速度的变化,结构也不太复杂,因此其仿真结果具有一定的代表性。四自由度半车模型的建立,必须作如下假设:整个系统为线性系统;前轴与前轮质量之和为前簧下质量;后轴与后轮质量之和为后簧下质量;非悬挂分布质量由集中质量块m 1 f 、m 1r 代替,车轮的力学特性简化为一个无质量的弹簧,不计阻尼;汽车对称于其纵轴线,且左、右车辙的不平度函数相等。车身振动的四自由度模型如图1所示。车身质量根据动力学等效的原则分为前轴上后轴上及质心上的三个集中质量m 2 f 、 m 2r 、m 2c ,三个质量由无质量的刚性杆连接。 图1 四自由度汽车模型 1.1 四自由度半车模型自由振动方程 (1)采用 z 2 f 、z 2r 坐标系的自由振动方程 以车身为研究对象,对前、后端取力矩平衡,得: 222221221/L (z z )(z )0f f c c f f f f f f m z m z b K C z ++-+-= (1) 222221221/L (z z )(z z )0r r c c r r r r r r m z m z a K C ++-+-= (2) 式中:z 2f 、z 2r 、z c 、z 1 f 、z 1r 分别表示前、后轴上集中质量、车身质心、前、后轴非悬挂分布质量的垂直振动位移;K 2 f 、 K 2r 分别为前、后轴悬架刚度;C 2 f 、C 2r 是前、后悬架减振器阻尼系数;L 、a 、b 为轴距及质心至前、后轴的距离。 以前、后非悬挂质量为研究对象得:

相关主题
文本预览
相关文档 最新文档