当前位置:文档之家› 阴极保护原理.

阴极保护原理.

阴极保护原理.
阴极保护原理.

阴极保护

百科名片

阴极保护技术是电化学保护技术的一种,其原理是向被腐蚀金属结构物表面施加一个外加电流,被保护结构物成为阴极,从而使得金属腐蚀发生的电子迁移得到抑制,避免或减弱腐蚀的发生。

目录

英文名称

工作原理

两种方法的优缺点

发展历史

局部阴极保护

1.局部阴极保护目的

腐蚀简介

技术简介

效果判据

技术问答

运行维护

市场现状

设备的故障判断

展开

英文名称

工作原理

两种方法的优缺点

发展历史

局部阴极保护

1.局部阴极保护目的

腐蚀简介

技术简介

效果判据

技术问答

运行维护

市场现状

设备的故障判断

展开

编辑本段英文名称

英文名称:Cathodic Protection[1]

编辑本段工作原理

金属—电解质溶解腐蚀体系受到阴极极化时,电位负移,金属阳极氧化反应过电位ηa 减小,反应速度减小,因而金属腐蚀速度减小,称为阴极保护效应。利用阴极保护效应减轻金属设备腐蚀的防护方法叫做阴极保护。

由外电路向金属通入电子,以供去极化剂还原反应所需,从而使金属氧化反应(失电子反应)受到抑制。当金属氧化反应速度降低到零时,金属表面只发生去极化剂阴极反应。

两种阴极保护法:外加电流阴极保护和牺牲阳极保护。

1、牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,使该金属上的电子转移到被保护金属上去,使整个被保护金属处于一个较负的相同的电位下。该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1安培)或处于低土壤电阻率环境下(土壤电阻率小于100欧姆.米)的金属结构。如,城市管网、小型储罐等。根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3年,最多5年。牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。本人认为,产生该问题的主要原因是阳极成份达不到规范要求,其次是阳极所处位置土壤电阻率太高。因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低的阳极床位置。

2、外加电流阴极保护是通过外加直流电源以及辅助阳极,迫使电流从土壤中流向被保护金属,使被保护金属结构电位低于周围环境。该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构,如:长输埋地管道,大型罐群等。

[2]

编辑本段两种方法的优缺点

[3]方法优点缺点

强制电流1、输出电流连续可调

2、保护范围大

3、不受环境电阻率限制

4、工程越大越经济

5、保护装置寿命长1、需要外部电源

2、对邻近金属构筑物干扰大

3、维护管理工作量大

牺牲阳极1、不需要外部电源

2、对邻近构筑物无干扰或很小

3、投产调试后可不需管理

4、工程越小越经济

5、保护电流分布均匀、利用率高1、高电阻率环境不宜使用

2、保护电流几乎不可调

3、覆盖层质量必须好

4、投产调试工作复杂

5、消耗有色金属

排流保护极性

排流

1、利用杂散电流保护管道>管道

2、经济实用

3、方法简单,只需简单管理

4、有杂散电流时,可自动防止杂散电流的

腐蚀

1、对其他构筑物有干扰影响

2、干扰停运时,保护体得不到保护

3、易造成过负电位

强制1、保护范围广1、对其他构筑物有感到影响

排流 2、电压、电流连续可调

3、以干扰源的负馈线代替辅助阳极,结构

简化

4、干扰源停运时,保护体仍被保护

5、不存在阳极干扰2、需要外部电源

3、排流点易过保护

编辑本段发展历史

阴极保护技术已经发展成熟,广泛应用到土壤、海水、淡水、化工介质中的钢质管道、电缆、钢码头、舰船、储罐罐底、冷却器等金属构筑物等的腐蚀控制。 1834年——法拉第→阴极保护原理奠定基础 1890年——爱迪生→提出强制电流保

护船舶 1902年——柯恩→ 实现了爱迪生的设想 1905年——美国用于锅炉保护 1906年——德国建立第一个阴极保护厂 1913年——命名为电化学保护1924年——地下管网阴极保护

编辑本段局部阴极保护

[4]常用阴极保护的基本原则是将受保护的构筑物与所有低接地电阻的装置实现

电分离。但是,这在工业装置上是个很大的技术难题,因为管子非常多,管径相当大。要将它们实现电分离不仅费用昂贵,而且在正常使用中,它们可能与外部装置电接触或绝缘接头跨接,容易产生很多问题。在管道系统改造或扩建过程中,这个问题尤为突出。在爆炸危险的装置和输送电解液的管道上实施阴极保护也存在技术难题。如果用大口径管道输送低电阻率的电解质,那么在绝缘接头未受保护一侧,就会有被阴极保护电流引发内腐蚀的危险。

在工业装置上管道的腐蚀危险一般比长输管道中的腐蚀危险大,因为在大多数情况下,管道会与钢筋混凝土基础形成腐蚀电池。在不同种类的工业装置区域内能够利用区域阴极保护来克服这种腐蚀危险,所用方法类似于局部阴极保护的方法。受保护的区域是没有限制的,也就是说管道与连接的和分支的管道之间是没有电绝缘的。

局部阴极保护目的

局部阴极保护的目的不仅是要补偿外部阴极构筑物的电池电流,而且要使被保护的构筑物充分阴极极化,从而满足阴极保护准则要求。因为被保护的构筑物与外部阴极构筑物之间的接触电阻非常低,并且外部阴极构筑物的接地电阻非常低,所以不成比例的大部分阴极保护电流要流到外部阴极上。设置强制电流辅助阳极地床的目的就是要增加被保护的构筑物的保护电流分量。除了受保护的构筑物与外部阴极构筑物的几何尺寸外,土壤的电阻率对其有很大影响。与常规阴极保护不同的是,受保护的构筑物基本上是在强制电流辅助阳极的电压锥范围内。为此,考虑到各个组成部分不同的保护电流需要量,所以不能把土壤当做一个等电位空间来看待。在局部阴极保护中管地电位的变化只与附近的参比电极有关系,而与远方大地电位少有联系。[5]

编辑本段腐蚀简介

1)重要性

1972年,美国NACE协会估计每年损失是100亿美元,1976年BMR研究所调查每年损失接

阴极保护材料[2]

近700亿美元。美国国会非常震惊,对此要求贸易部进行证实,1982年发表的数据是每年损失126亿美元。考虑到国家高速公路、水、废水、废气、地下储罐、因腐蚀造成的污染,每年的损失是3000亿美元,占GDP的5%。1998年,我国工程院历时3年对全国的腐蚀进行调查,调查结果表明我国腐蚀造成的损失达5000多亿元。

2)腐蚀原因

金属是从矿石中提取出来的,在提炼过程种必须要给它一定的能量,使其处于高的能量状态。材料基本规律总是趋向于最低的能量状态,因此金属都是热力学不稳定的,具有和周围环境(如氧和水)发生反应的趋势,以达到较低的、更稳定的能量状态,如生成氧化物。以铁为例:阳极:Fe-2e→Fe2+ 阴极:O2+4e+2H 传钯4OH- Fe2++2OH-→Fe(OH)Fe(OH)2+1/2O+H传钯二Fe(OH)锭

3)腐蚀倾向

对于所有的金属的腐蚀倾向理论上采用电位的概念进行比较。电位负的金属,活性较强,容易发生腐蚀。电位正的金属活性相对较弱,腐蚀倾向性小。

4)控制措施

多年的实践证明,最为经济有效的腐蚀控制措施主要是覆盖层(涂层)加阴极保护。与国外相比,我国75%的防蚀费用用在涂装上,而电化学保护使用的相对较低。

5)施加涂层后,为什么还会腐蚀

涂层的作用主要是物理阻隔作用,将金属基体与外界环境分离,从而避免金属与周围环境的作用。但是有两种原因会导致金属腐蚀。一是涂层本身存在缺陷,有针孔的存在;二是在施工和运行过程中不可避免涂层会破坏,使金属暴露于腐蚀环境。这些缺陷的存在导致大阴极小阳极的现象,使得涂层破损处腐蚀加速。[6]

编辑本段技术简介

阴极保护技术有两种:牺牲阳极阴极保护和强制电流(外加电流)阴极保护。1)牺牲阳极阴极保护技术

牺牲阳极阴极保护技术是用一种电位比所要保护的金属还要负的金属或合金与被保护的

阴极保护材料

金属电性连接在一起,依靠电位比较负的金属不断地腐蚀溶解所产生的电流来保护其它金属。优点: A: 一次投资费用偏低,且在运行过程中基本上不需要支付维护费用 B: 保护电流的利用率较高,不会产生过保护C: 对邻近的地下金属设施无干扰影响,适用于厂区和无电源的长输管道,以及小规模的分散管道保护 D: 具有接地和保护兼顾的作用 E: 施工技术简单,平时不需要特殊专业维护管理。缺点: A: 驱动电位低,保护电流调节范围窄,保护范围小 B: 使用范围受土壤电阻率的限制,即土壤电阻率大于50Ω.m时,一般不宜选用牺牲阳极保护法 C: 在存在强烈杂散电流干扰区,尤其受交流干扰时,阳极性能有可能发生逆转 D: 有效阴极保护年限受牺牲阳极寿命的限制,需要定期更换

2)强制电流阴极保护技术

强制电流阴极保护技术是在回路中串入一个直流电源,借助辅助阳极,将直流电通向被保护的金属,进而使被保护金属变成阴极,实施保护。优点: A: 驱动电压高,能够灵活地在较宽的范围内控制阴极保护电流输出量,适用于保护范围较大的场合 B: 在恶劣的腐蚀条件下或高电阻率的环境中也适用 C: 选用不溶性或微溶性辅助阳极时,可进行长期的阴极保护 D: 每个辅助阳极床的保护范围大,当管道防腐层质量良好时,一个阴极保护站的保护范围可达数十公里 E: 对裸露或防腐层质量较差的管道也能达到完全的阴极保护缺点: A: 一次性投资费用偏高,而且运行过程中需要支付电费 B:阴极保护系统运行过程中,需要严格的专业维护管理 C: 离不开外部电源,需常年外供电 D:对邻近的地下金属构筑物可能会产生干扰作用

编辑本段效果判据

1)普通钢阴极保护准则

◆施加阴极保护时被保护结构物的电位负移至少达到-850mV或更负(相对饱和

硫酸铜参比电极CSE)。◆相对于饱和硫酸铜参比电极的负极化电位至少为850mV。◆在构筑物表面与接触电解质的稳定参比电极之间的阴极极化值最小为100mV。◆存在硫酸盐还原菌的环境,被保护结构物的电位负移至950mV(CSE)或更负。

2)铝合金阴极保护准则

◆构筑物与电解质中稳定参比电极之间的阴极极化值最小为100mV,准则适用于极化建立或衰减过程。◆极化电位不应负于-1200mV(CSE)。

3)铜合金阴极保护准则

◆构筑物与电解质中稳定参比电极的阴极极化值最小为100mV。极化建立或衰减过程均可以被应用。

4)异种金属阴极保护准则

◆所有金属表面与电解质中稳定参比电极之间的负电压等于活性最强的阳极区金属的保护电位。

5)高强钢阴极保护准则

◆700MPa以上的钢腐蚀速率降低至0.0001mm/a的保护电位为-760~

-790mV(Ag/AgCl)。◆在存在硫酸盐还原菌的环境下,钢屈服强度大于700MPa,保护电位应在800-950mV(Ag/AgCl)的范围内。◆屈服强度大于800MPa的钢,其保护电位应不低于-800mV(Ag/AgCl)。

编辑本段技术问答

1)什么是强制电流阴极保护系统?

强制电流阴极保护系统又称为外加电流系统,是在被保护结构周围同一电解质环境中埋设辅助阳极,通过一直流电源以辅助阳极为阳极,以被保护结构为阴极,构成供电回路,将直流电通向被保护的金属,使被保护金属强制变成阴极以实施阴极保护。

2)什么是牺牲阳极阴极保护系统?

牺牲阳极法是用一种电位比所要保护的金属还要负的金属或合金与被保护的金属电性连接在一起,依靠电位比较负的金属不断地腐蚀溶解所产生的电流来保护其它金属的方法。

3)强制电流阴极保护系统的组成有什么?

强制电流阴极保护系统主要由电源、控制柜、辅助阳极、焦炭(碳素)填料、电缆、控制参比电极、电位测试桩、电流测试桩、保护效果测试片、电绝缘装置、电绝缘保护装置。

4)电源的作用是什么?

电源的作用是向阴极保护系统不间断提供电流。电源主要有恒流、恒压整流器、恒电位仪。

5)电源的类型主要有哪几种?

从整流形式上主要有可控硅、磁饱和、数控高频开关。可控硅和磁饱和恒电位仪体积较大、纹波系数较大、控制精度较差,效率较低(低于70%)不易实现数字化。磁饱和恒电位仪除了上述不足外,额定功率20%以下的输出无法控制。数控高频开关恒电位仪体积较小、纹波系数小、控制精度高、效率较高(90%以上)。6)辅助阳极的作用是什么?

辅助阳极的作用是通过介质(如土壤、水)与管道之间形成电回路。通过在阳极表面发生电化学反应,不断向阴极结构提供电子,从而使阴极极化到保护电位。7)辅助阳极的种类有多少?

辅助阳极根据有废钢、硅铁、石墨、混合氧化物阳极、柔性阳极、贵金属电极等。8)控制参比电极的有那些?

控制参比电极主要有长寿命饱和硫酸铜参比电极、高纯锌参比电极、银/氯化银参比电极、二氧化钼参比电极。土壤中可使用饱和硫酸铜参比电极和高纯锌参比电极,水介质中使用高纯锌参比电极和银/氯化银参比电极。二氧化钼参比电极

主要用于混凝土中。饱和硫酸参比电极的寿命一般小于10年。其它的参比电极可以根据寿命来设计。

9)为什么需要采用电绝缘?

在阴极保护技术中,要求被保护结构需要电绝缘,主要是由于如果不绝缘,保护电流会流失到未被保护的金属构筑物上,设计的电流需求量可能不足,保护效果不理想,另外,可能会产生杂散电流的干扰。电绝缘要根据结构的实际情况进行考虑。

10)测试桩的作用是什么?

测试桩的作用主要是用于检测阴极保护效果和运行参数。根据作用不同有电位测试桩、电流测试桩、保护效果测试片测试桩桩。

11)牺牲阳极阴极保护系统的组成有什么?

土壤中,牺牲阳极阴极保护系统主要有牺牲阳极、填包料、和测试桩组成。水环境中,除导线连接外,牺牲阳极也可直接焊接到被保护结构上。

12)牺牲阳极主要有那些?

对于钢铁来说牺牲阳极主要有镁合金牺牲阳极、铝合金牺牲阳极、锌合金牺牲阳极。镁合金牺牲阳极主要应用于高电阻率的土壤环境中。铝合金和锌合金主要用于水环境介质中。锌合金也可用于土壤电阻率小于5Ω?m的环境中。

对于其它金属来说,活性较高的金属都可以用作它的牺牲阳极,如用铁作为牺牲阳极来保护铜。

编辑本段运行维护

1)阴极保护投入前的准备和验收

阴极保护投入前应该对被保护管道进行检查。没有绝缘就没有保护,在施加阴极保护电流之前,必须确保管道各项绝缘措施正确无误,管道表面防腐层应无漏敷点,被保护管道应具有连续性的导电性能。

2)阴极保护站的日常维护管理

检查各电气设备电路连接的牢固性,安装的正确性,电器元件是否有机械障碍。检查配电盘上熔断器的保险丝是否按规定接好。观察电器仪表,在专用的表格上记录输出电流、通电电位数值,与之前的记录对照是否有变化。定期检查工作接地和避雷器接地,并保证其接电电阻不大于10欧姆。搞好站内设备的清洁卫生,注意保持室内干燥,通电良好,做好通风,防止仪器过热。[2]

3)牺牲阳极的维护

1、管道牺牲阳极的保护日常维护工作不多,除按外加电流阴极保护的要求进行保护电位测量,测试桩维护保养,绝缘接头检测,接地故障排除等工作外,建议每年测定各参数。据此分析管道保护状况。若样机性能变坏,则需采取相应的措施。

2、在年度检测时,可以测量牺牲阳极的输出电流,修复断开的电缆。

3、如果阳极输出电流明显减小,而殃及并没有达到其寿命,阳极电缆短路是常见的原因。可以将电流表串联在阳极电缆中测量阳极输出电流,也可以在阳极电缆中串联一支0.1ohm的电阻,通过测量该电阻上的电压降,计算阳极电流输出。

4、阳极的接地电阻为阳极开路电位减去阳极闭路电位在初一阳极输出电流。4)阴极保护系统常见故障分析

1、管道绝缘不良,漏电故障的危害

在阴极保护站投入运行,或牺牲阳极保护投产一段时间后,出现了在规定的通电点位下,输出电流增大,管道保护距离却缩短的现象或者在牺牲阳极的系统中,牺牲阳极组的输出电流量增大,其值已超过管道的保护电流需要,但保护点位仍达不到规定的指标的现象。称之为印记保护管道漏电。

2、造成漏电的原因

施工不当、绝缘接头失效或漏电、金属套管穿越处、管道与接地网短路。[2]

3、如何判断管道与接地网短路

判断接地极与管道是否短路,可采用测量电位的方式。利用参比电极分别测量管道和接地极的电位,短路的接地极电位和管道电位是一样的。或测量接地极及管道的之间的电位差,如果两者之间电位为零,则可以判断,接地网与管道短路。

4、防腐层漏电点的查找

利用DCVG查找管道防腐层破损点,从而确定管道的漏电点或短接点的方法。此方法首先将脉冲信号送到被测管道上,如果管道防腐层良好,流入管道的电流很弱,仪表没有显示。如果管道防腐层有破损,电流将从土壤中通过破损处漏入管道,电流的流动会在周围土壤中产生明显的电位梯度。当探测人员手持两个参比电极在管道正上方探测行走时,伏特计奖明信的抖动,当伏特计指针停止抖动时,两个参比电极的中间即为防腐层漏点位置。

5)管道沿线近间距电位测量

通常采用在测试桩上测量点位的方式来检查阴极保护系统工作状况,采用这种方式,即便管道涂层出现漏点,如果该漏漏点距离测试桩较远,就很难通过测试桩电位测量来发现。因此,电位测量建和越近,测量结果越嫩反应管道阴极保护的实际情况。为了消除IR降,在阴极保护电路中装中短器,所有与被检测管道相连的电源都要同时通断,从而测量袋管道的通、断电位。

6)管道防腐层老化检测

电磁法可以反应防腐层的总体状况,管道埋深以及涂层缺陷位置。其原理是给管道输入一个电压信号,检测器沿管道检测信号的衰减程度。在防腐层均匀的情况下,信号的衰减呈平滑的曲线,当信号有突然的衰减时,说明该管道上有涂层漏点。

7)阴极保护系统中维护种的安全问题

再去工地的路上,不论是乘车、乘船、乘飞机,都要注意安全。野外测量时,注意毒蛇、猛兽的袭击。在整流器上工作时,断开面板上的开关不代表对设备内部进行操作就安全。应该断开交流电源,并安装安全锁及标签。接触整流器前要用电笔试一下外壳是否带电。

编辑本段市场现状

阴极保护行业在国内的发展已日趋成熟,随着行业及国家标准的日趋完善,阴极保护专业技术与实际性能也越来越被长输管线及储油罐大型项目的投资者所青睐,过去投资过的项目通过几年的检测与评估确实达到了良好的效果。怎样做到投资与效果统一,必须做到设计现场实际测量考察且选择知名度较高、技术过硬的阴极保护厂家。

国内做阴极保护设计过硬的设计院:廊坊管道局设计院、中国石油西南设计院、胜利油田设计院、华北设计院等。[7]

国内知名度较高的阴极保护厂家:

洛阳的七二五所、福建三明无线电二厂、山东奥科防腐、河南第一防腐、天津管

道防腐等。

编辑本段设备的故障判断

[8]故障 原因 作法

设备停止运行 电路断开 保险丝断

重新调整

更新保险丝 保护电流过低或没有 电缆或连接断开

阳极电阻增大

需更多阳极

输出端熔断器端

测量管/阳极电阻 测试电缆故障,检查连接头,提高整流器电压或安装辅助阳极,检查阳极连接,检查电流极限,排除过载或短路,检查额定值并重新调整 过保护电流 水或土壤潮气使阳极电阻降低、与未保护管线接触,绝缘法兰搭接 不改变装置,夏季电阻将再次上升

判明干扰装置

修正管线上的缺陷

有杂散电流的强制排流达不到保护电位 铁轨断裂 铁路电流分布改变 由于外部接触或绝缘法兰搭接,电缆需量增加 阳极电阻增加 管线的测量引起或Cu/CuSO4电

极引线断

判明路障

与交通管理部门商量修正外部接触,寻找搭接法兰,改变隔离变压器的接地

稳定整流器电压,测试阳极地床

测量引线或电极的电阻

电位不能控制 整流器不工作 参比电极电阻过大 试验设备的运转,交流干扰测试连接,测量

电极的电阻和电位,必要时更换

整流器无电 保护回路的运行故障(电流、电压或外部接触) 绝缘破坏 雷电或高压影响

测试绝缘

安装阀型避雷器防雷电或高压

检查辅助接地的连接电阻

阴极保护的基本知识

阴极保护的基本知识 阴极保护是基于电化学腐蚀原理的一种防腐蚀手段。 阴极保护是基于电化学腐蚀原理的一种防腐蚀手段。美国腐蚀工程师协会(NACE)对阴极保护的定义是:通过施加外加的电动势把电极的腐蚀电位移向氧化性较低的电位而使腐蚀速率降低。牺牲阳极阴极保护就是在金属构筑物上连接或焊接电位较负的金属,如铝、锌或镁。阳极材料不断消耗,释放出的电流供给被保护金属构筑物而阴极极化,从而实现保护。外加电流阴极保护是通过外加直流电源向被保护金属通以阴极电流,使之阴极极化。该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构。 保护电位是指阴极保护时使金属腐蚀停止(或可忽略)时所需的电位。实践中,钢铁的保护电位常取-0.85V(CSE),也就是说,当金属处于比-0.85V(CSE)更负的电位时,该金属就受到了保护,腐蚀可以忽略。 阴极保护是一种控制钢质储罐和管道腐蚀的有效方法,它有效弥补了涂层缺陷而引起的腐蚀,能大大延长储罐和管道的使用寿命。根据美国一家阴极保护工程公司提供的资料,从经济上考虑,阴极保护是钢质储罐防腐蚀的最经济的手段之一。 网状阳极阴极保护方法 网状阳极阴极保护方法是目前国际上流行且成熟的针对新建储罐罐底外壁的一种有效的阴极保护新方法,在国际和国内都得到了广泛应用。网状阳极是混合金属氧化物带状阳极与钛金属连接片交叉焊接组成的外加电流阴极保护辅助阳极。阳极网预铺设在储罐基础中,为储罐底板提供保护电流。 网状阳极保护系统较其它阴极保护方法具有如下优点: 1)电流分布均匀,输出可调,保证储罐充分保护。 2)基本不产生杂散电流,不会对其它结构造成腐蚀干扰。 3)不需回填料,安装简单,质量容易保证。 4)储罐与管道之间不需要绝缘,不需对电气以及防雷接地系统作任何改造。 5)不易受今后工程施工的损坏,使用寿命长。 6)埋设深度浅,尤其适宜回填层比较薄的建在岩石上的储罐。 7)性价比高,造价仅为目前镁带牺牲阳极的1倍;虽然长期由恒电位仪提供

阴极保护工作原理

阴极保护基本原理 容: 一、腐蚀电位或自然电位 每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位)。腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。 相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V) 金属电位(CSE)高纯镁-1.75 镁合金(6%Al,3%Zn,0.15%Mn) -1.60 锌-1.10 铝合金(5%Zn) -1.05 纯铝-0.80 低碳钢(表面光亮) -0.50to-0.80 低碳钢(表面锈蚀) -0.20to-0.50 铸铁-0.50 混凝土中的低碳钢-0.20 铜-0.20 在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。二、参比电极 为了对各种金属的电极电位进行比较,必须有一个公共的参比电极。饱和硫酸铜参比电极,其电极电位具有良好的重复性和稳定性,构造简单,在阴极保护领域中得到广泛采用。不同参比电极之间的电位比较: 土壤中或浸水钢铁结构最小阴极保护电位(V)被保护结构相对于不同参比电极的电位 饱和硫酸铜氯化银锌饱和甘汞 钢铁(土壤或水中)-0.85 -0.75 0.25 -0.778 钢铁(硫酸盐还原菌)-0.95 -0.85 0.15 -0.878 三、阴极保护 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即,牺牲阳极阴极保护和外加电流阴极保护。1、牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,使该金属上的电子转移到被保护金属上去,使整个被保护金属处于一个较负的相同的电位下。该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1安培)或处于低土壤电阻率环境下(土壤电阻率小于100欧姆.米)的金属结构。如,城市管网、小型储罐等。根据国有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3年,最多5年。牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。本人认为,产生该问题的主要原因是阳极成份达不到规要求,其次是阳极所处位置土壤电阻率太高。因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低的阳极床位置。2、外加电流阴极保护是通过外加直流电源以及辅助阳极,迫使电流从土壤中流向被保护金属,使被保护金属结构电位低于周围环境。该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构,如:长输埋地管

阴极保护与案例分析

标题:阴极保护基本原理[精华] 内容: 一、腐蚀电位或自然电位 每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位)。腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。 相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V) 金属电位(CSE) 高纯镁 -1.75 镁合金(6%Al,3%Zn,0.15%Mn) -1.60 锌 -1.10 铝合金(5%Zn) -1.05 纯铝 -0.80 低碳钢(表面光亮) -0.50to-0.80 低碳钢(表面锈蚀) -0.20to-0.50 铸铁 -0.50 混凝土中的低碳钢 -0.20 铜 -0.20 在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。 二、参比电极 为了对各种金属的电极电位进行比较,必须有一个公共的参比电极。饱和硫酸铜参比电极电极,其电极电位具有良好的重复性和稳定性,构造简单,在阴极保护领域中得到广泛采用。不同参比电极之间的电位比较: 土壤中或浸水钢铁结构最小阴极保护电位(V) 被保护结构相对于不同参比电极的电位 饱和硫酸铜氯化银锌饱和甘汞 钢铁(土壤或水中) -0.85-0.75 0.25 -0.778 钢铁(硫酸盐还原菌)-0.95-0.85 0.15 -0.878 三、阴极保护 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即,牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,使该金属上的电子转移到被保护金属上去,使整个被保护金属处于一个较负的相同的电位下。该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1安培)或处于低土壤电阻率环境下(土壤电阻率小于100欧姆.米)的金属结构。如,城市管网、小型储罐等。根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3年,最多5年。牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。本人认为,

管道阴极保护基本知识

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 ◆阴极保护系统测试方法 ◆恒电位仪的基本操作 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。 在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。

牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。 图1-4恒电位方式示意图 外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。 阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。两种方法的差别只在于产生保护电流的方式和“源”不同。一种是利用电位更负的金属或合金,另一种则利用直流电源。

外加阴极保护原理

某轮,第二个特检周期修船时,发现舵叶烂穿,船体钢板水下部分表面凹坑状腐蚀,;舵叶底部烂损和舵球腐蚀 究其原因,是船体外加电流阴极保护装置使用不当和维护不良,左右两侧的辅助阳极损坏就是明证。调查发现,该装置的工作原理、操作方法、参数调节、日常维护等,船员知之甚少,因而也不重视,甚至船到了淡水水域也未及时停止该装置的工作。为此,本文介绍其工作原理和维护要点。 1船体外加电流阴极保护装置的原理 1.1电化学腐蚀 船体是钢结构。钢是铁与碳和其他元素组成的合金。其中,铁比其它元素更易失去电子,电位较高。 船体常年浸泡在海水中,而海水是强电解质。铁元素失去电子成为正极;铁元素失去的电子,经过海水这个电解质到达其他元素;其他元素获得电子成为负极。这样就形成了一个个微电池,但并不腐蚀钢铁。 关键在于海水中存在溶解氧。这些溶解氧在海水中呈负离子状态,必然与失去电子成为正极的铁结合生成氧化铁,这就是电化学腐蚀。 在船体与海水接触部位表面的化学腐蚀、海生物腐蚀、运动磨损腐蚀、杂散电流腐蚀等各种腐蚀中,电化学腐蚀最严重。 电化学腐最大特点是,仅腐蚀阳极区域,不腐蚀阴极区域。 1.2船体外加电流阴极保护装置工作原理 船体外加电流阴极保护装置,就是根据这一特点,在船体上安装辅助阳极,用船上装备的直流电源,对辅助阳极和船体施加外加保护电流并自动调节电流大小,使船体(浸水部分)、舵和推进器保持负电位(阴极化),大幅降低船体的电化学腐蚀。 外加电流阴极保护装置,主要由直流电源(恒电位仪)、辅助阳极、参比电极、阳极屏蔽层、舵和推进器轴的接地装置等组成。 (1)直流电源 直流电源,实际是一个高稳定性和高可靠性的整流器: ·由船上交流电网供电,输出16~24V直流电; ·使用恒电位仪,自动调整输出电流。 船体外加电流阴极保护装置需要的电流,受外界多种因素影响,变化很大。为了提高电源的可靠性和稳定性,直流电源使用全系列集成模块电路的“恒电位仪”。鉴于其在电源装置中的核心地位,船体外加电流阴极保护装置的直流电源也常称作“恒电位仪”。 (2)辅助阳极 安装在船壳水下舷外,左右各一组,与船体绝缘,与外加直流电源正极相连。 辅助阳极,要有足够大的输出电流密度,同时应具备溶解小、电阻小、极化(电极电位因电流流过而发生的变化)小等特性。 (3)参比电极 作用: ·测量被保护对象的实际电位; ·比较实测电位与设定保护电位,并提供给“恒电位仪”。 因此,要求参比电极是不极化的可逆电极,能长期保持性能稳定、准确、灵活和坚固。(4)阳极屏蔽层 船体外加电流阴极保护装置工作时辅助阳极电流很大,被保护对象的电位,靠近辅助阳极的相对较低,而远离辅助阳极的相对较高,致使全船阴极保护效果不均匀。 为使辅助阳极输出的电流均匀地分布于整个船体,在辅助阳极周围一定范围内涂刷绝缘性能

阴极保护系统的运行与维护范本

操作规程编号:LX-FS-A64990 阴极保护系统的运行与维护范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

阴极保护系统的运行与维护范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 (一) 阴极保护投入前的准备与验收 1. 阴极保护投入前对管道系统的检查 (1) 管道对地绝缘的检查 从阴极保护的原理介绍,已得知没有绝缘就没有保护。为了确保阴极保护的正常运行,在施加阴极保护电流前,必须确保管道的各项绝缘措施正确无误。应检查管道的绝缘法兰的绝缘性能是否正常,管道沿线布置的设施如阀门等应与土壤有良好的绝缘,管道与固定墩、跨越塔架、穿越套管处也应有正确有效的绝缘处理措施。管道在地下不应与其他金属构筑物有“短接”等故障。

阴极保护基本原理

阴极保护基本原理 一、腐蚀电位或自然电位 每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位)。腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位(V) 金属电位(CSE) 高纯镁 -1.75 镁合金(6%Al,3%Zn,0.15%Mn) -1.60 锌 -1.10 铝合金(5%Zn) -1.05 纯铝 -0.80 低碳钢(表面光亮) -0.50to-0.80 低碳钢(表面锈蚀) -0.20to-0.50 铸铁 -0.50 混凝土中的低碳钢 -0.20 铜 -0.20 在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。 二、参比电极 为了对各种金属的电极电位进行比较,必须有一个公共的参比电极。饱和硫酸铜参比电极,其电极电位具有良好的重复性和稳定性,构造简单,在阴极保护领域中得到广泛采用。不同参比电极之间的电位比较: 土壤中或浸水钢铁结构最小阴极保护电位(V) 被保护结构相对于不同参比电极的电位 饱和硫酸铜氯化银锌饱和甘汞 钢铁(土壤或水中) -0.85 -0.75 0.25 -0.778 钢铁(硫酸盐还原菌) -0.95 -0.85 0.15 -0.878 三、阴极保护 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即,牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,使该金属上的电子转移到被保护金属上去,使整个被保护金属处于一个较

阴极保护系统的运行与维护.docx

阴极保护系统的运行与维护 (一) 阴极保护投入前的准备与验收 1. 阴极保护投入前对管道系统的检查 (1) 管道对地绝缘的检查 从阴极保护的原理介绍,已得知没有绝缘就没有保护。为了确保阴极保护的正常运行,在施加阴极保护电流前,必须确保管道的各项绝缘措施正确无误。应检查管道的绝缘法兰的绝缘性能是否正常,管道沿线布置的设施如阀门等应与土壤有良好的绝缘,管道与固定墩、跨越塔架、穿越套管处也应有正确有效的绝缘处理措施。管道在地下不应与其他金属构筑物有“短接”等故障。 管道表面防腐层应无漏敷点,所有施工时期引起的缺陷与损伤,均应在施工验收时使用音频信号检漏仪检测,修补后回填。 (2) 管道导电性检查 对被保护管道应具有连续的导电性能。 2. 对阴极保护施工质量的验收 (1) 对阴极保护间内所有电气设备的安装是否符合《电气设备安装规程》的要求,各种接地设施是否完成并符合要求与图纸设计一致。 (2) 对阴极保护的站外设置的选材、施工是否与设计一致。对通电点、测试桩、阳极地床、阳极引线的施工与连接严格符合规范。 (3) 图纸、设计资料齐全完备。 (二) 阴极保护投入运行 (1) 组织人员测定全线管道自然电位、土壤电阻率、各站阳极地

床接地电阻。同时对管道环境有一个比较详尽的了解,这些资料均需分别记录整理,存档备用。 (2) 阴极保护站投入运行按照直流电源(整流器、恒电位仪、蓄电池等)操作程序给管道送电,使电位保持在-1.30V左右,待管道阴极极化一段时间(4h以上)开始测试直流电源输出电流、电压、通电点电位、管道沿线保护电位、保护距离等。然后根据所测保护电位,调整通电点电位至规定值,继续给管道送电使其完全极化(通常在24h以上)。再重复第一次测试工作,并做好记录。若个别管段保护电位过低,则需再适当调节通电点电位至满足全线阴极保护电位指标为止。 (3) 保护电位的控制各站通电点电位的控制数值,应能保证相邻两站间的管段保护电位达到-O.85V,同时,各站通电点最负电位不允许超过规定数值。调节通电点电位时,管道上相邻阴极保护站间加强联系,保证各站通电点电位均衡。 (4) 当管道全线达到最小阴极保护电位指标后,投运操作完毕。各阴极保护站进入正常连续工作阶段。 (三) 阴极保护站的日常管理 工业发达国家的阴极保护站大多数已无人值守,由控制中心遥测、遥控,几乎所有的站都是先由人工调整好,再自动恒定电位。阴极站每一个月派人去检查维护一次。 长输管道阴极保护系统的人工检测是很费人力的。其难易与管道设施所经过的地区有关。美国HARC0公司发展并完善了管线的航空监视体系,能自动监视和记录阴极保护系统的数据。此系统成功的关

管道阴极保护基本知识

管道阴极保护基本知识

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 ◆阴极保护系统测试方法 ◆恒电位仪的基本操作 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。 在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。

牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。 图1-4恒电位方式示意图 外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。 阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。两种方法的差别只在于产生保护电流的方式和“源”不同。一种是利用电位更负的金属或合金,另一种则利用直

阴极保护系统的运行与维护(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 阴极保护系统的运行与维护(新 版) Safety management is an important part of production management. Safety and production are in the implementation process

阴极保护系统的运行与维护(新版) (一)阴极保护投入前的准备与验收 1.阴极保护投入前对管道系统的检查 (1)管道对地绝缘的检查 从阴极保护的原理介绍,已得知没有绝缘就没有保护。为了确保阴极保护的正常运行,在施加阴极保护电流前,必须确保管道的各项绝缘措施正确无误。应检查管道的绝缘法兰的绝缘性能是否正常,管道沿线布置的设施如阀门等应与土壤有良好的绝缘,管道与固定墩、跨越塔架、穿越套管处也应有正确有效的绝缘处理措施。管道在地下不应与其他金属构筑物有“短接”等故障。 管道表面防腐层应无漏敷点,所有施工时期引起的缺陷与损伤,均应在施工验收时使用音频信号检漏仪检测,修补后回填。 (2)管道导电性检查 对被保护管道应具有连续的导电性能。

2.对阴极保护施工质量的验收 (1)对阴极保护间内所有电气设备的安装是否符合《电气设备安装规程》的要求,各种接地设施是否完成并符合要求与图纸设计一致。 (2)对阴极保护的站外设置的选材、施工是否与设计一致。对通电点、测试桩、阳极地床、阳极引线的施工与连接严格符合规范。 (3)图纸、设计资料齐全完备。 (二)阴极保护投入运行 (1)组织人员测定全线管道自然电位、土壤电阻率、各站阳极地床接地电阻。同时对管道环境有一个比较详尽的了解,这些资料均需分别记录整理,存档备用。 (2)阴极保护站投入运行按照直流电源(整流器、恒电位仪、蓄电池等)操作程序给管道送电,使电位保持在-1.30V左右,待管道阴极极化一段时间(4h以上)开始测试直流电源输出电流、电压、通电点电位、管道沿线保护电位、保护距离等。然后根据所测保护电位,调整通电点电位至规定值,继续给管道送电使其完全极化(通常在

阴极保护原理

阴极保护原理 阴极保护是一种用于防止金属在电介质(海水、淡水及土壤等介质)中腐蚀的电化学保护技术,该技术的基本原理是使金属构件作为阴极,对其施加一定的直流电流,使其产生阴极极化,当金属的电位负于某一电位值时,该金属表面的电化学不均匀性得到消除,腐蚀的阴极溶解过程得到有效抑制,达到保护的目的。下面用极化曲线来说明阴极保护原理。为了说明问题,把阴极,阳极极化曲线简化成直线,如下图(1)所示。 在金属表面上的阳极反应和阴极反应都有自己的平衡点,为了达到完全的阴极保护,必须使整个金属的电位降低到最活泼点的平衡电位。设金属表面阳极电位和阴极电位分别为Ea和Ec,金属腐蚀过程由于极化作用,阳极和阴极的电位都接近于交点S所对应的电位Ecorr(自然腐蚀电位),这时的腐蚀电流为Icorr。 图(1) 如果进行阴极极化,电位将从向更负的方向移动,阳极反应曲线EcS从S向C 点方向延长,当电位极化到E1时,所需的极化电流为I1,相当于AC线段,其中BC线段这部分是外加的,AB线段这部分电流是阳极反应所提供的电流,此时金属尚未腐蚀。如果使金属阴极极化到更负的电位,例如达到Ea,这时由于金属表面各个区域的电位都等于Ea,腐蚀电流为零,金属达到了完全保护,此时外加电流Iapp1即为完全保护所需电流。 根据提供阴极极化电流的方式不同,阴极保护又分为牺牲阳极阴极保护法和外加电流阴极保护法两种。 阴极保护是一种用于防止金属在电介质(海水、淡水及土壤等介质)中腐蚀的电化学保护技术,该技术的基本原理是对被保护的金属表面施加一定的直流电流,使其产生阴极极化,当金属的电位负于某一电位值时,腐蚀的阳极溶解过程就会得到有效抑制。根据提供阴极电流的方式不同,阴极保护又分为牺牲阳极法和外加电流法两种,前者是将一种电位更负的金属(如镁、铝、锌等)与被保护的金属结构物电性连接,通过电负性金属或合金的不断溶解消耗,向被保护物提供保护电流,使金属结构物获得保护。后者是将外部交流电转变成低压直流电,通过辅助阳极将保护电流传递给被保护的金属结构物,从而使腐蚀得到抑制。不论是牺牲阳极法还是外加电流法,其有效合理的设计应用都可以获得良好的保护效果。 阴极保护和涂覆层的联合应用,可以使地下或水下金属结构物获得最经济和有效的保护。良好的涂覆层可以保护构筑物99%以上的外表面不受腐蚀,地下或水下的金属结构物通常在使用前涂覆防护涂层用以将金属与电介质环境电绝缘隔离。如果金属构筑物能够做到完全电绝缘隔离,金属在电介质中的腐蚀电池的形成将受到抑制,腐蚀电流将无法产生,从而防止金属的腐蚀。然而,完全理想的涂覆层是不存在的,由于施工过程中的运输、安装及补口,热应力及土壤应力、涂层的老化及涂层微小针孔的存在,金属结构物的外涂层总会存在一些缺陷,而这些缺陷最终将导致金属的局部腐蚀产生。阴极保护技术和涂层联合应用则可以有效解决这一问题。一方面阴极保护可有效地防止涂层破损处产生的腐蚀,延长

管道阴极保护基本知识

管道阴极保护基本知识TTA standardization office

管道阴极保护基本知识公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。

在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。 牺牲阳极材料有高钝镁,其电位为;高钝锌,其电位为;工业纯铝,其电位为(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。

船舶阴极保护系统介绍

船舶阴极保护系统详述 简要:详细介绍船体电化学腐蚀原理,阴极保护方法,并结合实际应用详细阐述外加电流的阴极保护的工作原理与衡量标准。 一、电化学腐蚀原理 铁制成的船体接触海水时会产生电位,发生电腐蚀现象。所以,为了尽量减少船体与海水接触,采用防锈蚀的油漆隔离船体和海水。但是船尾轴系,推进器或者因为船体损伤导致的与海水接触是无法完全避免的。所以接触到海水的一部分船体会发生电化学腐蚀,根据电解情况的不同,腐蚀程度不同。 原电池电解反应: 当两种金属或含杂质的金属被置于电解液中,金属活动性强容易失去电子,被氧化,发生氧化反应,为阳极,从而带正电荷(生成金属氧化物,所谓被腐蚀),使电势升高,可以作为正极(正极是针对外部电解质中游离电荷而言,正极吸引负电荷,而正电荷则流向负极,可以被认为是电流的方向)。 金属活动性弱者得电子,被还原,发生还原反应,为阴极(该电极积累金属),电势降低,成为负极,吸引正电荷聚集。 图1 电化学腐蚀原理图 二、阴极保护 阴极保护则使上述过程逆转,根据提供阴极电流的方式不同,阴极保护又分为牺牲阳极法和外加电流法两种,前者是将一种电位更负的金属(如镁、铝、锌等。注:金属活动性更强,更活跃,更易失电子)与被保护的金属结构物电性连接,通过电负性金属或合金的不断溶解消耗,向被保护物提供保护电流,使金属结构物获得保护。后者是将外部交流电转变成低压直流电,对被保护的金属表面施加一定的直流电流,使其产生阴极极化,当金属的电位负于某一电位值时,腐蚀的阳极溶解过程就会得到有效抑制。 牺牲阳极阴极保护法一般用锌块合金,布置没有具体要求,只要沿着舭龙骨流线平均分布,具体数量则要根据船只钢材数量(面积)进行计算后得出。也可用铝合金的,效果更好,但在机舱及货油舱等区域禁止使用(因电位差过高存在引发火星的可能性)。一般设计使用寿命2-3年,采用焊接或铆接方式固定于船体外壳之上,铆接的话到了使用后期可以方便更换,并且有各种型号可选。其中双层底和双壁舱室内部区域(bottom; double hull inner area)也应当设有牺牲阳极保护装置。 下面将详细介绍外加电流的阴极保护过程原理及方法。

阴极保护工作原理

阴极保护工作原理 一、腐蚀电位或自然电位每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位)。腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。相对于饱和硫酸铜参比电极(CSE),不同金属的在土壤中的腐蚀电位 (V)金属电位(CSE)高纯镁- 1、75 镁合金(6%Al,3%Zn,0、15%Mn) - 1、60 锌- 1、10 铝合金(5%Zn) - 1、05 纯铝-0、80 低碳钢(表面光亮) -0、50to-0、80 低碳钢(表面锈蚀) -0、20to-0、50 铸铁-0、50 混凝土中的低碳钢-0、20 铜-0、20 在同一电解质中,不同的金属具有不同的腐蚀电位,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。钢管的本体金属和焊缝金属由于成分不一样,两者的腐蚀电位差有时可达0、275V,埋入地下后,电位低的部位遭受腐蚀。新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。同

一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。 二、参比电极为了对各种金属的电极电位进行比较,必须有一个公共的参比电极。饱和硫酸铜参比电极,其电极电位具有良好的重复性和稳定性,构造简单,在阴极保护领域中得到广泛采用。不同参比电极之间的电位比较:土壤中或浸水钢铁结构最小阴极保护电位(V)被保护结构相对于不同参比电极的电位饱和硫酸铜氯化银锌饱和甘汞钢铁(土壤或水中)-0、85 -0、75 0、25 -0、 778 钢铁(硫酸盐还原菌)-0、95 -0、85 0、 15 -0、878 三、阴极保护阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即,牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,使该金属上的电子转移到被保护金属上去,使整个被保护金属处于一个较负的相同的电位下。该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保

阴极保护基础知识手册

阴极保护基础知识手册目录: 第一章绪论 * 第二章阴极保护基本原理 * 第三章阴极保护主要参数 * 第四章阴极保护准则 * 第五章牺牲阳极阴极保护阳极材料 * 第六章牺牲阳极接地电阻以及发电量计算 * 第七章牺牲阳极的安装与维护 * 第八章网状阳极 * 第九章外加电流阴极保护用阳极材料 * 第十章辅助阳极的选择及计算 * 第十一章阴极保护参数的测量 * 第十二章阴极保护的运行管理 * 第十三章阴极保护中的几个屏蔽问题 *

第一章绪论 一.防腐蚀的重要意义 自然界中,大多数金属是以化合状态存在的。通过炼制,被赋予能量,才从离子状态转变成原子状态。然而,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 金属腐蚀广泛的存在于我们的生活中, 国外统计表明,每年由于腐蚀而报废的金属材料, 约相当于金属产量的20~40%,全世界每年因腐蚀而损耗的金属达1亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失, 据有关国家统计每年由于腐蚀而造成的经济损失,美国为国民经济总产值的4.2%; 英国为国民经济总产值的3.5%;日本为国民经济总值1.8%。二.防腐蚀工程发展概况 六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构筑物上得到应用。 我国埋地油气管道的阴极保护始于1958年,六十年代在新疆、大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。 第二章阴极保护基本原理 一、腐蚀电位或自然电位 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位)。腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。 铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。钢管的本体金属和焊缝金属由于成分不一样, 两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从

阴极保护工作原理

阴极保护基本原理 内容: 一、腐蚀电位或自然电位 每种金属浸在一定得介质中都有一定得电位,称之为该金属得腐蚀电位(自然电位)。腐蚀电位可表示金属失去电子得相对难易。腐蚀电位愈负愈容易失去电子,我们称失去电子得部位为阳极区,得到电子得部位为阴极区。阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。 相对于饱与硫酸铜参比电极(CSE),不同金属得在土壤中得腐蚀电位(V) 金属电位(CSE)高纯镁 -1、75 镁合金(6%Al,3%Zn,0、15%Mn) -1、60 锌-1、10 铝合金(5%Zn) -1、05纯铝 -0、80 低碳钢(表面光亮) -0、50to-0、80 低碳钢(表面锈蚀) -0、20to-0、50 铸铁-0、50 混凝土中得低碳钢 -0、20铜 -0、20 在同一电解质中,不同得金属具有不同得腐蚀电位,如轮船船体就是钢,推进器就是青铜制成得,铜得电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。钢管得本体金属与焊缝金属由于成分不一样,两者得腐蚀电位差有时可达0、275V,埋入地下后,电位低得部位遭受腐蚀。新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。同一种金属接触不同得电解质溶液(如土壤),或电解质得浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位得不同。二、参比电极 为了对各种金属得电极电位进行比较,必须有一个公共得参比电极。饱与硫酸铜参比电极,其电极电位具有良好得重复性与稳定性,构造简单,在阴极保护领域中得到广泛采用。不同参比电极之间得电位比较: 土壤中或浸水钢铁结构最小阴极保护电位(V) 被保护结构相对于不同参比电极得电位饱与硫酸铜氯化银锌饱与甘汞 钢铁(土壤或水中) -0、85 -0、75 0、25 -0、778 钢铁(硫酸盐还原菌)-0、95 -0、85 0、15 -0、878 三、阴极保护 阴极保护得原理就是给金属补充大量得电子,使被保护金属整体处于电子过剩得状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目得,即,牺牲阳极阴极保护与外加电流阴极保护。1、牺牲阳极阴极保护就是将电位更负得金属与被保护金属连接,并处于同一电解质中,使该金属上得电子转移到被保护金属上去,使整个被保护金属处于一个较负得相同得电位下。该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1安培)或处于低土壤电阻率环境下(土壤电阻率小于100欧姆、米)得金属结构。如,城市管网、小型储罐等。根据国内有关资料得报道,对于牺牲阳极得使用有很多失败得教训,认为牺牲阳极得使用寿命一般不会超过3年,最多5年。牺牲阳极阴极保护失败得主要原因就是阳极表面生成一层不导电得硬壳,限制了阳极得电流输出。本人认为,产生该问题得主要原因就是阳极成份达不到规范要求,其次就是阳极所处位置土壤电阻率太高。因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低得阳极床位置。 2、外加电流阴极保护就是通过外加直流电源以及辅助阳极,迫使电流从土壤中流向被保护金属,使被保护金属结构电位低于周围环境。该方式主要用于保护大型或处于高土壤电阻率土壤中得金属结构,如:长输埋地管道,大型罐群等。阴极保护得运行管理

外加电流型阴极保护

外加电流阴极保护系统由以下几部分组成:辅助阳极、测试桩、直流电源、辅助材料、参比电极和导线。此外,为使阳极输出的保护电流更均匀,避免阳极附近结构物产生过保护,有时在阳极周围还须涂刷阳极屏蔽层。 在外加电流阴极保护系统中,需要有一个稳定的直流电源,以提供保护电流。广泛使用的有整流器和恒电位仪两种。一般,当被保护的结构物所处的工况条件(如浸水面积、水质等)基本不变或变化很小时,可以采用手动控制的整流器;但当结构物所处的工况条件经常变化时,则应采用自动控制的恒电位仪,以使结构物电位总处在最佳保护范围内。 所有能发出直流电的电源,都是可以作为外加电流阴极保护系统的电源。在外加电流阴极保护系统中使用的电源的类型有:整流器、恒电位仪;太阳能电池;发电机;风力发电机;热点电池。整流器和其他外加电流系统的电源类型相比较,经济节省操作简单。 外加电流阴极保护系统的电源,其基本要求有:输出恒电位、恒电压、恒电流;同步通断功能;数据远传、远控功能。 恒电位仪的输出电压限定在50V以内,当工程需要更高的输出电压时,必须做好对阳极地床的防护措施。 在工程中广泛使用的恒电位仪主要有三类:可控硅恒电位仪、磁饱和恒电位仪和晶体管恒电位仪。可控硅恒电位仪功率较大、体积较小,但过载能力不强。磁饱和恒电位仪紧固耐用,过载能力强,但体积比较大,加工工艺也比较复杂。晶体管恒电位仪输出平稳、无噪声、控制精度较高,但线路较复杂。 辅助阳极 辅助阳极的作用是将直流电源输出的直流电流由介质传递到被保护的金属结构上。可作辅助阳极的材料有很多,如废钢铁、石墨、铅银合金、高硅铸铁、镀铂钛、包铂铌以及混合金属氧化物电极等。这些材料各有其特点,适用于不同的场合。 参比电极 参比电极的作用有两个:一方面用于测量被保护结构物的电位,监测保护效果;另一方面,为自动控制的恒电位仪提供控制信号,以调节输出电流,使结构物总处于良好的保护状态。在工程中,常用的参比电极有铜/饱和硫酸铜、银/卤化银及锌参比电极等,这些参比电极各具特点,适用于不同的场合。 测试桩

阴极保护工作原理

阴极保护基本原理 内容: 一、腐蚀电位或自然电位 每种金属浸在一定得介质中都有一定得电位,称之为该金属得腐蚀电位(自然电位)。腐蚀电位可表示金属失去电子得相对难易。腐蚀电位愈负愈容易失去电子,我们称失去电子得部位为阳极区,得到电子得部位为阴极区。阳极区由于失去电子(如,铁原子失去电子而变成铁离子溶入土壤)受到腐蚀而阴极区得到电子受到保护。 相对于饱与硫酸铜参比电极(CSE),不同金属得在土壤中得腐蚀电位(V) 金属电位(CSE) 高纯镁—1、75 镁合金(6%Al,3%Zn,0。15%Mn) -1。60锌-1、10 铝合金(5%Zn) —1.05 纯铝-0。80 低碳钢(表面光亮) -0、50to-0。80 低碳钢(表面锈蚀) -0。20to-0.50 铸铁-0.50 混凝土中得低碳钢—0、20铜-0、20 在同一电解质中,不同得金属具有不同得腐蚀电位,如轮船船体就是钢,推进器就是青铜制成得,铜得电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。钢管得本体金属与焊缝金属由于成分不一样,两者得腐蚀电位差有时可达0、275V,埋入地下后,电位低得部位遭受腐蚀。新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。同一种金属接触不同得电解质溶液(如土壤),或电解质得浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位得不同、 二、参比电极 为了对各种金属得电极电位进行比较,必须有一个公共得参比电极。饱与硫酸铜参比电极,其电极电位具有良好得重复性与稳定性,构造简单,在阴极保护领域中得到广泛采用。不同参比电极之间得电位比较: 土壤中或浸水钢铁结构最小阴极保护电位(V) 被保护结构相对于不同参比电极得电位饱与硫酸铜氯化银锌饱与甘汞 钢铁(土壤或水中) -0、85 -0、75 0。25 -0.778 钢铁(硫酸盐还原菌)-0、95 -0。85 0。15 -0、878 三、阴极保护 阴极保护得原理就是给金属补充大量得电子,使被保护金属整体处于电子过剩得状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目得,即,牺牲阳极阴极保护与外加电流阴极保护。1、牺牲阳极阴极保护就是将电位更负得金属与被保护金属连接,并处于同一电解质中,使该金属上得电子转移到被保护金属上去,使整个被保护金属处于一个较负得相同得电位下。该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1安培)或处于低土壤电阻率环境下(土壤电阻率小于100欧姆.米)得金属结构。如,城市管网、小型储罐等。根据国内有关资料得报道,对于牺牲阳极得使用有很多失败得教训,认为牺牲阳极得使用寿命一般不会超过3年,最多5年。牺牲阳极阴极保护失败得主要原因就是阳极表面生成一层不导电得硬壳,限制了阳极得电流输出。本人认为,产生该问题得主要原因就是阳极成份达不到规范要求,其次就是阳极所处位置土壤电阻率太高。因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低得阳极床位置。 2、外加电流阴极保护就是通过外加直流电源以及辅助阳极,迫使电流从土壤中流向被保护金属,使被保护金属结构电位低于周围环境。该方式主要用于保护大型或处于高土壤电阻率土壤中得金属结构,如:长输埋地管道,大型罐群等。阴极保护得运行管理

相关主题
文本预览
相关文档 最新文档