当前位置:文档之家› 管道阴极保护基本知识

管道阴极保护基本知识

管道阴极保护基本知识
管道阴极保护基本知识

管道阴极保护基本知识

管道阴极保护基本知识

内容提要:

◆阴极保护系统管理知识

◆阴极保护系统测试方法

◆恒电位仪的基本操作

一、阴保护系统管理知识

(一)阴极保护的原理

自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。

每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。

阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。

1、牺牲阳极法

将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。

在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。

牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。

2、强制电流法(外加电流法)

将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。

图1-4恒电位方式示意图

外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。

阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。两种方法的差别只在于产生保护电流的方式和“源”不同。一种是利用电位更负的金属或合金,另一种则利用直

流电源。

强制电流阴极保护驱动电压高,输出电流大,有效保护范围广,适用于被保护面积大的长距离、大口径管道。

牺牲阳极阴极保护不需外部电源,维护管理经济,简单,对邻近地下金属构筑物干扰影响小,适用于短距离、小口径、分散的管道。

(二)外加电流阴极保护系统的组成

1、恒电位仪:珠三角管道采用的是IHF系列数控高频开关恒电位仪,它的主要作用是向管道输出保护电流。

2、阳极地床:由若干支辅助阳极(高硅铸铁)组成,通过辅助阳极把保护电流送入土壤,经土壤流入被保护的管道,使管道表面进行阴极极化 (防止电化学腐蚀),电流再由管道流入电源负极形成一个回路,这一回路形成了一个电解池,管道在回路中为负极处于还原环境中,防止腐蚀,而辅助阳极进行氧化反应遭受腐蚀,或是周围电解质被氧化。

阴保站的电能60%消耗在阳极接地电阻上, 故阳极材料的选择和埋设方式、场所的选择,对减小电阻节约电能是至关重要的。珠三角管道的阳极地床辅助阳极一般为40支,阳极地床的接地电阻小于3Ω(设计要求),阳极地床与管道的垂直距离要大于50米。

3、参比电极:为了对各种金属的电极电位进行比较,必须有一个公共的参比电极,其电极电位具有良好的重复性和稳定性,构造简单,通常由饱和硫酸铜参比电极、锌电极等。

4、绝缘接头:阴极保护系统保护的是输油站外的长输管道,绝缘接头的作用是将阴极保护电流限制在两个阴极保护站之间的管道上。

5、检查片:由与管道同材质的金属制成50×100mm的挂片,检查片有两组,一组与输油管道相连,处于阴极保护状态,一组不与管道相连,处于自然腐蚀状态。经过一定时间后将两组检查片的失重量进行比较,可分析管道的阴极保护效果。

6、测试桩:为了检测维护管道的阴极保护系统,在管道沿线设置电流及电位测试桩,电位测试桩每公里设置一个;电流测试桩每5公里设一个;套管电位测试桩每个套管处设置一个;绝缘接头电位测试桩每一绝缘处设一个。

(三)阴极保护的基本参数

(1)最小保护电流密度

阴极保护时,使腐蚀停止,或达到允许程度时所需的电流密度值称为最小保护电流密度。

最小保护电流密度的大小取决于被保护金属的种类、表面状况、腐蚀介质的性质、组成、浓度、温度和金属表面绝缘层质量等。防腐绝缘层种类不同,所需要的保护电流密度也不同。防腐绝缘层的电阻值越高,所需的保护电流密度值越小。

(2)最小保护电位

为使腐蚀过程停止,金属经阴极极化后所必须达到的绝对值最小的负电位值,称之为最小保护电位。

最小保护电位也与金属的种类、腐蚀介质的组成、温度、浓度等有关。最小保护电位值常常是用来判断阴极保护是否充分的基准。因此该电位值是监控阴极保护的重要参数。

实验测定在土壤中的最小保护电位为-0.85V(相对饱和硫酸铜参比电极)。

(3)最大保护电位

在阴极保护中,所允许施加的阴极极化的绝对值最大的负电位值,在此电位下管道的防腐层不受到破坏。此电位值就是最大保护电位。

最大保护电位值的大小通过试验确定。一般取-1.5V(CSE)。

阴极保护电位越大,防腐程度越高,单站保护距离也越长,但是过大的电位将使被保护管道的防腐绝缘层与管道金属表面的粘接力受到破坏,产生阴极剥离,严重时可以出现金属“氢破裂”。同时太大的电位将消耗过多的保护电流,形成能量浪费。

(四)阴极保护投入前的准备和验收

1、阴极保护投入前对被保护管道的检查

管道对地绝缘的检查:从阴极保护的原理介绍, 已得知没有绝缘就没有保护。为了确保阴极保护的正常运行,在施加阴极保护电流前,必须确保管道的各项绝缘措施正确无误。应检查管道的绝缘接头的绝缘性能是否正常;管道沿线的阀门应与土壤有良好的绝缘;管道与固定墩、跨越塔架、穿越套管处也应

有正确有效的绝缘处理措施,管道在地下不应与其它金属构筑物有"短接"等故障;管道表面防腐层应无漏敷点,所有施工时期引起的缺陷与损伤均应在施工验收时使用埋地检漏仪检测,修补后回填。

2、对阴极保护施工质量的验收

(1)对阴极保护间内所有电气设备的安装是否符合《电气设备安装规程》的要求,各种接地设施是否完成,并符合图纸设计要求。

(2)对阴极保护的站外设施的选材、施工是否与设计一致。对通电点、测试桩、阳极地床、阳极引线的施工与连接应严格符合规范要求,尤其是阳极引线接正极,管道汇流点接负极,严禁电极接反。

(3)图纸、设计资料齐全完备。

(五)阴极保护投入运行的调试

1、组织人员测定全线管道自然电位、土壤电阻率、阳极地床接地电阻,同时对管道环境有一个比较详尽的了解,这些资料均需分别记录整理,存档备用。

2、阴极保护站投入运行

按照恒电位仪的操作程序给管道送电,使电位保持在-1.20伏左右,待管道阴极极化一段时间(四小时以上)开始测试直流电源输出电流、电压、通电点电位、管道沿线保护电位、保护距离等。然后根据所测保护电位,调整通电点电位至规定值,继续给管道送电使其完全极化(通常在24小时以上)。再重复第一次测试工作,并做好记录。若个别管段保护电位过低,则需再适当调节通电点电位至满足全线阴极保护电位指标为止。

3、保护电位的控制

各站通电点电位的控制数值, 应能保证相邻两站间的管段保护电位达到-0.85伏,同时各站通电点最负电位不允许超过规定数值。调节通电点电位时,管道上相邻阴极保护站间加强联系,保证各站通电点电位均衡。

4、当管道全线达到最小阴极保护电位指标后,投运操作完毕,各阴极保护站进入正常连续工作阶段。

(六)阴极保护站的日常维护管理

1、恒电位仪的巡检和维护。

1) 日常巡检:每天9:00和21:00对恒电位仪巡检一次,并记录输出电压、电流、保护电位数值, 与前次记录(或值班记录)对照是否有变化,若不相同应查找原因,采取相应措施使管道全线达到阴极保护。

2)每月维护:每月1日对恒电位仪进行切换使用。改用备用的仪器时,应即时进行一次观测和维修,发现仪器故障应及时检修,保证供电。

维护内容:

观察全部零件是否正常,元件有无腐蚀、脱焊、虚焊、损坏,各连接点是否可靠,电路有无故障,各紧固件是否松动,熔断器是否完好,如有熔断,需查清原因再更换。

检查接接阴极保护站的电源导线,以及接至阳极地床、通电点的导线是否完好,接头是否牢固。

定期检查工作接地和避雷器接地,并保证其接地电阻不大于10欧姆,在雷雨季节要注意防雷。

搞好站内设备的清洁卫生,注意保持室内干燥,通电良好,防止仪器过热。

2、参比电极的维护。

作为恒定电位仪信号源的埋地参比电极,在使用过程中需注意观察恒电位仪的输出数值,发现异常可检查参比电极井是否干涸,影响仪器正常工作。

3、阳极地床的维护。

阳极地床接地电阻每月测试一次,接地电阻增大至影响恒电位仪不能提供管道所需保护电流时,应该更换阳极地床或进行维修,以减小接地电阻。

4、测试桩的维护。

1) 检查接线柱与大地绝缘情况,电阻值应大于100千欧,用万用表测量,若小于此值应检查接线柱与外套钢管有无接地,若有则需更换或维修。

2) 测试桩应每年定期刷漆和编号。

3) 防止测试桩的破坏丢失,对沿线城乡居民及儿童作好爱护国家财产的宣传教育工作。

5、绝缘接头的维护。

每月检测绝缘接头两侧管地电位,若与原始记录有差异时,应对其性能好

坏作鉴别。如有漏电情况应采取相应措施。

6、阴极保护系统的管理目标(主要控制指标)

1)保护率等于100%;

管道总长-未达有效阴极保护管道长

保护率= ─────────────────×100%

管道总长

2)运行率(开机率)大于98%;

全年小时数-全年停机小时数

开机率= ──────────────×100%

全年小时数

3)保护度大于85%;

G1 / S1 -G2 / S2

保护度= ─────────×100%

G1 / S1

式中:G1——未施加阴极保护检查片的失重量,g;

S1——未施加阴极保护检查片的裸露面积,cm2;

G2——施加阴极保护检查片的失重量,g;

S2——施加阴极保护检查片的裸露面积,cm2;

4)管道保护电位:一般为-0.85V~-1.5V,当土壤或水中含有硫酸盐还原菌且硫酸根含量大于0.5%时为-0.95V或更负(应考虑IR降的影响)。

(七)阴极保护系统常见故障的分析

1、保护管道绝缘不良,漏电故障的危害

在阴极保护站投入运行,或牺牲阳极保护投产一段时间后,出现了在规定的通电点电位下, 输出电流增大,管道保护距离却缩短的现象,或者在牺牲阳极系统中,牺牲阳极组的输出电流量增大,其值已超过管道的保护电流需要,但保护电位仍达不到规定指标的现象。发生上述情况的原因,主要是被保护金属管道与未被保护的金属结构物“短路”,这种现象称之为阴极保护管道漏电,或者叫做“接地故障”。

接地故障使得被保护管道的阴极保护电流流入非保护金属体,在两管道的

“短接”处形成“漏电点”, 这就会造成阴极保护电流的增大,阴极保护电源的过负荷和阴极保护引起的干扰。

另外阳极地床断路、阴极开路、零位接阴断路都会导致阴极保护不能投保。判断阳极地床连接电缆断路时可采用:

(1)测输出电流,将恒电位仪开启,在恒电位仪阳极输出端串上一电流表,如果电流为零,则说明有断路现象。

(2)将恒电位仪机后阳极输出线断开,接入临时地床或其它接地装置,若有输出电压、电流,则可断定阳极地床连接线断路。在阳极电缆与地床阳极接线处应设置接线用水泥井或标志。

2、造成管道漏电的原因

(1)施工不当,交叉管道间距不合规范,即当两条管道一条为阴极保护的管道,另一条为未保护的管道交叉时,施工要求应保持管道间的垂直净距不小于0.3m,并在交叉点前后一定长度内将管道作特别绝缘,如果施工时不严格按照上述规定去做,那么管道埋设一段时间后,在土壤应力的作用下, 管道相互可能搭接在一起,会造成绝缘层破损,金属与金属的相连形成漏电点。

(2)绝缘接头失效或漏电,绝缘接头质量欠佳,在使用一段时间后绝缘零件受损或变质,使法兰不再绝缘,从而使得两法兰盘侧不再具有绝缘性能,阴极保护电流也就不再有限制;或者是输送介质中有一些电解质杂质使绝缘接头导通,不再具有绝缘性能。

从上述原因看, 漏电点只可能发生在保护管道与非保护管道的交叉点,或保护管道的绝缘接头处,因此查找漏电点就带有上述局限性。但如果地下管网复杂,被保护管道与多条和线有交叉穿越,则使得漏电点的查找出现复杂现象。常常要根据现场实际情况,反复测量、多方位检查并综合判断才能找到真正的漏电故障点。

3、漏电点的查找

(1)利用查找管道绝缘层破损点,从而确定管道的漏电点或短接点的方法。此方法首先将脉冲信号送到被测管道上, 如果管道防腐绝缘层良好,流入管道的电流很弱,仪表没有显示。如果管道防腐层有破损,电流将从土壤中通过破损处漏入管道,电流的流动会在周围土壤中将产生明显的电位梯度。当探测人员

手持两个参比电极在管道正上方探测行走时, 伏特计将明显的抖动,当伏特计指针停止抖动时,两个参比电极的中间既为防腐层漏点位置,该方法简便宜行,定位准确,是目前国际上公认的检漏方法(DCVG)。

(2)可利用测定管内电流大小的方法寻找漏电点。在无分支的阴极保护管道, 管内电流是从远端流向通电点。当非保护管道接入后就会形成分支电路,使保护电流经过漏电点会变小,因此可利此法来寻找漏电点的位置。利用此法测定时,在有怀疑的管段上可依次选点,用IR压降法或者补偿法(详见有关说明)测定管内电流,再通过比较各点电流的大小来确定漏电点的电位。

(3)绝缘接头漏电的测定。当绝缘接头漏电而导致阴极保护系统故障时, 则可通过在绝缘接头两侧管段上,分别测量管地电位,若保护侧为保护电位,非保护侧为自然电位,则绝缘接头正常。否则有问题存在。也可在非保护侧测法兰端部的对地电位, 如此电位比非保护管道或其它金属构筑物的电位要负,则此绝缘接头漏电。

测定流过绝缘接头的电流, 也可用来判定绝缘接头的性能。若绝缘接头非保护端一侧,能测出电流则法兰漏电;若测不出电流绝缘接头不漏电。

(4)近间距电位测量法CIPS

在测试桩上测量保护电位只能反映管道的整体保护水平,不能说明管道各点都得到了保护。采用近间距测量方式,是沿管道每隔1—2 米测量一次管地电位,可以准确的检测出没有得到保护的管段。

4、阳极接地故障

阴极保护另一常见故障是由阳极接地引起的。阳极接地电阻与阳极地床的设计与施工质量密切相关。"冻土"会使阳极地床电阻增加几倍至十几倍,"气阻"也会使阳极地床电阻增加。当阳极使用一段时间后,也会由于腐蚀严重,表面溶解不均匀造成电流障碍。因此在阴极保护的仪器上会出现电位升高, 而保护电流下降的现象。此时应通过测量,更换或检修阳极地床来使阴极保护正常运行。另一薄弱环节,是阳极电缆线与阳极接头处的密封与绝缘,若施工不妥则会造成接头处的腐蚀与断路,使阴极保护电流断路而无法输入给管道。

(八)阴极保护中的几个屏蔽问题

当管道周围有绝缘层或金属结构存在时, 会影响阴极保护电流的流动, 使管道得不到有效的阴极保护,即电流屏蔽。目前, 国内采用“管中管”进行防腐保温的长输管道都不同程度的发生了腐蚀,某些套管内的输油管和固定墩内的管道也存在较为严重的腐蚀, 这种状况除了与施工质量控制不严有关外, 阴极保护电流的屏蔽也是一个重要原因。

金属结构对管道的屏蔽

1、管道穿越公路、铁路以及河流时套管的屏蔽

在管道穿越公路、铁路以及河流时, 经常需要将输油管放在金属套管中,以对管道进行附加保护, 并认为,套管与输送管充分绝缘,但采用套管时将有以下情况发生:

(1)输送管与套管完全绝缘, 套管与输送管的环型空间内没有电解液存在,在这种情况下阴极保护电流被完全屏蔽, 但输送管仅受大气腐蚀。

(2)输送管与套管之间没有电气连接, 但套管内有电解液或泥土, 此时阴极保护电流从土壤中经过套管到达输送管, 在这种情况下输送管以及套管的外壁会得到阴极保护, 而套管的内壁因为排放电流而加快腐蚀。

(3)套管与输送管短路, 一旦套管与输送管发生短路, 阴极保护电流沿套管通过接触点返回到输送管, 此时, 如果套管与输送管之间有电解液, 输送管将发生严重腐蚀, 即使没有电解液, 如果套管防腐层较差, 也会泄漏大量电流, 使套管附近的一段管道得不到充分保护。

因此, 在设计中应该尽量避免采用套管, 而靠提高输送管的壁厚来提高强度. 在必须使用套管的情况下, 应采取必要的密封措施, 防止电解液进入, 并保证套管与输送管的绝缘。

2、固定墩钢筋的屏蔽

当固定墩内的钢筋与输送管发生意外接触时, 其影响相当于一个短路的套管,阴极保护电流通过钢筋并通过接触点返回管道。尽管钢筋之间存在间隙, 但密布的钢筋仍能阻断大部分阴极保护电流, 使固定敦内的管道得不到充分保护. 因此, 在设计中应减小钢筋与套管短路的可能性,在施工中也要经常检测钢筋与输送管的电阻。

绝缘体对管道的屏蔽

“管中管”防腐保温结构的屏蔽问题。当管道周围有绝缘体存在, 而且绝缘体与管道间有电解液存在时,由于阴极保护电流无法通过绝缘体到达管道表面, 管道得不到阴极保护。有人认为, 阴极保护电流可以通过绝缘体与管道之间的空隙到达管道表面, 事实是如果该空隙之间充满电解液, 电阻率很小, 这种看法是正确的。通过对“管中管”的腐蚀情况进行调查发现, 如果防水层破坏, 水分进入保温层, 如果水分充足, 管道会得到阴极保护, 一般不会发生腐蚀,如长期处于水下的管道。如果仅有少量的水分进入管道, 则在漏点两侧(2-3倍间隙的距离以外)一般会发生较严重的腐蚀。

另外, 如果管道附近有其他绝缘体或岩石存在, 也会影响电流的流动, 对管道的保护电流起到屏蔽作用。因此, 当管道通过岩石地带时, 应采取措施, 如:采用柔性阳极或带状阳极, 保证阴极保护电流顺利的到达管道表面。

二、阴极保护系统测试方法

1、恒电位仪设备运行状况测试

测试内容:输出电压、输出电流、给定电位、长效参比电极状态。

电极(2支)、电工工具(1测试仪器:数字万用表(2块)、标准Cu/CuSO

4

套)

测试方法:

(1)检查阴极保护恒电位仪设备的型号、制造厂商、出厂日期、规格等。

(2)记录恒电位仪电压表和电流表的数值,计算出设备的输出功率。

(3)在参比电极和阴极汇流点引线间连接数字万用表测量管地电位(给定电位)判断长效参比电极状态。

2、阴极保护站强制电流阴极保护辅助阳极地床测试

测试内容:阳极地床接地电阻

测试仪器:ZC-8接地电阻仪(四端)卷尺(50米)金属电极(2支)铜芯塑料软线 1×1.5mm

测试方法:

(1)测试接线示意图见图1。在土壤电阻率较均匀的地区,d2取2L,d1

取L ;在土壤电阻率不均匀的地区,d2取3L ,d1取1.7 L 。在测试过程中,电位极沿辅助阳极与电流极的连线移动三次,每次移动的距离为d2的5%左右,若三次测试值接近。取其平均值作为辅助阳极接地电阻值;若测试值不接近,将电位极往电流极方向移动,直至测试值接近为止。

(2)按图1布好电极后,转动接地电阻测试仪的手柄,使手摇发电机达到额定转速,调节平衡旋钮,直至电表指针停在黑线上,此时黑线指示的度盘值乘以倍率即为接地电阻值。

3、绝缘接头的绝缘性能测试

测试内容:绝缘接头(接头)绝缘性能 测试仪器:电压表(高阻抗)、标准Cu/CuSO 4电极(1支)、电工工具

测试方法:已安装到管道上的绝缘接头(接头),可用电位法判断其绝缘性能。如图2所示,在被保护管道通电之前,用数字万用表V 测试绝缘接头(接头)非保护侧a 的管地电位Va1;调节阴极保护电源,使侧b 点的管地电位Vb 达到-0.85~-1.50之间,再测试a 点的管地电位Va2。若Va1和Va2基本相等,则认为绝缘接头(接头)的绝缘性能良好;若│Va2│>│Va1│且Va2接近Vb 值,则认为绝缘接头(接头)的绝缘性能可疑。若辅助阳极距绝缘接头(接头)足够远,且判明与非保护侧相连接的管道没同保护侧的管线接近或交叉,则可判定为绝缘接头(接头)的绝缘性能很差(严重漏电或短路)。

d2 d1

ZC

电位极 电流极

阳极地床

图 1 辅助阳极接地L

4、管地电位测试 测试内容:管道保护电位、自然电位

测试仪器:数字万用表、标准Cu/CuSO 4电极(1支)、铜芯绝缘软线(截面积

1.0mm 2)、电工工具(1套)、测量用锷鱼夹(2支)

测试方法:地表参比法地表,按图7进行接线测试,将参比电极放在管道顶部上方1m 范围的地表潮湿土壤上,应保证参比电极与土壤电接触良好。

(1)自然电位测试:未实施阴极保护的情况下,用硫酸铜参比电极测沿线

测试桩电位的方法。其电位一般为-0.4V ~ -0.6V 。 (2)保护电位测试:施加阴极保护的情况下,用硫酸铜参比电极测沿线测试桩电位的方法。其电位应在-0.85V ~ -1.5V 。

CS

管道 V

阳极地床

绝缘接头 b a 管道 V

CSE E

图2电位法测试接

图7 地表参比法测

(3)间歇供电管道电位测试:在阴极保护设备向管道供电12秒、停3秒的情况下,在停3秒期间,用硫酸铜参比电极测沿线测试桩电位的方法。其断点电位应在-0.85V ~ -1.15V 。

5、管道沿线管内电流测试

测试内容:管内电流

测试仪器:UJ-33a 直流电位差计、数字万用表(高阻抗)、铜芯塑料软

线 1×0.75mm 3 、电工工具(1套)、测量用锷鱼夹(2支)

测试方法:

①测量a 、b 两点之间的管长Lab ,误差不大于1%。按图3接线,读出ab 两点间的电压降。在干扰区内测试宜采用数字万用表。

②ab 段管内的电流按下式计算:

V ab .π(D-δ)δ

I=

ρL ab

式中 I-流过ab 段的管内电流(A );

V ab -ab 间的电位差(V )

D-管道外径(mm )

δ-管道壁厚(mm )

ρ-管材电阻率(Ω.mm 2/m ),取0.166.

L ab -ab 间的管道长度(m )。

- + 地

a b

管 道 UJ-33a

测L

图3 电压降法测

6、杂散电流干扰测试

(1)交流干扰

测试内容:管道交流干扰电压

测试仪器:数字万用表、隔直电容(7.5μF ,250V )、金属电极(1支)铜芯绝缘软线(截面积1.0mm 2)、电工工具(1套)、测量用锷鱼夹(2支)

测试方法:按图5进行接线测试。

(2)直流干扰

测试内容:管道直流干扰地电位梯度与电流方向

测试仪器:数字万用表、标准Cu/CuSO 4电极(4支)、铜芯绝缘软线(截面积

1.0mm 2)、电工工具(1套)、测量用锷鱼夹(2支)

测试方法:

①沿着某一干扰段选取几个地点,按图6进行接线重复测试,通过几个测试点的电位梯度的大小和方向,判断杂散电流源的方位。

②电压表读取的数值除以参比电极间距,即为电位梯度。

③当单独测试地电位梯度时,参比电极的间距应小一些,在可能的情况下以1m 为宜。 >10m 金属电极

测试桩 电容

V

图5 管道交流干扰电压

三、恒电位仪的基本操作

具体见使用说明书。 B A +

+ 管道走向

c d b

a

mV mV 图 6 地电位梯度及杂散1 1

1 1 2

3 3 1-a 、b 、c 、d 四只Cu/CuSO 4参比电极; ac

管道阴极保护

第一章管道阴极保护 一.电化学腐蚀原理 金属在电解质溶液中由于电化学作用所发生的腐蚀称为电化学腐蚀.他是金属腐蚀中最普遍的一种形式,这种形式发生在金属和电解质溶液接触而且相互作用的时候,其最明显的特征是它必然有电流的流动 金属电化学腐蚀原因是金属表面产生原电池作用,或外界电源影响使金属表面产生电解作用所引起的破坏.把两种电极电位不同的金属放在电解液中,即成为简单的原电池,若用导线将两种金属连接起来,则两个电极间有点位差存在而产生电流.例如将锌板和铜板当做两极,插入装有稀硫酸溶液的同一器皿中,并用导线连接,如图1----1所示.由于双电层原理Zn/Cu各自在溶液中建立电极电位,但Zn得电极电位较负,所以不断失去电子,变成Z n2+,离子溶解到电解质溶液中区。锌板上多余的电子则沿导线由锌板流到铜板,铜板上不断地有来自锌板的电子和溶液中得氢离子中和放电。 在原电池外部电子E由锌板流到铜板,则电流方向由铜板到锌板。 在原电池内部电流方向是从锌板流入溶液,再由溶液流入铜板。电极电位比较负的锌板称为阳极,电极电位比较正的铜板称为阴极。 在电解质溶液中,金属表面上的各部分,其电位是不完全想的的,点位较高的部分形成阴极区,电位低得部分形成阳极区。这便构成了腐蚀电池。 二.阴极保护原理 1.理想极化曲线 腐蚀电池在电路接通后就产生电流,电流的流通,使得腐蚀电池阳极和阴极的点击电位都偏离电流未流通之前的电极电位值。 在阳极,由于阳极金属溶解即阳极金属溶液即离子化的过程滞后于电子的转移过程,而正点和过剩,使阳极表面的电位向正的方向偏移,即阳极极化。 在阴极表面,由于从阳极转移过来的电子的迁移速度大大于在阴极表面的极化剂吸收电子的速度,使其大量的电子在阴极表面集聚,从而使阴极表面的电位向负的方向偏移,称为阴极极化。 阳极极化和阴极极化的共同结果,造成了腐蚀原电池起始电位差得变小。将复式电池阳极和阴极的电极电位与电流之间的关系的曲线表示出来绘成图,就得到了复式电池的极化曲线图。图1----2是腐蚀电池的极化曲线示意图。 如图所示,EaS是阳极化曲线,EaSshi 阴极极化曲线,当腐蚀电池内电阻为零时,它们相交于S点,S点所对应的电位称之为该体系的腐蚀电位,也称自然电位,表为Ecorr.他是复式电池的阳极和阴极在极化后共同趋势的点位值。与此电位值对饮的电流Lcorr称为该系统理论上最大可能的腐蚀电流。 事实,上述的极化曲线是测不出来的。这事因为人们无法在腐蚀电池系统中确定阳极与阴极的面积。也无法保证在电极表面只发生单一的一种电极反应。甚至不可能侧刀腐蚀电池中任一般阳极部门,或微阴极部位的点位值。而测到的通常是其微阳与微阴极化后,共同趋向的电位Ecorr,上述极化曲线称之为理想的极化曲线,或假想的极化曲线。它所反映的是了,腐蚀电池内电流与阳极和阴极电位的关系。 2. 阴极保护原理 在介绍腐蚀电池工作原理时,人们曾谈到由于金属本身的电化学不均性,或由于外界环境的不均匀性,都会形成微观的或宏观的腐蚀原电池。例如在碳钢表面,其基体金属铁与碳素体FeC在电解质溶液中会形成电位差为200mV的微电池腐蚀。 当采用外加电流极化时,原来腐蚀者的微电池会由于外加电流的作用,电极电位发生变化,对腐蚀着的微电池的腐蚀电流减少,称之为正的差异效应。繁殖,则称之为负的差异效

管道阴极保护基本知识

管道阴极保护基本知识-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 ◆阴极保护系统测试方法 ◆恒电位仪的基本操作 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。 在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀

消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。 牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。 图1-4恒电位方式示意图 外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。而辅助阳极表面则发生丢电子氧化

输油管道阴极保护施工方案

吉化集团吉林市北方建设有限责任公司 吉林-长春成品油管道工程 第一标段线路工程 阴极保护施工方案 编制: 审核: 批准: 吉化集团吉林市北方建设有限责任公司 吉林-长春成品油管道工程项目经理部 二○一一年七月十五日

目录 1、编制依据................................................. 错误!未定义书签。 2、工程概况 (2) 3、施工部署 (4) 4、施工方法和措施 (5) 施工准备 (6) 用于临时阴极保护的锌带安装 (7) 测试桩安装 (8) 长春末站强制电流阴极保护安装 (9) 去耦合器的安装和调试 (10) 5、施工消耗材料计划 (13) 6、施工首段用料计划 (13) 7、工期计划及工期保证措施 (14) 8、质量保证措施 (14)

1、编制依据 (1). 编制说明 本施工组织方案是依据建设单位提供的招标文件,施工图纸国家有关规范及验收标准进行编制的。本施工组织方案针对施工中的主要施工方法和措施,人员安排,质量控制,进度、材料控制及安全文明施工与环境保护等进行阐述说明。 (2).编制依据 2、工程概况 本工程是由吉林到长春的输油管道工程。管道主要是采用外加电流的方式进行阴极保护。土壤电阻率比较低的地方需要用锌带牺牲阳极做临时阴极保护,有和旧管道交叉的地方设置管道交叉测试桩。每整公里处设电位测试桩。在管道受交流干扰地段设去耦合器。在长春末站埋设阳极地床。在绝缘法兰两端设接地电池,并设参比电极。 .工程内容:本工程主要内容包括测试桩的安装、长效硫酸铜参比电极、锌带的安装;通电点电缆的焊接,恒电位仪的安装、辅助阳极的埋设、接地电池的安装、去耦合器的安装、电缆敷设、系统调试等。

长输管道阴极保护及阴极保护站维护基础知识

长输管道阴极保护及阴极保护站维护基础知识[转] 长输管道阴极保护及阴极保护站维护基础知识 2013-12-8 09:55 阅读(2) 转载自专业管道检测 已经是第一篇 | 下一篇:一建《建设工程法... 1.目的 为了使阴极保护站场内维护人员以及现场巡线人员有效地实施阴极保护,做到 科学操作、安全维护、确保质量、特编此文,提供对站场内及管线上阴极保护系统正常运行并科学维护指导。一.防腐蚀的重要意义 自然界中,大多数金属是以化合状态存在的。通过炼制,被赋予能量,才从离 子状态转变成原子状态。然而,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 金属腐蚀广泛的存在于我们的生活中, 国外统计表明,每年由于腐蚀而报废的 金属材料, 约相当于金属产量的20,40,,全世界每年因腐蚀而损耗的金属达1 亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失, 据有关国家统计每年由于腐蚀 而造成的经济损失,美国为国民经济总产值的4.2,; 英国为国民经济总产值的3.5,;日本为国民经济总值1.8 ,。 二.防腐蚀工程发展概况 六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构 筑物上得到应用。我国埋地油气管道的阴极保护始于1958 年,六十年代在新疆、 大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。 2.阴极保护原理

2.1 所谓阴极保护是通过降低管道的腐蚀电位而使管道得到保护的电化学保护(其实质:给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点低于一负电位,使金属原子不容易失去电子而变成离子溶入电解质的过程。)。通常施加阴极保护电流有两种方法:强制电流和牺牲阳极保护。 2.2 牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电 解质中,通过电解质向被保护体提供一个阴极电流,使被保护体进行阴极极化,从而实现阴极保护。 阴极保护牺牲阳极原理是由托马晓夫三电极原理来解释,内容是: (a)两电极电位不同的两电极; (b)两电极必须在同一电解质溶液里; (c)两电极间必须有导线连接。 该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1 安培) 或处于低土壤电阻率环境下(土壤电阻率小于100 欧姆.米)的金属结构。如,城市管网、小型储罐等。根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3 年,最多5 年。牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。本人认为,产生该问题的主要原因通常是阳极成份达不到规范要求,其次是阳极所处位置土壤电阻率太高。因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低的阳极床位置。 强制电流保护原理:由外部的直流电源向被保护金属构筑物通以保护电流,使 之阴极极化,达到阴极保护的一种方法。该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构,如:长输埋地管道,大型罐群等。 强制电流保护原理图;

管道阴极保护基本知识

管道阴极保护基本知识

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 ◆阴极保护系统测试方法 ◆恒电位仪的基本操作 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。 在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。

牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。 图1-4恒电位方式示意图 外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。 阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。两种方法的差别只在于产生保护电流的方式和“源”不同。一种是利用电位更负的金属或合金,另一种则利用直

阴极保护的基本知识

阴极保护的基本知识 阴极保护是基于电化学腐蚀原理的一种防腐蚀手段。 阴极保护是基于电化学腐蚀原理的一种防腐蚀手段。美国腐蚀工程师协会(NACE)对阴极保护的定义是:通过施加外加的电动势把电极的腐蚀电位移向氧化性较低的电位而使腐蚀速率降低。牺牲阳极阴极保护就是在金属构筑物上连接或焊接电位较负的金属,如铝、锌或镁。阳极材料不断消耗,释放出的电流供给被保护金属构筑物而阴极极化,从而实现保护。外加电流阴极保护是通过外加直流电源向被保护金属通以阴极电流,使之阴极极化。该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构。 保护电位是指阴极保护时使金属腐蚀停止(或可忽略)时所需的电位。实践中,钢铁的保护电位常取-0.85V(CSE),也就是说,当金属处于比-0.85V(CSE)更负的电位时,该金属就受到了保护,腐蚀可以忽略。 阴极保护是一种控制钢质储罐和管道腐蚀的有效方法,它有效弥补了涂层缺陷而引起的腐蚀,能大大延长储罐和管道的使用寿命。根据美国一家阴极保护工程公司提供的资料,从经济上考虑,阴极保护是钢质储罐防腐蚀的最经济的手段之一。 网状阳极阴极保护方法 网状阳极阴极保护方法是目前国际上流行且成熟的针对新建储罐罐底外壁的一种有效的阴极保护新方法,在国际和国内都得到了广泛应用。网状阳极是混合金属氧化物带状阳极与钛金属连接片交叉焊接组成的外加电流阴极保护辅助阳极。阳极网预铺设在储罐基础中,为储罐底板提供保护电流。 网状阳极保护系统较其它阴极保护方法具有如下优点: 1)电流分布均匀,输出可调,保证储罐充分保护。 2)基本不产生杂散电流,不会对其它结构造成腐蚀干扰。 3)不需回填料,安装简单,质量容易保证。 4)储罐与管道之间不需要绝缘,不需对电气以及防雷接地系统作任何改造。 5)不易受今后工程施工的损坏,使用寿命长。 6)埋设深度浅,尤其适宜回填层比较薄的建在岩石上的储罐。 7)性价比高,造价仅为目前镁带牺牲阳极的1倍;虽然长期由恒电位仪提供

长输管线的管道阴极保护测试桩

一种长输管线的管道阴极保护测试桩,包括桩体和基座,桩体构成测试桩的主体,基座设置在桩体底部并通过套压方式固定桩体,桩体内部设置中空的面板放置孔,在面板放置孔内设置绝缘接线面板,绝缘接线面板上设置有接线柱,穿线孔从桩体低端通入并直通到面板放置孔处,测试电缆经由穿线孔与绝缘接线面板上的接线柱相连接。测试桩能够在恶劣的环境中埋设并保护面板放置孔中的各元件正常工作,从而实现对测试桩下方对应铺设的在役管道进行实时监测,并基于管道沿线电位分布及变化的分析可以了解沿线干扰源分布及管道防腐层状况。

权利要求书 1、一种长输管线的管道阴极保护测试桩,包括桩体和基座,桩体构成测试桩的主体,基座设置在桩体的底部并套压固定桩体,其特征在于:桩体内部设置中空的面板放置孔,在面板放置孔内设置绝缘接线面板,绝缘接线面板上设置有接线柱,穿线孔从桩体底端通入并直通到面板放置孔处,测试电缆经由穿线孔与绝缘接线面板上的接线柱相连接。 2、根据权利要求1所述的长输管线的管道阴极保护测试桩,其特征在于:绝缘接线面板通过固定螺栓固定在面板放置孔中,固定螺栓与桩体相固定,固定螺栓和绝缘接线面板之间设置固定片。 3、根据权利要求1或2所述的长输管线的管道阴极保护测试桩,其特征在于:桩体外部对应面板放置孔的位置设置元件保护门,元件保护门通过元件保护门螺柱与桩体相连接并覆盖面板放置孔,元件保护门螺柱与桩体相固定。 4、根据权利要求3所述的长输管线的管道阴极保护测试桩,其特征在于:面板放置孔中还设置测试探头和控制中心,测试探头和控制中心分别与绝缘接线面板上的接线柱相连接。 5、根据权利要求4所述的长输管线的管道阴极保护测试桩,其特征在于:控制中心中包括测试管理组件、无线收发组件和电源组件。 6、根据权利要求5所述的长输管线的管道阴极保护测试桩,其特征在于:绝缘接线面板上的接线柱分为两组,每组三个;一组接线柱与测试电缆相连接,各接线柱通过测试电缆分别对应连接管道、试片和参比电极,另一组接线柱跨接两组不同的测试桩。

建筑电气工程图基本知识及识图 哦

目录

一建筑电气工程图基本知识 (一)、建筑电气工程施工图概念 建筑电气工程施工图,是用规定的图形符号和文字符号表示系统的组成及连接方式、装置和线路的具体的安装位置和走向的图纸。 电气工程图的特点 (1)建筑电气图大多是采用统一的图形符号并加注文字符号绘制的。 (2)建筑电气工程所包括的设备、器具、元器件之间是通过导线连接起来,构成一个整体,导线可长可短能比较方便的表达较远的空间距离。 (3)电气设备和线路在平面图中并不是按比例画出它们的形状及外形尺寸,通常用图形符号来表示,线路中的长度是用规定的线路的图形符号按比例绘制。 (二)、建筑电气工程图的类别 1、系统图:用规定的符号表示系统的组成和连接关系,它用单线将整个工程的的供电线路示意连接起来,主要表示整个工程或某一项目的供电方案和方式,也可以表示某一装置各部分的关系。系统图包括供配电系统图(强电系统图)、弱电系统图。 供配电系统图(强电系统图)是表示供电方式、供电回路、电压等级及进户方式;标注回路个数、设备容量及启动方法、保护方式、计量方式、线路敷设方式。强电系统图有高压系统图、低压系统图、电力系统图、照明系统图等。 弱电系统图是表示元器件的连接关系。包括通信电话系统图、广播线路系统图、共用天线系统图、火灾报警系统图、安全防范系统图、微机系统图。 2、平面图:是用设备、器具的图形符号和敷设的导线(电缆)或穿线管路的线条画在建筑物或安装场所,用以表示设备、器具、管线实际安装位置的水平投影图。是表示装置、器具、线路具体平面位置的图纸。 强电平面包括:电力平面图、照明平面图、防雷接地平面图、厂区电缆平面图等;弱电部分包括:消防电气平面布置图、综合布线平面图等。 3、原理图:表示控制原理的图纸,在施工过程中,指导调试工作。 4、接线图:表示系统的接线关系的图纸,在施工过程中指导调试工作。 (三)、建筑电气工程施工图的组成 电气工程施工图纸的组成有:首页、电气系统图、平面布置图、安装接线图、大样图和标准图。 1、首页:主要包括目录、设计说明、图例、设备器材图表。 (1)设计说明包括的内容:设计依据、工程概况、负荷等级、保安方式、接地要求、

第一章管道识图第五节管道施工图基本知识

第五节 管道施工图基本知识 管道施工图是管道工程中用来表达和交流技术思想的重要工具,设计人员用它来表达设计意图,施工人员依据它来进行预制和施工,所以人们往往把施工图称为工程的语言。而熟悉图纸核对资料,则又是施工准备的一项重要工作。 管道施工图是怎样分类的,它又由哪些具体的图纸所组成?当拿到一套施工图纸应该用什么方法,分哪几个步骤去了解和看懂它?当拿到其中的某一张图纸应该用什么方法去弄懂弄通它7要解决这些问题,看来仅懂得投影原理还是不够的,必须掌握正确的识图万法和必要的专业工艺知识才行,为此,这一章中我们将主要学习各专业管道施工图所共有的基本知识,以及识读管道图的步骤和方法。 一、管道施工图的分类 (一)按专业分类 管道施工图按专业可分为化工工艺管道施工图、采暖通风管道施工图、动力管道施工图、给水排水管道施工图和自控仪表管道施工图等。每一个专业里又可分为许多具体的工程施工图或具体的专业施工图。如给水排水工程施工图可分为给水管道施工图、排水管道施工图和卫生工程施工图;采暖通风施工图可分为采暖、通风、空气调节和制冷管道施工图;动力管道施工图又可分为氧气管道、煤气管道、空压管道、乙炔管道和热力管道等具体的专业管道施工图。 (二)按图形和作用分类 按图形及其作用,管道施工图可分为基本图和详图两大部分。基本图包括图纸目录、施工图说明、设备材料表、流程图、平面图、系统轴测图和立(剖)面图,详图包括节点图、大样图和标准图。 l.图纸目录 对于数量众多的施工图纸,设计人员把它按一定的图名和顺序归纳编排成图纸目录以便查阅。通过图纸目录我们可以知道参加设计和建设的单位,工程名称、地点、编号及图纸的名称。 2.施工图说明 凡在图样上无法表示出来而又非要施工人员知道的一些技术和质量方面的要求,一般都用文字形式来加以说明。它的内容一般包括工程的主要技术数据,施工和验收要求以及注意事项。 3.设备、材料表 指该项工程所需的各种设备和各类管道、管件、阀门以及防腐、保温材料的名称、规格、型号、数量的明细表。

长输管道基础知识

输油管道工程设计规范》 ( GB50253-2003) 1.输油管道工程设计计算输油量时,年工作天数应按350 天计算。 2.应在紊流状态下进行多品种成品油的顺序输送。 3.当顺序输送高粘度成品油时宜使用隔离装置。 4.埋地输油管道与其他用途的管道同沟敷设,并采用联合阴极保护的管道之间的 距离,最小净距为0.5 米。 5.管道与光缆同沟敷设时,其最小净距不应小于0.3 米。 6.当输油管道需改变平面走向适应地形变化时,可采用弹性弯曲、冷弯管、热煨 弯头。在平面转角较小或地形起伏不大的情况下,首先应采用弹性弯曲。采用热煨弯管时,其曲率半径不宜小于 5 倍管子外径,且应满足清管器或检测器顺利同过的要求。 7.输油管的平面和竖向同时发生转角时,不宜采用弹性弯曲。 8.一般情况下管顶的覆土层厚度不应小于0.8 米。 9.管道敷设采用套管时,输油管与套管之间应采用绝缘支撑。套管端部应采用防 水、绝缘、耐用的材料密封。绝缘支撑间距根据管径大小而定,一般不宜小于 2 米。 10.输油管道沿线应安装截断阀,阀门间距不应超过32 千米。人烟稀少地区可加大间距。 11.当输油管道的设计温度同安装温度之差较大时,宜在管道出土端、弯头、管径 改变处及管道和清管器收发装置连接处,根据计算设置锚固设施,或采取其他稳管措施。 12.输油管道沿线应设置里程桩、转角桩、阴极保护测试桩和警示牌等永久性标志。 13.里程桩应设置在油流方向的左侧,沿管道从起点至终点,每隔1kw 设置1个, 不得间断。阴极保护测试桩可同里程桩结合设置。 14.在管道改变方向处应设置水平转角桩。转角桩应设置在管道中心线的转角处左侧

管道阴极保护基本知识

管道阴极保护基本知识 管道阴极保护基本知识 内容提要: ?阴极保护系统管理知识 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位,称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子,我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区

得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金 属整体处于电子过剩的状态,使金属表面各点达到同一负电 位,金属原子不容易失去电子而变成离子溶入溶液。有两种 办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴 极保护。 1牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合 金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的 方法 在被保护金属与牺牲阳极所形成的大地电池中,被保护 金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电 位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺 牲”阳极,从而实现了对阴极的被保护金属体的防护,如图 1 — 3。 牺牲阳极材料有高钝镁,其电位为 -1.75V ;高钝锌,其电 位为- 1.1V ;工业纯铝,其电位为-0.8V (相对于饱和硫酸铜参 比电极)。 2、强制电流法(外加电流法) 牺艸PH 极 煩包料

天然气管网牺牲阳极阴极保护

天然气管网牺牲阳极阴极保护 阴 极 保 护 设 计 公司:河南汇龙合金材料有限公司 技术部:代银 随着城镇燃气地下管网的迅速发展,地下燃气管网错综复杂,且与消防管道、供水管道、供热管道、供电线路等地下金属构筑物纵横交错,甚至还有可能发生电连接,位于城市道路地下的燃气管网还要受到车辆行驶时造成的盈利冲击腐蚀,钢质管道的腐蚀与防护问题也日益突出。为了延长埋地钢质管道的使用寿命,确保城镇燃气供应安全、可靠,通常采用阴极保护方法保护埋地钢质管道。 1 阴极保护设计 1.1阴极保护类型的确定

阴极保护属于电化学保护,是利用外部电流使金属腐蚀电位发生改变以降低其腐蚀速率的防腐蚀技术。埋地钢质管道阴极保护分为强制电流阴极保护和牺牲阳极阴极保护两种。 强制电流阴极保护主要适用于郊区等地下管网单一地区的燃气主管道或城镇燃气环网。其优点是输出电流大而且可调,不受土壤电阻率限制,保护半径较大;系统运行寿命长,保护效果好;保护系统输出电流的变化可反映出管道涂层的性能改变。其缺点是需设专人维护管理,要求有外部电源长期供电,易产生屏蔽和干扰,特别是地下金属构筑物较复杂的地方。 牺牲阳极阴极保护主要适用于人口稠密地区和城镇内各种压力级制燃气管道。其优点是不需外加电源,施工方便,不需进行经常性专门管理,不会生屏蔽,对其他构筑物也不会产生干扰,保护电流分布均匀、利用率高。其缺点是输出电流小,保护范围有限;需定期更换,不能实时监测输出电流分的变化,也不能反映管道涂层的状况。 根据以往的经验和我们的实践得知,城镇燃埋地钢质管道宜采用牺牲阳极阴极保护来减缓土壤对管道的电化学腐蚀。 1.2阴极保护电流的确定 要使埋设的燃气管道得到充分的保护,就要证有足够的电流使管道不受到腐蚀。钢质管道廖的最小保护电流是阴极保护设计最重要的参数之一,其计算公式如下:I=AIP(1) 式中I——管道所需最小保护电流,mA A——管道总表面积,m2 IP——最小保护电流密度,mA/m2 最小保护电流密度Ip是根据管道的防腐层种类、好坏来确定的,新建沥青玻璃布防腐管道所需的Ip约0.1mA/m2,新建三层PE管道所需的Ip约0.001mA/m2,旧管道的Ip取 0.3mA/m2。 1.3牺牲阳极的选取 ①土壤电阻率 土壤电阻率反映了土壤介质的导电能力。一般电阻率低的土壤腐蚀性强,反之腐蚀性弱,通常根据土壤电阻率选取适宜的牺牲阳极。无论采用哪种牺牲阳极,都需要先测出管道所在位置的土壤平均电阻率。土壤中所含成分的比例不同,造成各个地方电阻率也不同,即使同一地点不同埋深的电阻率也不同,因此我们常采用管道所在埋深处的电阻率的平均值。 ②牺牲阳极的选用 牺牲阳极主要有两大类型,即镁合金阳极和锌合金阳极。 根据勘测出来的土壤电阻率(ρ),可以选择采用锌阳极或镁阳极。一般ρ<5Ω·m时,选用锌阳极;5Ω·m≤p≤100Ω·113时,选用镁阳极;p>100Ω·m时,选用带状镁阳极。在土壤潮湿的情况下,锌阳极使用范围可扩大到30Ω·m。 1.4牺牲阳极的布置 ①在布置牺牲阳极时,注意阳极与管道之间不应有金属构筑物。 ②牺牲阳极必须埋设在冰冻线以下。在地下水位低于3m的干燥地带,阳极应适当加深埋设。在河流下阳极应埋设在河床的安全部位,以防止洪水冲刷和挖泥清淤时损坏。

安装管道施工图识图基础知识

安装管道施工图识图基础知识 管道施工图识读 1. 设计规范要求,暖气支管不得小于DN20。 2. 保温常规做法――给水:防结露保温,热水:保温,消防:不保温,冷冻水:连阀门都需保温,冷却水:按设计要求,未要求可以不作。一般吊顶里的管道均需保温。 给水:暗敷防结露保温;明敷穿越门厅、卧室和客厅过门处必须做防结露保温。排水:暗敷做防结露保温;明敷公共厕所座便上反水弯必须做。 管井里除消防、喷洒管道管道外均做保温。 3. 镀锌钢管连接方式:《DN100丝接,>DN100可焊接(需防腐),可法兰焊接(需二次镀锌),少量可丝扣法兰连接。 4. 管道外皮距墙距离为25-50mm。 5. 采暖干管接立管时,当立管直线管段<15m时,采用2个90。弯头,当直线管段>15m时采用3个90。弯头。 6. 施工时,排水管宁高勿低,地漏宁低勿高。 7. 标高规定:室内管道一般为管中,室外管道排水为管内底,给水为管顶。 8. 暖气片中应与窗同轴。 9. 闸阀:开关作用,阻力系数0.5;截止阀:调节开关作用,阻力系数19。 10. 补偿器分为:自然补偿,方型胀力,弯头,波纹补偿器,套筒补

偿器,球型胀力,角质胀力。 11. 集气罐:干管末端,其管径为末端管道直径的4-6倍。膨胀水箱:稳压、排气、容纳膨胀水、信号作用。气压罐:稳压、排气。 膨胀水箱共五根管道:膨胀管、循环管、溢水管、排污管、信号管。 集气罐安装位置:管道接口距集气罐上端2/3,距下端1/3。 12. 按照标准图集,掌握热媒入口情况。 13. PP-R管可以套用铝塑复合管或给水U-PVC管道定额。 14. (1)刚性防水套管:Ⅰ型防水套管,Ⅱ型防水套管,Ⅲ型防水套管 Ⅰ型防水套管适用于铸铁管和非金属管; Ⅱ型防水套管适用于钢管;Ⅲ型防水套管适用于钢管预埋,将翼环直接含在钢管上。 (2) 柔性防水套管一般适用于管道穿过墙壁处受有振动或有严密防水要求的构筑物。 (3) 一般管道穿外墙的管道加防水套管。穿水池的管道采用柔性防水套管。 (4) 若室外水位高采用柔性防水套管,若室外水位低采用刚性防水套管。 15. 一般水表管径比管道管径小一号。 16. 给水支管上凡是接两个以上供水点,支管均加活接头和法兰。若支管接水表除外

管道阴极保护基本知识(终审稿)

管道阴极保护基本知识文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。

在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。 牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为- 1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。 图1-4恒电位方式示意图 外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。 阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。两种方法的差别只在于产生保护电流的方式和“源”不同。一种是利用电位更负的金属或合金,另一种则利用直流电源。 强制电流阴极保护驱动电压高,输出电流大,有效保护范围广,适用于被保护面积大的长距离、大口径管道。

管道阴极保护基本知识27680

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 ◆阴极保护系统测试方法 ◆恒电位仪的基本操作 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。 在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。

牺牲阳极材料有高钝镁,其电位为-1.75V;高钝锌,其电位为-1.1V;工业纯铝,其电位为-0.8V(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。 图1-4恒电位方式示意图 外部电源通过埋地的辅助阳极将保护电流引入地下,通过土壤提供给被保护金属,被保护金属在大地中仍为阴极,其表面只发生还原反应,不会再发生金属离子化的氧化反应,使腐蚀受到抑制。而辅助阳极表面则发生丢电子氧化反应,因此,辅助阳极本身存在消耗。 阴极保护的上述两种方法,都是通过一个阴极保护电流源向受到腐蚀或存在腐蚀,需要保护的金属体,提供足够的与原腐蚀电流方向相反的保护电流,使之恰好抵消金属内原本存在的腐蚀电流。两种方法的差别只在于产生保护电流的方式和“源”不同。一种是利用电位更负的金属或合金,另一种则利用直流电源。

管道阴极保护基本知识

管道阴极保护基本知识TTA standardization office

管道阴极保护基本知识公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

管道阴极保护基本知识 内容提要: ◆阴极保护系统管理知识 一、阴保护系统管理知识 (一)阴极保护的原理 自然界中,大多数金属是以化合状态存在的,通过炼制被赋予能量,才从离子状态转变成原子状态,为此,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 每种金属浸在一定的介质中都有一定的电位, 称之为该金属的腐蚀电位(自然电位),腐蚀电位可表示金属失去电子的相对难易。腐蚀电位愈负愈容易失去电子, 我们称失去电子的部位为阳极区,得到电子的部位为阴极区。阳极区由于失去电子(如铁原子失去电子而变成铁离子溶入土壤)受到腐蚀,而阴极区得到电子受到保护。 阴极保护的原理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。有两种办法可以实现这一目的,即牺牲阳极阴极保护和外加电流阴极保护。 1、牺牲阳极法 将被保护金属和一种可以提供阴极保护电流的金属或合金(即牺牲阳极)相连,使被保护体极化以降低腐蚀速率的方法。

在被保护金属与牺牲阳极所形成的大地电池中,被保护金属体为阴极,牺牲阳极的电位往往负于被保护金属体的电位值,在保护电池中是阳极,被腐蚀消耗,故此称之为“牺牲”阳极,从而实现了对阴极的被保护金属体的防护,如图1—3。 牺牲阳极材料有高钝镁,其电位为;高钝锌,其电位为;工业纯铝,其电位为(相对于饱和硫酸铜参比电极)。 2、强制电流法(外加电流法) 将被保护金属与外加电源负极相连,由外部电源提供保护电流,以降低腐蚀速率的方法。其方式有:恒电位、恒电流、恒电压、整流器等。如图1-4示。

长输管道阴极保护及阴极保护站维护

1.目的 为了使阴极保护站场内维护人员以及现场巡线人员有效地实施阴极保护,做到科学操作、安全维护、确保质量、特编此文,提供对站场内及管线上阴极保护系统正常运行并科学维护指导。 一.防腐蚀的重要意义 自然界中,大多数金属是以化合状态存在的。通过炼制,被赋予能量,才从离子状态转变成原子状态。然而,回归自然状态是金属固有本性。我们把金属与周围的电解质发生反应、从原子变成离子的过程称为腐蚀。 金属腐蚀广泛的存在于我们的生活中, 国外统计表明,每年由于腐蚀而报废的金属材料, 约相当于金属产量的20~40%,全世界每年因腐蚀而损耗的金属达1 亿吨以上,金属腐蚀直接和间接地造成巨大的经济损失, 据有关国家统计每年由于腐蚀而造成的经济损失,美国为国民经济总产值的4.2%; 英国为国民经济总产值的3.5%;日本为国民经济总值1.8 %。 二.防腐蚀工程发展概况 六十年代初,我国开始研究阴极保护方法,六十年代末期在船舶,闸门等钢铁构筑物上得到应用。我国埋地油气管道的阴极保护始于1958 年,六十年代在新疆、大庆、四川等油气管道上推广应用,目前,全国主要油气管道已全部安装了阴极保护系统,收到明显的效果。 2.阴极保护原理 2.1所谓阴极保护是通过降低管道的腐蚀电位而使管道得到保护的电化学保护(其实质:给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点低于一负电位,使金属原子不容易失去电子而变成离子溶入电解质的过程。)。通常施加阴极保护电流有两种方法:强制电流和牺牲阳极保护。 2.2 牺牲阳极阴极保护是将电位更负的金属与被保护金属连接,并处于同一电解质中,通过电解质向被保护体提供一个阴极电流,使被保护体进行阴极极化,从而实现阴极保护。 阴极保护牺牲阳极原理是由托马晓夫三电极原理来解释,内容是: (a)两电极电位不同的两电极; (b)两电极必须在同一电解质溶液里; (c)两电极间必须有导线连接。 该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型(电流一般小于1 安培)或处于低土壤电阻率环境下(土壤电阻率小于100 欧姆.米)的金属结构。如,城市管网、小型储罐等。根据国内有关资料的报道,对于牺牲阳极的使用有很多失败的教训,认为牺牲阳极的使用寿命一般不会超过3 年,最多5 年。牺牲阳极阴极保护失败的主要原因是阳极表面生成一层不导电的硬壳,限制了阳极的电流输出。本人认为,产生该问题的主要原因通常是阳极成份达不到规范要求,其次是阳极所处位置土壤电阻率太高。因此,设计牺牲阳极阴极保护系统时,除了严格控制阳极成份外,一定要选择土壤电阻率低的阳极床

长输管道牺牲阳极法阴极保护专用方案标准

河南汇龙合金材料有限公司 长输管道牺牲阳极法 阴 极 保 护 方 案 河南汇龙合金材料有限公司二零一九年八月三十一日

目录 一、概述------------------------------------------------------------ 2 (一)原理 ----------------------------------------------------- 2(二)牺牲阳极法阴极保护的优点 --------------------------------- 2(三)牺牲阳极材料 --------------------------------------------- 2(四)阳极安装方式 --------------------------------------------- 6(五)测试系统 ------------------------------------------------- 7(六)应用标准和规范 ------------------------------------------- 8(七)主要测试设备和工具 --------------------------------------- 8 二、该项目管道牺牲阳极保护法的设计---------------------------------- 8 三、施工方法-------------------------------------------------------- 9 1、牺牲阳极法阴极保护施工安装程序简述如下: -------------------- 9 2、牺牲阳极法的施工: ------------------------------------------ 9

管道工程识图习题及答案(改)

管道工程识图习题 识图基本知识 一、填空题 1.投影法分为和两类。 2.平行投影法可分为:和两类。 3.正平行线的面投影反映实长,水平线的面投影仅反映实长,侧平线的面投影反映实长。 4.垂直于V面,而倾斜于H面和W面的平面叫。 5.侧垂面于W面,于H面和V面。 6.正垂线的面投影积聚为一个点。 7.铅垂线的H面投影为。 8.水平面平行于面,在面上的投影反映实形。 9.三面投影体系中一般设置为三个投影面,分别为,,。 10.正投影法中,当直线平行于投影面时具有性,当线段垂直于投影面时具有性,当线段倾斜于投影面时具有性。 11.三视图的投影规律:主视图和俯视图,主视图和左视图,俯视图和左视图。 12.三面投影系展开时面保持不动,将面向下旋转90度,将面向右转90度。 13.三面投影系展开时,将V面固定不动,将H面绕OX轴向转90度,将W 面绕OZ轴向转90度。 14.三面投影系中V面和H面垂直相交于轴,V面和W面垂直相交于轴,H面和W面垂直相交于轴。 二、术语解释 1.中心投影法: 2.平行投影法:

3.正投影法: 4.正平线: 5.水平面: 6.积聚: 7.重合: 8.截交线: 9.相贯线: 三、判断题 1.中心投影法所得到的投影都是放大的影子() 2.平行投影法所得到的影子都是不变形的() 3.正投影法就是投影线垂直于形体投影() 4.平行投影法所得到的投影都是缩小的() 5.斜投影法就是投影线与投影面相对倾斜() 6.正投影时观察者距离形体越近所得到的投影就越大() 7.三面投影图应具有长对正,高平齐,宽相等的关系() 8.平行于H面的直线就叫水平线() 四、选择题 1.三面投影中正立面图和俯视图的关系为() A.长对正 B.高平齐 C.宽相等 2.直线倾斜于投影面时,其投影() A.反映实长 B.大于实长 C.小于实长 3.平面平行于投影面时,其投影() A.大于原图形 B.全等于原图形 C.小于原图形 4.产生积聚现象的原因是() A.平行 B.垂直 C.倾斜 5.投影面上的投影轴,高的方向对应着()

相关主题
文本预览
相关文档 最新文档