当前位置:文档之家› 甲醇合成原理方法与工艺

甲醇合成原理方法与工艺

甲醇合成原理方法与工艺
甲醇合成原理方法与工艺

甲醇合成原理方法与工艺

图1 煤制甲醇流程示意图

煤气经过脱硫、变换,酸性气体脱除等工序后,原料气中的硫化物含量小于0.1mg/m3。进入合成气压缩机,经压缩后的工艺气体进入合成塔,在催化剂作用下合成粗甲醇,并利用其反应热副产3.9MPa 中压蒸汽,降温减压后饱和蒸汽送入低压蒸汽管网,同时将粗甲醇送至精馏系统。

一、甲醇合成反应机理

自CO加氢合成甲醇工业化以来,有关合成反应机理一直在不断探索和研究之中。早期认为合成甲醇是通过CO在催化剂表面吸附生成中间产物而合成的,即CO是合成甲醇的原料。但20世纪70年代以后,通过同位素示踪研究,证实合成甲醇中的原子来源于CO2,所以认为CO2是合成甲醇的起始原料。为此,分别提出了CO和CO2合成甲醇的机理反应。但时至今日,有关合成机理尚无定论,有待进一步研究。

为了阐明甲醇合成反应的模式,1987年朱炳辰等对我国C301型铜基催化剂,分别对仅含有CO或CO2或同时含有CO和CO2三种原料气进行了甲醇合成动力学实验测定,三种情况下均可生成甲醇,

试验说明:在一定条件下,CO和CO2均可在铜基催化剂表面加氢生成甲醇。因此基于化学吸附的CO连续加氢而生成甲醇的反应机理被人们普遍接受。

对甲醇合成而言,无论是锌铬催化剂还是铜基催化剂,其多相(非匀相)催化过程均按下列过程进行:

①扩散——气体自气相扩散到气体一催化剂界面;

②吸附——各种气体组分在催化剂活性表面上进行化学吸附;

③表面吸附——化学吸附的气体,按照不同的动力学假说进行反应形成产物;

④解析——反应产物的脱附;

⑤扩散——反应产物自气体一催化剂界面扩散到气相中去。

甲醇合成反应的速率,是上述五个过程中的每一个过程进行速率的总和,但全过程的速率取决于最慢步骤的完成速率。研究证实,过程①与⑤进行得非常迅速,过程②与④的进行速率较快,而过程③分子在催化剂活性界面的反应速率最慢,因此,整个反应过程的速率取决于表面反应的进行速率。

提高压力、升高温度均可使甲醇合成反应速率加快,但从热力学角度分析,由于CO、C02和H2合成甲醇的反应是强放热的体积缩小反应,提高压力、降低温度有利于化学平衡向生成甲醇的方向移动,同时也有利于抑制副反应的进行。

二、甲醇合成的主要反应

(1)甲醇合成主要反应

CO+2H2CH3OH

CO2+3H2CH3OH+H2O

同时CO2和H2发生逆变换反应

CO2+H2CO+H2O

(2)甲醇合成副反应

甲醇合成的副反应能生成醇类、烃类、醛、醚类、酸类、酯类和元素碳等。

CO2+ H2 C2H50H+H20

CO+H2HCOH

2CO+4H2CH3OCH3+H2O

2CH3OH HCOOCH3+H2

2CO C+CO2

(3)合成甲醇的平衡常数

一氧化碳和氢气合成甲醇是一个气相可逆反应,压力对反应起着重要作用,用气体分压来表示的平衡常数可用下面公式表示:

式中: Kp甲醇的平衡常数;p CH3OH,pCO,PH2分别表示甲醇、一氧化碳、氢气的平衡分压。

反应温度也是影响平衡常数的一个重要因素,不同温度下的反应平衡常数见表2-1。其平衡常数随着温度的上升而很快减小,因此,甲醇的合成不能在高温下进行,但是低温反应速率太慢,所以甲醇生产选用高活性的铜基催化剂,使反应温度控制在220~280℃。

表6-l 不同温度下甲醇反应的平衡常数

反应温度/℃平衡常数Kp反应温度/℃平衡常数Kp

0 667.30 300 2.42×l0-4

100 12.92 400 1.079×l0-5

200 1.909×l0-2

三、甲醇合成的方法

目前,甲醇合成的方法有高压法、中压法和低压法三种。

工业生产甲醇都采用CO、CO2加压催化氢化法,也称为羰基合成法。

反应式为:CO+2H2CH3OH(g) △H=90.8kJ/mol

CO2+3H2CH3OH(g)+H2O △H=49.5kJ/mol 羰基合成甲醇生产过程由制气、净化、压缩、合成、精制等工序组成

甲醇合成一般按操作压力进行分类,可分为高压法、中压法和低压法。

1.高压法

高压法是在压力为30MPa,温度为300~400℃下,使用锌一铬催化剂(ZnO-Cr2O3)合成甲醇的工艺。

高压法生产工艺成熟,从1923年第一次用该方法有50多年历史。其工艺流程如图2所示。经压缩后的合成气在活性炭吸附器1中脱除五羰基铁后,同循环气一起送入管式反应器6-2中,在温度为350℃和压力为30.4MPa下,一氧化碳和氢气通过催化剂层反应生成粗甲醇。含粗甲醇的气体经冷却器冷却后,迅速送人粗甲醇分离器3中分离,未反应的一氧化碳与氢气经压缩机压缩循环回反应器2。冷凝后的粗甲醇经粗甲醇储槽4进入精馏工序,在粗分离塔5顶部分离出二甲醚和甲酸甲酯及其他低沸点杂质;重组分则在精分离塔6中除去水合成反应前,必须用活性炭吸附器除去五羰基铁。[Fe(CO)5],因为在气体输送过程中,钢管表面被CO腐蚀,形成羰基铁,羰基铁在温度高于250℃时分解为单质铁细小微粒,促使甲烷生成,反应温度急剧上升,造成催化剂烧结和合成塔内部构件损坏,同时使原料消耗增加,反应选择性减小,甲醇收率降低。

高压法生产流程因压力过高、动力消耗大(吨甲醇能耗高达15GJ 以上)、设备复杂、投资费用高、产品质量较差,现已基本不再采用该法生产甲醇。

和杂醇,得到精制甲醇。

图2 高压法合成甲醇工艺流程

1活性炭吸附器;2管式反应器;3粗甲醇分离器;4粗甲醇储槽;

5一粗分离塔;6精分离塔

2.低压法

低压法是操作压力为5MPa,反应温度在230~270℃范围下,使用铜基低温高活性催化剂生产甲醇的工艺。

低压法生产甲醇可以说是甲醇生产技术的一次重大突破。低压法生产与高压法相比较,装置的主要设备减少13%,副产物产率低达2%,压缩机动力消耗降低40 9/5,热效率可达64%,甲醇能耗下降30%,生产成本下降。

该生产方法有英国帝国化学公司(ICI)法、德国鲁奇公司(中、低)法,丹麦托普索公司(Topsoe)法和日本三菱重工(MGCC)法。ICI法占世界总产量的70%以上,Lurgi法占5%~25%,各方法的区别主要是反应器结构不同。

1971年德国鲁奇公司开发了低压法合成甲醇工艺,所建生产装置达到30多套。我国1987年建成鲁奇甲醇生产装置,年产10万吨甲醇。齐鲁石化于20世纪80年代引入Lurgi法(见图3)。低压法操作压力较小,但设备体积庞大,生产能力较小,且甲醇的合成收率较低。

合成气用透平压缩机1压缩至4.053~5.066MPa后,送入合成塔2中。合成气在铜基催化剂存在下,反应生成甲醇。合成甲醇的反应热用以产生高压蒸汽,并作为透平压缩机的动力。合成塔出口含甲醇的气体与混合气换热冷却,再经空气或水冷却,使粗甲醇冷凝,在分离器7中分离。冷凝后的粗甲醇至闪蒸罐3闪蒸后,送至精馏装置精制。粗甲醇首先在粗馏塔4中脱除二甲醚、甲酸甲酯及其他低沸点杂质。塔底物即进入第一精馏塔5。经精馏后,有50%的甲醇由塔顶出来,气体状态的精甲醇用来作为第二精馏塔再沸器加热的热源;由第一精馏塔底出来的含重组分的甲醇在第二精馏塔6内精馏,由塔顶部采出精甲醇,底部为残液。第二精馏塔来的精甲醇经冷却至常温后,得到纯甲醇成品并送入储槽。

图3 Lurgi低压法合成甲醇生产工艺流程

1透平压缩机;2合成塔;3 闪蒸罐;4 粗馏塔;5第一精馏塔;6

第二精馏塔;7 分离器

低压法又分为气相法与液相法。上述流程为低压气相法,该方法单程转化率低,一般只有10%~15%,有大量的未转化气体被循环;反应气体的H2/CO比值一般为(5~10):1,远大于理论量的2:1;又由于循环比大于5,惰性组分量累积,原料气中含氮量必须控制,这为原料气制备提出新的要求。

低压液相法工艺有两种。一种是浆态床工艺,以CuCrO2/CH3OK 或CuO_ZnO/A12O3。作催化剂,以惰性液体有机物为反应介质,催化剂呈极细的粉末状分布在有机溶剂中,反应器可用间歇式或连续式,也可将单个反应器或多个反应器串联使用;另一种是液相络合催化法工艺技术,所用催化剂为金属有机物或羰基化合物,催化剂与溶剂及产物甲醇呈单一的均相存在,目前该技术仍处于实验室研究阶段。

浆态床反应是一个气、液、固三相并存的反应,其中非极性有机溶剂和甲醇作反应介质,CH3OK大部分分散在溶剂中,部分沉积在CuCrO2表面,CuCrO2呈粉末状悬浮于溶剂中。由于溶剂的存在,提高了反应的传热效率,降低了反应温度。其反应温度为80~160℃,压力为4.0~6.5MPa。与气相法比,浆态床反应生产的合成气的单程转化率高,产物选择性好。但CO对加氢反应有较强的抑制作用;CO2和H2对羰基合成催化剂有一定的毒化作用,且单程产率较低。改进方法有:采用多级反应系统,反应尾气不循环直接用作发电厂原料;可增加原料气中H2/CO比的操作弹性;有效地改善CO2和H2对羰基合成催化剂的毒化作用。但反应温度增加到200℃时,压力则控制在5.0~6.0MPa之间。

3.中压法

中压法是在低压法基础上开发的,在5~10MPa下合成甲醇的方法。该法成功地解决了高压法压力过高对设备、操作所带来的问题,

同时也解决了低压法生产甲醇所需生产设备体积过大、生产能力小、不能进行大型化生产的困惑,有效降低了建厂费用和生产成本。其生产工艺流程如图6-4所示。

图6-4 中压法合成甲醇工艺流程

l转化炉;2,3,7换热器;4压缩机;5循环压缩机;6甲醇冷凝器;

8合成塔;9粗分离塔;10精制塔

合成气原料在转化炉1内燃烧加热,转化炉内填充镍催化剂。从转化炉出来的气体进行热量交换后送入合成气压缩机4,经压缩与循环气一起,在循环压缩机5中预热,然后进入合成塔8,其压力为8.106MPa,温度为220℃。在合成塔里,合成气通过催化剂生成粗甲醇。合成塔为冷激式塔,回收合成反应热产生中压蒸汽。出塔气体预热进塔气体,然后冷却,将粗甲醇在冷凝器6中冷凝出来,气体大部分循环。粗甲醇在粗分离塔9和精制塔10中,经精馏分离出二甲醚、甲酸甲酯及杂醇油等杂质,即得精甲醇产品。合成氨联产甲醇(简称联醇)是我国独创的新工艺,主要是针对合成氨厂铜氨液脱除微量CO 而开发的。联醇的生产条件是合成操作压力为10~12MPa,温度为220~300℃,采用铜基催化剂。

四、合成工艺条件控制

合成甲醇的主要化学反应是CO、CO2与H2在催化剂存在下进行的反应。

CO+2H2CH3OH(g) △H=90.8kJ/mol

CO2+3H2CH3OH(g)+H2O △H=49.5kJ/mol 反应过程除生成物甲醇外,还生成少量的烃、醇、醛、醚和酯等化合物。甲醇合成反应有如下四个特点,即甲醇合成是放热、体积缩小、可逆和催化反应。为了提高选择性和收率,减少副反应发生,必须选择合适的工艺条件。工艺条件的控制主要有温度、压力、原料气组成和空速等。

1.反应温度

甲醇合成是可逆放热反应。从化学平衡考虑,升高温度,对平衡不利。但从动力学考虑,温度升高,有利于加快反应速率;同时,升高温度,副反应产物增多,由于甲酸的生成,造成设备的腐蚀,且温度过高也会影响催化剂的使用寿命。因此,需选择最佳反应温度,不同催化剂的活性温度不同,反应温度取决于催化剂的活性温度。对于ZnO/Cr2O3系催化剂,反应活性温度在320~400℃;而铜基催化剂CuO/ZnO/A12O3则适宜在210~280℃操作。当然,还要根据催化剂的型号及反应器型式不同,其最佳操作温度范略有不同,如管壳式反应器采用铜基催化剂时的最佳操作温度在230~260℃之间。工业生产中,为了延长催化剂的寿命,防止催化剂因高温而加速老化,反应初期在催化剂活性温度范围内,宜采用较低温度,使用一段时间后再升温至适宜温度。

因为甲醇合成是强烈的放热反应,必须在反应过程中不断地将热量移走,反应才能正常进行。对于管壳式反应器,一般利用管与壳体问副产中压蒸汽来移走热量。这样,合成反应温度将利用副产品中压蒸汽压力来控制。合成塔壳侧的锅炉水,吸收管程内甲醇合成的反应热后变成沸腾水,沸腾水上升进入汽包后在汽包上部形成与沸腾水温度相对应的饱和蒸气压,即为汽包所控制的蒸汽压力,合成塔催化剂

的温度就是靠调节此汽包蒸汽压力得以实现。因此通过调节汽包压力就可相应地调节催化剂床层温度。一般是汽包压力每改变0.1MPa,床层温度就相应改变1.5℃。

另外生产负荷、循环量、气体成分、冷凝温度等的改变都能引起催化剂床层温度的改变,必要时应及时调节汽包压力,维持其正常操作温度,避免大幅度波动。

2.反应压力

从反应式可见,甲醇合成的主、副反应均为体积减小的反应,增加压力对提高甲醇平衡分压有利;同时,从反应速率考虑,提高压力,反应速率加快。但加压生产要消耗能量,且受设备强度限制。

目前工业上采用高压、中压和低压法生产,主要是催化剂不同。由于采用锌-铬催化剂的高压法生产需在25~30MPa下操作,CO与H2生成二甲醚、甲烷、异丁醇等副产物,同时放出大量的热,造成床层温度控制难度增加,催化剂易损坏。现广泛采用中压、低压法生产,均使用铜基催化剂,低压合适的操作压力是5.0~10.0MPa。但由于低压流程设备和管道均较庞大,且由于操作压力较低,热能回收与利用效益不高。为解决这一问题,开发了中压流程。中压操作时,压力控制在10.0~15.0MPa之间。

在生产过程中,对于合成气中二氧化碳含量较高的情况,采用较大压力对提高反应速率有比较明显的效果。压力是甲醇合成反应过程中重要的工艺条件之一。

合成系统在生产负荷一定的情况下合成塔催化剂层温度、气体成分、空速、冷凝温度等变化均能引起合成系统压力的变化,操作应准确判断、及时调整,确保工艺指标在规定范围内。当合成条件恶化、系统压力升高时,可适当降低生产负荷,提高汽包压力;必要时打开

放空阀控制系统压力在指标范围内,不得超压,以维持正常生产。系统减量要及时提高汽包压力,调整循环量,控制温度在指标范围之内。

调节压力时,必须缓慢进行,确保合成塔温度正常。如果压力急剧上升会使设备和管道的法兰接头和压缩机填料密封遭到破坏。一般压力升降速度可控制在≤0.44MPa/min

3.原料气组成

合成甲醇的反应为:

CO+2H2CH3OH(g) △H=90.8kJ/mol

CO2+3H2CH3OH(g)+H2O △H=49.5kJ/mol 合成甲醇时,氢碳比是重要的控制指标,氢碳比(f或M)有以下两种表示方法。

煤为原料时制得原料气的氢碳比较低,利用CO加水蒸气变换为H2和CO2增加氢碳比。生产过程中,氢碳比一般会选择2.05~2.15。

在合成过程中,H2对减少五羰基铁与高级醇、高级烃和还原物质的生成,减少H2S中毒和延长催化剂寿命有一定作用,可提高粗甲醇的浓度和纯度。当CO含量过高时,温度不易控制,且会导致五羰基铁聚积在催化剂上,引起催化剂失活。同时,又因氢气的导热性好,可有利于防止局部过热和降低整个催化层的温度。但氢气过量会降低生产能力。

另外,如果在原料气中有CO2存在时,因CO2与H2反应放出的热量比CO与H2放出的反应热小,有利于催化剂床层温度的控制,抑制二甲醚等副产物生成。但当CO2含量过高时,甲醇产率又会降低。一般CO2含量为3%~5%较好。

原料气中除有效成分外,还有CH4、N2、Ar等惰性气体存在,它们会在合成系统中反复循环逐渐累积增多,降低CO、CO2、H2有

效气体分压,反应速率减慢,降低甲醇合成反应的转化率和收率,同时使循环动力和压缩机消耗增大。操作中需排放一部分循环气体。排放后使循环气中惰性气体含量控制在20%~25 %。若含量太低,弛放气损失加大,将损失有效气体。一般操作时,在催化剂使用前期,由于反应速率高,惰性气体含量可高一些,弛放气可少些;在催化剂使用后期,反应速率降低,要求惰性气体含量低,弛放气就大一些。排放量由下式计算:

式中Vi放空气和新鲜气的体积,m3/h;

xi——放空气和新鲜气中惰性组分的含量,%。

实际生产中,由于部分惰性气体溶于液体甲醇中,弛放气体体积要较计算值小,为减少放空气体积,应尽量减少新鲜气中惰性气体含量。

4.空速及气体的循环

可用来表示反应器的生产能力,即空速越高,单位体积催化剂处理能力越大,生产能力就越大。空速是合成甲醇的一个重要控制参数。

甲醇生产时,气体一次通过合成塔仅能得到3%~6%的甲醇,原料气转化率不高,因此原料气必须循环使用。

适宜空速的选择与催化剂活性、反应温度及进料组成有关,另外还要由循环机动力、循环系统阻力与生产任务来决定。一般用锌基催化剂时,空速为35000~40000h-1;用铜基催化剂时为10000~20000h-1。当然,不同反应器,空速不同,对于管式反应器,空速要更低一些,一般控制在8000~10000h-1。

5. 液位的控制

①汽包液位。为了保证合成反应热能够及时移出,汽包必须保证有一定的液位,同时,为了确保汽包蒸汽的及时排放,防止蒸汽出口

管中带水,汽包液位又不能超过一定的高限。在正常生产中,汽包液位一般控制在汽包容积的1/3~1/2之间。锅炉水上水压力和上水阀门的开度都能直接影响到汽包的液位,当液位处于不正常时及时检查,及时恢复正常,防止合成气压缩机因汽包液位过低而联锁停车。

同时汽包排污大小也可以对其压力和液位进行微调,必要时可加大排污量来迅速降低汽包液位和压力,以调节合成塔催化剂层温度。

操作指标:正常值30%~60 %;高限报警值90%;低限报警值

15 %。

②甲醇分离器液位。分离器分离出液态甲醇的多少,随着生产负荷的大小、水冷器出口温度高低、塔内反应的好坏而变化,液面控制的过高或过低都会影响合成塔的正常操作,甚至造成事故。因此操作者要经常检查,早发现、早调节,将液位严格控制在指标之内。

如果分离器液位过高,会使液态甲醇随气体带入压缩机,使填料温度下降,带液严重时,会产生液击损坏压缩机;而且入塔气中甲醇含量增高,恶化了合成塔内的反应,加剧了合成副反应进行,使粗甲醇质量下降。如果液位过低则易发生窜气,高压气窜入甲醇闪蒸槽,造成超压或爆炸等其他事故。

操作指标:正常值30%~50%;高限报警值85%;低限报警值15%。

6. 循环量的控制

循环量是指每小时合成气回到压缩机循环段的气量。提高循环量可以提高合成塔催化剂的生产能力,但系统阻力增加,催化剂床层温度下降。正常生产操作中,在压缩机新鲜气量一定的情况下可以通过调节循环量来控制入塔气量,进而调节催化剂床层的温度。循环量的大小主要是靠压缩机循环近路阀,加减循环量应缓慢进行,不得过快。

7. 空速的控制

所谓空速即空间速度,就是指在标准状态下,单位时间内通过单位体积催化剂的反应混合气的体积。

在温度、压力不变时,空速越大,则气体在催化剂表面的接触时间越短。

实践证明,甲醇的时空产量在一定范围内与空速成正比关系。

在甲醇生产中,气体一次通过合成塔仅能得到3%~6%的甲醇,原料气的甲醇合成率不高,因此原料气必须循环使用。此时,合成塔空速常由循环机动力循环系统阻力与生产任务来决定。空速过高,使气体通过催化床层的阻力增加,动力消耗增加,还可能是催化剂破碎;空速过小,往往不能满足生产任务的要求。

在甲醇生产中,空速一般在10000~30000h-1之间

煤制甲醇工艺设计

煤制甲醇工艺流程化设计 主反应为:C + O 2 → C O + C O 2 + H 2 → C H 3O 副反应为: 1 造气工段 (1)原料:由于甲醇生产工艺成熟,市场竞争激烈,选用合适的原料就成为项目的关键,以天然气和重油为原料合成工艺简单,投资相对较少,得到大多数国家的青睐,但从我国资源背景看,煤炭储量远大于石油、天然气储量,随着石油资源紧缺、油价上涨,在大力发展煤炭洁净利用技术的形势下,应该优先考虑以煤为原料,所以本设计选用煤作原料。 图1-1 甲醇生产工艺示意图 (2)工艺概述:反应器选择流化床,采用水煤浆气化激冷流程。原料煤通过粉碎制成65%的水煤浆与99.6%的高压氧通过烧嘴进入气化炉进行气化反应,产生的粗煤气主要成分为CO ,CO 2,H 2等。 2423CO H CH H O +?+2492483CO H C H OH H O +?+222CO H CO H O +?+

2 净化工段 由于水煤浆气化工序制得粗煤气的水汽比高达1.4可以直接进行CO变换不需加入其他水蒸气,故先进行部分耐硫变换,将CO转化为CO2,变换气与未变换气汇合进入低温甲醇洗工序,脱除H2S和过量的CO2,最终达到合适的碳氢比,得到合成甲醇的新鲜气。 CO反应式: CO+H O=CO+H 222 3 合成工段 合成工段工艺流程图如图1。 合成反应要点在于合成塔反应温度的控制,另外,一般甲醇合成反应10~15Mpa的高压需要高标准的设备,这一项增加了很大的设备投资,在设计时,选择目前先进的林达均温合成塔,操作压力仅5.2MPa,由于这种管壳式塔的催化剂床层温度平稳均匀,反应的转化率很高。在合成工段充分利用自动化控制方法,实行连锁机制,通过控制壳程的中压蒸汽的压力,能及时有效的掌控反应条件,从而确保合成产品的质量。 合成主反应: CO+2H=CH OH 23 主要副反应: CO+3H=CH OH+H O 2232 4 精馏工段 精馏工段工艺流程图见图2。 合成反应的副产主要为醚、酮和多元醇类,本设计要求产品达质量到国家一级标准,因此对精馏工艺的合理设计关系重大,是该设计的重点工作。设计中选用双塔流程,对各物料的进出量和回流比进行了优化,另外,为了进一步提高精甲醇质量,从主塔回流量中采出低沸点物继续进预塔精馏,这一循环流程能有效的提高甲醇的质量。

合成气制甲醇(精品)

合成气制甲醇(精品) 合成气制甲醇( 合成气可以由煤、焦炉煤气、天然气等生产) 一、甲醇合成工艺技术 合成甲醇工艺技术概况: 自从1923年德国BASF公司首次用一氧化碳在高温下用锌铬催化剂实现了甲醇 合成工业化之后,甲醇的工业化合成便得以迅速发展。当前,合成法甲醇生产几乎 成为目前世界上生产甲醇的唯一方法。半个多世纪以来,随着甲醇工业的迅速发 展,合成甲醇的技术也得以迅速改进。目前世界上合成甲醇的方法主要有以下几种: 1、高压法(19.6~29.4 MPa) 这是最初生产甲醇的方法,采用锌铬催化剂,反应温度为360~400?,压力 19.6~29.4Mpa。随着脱硫技术的发展,高压法也在逐步采用活性高的铜系催化剂, 以改善合成条件,达到提高效率和增产甲醇的效果。高压法虽然有70多年的历 史,但是,由于原料及动力消耗大,反应温度高,投资大,成本高等问题,其发展 长期以来处于停滞状态。 2、低压法(5.0~8.0 MPa) 这是20世纪60年代后期发展起来的甲醇合成技术。低压法基于高活性的铜 系催化剂。铜系催化剂活性明显高于锌铬催化剂,反应温度低(240~270?),在较低 的压力下获得较高的甲醇收率,而且选择性好,减少了副作用,改善了甲醇质量, 降低了原材料的消耗。此外,由于压力低,不仅动力消耗比高压法降低很多,而且 工艺设备的制造也比高压法容易,投资得以降低,总之低压法比高压法有显著的优 越性。 3、中压法(9.8~12.0 MPa)

随着甲醇单系列规模的大型化(目前已有日产2000吨的装置甚至更大单系列的装置),如采用低压法,势必导致工艺管道和设备非常庞大,因此在低压法的基础上,适当提高合成压力,即成为中压法。中压法仍采用与低压法相同的铜系催化剂,反应温度也与低压法相同,因此它具有与低压法相似的优点,但由于提高了合成压力,相应的动力消耗略有增加。目前,世界上新建或扩建的甲醇装置几乎都采用低压法或中压法,其中尤以低压法为最多。英国I.C.I公司和德国Lurgi公司是低压甲醇合成技术的代表,这两种低压法的差别主要在甲醇合成反应器及反应热回收的形式有所不同。目前世界上合成甲醇主要采用低压法工艺技术,它是大型甲醇装置的发展主流。甲醇合成系统包括合成气压缩(等压合成除外)、甲醇合成热量回收、甲醇精馏等工序,其核心设备是甲醇合成塔。有多种形式的合成塔在工业化装置中应用,经实际验证都是成熟可靠的。但在选择中要精心比较。二、甲醇精制 甲醇精制目前工业上采用的有两塔流程和三塔流程,两塔流程已能生产优质的工业品甲醇,但从节能降耗角度出发,选择三塔流程是较好的。三塔流程将以往的主精馏塔分为加压精馏塔和常压精馏塔,将加压精馏塔塔顶出来的甲醇蒸汽作为常压精馏塔的热源,降低了蒸汽消耗。通常情况下可降低能耗30%,但投资略有增加试析甲醇行业未来发展方向 甲醇是一种重要的有机化工原料,应用广泛,可以用来生产甲醛、合成橡胶、甲胺、对苯二甲酸二甲脂、甲基丙烯酸甲脂、氯甲烷、醋酸、甲基叔丁基醚等一系列有机化工产品,而且还可以加入汽油掺烧或代替汽油作为动力燃料以及用来合成甲醇蛋白。随着当今世界石油资源的日益减少和甲醇单位成本的降低,用甲醇作为新的石化原料来源已经成为一种趋势。尽管目前全球甲醇生产能力相对过剩,并且不排除由于某种原因而引起甲醇市场的波动,但是对于有着丰富的煤、石油、天然

001合成甲醇工艺流程

、工艺流程 A?联氨工艺流程图: 1.Ф2600煤气炉固定层间歇气化、生产的低氮煤气经集中余热回收,集中洗涤降温除尘去气柜。 2.出气柜的低氮煤气罗茨鼓风机加压后经冷却湿法脱硫静电除焦一部分气体进原压缩机一段、二段加压后,去变换将多余的CO变换为氢气,变换率和气体组成由集散控制,如果原小氮肥厂产品为碳铵经碳化系统脱碳并生产碳酸氢铵,碳化气仍然进原压缩系统 3.4段将气体压缩至5.0MPa 。 3.脱硫后大部分低氮煤气经低压机、脱硫、脱碳除去CO2经低压机将煤气压缩至5.0MPa与碳化气汇合去低压甲醇合成。 4.低压甲醇新鲜气组成H2:69.61%,CO:20.33%,N2:9.01%经低压甲醇合成后生产粗甲醇,放空气组成 H2:72.49%,CO:5.4%,CO2:0.33%,N2:20.12% 经原压缩机,将原料气压缩至30.0Mpa经甲醇化将CO,CO2净化并生产粗甲醇,微量的CO,CO2经甲烷化进行氨的合成。

B·低压甲醇工艺 1.小氮肥目前新建低甲醇工程一般方法是保持原化肥生产工艺路线,新建一套低压甲醇生产线,将低压甲醇的放空气回到合成氨系统。 2.煤气、脱硫、变换等必须二个系统,生产二种煤气(半水煤气和水煤气),操作和管理较复杂。 C·工艺流程特点 1.联氨新工艺流程既保留了原小氮肥厂合成氨工艺流程,又发挥了低压甲醇的优越性,避免了低压甲醇煤气化隋性气体过高,合成循环量较大,放空气量大,能耗较高等缺点。 2.采用固定层气化、低氮煤气脱硫等组成个系统,操作和生产管理方便,气体成份容易调节。 3.醇氨比容量调节,根据市场需求,甲醇生产能力或氨生产能力可以增加或减少便于季节调节。 4.由于生产低氮煤气,煤气炉操作与原小氮肥厂相同,工艺指标和气体组成根据醇氨比进行调节,煤气炉生产效率和煤利用率煤气炉发气量均要比单醇高,目前市场原料煤的价格较高,这对降低甲醇的成本有较大的优越性。 5.小氮肥厂工艺流程不变,原有设备全部可以利用,增加煤气炉设备及改造原湿法脱硫,增加低压甲醇圏、低压机、脱碳等,投资省,建设周期短等优点。 6.在合成高压圈内增加了等高压甲醇甲烷化工艺,甲醇化既作为净化装置又生产了部分甲醇,甲烷化代替了铜洗,使合成气净化度大大提高,延长了合成触媒使用寿命,取消铜洗,保护了环境。 7.联氨工艺与单醇比由于气化系统煤利用率高,低压合成圈循环比小,合成率要求低,没有放空气,投资省,因此甲醇的成本低,经估算二者相差150-200元/吨单醇。

年产50万吨甲醇合成工艺初步设计

年产50万吨甲醇合成工艺初步设计 摘要 本设计重点讨论了合成方案的选择,首先介绍了国内外甲醇工业的现状、甲醇原料的来源和甲醇本身的性质及用途。其次介绍了合成甲醇的基本原理以、影响合成甲醇的因素、甲醇合成反应速率的影响。在合成方案里面主要介绍了原料路线、不同原料制甲醇的方法、合成甲醇的三种方法、生产规模的选择、改善生产技术来进行节能降耗、引进国外先进的控制技术,进一步提高控制水平,来发展我国甲醇工业及简易的流程图。在工艺条件中,主要介绍了温度、压力、氢与一氧化碳的比例和空间速度。主要设备冷激式绝热反应器和列管式等温反应器介绍。最后进行了简单的物料衡算。 关键词:甲醇,合成塔

一、综述 (一)国内外甲醇工业现状 甲醇是重要的化工原料,应用广泛,主要用于生产甲醛,其消耗量约占甲醇总量的30%~40%;其次作为甲基化剂,生产甲胺、丙烯酸甲酯、甲基丙烯酸甲酯、甲基叔丁基醚、对苯二甲酸二甲酯;甲醇羰基化可生产醋酸、酸酐、甲酸甲酯、碳酸二甲酯等。其次,甲醇低压羰基化生产醋酸,近年来发展很快。随着碳化工的发展,由甲醇出发合成乙二醇、乙醛、乙醇等工艺正在日益受到重视。国内甲醇装置规模普遍较小,且多采用煤头路线,以煤为原料的约占到78%;单位产能投资高,约为国外大型甲醇装置投资的2倍,导致财务费用和折旧费用高,这些都会影响成本。据了解,我国有近200家甲醇生产企业,但其中10万吨/年以上的装置却只占20%,最大的甲醇生产装置产能也就是60万吨/年,其余80%都是10万吨/年以下的装置。根据这样的装置格局,业内普遍估计,目前我国甲醇生产成本大约在1400,1800元/吨(约200美元/吨),一旦出现市场供过于求的局面,国内甲醇价格有可能要下跌到约2000元/吨,甚至更低。这对产能规模小,单位产能投资较高的国内大部分甲醇生产企业来讲会加剧增。 而以中东和中南美洲为代表的国外甲醇装置普遍规模较大。目前国际上最大规模的甲醇装置产能以达到170万吨/年。2008年4月底,沙特甲醇公司170万吨/年的巨型甲醇装置在阿尔朱拜勒投产,使得

生产甲醇的工艺流程

生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个工序 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(H2-CO2)/(CO+CO2)=2.1左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法一般有湿法和干法两种。脱硫工序在整个制甲醇工艺流程中的位置,要根据原料气的制备方法而定。如以管式炉蒸汽转化的方法,因硫对转化用镍催化剂也有严重的毒害作用,脱硫工序需设置在原料气设备之前;其它制原料气方法,则脱硫工序设置在后面。 二是调节原料气的组成,使氢碳比例达到前述甲醇合成的比例要求,其方法有两种。 (1)变换。如果原料气中一氧化碳含量过高(如水煤气、重质油部分氧化气),则采取蒸汽部分转换的方法,使其形成如下变化反应:CO+H2O==H2+CO2。这样增加了有效组分氢气,提高了系统中能的利用效率。若造成CO2多余,也比较容易脱除。 (2)脱碳。如果原料气中二氧化碳含量过多,使氢碳比例过小,可以采用脱碳方法除去部分二氧化碳。脱碳方法一般采用溶液吸收,有物理吸收和化学吸收两种方法。(如:低温甲醇洗)

合成气制备甲醇原理与工艺

合成气制备甲醇原理与工艺 简要概述 班级:xxxxxxxxxxxxxxxxxxxxx 专业:化学工程与工艺 姓名:xxxxx 学号:201473020108 指导教师:xxxxx

一、甲醇的认识 1.物理性质 无色透明液体,易挥发,略带醇香气味;易吸收水分、CO2和H2S,与水无限互溶;溶解性能优于乙醇;不能与脂肪烃互溶,能溶解多种无机盐磺化钠、氯化钙、最简单的饱和脂肪醇。 2.化学性质 3.甲醇的用途 (1)有机化工原料 甲醇是仅次于三烯和三苯的重要基础有机化工原料 (2)有机燃料 (1)、甲醇汽油混合燃料;(2)、合成醇燃料;(3)、与异丁烯合成甲基叔丁基醚(MTBE)、高辛烷值无铅汽油添加剂;(4)、与甲基叔戊基醚(TAME)合成汽油含氧添加剂

4.甲醇的生产原料 甲醇合成的原料气成分主要是CO 、 CO2、 H2 及少量的N2 和CH4。主要有煤炭、焦炭、天然气、重油、石脑油、焦炉煤气、乙炔尾气等。 天然气是生产甲醇、合成氨的清洁原料,具有投资少、能耗低、污染小等优势,世界甲醇生产有90%以上是以天然气为原料,煤仅占 2%。 二、合成气制甲醇的原理 1.合成气的制备 a.煤与空气中的氧气在煤气化炉内制得高 CO 含量的粗煤气; b.经高温变换将 CO 变换为 H2 来实现甲醇合成时所需的氢碳比; c.经净化工序将多余的 CO2 和硫化物脱除后即是甲醇合成气。 说明: 由于煤制甲醇碳多氢少,必需从合成池的放气中回收氢来降低煤耗和能耗,回收的氢气与净化后的合成气配得生产甲醇所需的合成气, 即( H2-CO2) /( CO+CO2)=2.00~2.05。 2.反应机理 主反应 OH CH H CO 322→+ △H 298=-90.8kJ/mol CO 2 存在时 O H OH CH H CO 23222+→+ △H 298=-49.5kJ/mol 副反应 O H OCH CH H CO 233242+→+ O H CH H CO 2423+→+ O H OH H C H CO 2942384+→+ O H CO H CO 222+→+ 增大压力、低温有利于反应进行,但同时也有利于副反应进行,故通过加入催化剂,提高反应的选择性,抑制副反应的发生。 3. 影响合成气制甲醇的主要因素 (1)合成甲醇的工业催化剂

甲醇合成工艺

甲醇合成工艺 当今甲醇的生产主要采用低压法和中压法这两种,很少采用高压法,目前高压法的发展已处于停滞的状态,主要以低压法为主。用中压法和低压法这两种工艺生产出来的甲醇约占世界甲醇总产量的一半以上。 1. 低压合成工艺(5.0- 8. 0MP a) 是20世纪50年代后期发展起来的一种甲醇合成技术。低压法主要采用CuO- ZnO- Al2 O3- V2O5 催化剂,其活性较高,能耗低,反应温度最佳,一般反应温度在(240- 265)℃,在压力较低的的条件下即可获得较高的甲醇产率。并且其选择性好,减少了很多副反应的发生,降低了原料的损耗,并且提高了甲醇的质量。除此之外,由于压力要求较高,可以有效的减少动力的消耗,使工艺设备的制造更加容易。这一方法被英国ICI公司在1966 年研究使用成功,从而打断了甲醇合成高压法的垄断制度。这一制度的应用,在很大程度上提高了甲醇的产量,为日后甲醇的高产带来了合适的方法。 2. 中压合成工艺(9.8- 12. 0MP a) 随着社会的不断发展,甲醇的需求越来越大,如果继续采用低压法就要改造工艺管道,使工艺管道变得更大,设备也就变得更大,这样就浪费了空间和成本,因此在低压的基础上适当的加大压力,即发展为中压法。中压法采用的催化剂和低压法的相 同,都为C uO- ZnO- Al2O3 - V2O5催化剂,因此反应温度与低压法大致相同,由于压力的提高使动能的消耗也增加了。齐鲁石化公司第二化肥厂引进了联邦德国公司的中压甲醇合成装置。使得该公司的日产量有了很大程度的提高。 3. 高压合成工艺(30- 32 MP a) 是比较原始的一种方法,采用ZnO- C r 2O3 催化剂,其活性远不如铜系催化剂,反应温度在(350- 400)℃。随着科学技术的发展,高压法也开始逐步采用活性相对较高的铜系催化剂,以改善合成的条件。高压法虽然存在了70 多年,但由于材质苛刻,投资高,能耗物高,反应温度高,且生成的粗甲醇中杂志含量较多不易提纯,所以其发展前景不可观,目前处于停滞状态。

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 1 煤制甲醇工艺 气化 a)煤浆制备 由煤运系统送来的原料煤干基(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~ 53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。 闪蒸出的低压气体直接送至洗涤塔给料槽,澄清槽上部清水溢流至灰水槽,由灰水泵分别送至洗涤塔给料槽、气化锁斗、磨煤水槽,少量灰水作为废水排往废水处理。 洗涤塔给料槽的水经给料泵加压后与高压闪蒸器排出的高温气体换热后送碳洗塔循环

甲醇合成的工艺方法介绍

甲醇合成的工艺方法介绍 自1923年开始工业化生产以来,甲醇合成的原料路线经历了很大变化。20世纪50年代以前多以煤和焦碳为原料;50年代以后,以天然气为原料的甲醇生产流程被广泛应用;进入60 年代以来,以重油为原料的甲醇装置有所发展。对于我国,从资源背景来看,煤炭储量远大于石油、天然气储量,随着世界石油资源的紧缺、油价的上涨和我国大力发展煤炭洁净利用技术的背景下,在很长一段时间内煤是我国甲醇生产最重要的原料。下面简要介绍一下甲醇生产的各种方法。按生产原料不同可将甲醇合成方法分为合成气(CO+H2方法和其他原料方法。 一、合成气(CO+H2生产甲醇的方法 以一氧化碳和氢气为原料合成甲醇工艺过程有多种。其发展的历程与新催化剂的应用,以及净化技术的进展是分不开的。甲醇合成是可逆的强放热反应,受热力学和动力学控制,通常在单程反应器中,CO和CO2的单程转化率达不到100%,反应器出口气体中,甲醇含量仅为6~12%,未反应的CO、CO2和H2需与甲醇分离,然后被压缩到反应器中进入一步合成。为了保证反应器出口气体中有较高的甲醇含量,一般采用较高的反应压力。根据采用的压力不同可分为高压法、中压法和低压法三种方法。 1、高压法 即用一氧化碳和氢在高温(340~420℃高压(30.0~50.0MPa下使用锌-铬氧化物作催化剂合成甲醇。用此法生产甲醇已有八十多年的历史,这是八十年代以前世界各国生产甲醇的主要方法。但高压法生产压力过高、动力消耗大,设备复杂、产品质量较差。其工艺流程如图所示。 经压缩后的合成气在活性炭吸附器1中脱除五羰基碳后,同循环气一起送入管式反应器2中,在温度为350℃和压力为30.4MPa下,一氧化碳和氢气通过催化剂层反应生成粗甲醇。含粗甲醇的气体经冷却器冷却后,迅速送入粗甲醇分离器3中分离,未反应的一氧化碳与氢经压缩机压缩循环回管式反应器2。冷凝后的粗甲醇经粗

甲醇合成原理方法与工艺

甲醇合成原理方法与工艺 图1煤制甲醇流程示意图 煤气经过脱硫、变换,酸性气体脱除等工序后,原料气中的硫化物含量小于0.1mg/m3。进入合成气压缩机,经压缩后的工艺气体进入合成塔,在催化剂作用下合成粗甲醇,并利用其反应热副产3.9MPa中压蒸汽,降温减压后饱和蒸汽送入低压蒸汽管网,同时将粗甲醇送至精馏系统。 一、甲醇合成反应机理 自CO加氢合成甲醇工业化以来,有关合成反应机理一直在不断探索和研究之中。早期认为合成甲醇是通过CO在催化剂表面吸附生成中间产物而合成的,即CO是合成甲醇的原料。但20世纪70年代以后,通过同位素示踪研究,证实合成甲醇中的原子来源于CO2,所以认为CO2是合成甲醇的起始原料。为此,分别提出了CO和CO2合成甲醇的机理反应。但时至今日,有关合成机理尚无定论,有待进一步研究。 为了阐明甲醇合成反应的模式,1987年朱炳辰等对我国C301型铜基催化剂,分别对仅含有CO或CO2或同时含有CO和CO2三种原料气进行了甲醇合成动力学实验测定,三种情况下均可生成甲

醇,试验说明:在一定条件下,CO和CO2均可在铜基催化剂表面加氢生成甲醇。因此基于化学吸附的CO连续加氢而生成甲醇的反应机理被人们普遍接受。 对甲醇合成而言,无论是锌铬催化剂还是铜基催化剂,其多相(非匀相)催化过程均按下列过程进行: ①扩散——气体自气相扩散到气体一催化剂界面; ②吸附——各种气体组分在催化剂活性表面上进行化学吸附; ③表面吸附——化学吸附的气体,按照不同的动力学假说进行反应形成产物; ④解析——反应产物的脱附; ⑤扩散——反应产物自气体一催化剂界面扩散到气相中去。 甲醇合成反应的速率,是上述五个过程中的每一个过程进行速率的总和,但全过程的速率取决于最慢步骤的完成速率。研究证实,过程①与⑤进行得非常迅速,过程②与④的进行速率较快,而过程③分子在催化剂活性界面的反应速率最慢,因此,整个反应过程的速率取决于表面反应的进行速率。 提高压力、升高温度均可使甲醇合成反应速率加快,但从热力学角度分析,由于CO、C02和H2合成甲醇的反应是强放热的体积 缩小反应,提高压力、降低温度有利于化学平衡向生成甲醇的方向移动,同时也有利于抑制副反应的进行。 二、甲醇合成的主要反应 (1)甲醇合成主要反应 CH3OH CO+2H CO2CH3OH+H2O 同时CO2和H2发生逆变换反应 CO 2CO+H2O

甲醇工艺流程

甲醇的工艺流程 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇.典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序. 天然气、石脑油、重油、煤及其加工产品(焦炭、焦炉煤气)、乙炔尾气等均可作为生产甲醇合成气的原料.天然气与石脑油的蒸气转化需在结构复杂造价很高的转化炉中进行.转化炉设置有辐射室与对流室,在高温,催化剂存在下进行烃类蒸气转化反应.重油部分氧化需在高温气化炉中进行.以固体燃料为原料时,可用间歇气化或连续气化制水煤气.间歇气化法以空气、蒸汽为气化剂,将吹风、制气阶段分开进行,连续气化以氧气、蒸汽为气化剂,过程连续进行. 甲醇生产中所使用的多种催化剂,如天然气与石脑油蒸气转化催化剂、甲醇合成催化剂都易受硫化物毒害而失去活性,必须将硫化物除净.气体脱硫方法可分为两类,一类是干法脱硫,一类是湿法脱硫.干法脱硫设备简单,但由于反应速率较慢,设备比较庞大.湿法脱硫可分为物理吸收法、化学吸收法与直接氧化法三类. 甲醇的合成是在高温、高压、催化剂存在下进行的,是典型的复合气-固相催化反应过程.随着甲醇合成催化剂技术的不断发展,目前总的趋势是由高压向低、中压发展. 粗甲醇中存在水分、高级醇、醚、酮等杂质,需要精制.精制过程包括精馏与化学处理.化学处理主要用碱破坏在精馏过程中难以分离

的杂质,并调节PH.精馏主要是除去易挥发组分,如二甲醚、以及难以挥发的组分,如乙醇高级醇、水等. 甲醇生产的总流程长,工艺复杂,根据不同原料与不同的净化方法可以演变为多种生产流程. 下面简述高压法、中压法、低压法三种方法及区别 高压法 高压工艺流程一般指的是使用锌铬催化剂,在 300—400℃,30MPa高温高压下合成甲醇的过程.自从1923年第一次用这种方法合成甲醇成功后,差不多有50年的时间,世界上合成甲醇生产都沿用这种方法,仅在设计上有某些细节不同,例如甲醇合成塔内移热的方法有冷管型连续换热式和冷激型多段换热式两大类,反应气体流动的方式有轴向和径向或者二者兼有的混合型式,有副产蒸汽和不副产蒸汽的流程等.近几年来,我国开发了25-27MPa压力下在铜基催化剂上合成甲醇的技术,出口气体中甲醇含量4%左右,反应温度230-290℃. 中压法 中压法是在低压法研究基础上进一步发展起来的,由于低压法操作压力低,导致设备体积相当庞大,不利于甲醇生产的大型化.因此发展了压力为10MPa左右的甲醇合成中压法.它能更有效地降低建厂费用和甲醇生产成本.例如ICI公司研究成功了51-2型铜基催化剂,

合成气生产甲醇工艺流程

编号:No.20 课题:合成气生产甲醇工艺流程 授课内容:合成气制甲醇工艺流程 知识目标: ? 了解合成气制甲醇过程对原料的要求 ?掌握合成气制甲醇原则工艺流程 能力目标: ?分析和判断合成气组成对反应过程及产品的影响 ?对比高压法与低压法制甲醇的优缺点 思考与练习: ?合成气制甲醇工艺流程有哪些部分构成? ?对比高压法与低压法制甲醇的优缺点 ?合成气生产甲醇对原料有哪些要求?如何满足?

授课班级: 授课时间: 四、生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个 工序,见图5-1。 图5-1 甲醇生产流程图 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石 油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(出—CO2)/(CO+CO2)=2.1 左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其 含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有 少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则 在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 净化有两个方面: 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即 使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法 一般有湿法和干法两种。脱硫工序在整个制甲醇工艺流程中的位置,要根据原料气的制备方 法而定。如以管式炉蒸汽转化的方法,因硫对转化用镍催化剂也有严重的毒害作用,脱硫工

甲醇合成塔介绍

甲醇合成塔介绍 2011-09-01 16:17 【打印】【收藏】百川资讯更新时间:来源:甲醇合成塔关键字: 甲醇合成塔设计的关键技术之一就是要高效移走和利用甲醇合成反应所放出的巨大热量。摘要:甲醇合成塔设计的关键技术之一就是要高效移走和利用甲醇合成反应所放出的巨大热量。甲醇合成反应器根据反应热回收方式不同有许多不同的类型,下面将应用较广的几种合成器分别予以简单介绍。一、I.C.I反应器 英国ICI公司低压法甲醇合成塔采用多层冷激式绝热反应器,内设3-6层催化剂,催化剂用量较大,合成气大部分作为冷激气体由置于催化剂床层不同高度平行设立的菱形分布器喷入合成塔,另一部分合成气由顶部进入合成塔,反应后的热气体与冷激气体均匀混合以调节催化床层反应温度,并保证气体在催化床层横截面上均匀分布。反应最终气体的热量由废热锅炉产生低压蒸汽或用于加热锅炉给水回收。该法循环气量比较大,反应器内温度分布不均匀,呈锯齿形。 ICI冷激塔结构简单、用材省且要求不高、并易于大型化。单塔生产能力大。但由于催化剂床层各段为绝热反应,使催化剂床层温差较大,在压力为8.4MPa和12000h-1空速下,当出塔气甲醇浓度为4%时,一、二两段升温约50℃,反应副产物多,催化剂使用寿命较短,循环气压缩功耗大,用冷原料气喷入各段触媒之间以降低反应气温度。因此在降温的同时稀释了反应气中的甲醇含量,影响了触媒利用率,而且反应热只能在反应器出口设低压废锅回收低压蒸汽。为了防止触媒过热,采用较大的空速,出塔气中甲醇含量不到4%。最大规模3000t/d,全世界现有40多套。 二、德国林德Lurgi管壳式反应器 水冷型。图2Lurgi甲醇合成反应器是管壳式的结构。管内装催化剂,管外充满中压沸腾水进行换热。合成反应几乎是在等温条件下进行,反应器能除去有效的热量,可允许较高CO含量气体,采用低循环气流并限制最高反应温度,使反应等温进行,单程转化率高,杂质生成少,循环压缩功消耗低,而且合成反应热副产中压蒸汽,便于废热综合利用。可以看出Lurgi公司正是根据甲醇合成反应热大和现有铜基触媒耐热性差的特点而采用列管式反应器。管内装触媒,管间用循环沸水,用很大的换热面积来移去反应热,达到接近等温反应的目的,故其出塔气中甲醇含量和空时产率均比冷激塔高,触媒使用寿命也较长。其主要性能特点是:该塔反应时触媒层温差小,副产物低,需传热面大。但该反应器比I.C.I反应器结构复杂,上下管板处联结点和焊点多,制作困难,为防壳体和管板、反应管之间焊接热应力,对材料及制造方面的要求较高,投资高。反应器催化剂装填系数也不如I.C.I反应器大,只有30%,且装卸触媒不方便。塔径大,运输困难 Lurgi管壳式反应器已在国内不少甲醇厂使用,但在大型化甲醇装置中因结构复杂、反应管数较多、体积大,国内目前。单塔最大生产能力为1250吨/天。产量增大时,反应器直径过大,而且由于管数太多,反应管长度只能做到10米,因此在设计与制造时就有困难了。1 / 5 近年来又提出与冷管型串联的流程以适应大型化生产的需鲁奇公司曾提出两塔并联的流程,座套甲醇装置(约40两个塔),全世界现有29求,但是都还未工业化。最大规模3000t/d( /年。,总产能810万吨合成塔) MRF型反应器三、东洋公司(TEC)的反应器为多段间接冷却径向流动反应器,采用套管锅炉水强制循环冷却副产蒸气,MRF字分温度分布呈多段Z反应气体呈径向流过沿径向分布的多级冷却套管管外分布的触媒层,径向流动使气体通过床层的阻力降低;温度分布有所改善,从而有利于提高催化剂寿命;布,有催化剂在管外装填,反应器催化剂装填系数得到适当增大,多孔板可保证气体分布均匀;利于实现大型化,但其结构复杂,制造难度大。 米,反应器吨的产能,甲醇塔直径5MRF-Z型反应器达到日产5000据了解,TEC可用单台催化米,米,床高12按14万吨/年的反应器直径2.5管长22.4m,催化剂装填量为350m3。。工业业绩:

合成气生产甲醇工艺流程

编号:No.20课题:合成气生产甲醇工艺流程授课内容:合成气制甲醇工艺流程 知识目标: ●了解合成气制甲醇过程对原料的要求 ●掌握合成气制甲醇原则工艺流程 能力目标: ●分析和判断合成气组成对反应过程及产品的影响 ●对比高压法与低压法制甲醇的优缺点 思考与练习: ●合成气制甲醇工艺流程有哪些部分构成? ●对比高压法与低压法制甲醇的优缺点 ●合成气生产甲醇对原料有哪些要求?如何满足? 授课班级: 授课时间:年月日

四、生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个工序,见图5-1。 或氧、空气 图5-1 甲醇生产流程图 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(H2-CO2)/(CO+CO2)=2.1左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 净化有两个方面: 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法

甲醇合成工段

甲醇合成工段 目前工业上几乎都是采用一氧化碳、二氧化碳加压催化氢化法合成甲醇。1. 工艺路线:典型的流程包括原料气制造、原料气净化、甲醇合成、粗甲醇精馏等工序。 煤与焦炭是制造甲醇粗原料气的主要固体燃料。用煤和焦炭制甲醇的工艺路线包括燃料的气化、气体的脱硫、变换、脱碳及甲醇合成与精制。用蒸汽与氧气(或空气、富氧空气)对煤、焦炭进行热加工称为固体燃料气化,气化所得可燃性气体通称煤气是制造甲醇的初始原料气,气化的主要设备是煤气发生炉,按煤在炉中的运动方式,气化方法可分为固定床气化法、流化床气化法和气流床气化法。国内用煤与焦炭制甲醇的煤气化——般都沿用固定床间歇气化法,煤气炉沿用UCJ炉。在国外对于煤的气化,目前已工业化的煤气化炉有柯柏斯-托切克(Koppers-Totzek)、鲁奇(Lurge)及温克勒(Winkler)三种。还有第二、第三代煤气化炉的炉型主要有德士古(Texaco)及谢尔-柯柏斯(Shell-Koppers)等。用煤和焦炭制得的粗原料气组分中氢碳比太低,故在气体脱硫后要经过变换工序。使过量的一氧化碳变换为氢气和二氧化碳,再经脱碳工序将过量的二氧化碳除去。原料气经过压缩、甲醇合成与精馏精制后制得甲醇。 甲醇生产中所使用的多种催化剂,如天然气与石脑油蒸气转化催化剂、甲醇合成催化剂都易受硫化物毒害而失去活性,必须将硫化物除净。气体脱硫方法可分为两类,一类是干法脱硫,一类是湿法脱硫。干法脱硫设备简单,但由于反应速率较慢,设备比较庞大。湿法脱硫可分为物理吸收法、化学吸收法与直接氧化法三类。 粗甲醇中存在水分、高级醇、醚、酮等杂质,需要精制。精制过程包括精馏与化学处理。化学处理主要用碱破坏在精馏过程中难以分离的杂质,并调节pH。精馏主要是除去易挥发组分,如二甲醚、以及难以挥发的组分,如乙醇高级醇、水等。

甲醇合成技术及未来发展

甲醇合成技术及未来发展 1前言 甲醇是重要的碳一化工产品,是重要的基础有机化工原料,其消费量仅次于乙烯、丙烯和苯。它在化工、医药、轻工等行业具有广泛应用,主要衍生物有很多(见图1)。以往很多化工产品都是以石油为原料先制成乙烯、丙烯等后,再进行下游加工,如:醋酸、醋酸乙烯、丁辛醇等。现因国际油价飙升,使产品成本升高,几乎无利润空间,且不能都依赖进口原油来生产,所以国内生产商纷纷改为煤化工路线,先制成甲醇后再进行下游加工,从而使甲醇需求量迅速增加。近年来在建、新建及拟建甲醇项目不断涌现。关于利用甲醇、二甲醚作为替代燃料已在国内经示范试用取得成效,现国家正进行国标编制及报批,预计不久将公布施行。另外利用甲醇作原料的下游产品,如醋酸等的需求也不断增长。在美国已基本不使用MTBE 作为汽油添加剂,但在国内现仍有一定市场。基于上述情况,今后利用甲醇的消费情况随着国情及时间的推移对各种消费领域的比例会有一定变化,将会带动其今后更大的市场空间[1]。 图1.甲醇生产原料及其下游产品 当前甲醇产业正处于一个良好的市场发展时期,但在繁荣市场后面,也隐藏

着一些潜在市场风险。国家发改委已经出台政策严格审批煤化工行业项目管理,而且已经批的但还没建的也要停,今后三年要停止审批单纯扩大产能的煤制油、焦炭、甲醇等煤化工项目。因此在投资决策时,应谨慎分析各方面的利弊,以确保甲醇产业能健康有序的发展。 2国内外甲醇生产、消费现状 在过去的近10 年里,世界甲醇的生产格局、生产能力发生了巨大的变化,一些天然气储量丰富而本国消耗量小的国家和地区,先后建设了世界级大规模甲醇生产装置,产品出口到美国、欧洲、日本等,以其低廉的价格优势占领了这些国家和地区的市场,导致这些国家和地区甲醇生产装置纷纷停产关闭。 目前国际甲醇装置在向大型化发展,国外共有甲醇生产装置110套左右,每套年平均生产能力超过0.5Mt,年总生产能力达到了64Mt,其中年生产能力大于0.8Mt的装置有32套,合计生产能力约30Mt ,目前正在建设的大型装置总生产能力达26Mt。未来几年,更多超大规模甲醇装置的集中投产,必将对国际甲醇的生产和消费市场产生重大影响。 目前,世界甲醇供需基本平衡,但不同地区差别很大。现在拉丁美洲、中东、东欧、大洋洲等地区,产量增长迅速,甲醇大大供过于求,而美国、西欧、日本、中国台湾、韩国等甲醇供不应求,大量依赖进口。我国在2006年甲醇达到了供求平衡,2007年出现供过于求。现在中东、拉丁美洲等地区已经发展成为世界甲醇生产的集中地和全球甲醇的主要出口地。中东是甲醇的主要生产地,生产的甲醇大多出口到欧洲和亚太地区,该地区拥有16Mt/a生产能力,10项在建项目总计有15Mt/a的生产能力;南美和加勒比海地区也是甲醇的主要生产地,主要供应美国市场,该地区拥有15Mt/a生产能力,大部分产品出口。目前世界主要甲醇生产国的生产能力为:(包括已建和在建的甲醇装置)特里尼达与多巴哥, 生产能力为 1.7Mt/a;美国为7.7Mt/a ;伊朗为4.25Mt/a;挪威为1.2Mt/a;沙特阿拉伯为 2.65Mt/a;阿曼2.75Mt/a;德国为2.87Mt/a;也门为2.5Mt/a;加拿大2.31Mt/a;卡塔尔为5.75Mt/a等(见图2)。

甲醇合成工艺

第一章概述 1.1甲醇的用途及在化学工业中的地位 甲醇俗称“木精”,是重要的有机化工产品,也是重要的有机化工原料,其分子式为 CH OH,是碳化工的基础。甲醇产品除少量直接用于溶剂,抗凝剂和燃料外,绝大多数被用3 于生产甲醛,农药,纤维,医药,涂料等。 长期以来,人们一直把甲醇作为农药、染料、医药等工业的原料。随着科学技术的不 断发展与进步,突破了甲醇只作传统原料的范围,甲醇的应用领域不断地被开发出来,广 度与深度正在发生深刻变化。随着甲醛等下游产品的不断开发,甲醇在化学工业中的作用 必将越来越重要[1]。 1.2甲醇市场的状况及建厂的可行性 近几十年来,由于传统加工工业的发展和世界能源结构的变化,以甲醇为原料的新产 品的不断开发,世界对甲醇的生产和需求量都大幅增加,表1.1是世界甲醇市场状况,表 1.2是国内甲醇市场状况。 表1.1 世界甲醇生产能力及消耗量及开工率 Table 1.1 World methyl alcohol productivity and consumption, utilization of capacity 年度1987 1991 1993 1995 2000 2020 生产能力万T/年1999 2300 2470 2600 5000 20000 总消耗量万T/年1718 2010 2141 2390 开工率 % 86 87 86.7 92 表1.2 国内甲醇生产能力及消耗量 Table 1.2 Domestic methyl alcohol productivity and consumption 年度1985 1987 1990 1994 1995 2000 生产能力万T/年69 71.1 71.1 125.53 146.9 197.5 生产量万T/年44.3 49.5 64.0 100 消耗量70.7 120 121.4 200 根据预测,世界范围内的生产与需求将持续发展,主要原因是:甲醇下游产品市场的

煤气化制甲醇工艺流程

煤气化制甲醇工艺流程 煤气化制甲醇工艺流程简述 1)气化 a)煤浆制备 由煤运系统送来的原料煤**t/h(干基)(<25mm)或焦送至煤贮斗,经称重给料机控制输送量送入棒磨机,加入一定量的水,物料在棒磨机中进行湿法磨煤。为了控制煤浆粘度及保持煤浆的稳定性加入添加剂,为了调整煤浆的PH值,加入碱液。 出棒磨机的煤浆浓度约65%,排入磨煤机出口槽,经出口槽泵加压后送至气化工段煤浆槽。 煤浆制备首先要将煤焦磨细,再制备成约65%的煤浆。磨煤采用湿法,可防止粉尘飞扬,环境好。 用于煤浆气化的磨机现在有两种,棒磨机与球磨机;棒磨机与球磨机相比,棒磨机磨出的煤浆粒度均匀,筛下物少。 煤浆制备能力需和气化炉相匹配,本项目拟选用三台棒磨机,单台磨机处理干煤量43~53t/h,可满足60万t/a甲醇的需要。 为了降低煤浆粘度,使煤浆具有良好的流动性,需加入添加剂,初步选择木质磺酸类添加剂。 煤浆气化需调整浆的PH值在6~8,可用稀氨水或碱液,稀氨水易挥发出氨,氨气对人体有害,污染空气,故本项目拟采用碱液调整煤浆的PH值,碱液初步采用42%的浓度。 为了节约水源,净化排出的含少量甲醇的废水及甲醇精馏废水均可作为磨浆水。 b)气化 在本工段,煤浆与氧进行部分氧化反应制得粗合成气。 煤浆由煤浆槽经煤浆加压泵加压后连同空分送来的高压氧通过烧咀进入气化炉,在气化炉中煤浆与氧发生如下主要反应: CmHnSr+m/2O2—→mCO+(n/2-r)H2+rH2S CO+H2O—→H2+CO2 反应在6.5MPa(G)、1350~1400℃下进行。 气化反应在气化炉反应段瞬间完成,生成CO、H2、CO2、H2O和少量CH4、H2S等气体。 离开气化炉反应段的热气体和熔渣进入激冷室水浴,被水淬冷后温度降低并被水蒸汽饱和后出气化炉;气体经文丘里洗涤器、碳洗塔洗涤除尘冷却后送至变换工段。 气化炉反应中生成的熔渣进入激冷室水浴后被分离出来,排入锁斗,定时排入渣池,由扒渣机捞出后装车外运。 气化炉及碳洗塔等排出的洗涤水(称为黑水)送往灰水处理。 c)灰水处理 本工段将气化来的黑水进行渣水分离,处理后的水循环使用。 从气化炉和碳洗塔排出的高温黑水分别进入各自的高压闪蒸器,经高压闪蒸浓缩后的黑水混合,经低压、两级真空闪蒸被浓缩后进入澄清槽,水中加入絮凝剂使其加速沉淀。澄清槽底部的细渣浆经泵抽出送往过滤机给料槽,经由过滤机给料泵加压后送至真空过滤机脱水,渣饼由汽车拉出厂外。 闪蒸出的高压气体经过灰水加热器回收热量之后,通过气液分离器分离掉冷凝液,然后进入变换工段汽提塔。

相关主题
文本预览
相关文档 最新文档