当前位置:文档之家› 园林植物遗传学教案

园林植物遗传学教案

园林植物遗传学教案
园林植物遗传学教案

附:两次实验课的开课时间根据实验室的安排而定

北京林业大学园林植物遗传育种学研究生考试历年真题全

DNA:脱氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。是沟通生物体上下代之间遗传信息的物质载体。 RNA:核糖核酸,存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。由至少几十个核糖核苷酸通过磷酸二酯键连接而成的一类核酸。 同源染色体: 染色体组: 表型模写:环境改变所引起的表型改变有时与某些基因引起的变化很相似,这种现象叫做表型模写或称饰变。 分离现象:F1的红花植株自花授粉,所得的种子和由这些种子长成的植株叫作子二代(F2)。F2中除红花植株外,又出现了白花植株,这种白花植株和亲代的白花植株是一样的。在F2中,隐性的白花性状又出现了,这种现象叫作分离。 纯合子(纯合体):等位基因座上有两个相同的等位基因,成对的基因都是一样的。 测交:杂交产生的F1个体与其纯合隐性亲本进行交配的方式。 表现型(表型):遗传基础得到必需的环境条件发育成具体的性状称为表现型。(生物体所表现出的性状。它是基因型在外界环境条件作用下的具体表现。) 基因型:通常把生物体内具有发育成性状潜在能力的遗传物质的总和称为遗传基础,为便于分析,一般称为遗传型或基因型。(生物体的遗传组成。是生物体在环境条件的影响下发育成特殊性状的潜在能力。) 基因型频率: 基因:基因位于染色体上,是具有功能的特定核苷酸顺序的DNA片段,是贮存遗传信息的功能单位,基因可以突变,基因之间可以发生交换。 超显性:在超显性的情况下,杂种的表现型并不是介乎两亲本之间,而是超过任何一个亲本。这种现象叫做杂种优势。 共显性(并显性):一对等位基因的两个成员在杂合体中都表达的遗传现象叫做并显性遗传。杂种优势:在超显性的情况下,杂种的表现型并不是介乎两亲本之间,而是超过任何一个亲本。这种现象叫做杂种优势。 复等位基因:在群体中占据某同源染色体同一座位的两个以上的、决定同一性状的基因定义为复等位基因。 连锁群:位于同一条染色体上的全部基因组成一个连锁群。一般细胞中有几对染色体就有几个连锁群。 染色体图:依据基因之间的交换值(或重组值)确定连锁基因在染色体上的相对位置,绘制出来的简单线性示意图称为染色体图,又称基因连锁图或遗传图,两个基因在染色体上相对距离的数量单位称为图距。交换值去掉百分数的数值定义为一个图距单位。 数量性状:是植物遗传性状的连续变异,在性状的表现程度上有一系列的中间过渡类型,不易区别分明,这类连续变异的性状称为数量性状。 断裂基因: 移动基因: 结构基因: 基因组: 基因突变: 基因工程: 细胞核遗传: 细胞质遗传:

细胞生物学教案(完整版)汇总

细胞生物学教案 (来自https://www.doczj.com/doc/f02768679.html,)目录 前言 第一章绪论 第二章细胞结构概观 第三章研究方法 第四章细胞膜 第五章物质运输与信号传递 第六章基质与内膜 第七章线粒体与叶绿体 第八章核与染色体 第九章核糖体 第十章细胞骨架 第十一章细胞增殖及调控 第十二章细胞分化 第十三章细胞衰老与凋亡

前言 依照高等师范院校生物学教学计划,我们开设细胞生物学。 一、学科本身的重要性 要最终阐明生命现象,必须在细胞水平上。细胞是生命有机体最基本的结构和功能单位,生命寓于细胞之中,只有把各种生命活动同细胞结构相联系,才能在细胞水平上阐明各种生命现象。世界著名生物学家Wilson(德国人)曾说过:“一切生物学问题的答案最终要到细胞中去寻找”。 二、学科发展特点 细胞生物学涉及知识面广、内容浩繁且更新迅速。它同生物化学、遗传学形成生命科学的鼎立三足,既是当代生命科学发展的前沿,又是生命科学赖以发展的基础。 三、欲达到的目的 通过系统地学习细胞生物学,丰富细胞学知识,以适应当代人类社会知识结构发展的需求,也是为考研做准备。 本课程讲授51学时,实验21学时,共72学时。 参考资料 1 De.Robertis,《细胞生物学》,1965年(第四版);1980年(第七版)《细胞和分子生物学》 2 Avers,“Molecular Cell Biology”, 1986年 3 Alberts,《细胞的分子生物学》,“Molecular biology of the cell”,1989年 4 Darnell,《分子细胞生物学》,1986年(第一版);1990年(第二版)“Molecular Cell Biology”5郑国錩,细胞生物学,1980年,高教出版社;1992年,再版 6 郝水,细胞生物学教程,1983年,高教出版社 7 翟中和,细胞生物学基础,1987年,北京大学出版社 8 韩贻仁,分子细胞生物学,1988年,高等教育出版社;2000年由科学出版社再版 9 汪堃仁等,细胞生物学,1990年,北京师范大学出版社 10 翟中和,细胞生物学,1995年,高等教育出版社,2000年再版 11 郑国錩、翟中和主编《细胞生物学进展》, 12翟中和主编《细胞生物学动态》,从1997年起(1—3卷),北师大出版社 13徐承水等,《分子细胞生物学手册》1992,中国农业大学出版社 14徐承水等,《现代细胞生物学技术》1995,中国海洋大学出版社 15徐承水,《细胞超微结构研究》2000,中国国际教育出版社 学术期刊、杂志 国外:Cell、Science、Nature、J.Cell Biol.、J.Mol. Biol. 国内:中国科学、科学通报、实验生物学报、细胞生物学杂志等

动物遗传学名词解释

显性性状:两亲本杂交时,能在F1代中表现出来的形状。 隐性纯合体:由纯合的隐性基因型构成的个体。 等位基因:一对同源染色体上占据同一位点,以不同的方式影响同一形状的一对基因。 互补作用:指两对基因互相作用,共同决定一个新性状的发育。 伴行基因:位于X染色体上与Z染色体非同源部分的基因。 相对性状:同一种单位性状的不同表现。 性状:生物体所表现的形态特征和生理特征。 性反转:生物个体从一种性别转变为另一种性别。 连锁遗传图:根据基因定位的方法,以及基因在染色体上呈线性排列的顺序,把一种生物的名连锁群内基因的排列顺序和基因遗传的距离给予标定,绘制出的图谱。 显性上位作用:两对基因共同影响一对相对性状,其中一对显性基因能够抑制另外一对基因的表现。从性遗传:指位于常染色体上的基因,它所抑制的形状的显隐关系因性别不同而异,受性激素的影响。基因突变:指在基因水平上遗传物质中任何可检测的能遗传的改变,不包括基因重组。 伴性性状:指伴性基因所控制的性状,位于性染色体非同源部分的基因所控制的性状。 返祖遗传:隔若干代以后,出项与祖先相似性状的遗传现象。 等显性:双亲性状同时在后代的同一个体表现出来,即等位基因同时得到表现。 表现度:由于内外环境的影响,一个外显基因或基因型其表型表型出来的程度。 限性遗传:有些性状仅局限于某一性别的这类限性性状的遗传方式。 完全连锁:亲本的两个性状完全紧密的联系在一起传给了后代的现象。 复等位基因:指在一个群体中,同源染色体上同一位点两个以上的等位基因,但在每一个个体的同源染色体上只能是一对基因。 隐性性状:虽在F1中并不表现,但经F1自交能在F2表现出来的性状。 性染色体:在多数二倍体真核生物中,决定性别的关键基因位于的一对染色体。 修饰基因:依赖主基因的存在而起作用,本身并不发生作用,只是影响主基因的作用的程度的一类基因。主基因:对某一性状发育起决定作用的一对基因。 表现型:基因和基因型所能表现出来的生物体的各类性状, 基因型:与生物某一性状有关的基因组成。 交叉遗传:儿子得到的X染色体必定来自母方,父亲的X染色体必传给女儿,X染色体的这种遗传方式称为交叉遗传。 不完全连锁:在连锁遗传的同时还表现出性状的交换和重组。 交换值:又称重组率,是指重组型配子数占总配子数的百分率。

园林植物育种学教案、实验指导、练习

园林植物育种学(园林专业用) 园艺园林学院

绪论 教学目的、要求: 这一章的中心内容是园林植物(园林植物、蔬菜和园林观赏植物)育种学的基本任务及品种的概念及其特性;育种学与其他相关学科的关系。要求学生对园林植物育种学的性质、范围和基本任务的相关概况有一个基本认识。 课时安排:3学时 授课方式:讲授 教学基本内容: 一.园林植物范围 园林植物包括蔬菜、园林植物和观赏植物,有时也将茶叶、经济植物和芳香植物等列入其中。 二.变异、遗传和选择 达尔文义认为所有生物,包括野生植物和植物的进化决定于三个基本因素:变异、遗传和选择;遗传、变异是进化的内因和基础,选择决定进化的发展方向;自然进化是自然变异和自然选择的进化,自然选择的进化。 三.品种概念及其特性 1.品种(cultivar,简作cv.)是经人类培育选择创造的、经济性状及农业物学特性符合生产的消费要求,在一定的栽培条件下,依据形态学、细胞学、化学等特异性可以和其他群体相区别,个体间的主要性状相对相似,以适当的繁殖主式(有性或无性)能保持其重要特性的一个栽培植物群体。 2.品种:都具有特异性、一致性、稳定性、地区性和时间性等特性。

品种特异性:品种特异性是指作为一个品种,至少有一个以上明显不同于其他品种的可辩认的标志性状。 品种一致性:品种一致性是指采用适于该类品种的繁殖方式的情况下,除可以预见的变异外,经过繁殖,其相关的特征或者特性一致。 品种稳定性:品种稳定性是指申请品种权的植物新品种经过反复繁殖后或者在特定繁殖周期结束时,其相关的特征或者特性保持相对不变。 品种地区性:品种的地区性是指品种的生物学特性适应于一定地区生态环境和农业技术的要求。 品种也有一定的时间性。一定时期内在产量、品质和适应性等主要经济性状上符合生产和消费市场的需要。 3.园林植物良种的作用 园林植物良种是指在适应的地区,采用优良的栽培技术,能够生产出高产、优质,并能适时供应产品的品种。 它在下列方面有着重要作用: A.提高单位面积产量 B.改进产品品质 C.提高抗病虫害能力,减少农药污染 D.增强适应性和抗逆性,节约能源 F.延长产品的供应和利用时期 G.适应集约化管理、节约劳力 四.园林植物育种学的任务 园林植物育种学是研究选育与繁殖园林植物优良品种的原理和方法的科学。园林植物育种学从园林植物、蔬菜及园林观赏植物等园林植物的育种特性的角度阐述园林植物、蔬菜及园林观赏植物的引种、选种、杂交育种和杂种优势的利用、生物技术育种的原理与方法、诱变育种的理论与应用、良种繁育技术的理论与应用. 现代园林植物育种已不仅限于单纯利用自然界现有变异选育优良品种,而且还将根据需要,利用品种间杂交、远缘杂交、优势杂交、人工诱变、离体组织培

细胞遗传学完整版答案讲课教案

《细胞遗传学》复习题 第一章染色体的结构与功能+第三章染色体识别 1.什么是花粉直感?花粉直感是怎样发生的?作物种子的哪些部分会发生花粉直感? 花粉直感又叫胚乳直感,植物在双受精后,在3n胚乳上由于精核的影响而直接表现父本的某些性状。 由雄配子供应的一份显性基因能够超过由母本卵核或两个极核隐形基因的作用,杂交授粉当代母本植株所结的种子表现显性性状。 胚乳和胚性状均具有花粉直感的现象。 2.什么叫基因等位性测验?如何进行基因等位性测验? 确定两个基因是否为等位基因的测验为基因的等位性测验。 将突变性状个体与已知性状的突变种进行杂交,凡是F1表现为已知性状,说明两对基因间发生了互补,属于非等位基因。若F1表现为新性状,表明被测突变基因与已知突变基因属于等位基因。 3.原位杂交的原理是什么?原位杂交所确定的基因位置与遗传学上三点测验所确定的基 因位置有何本质的不同? 根据核酸碱基互补配对原则,将放射性或非放射性标记的外源核酸探针,与染色体经过变性的单链DNA互补配对,探针与染色体上的同源序列杂交在一起,由此确定染色体特定部位的DNA序列的性质;可将特定的基因在染色体上定位。 第一步,制备用来进行原位杂交的染色体制片;第二步,对染色体DNA进行变性处理;第三步,进行杂交;第四步,信号检出和对染色体进行染色;第五步,显微镜检查。 原位杂交是一种物理图谱绘制的方法,它所确定是特定基因在染色体上的物理位置;三点测验是绘制连锁图谱的实验方法,它是利用三对连锁基因杂合体,通过一次杂交和一次测交,确定三对基因在同一染色体上排列顺序以及各个基因的相对距离。 4.什么叫端粒酶(telomerase)?它有什么作用? 端粒酶是参与真核生物染色体末端的端粒DNA复制的一种核糖核蛋白酶,由RNA 和蛋白质组成,其本质是一种逆转录酶。 作用:它以自身的RNA作为端粒DNA复制的模版,合成出富含G的DNA序列后添加到染色体的末端并与端粒蛋白质结合,从而稳定了染色体的结构。 端粒起到细胞分裂计时器的作用,端粒核苷酸复制和基因DNA不同,每复制一次减少50-100 bp,正常体细胞染色体缺乏端粒酶活性,故随细胞分裂而变短,细胞随之衰老。人的生殖细胞和部分干细胞染色体具有端粒酶活性,所以人的生殖细胞染色体末端比体细胞染色体末端长几千个bp。肿瘤细胞和永生细胞系具有端粒酶的活性。端粒酶的活性是癌细胞的一种标誌,可以作为癌症治疗中的一个靶子。 5.染色质修饰和DNA修饰如何影响基因的表达? 染色质修饰包括: (1)组蛋白的化学修饰:组蛋白乙酰化使之对DNA的亲和力降低,降低了核小体之间的相互作用,异染色质中组蛋白一般不被乙酰化,而功能域中组蛋白常被乙酰化;组蛋白去乙酰化抑制基因组活化区域。 (2)核小体重塑:核小体的重塑影响基因的表达,核小体的重新排列,它可以改变核小体在基因启动子区域的排列,从而增加启动子的可接近性,调节基因的表达。基因激活伴随着DNA酶I敏感位点的形成,影响基因的表达。基因激活伴随着DNA酶I敏感位点的形成。DNA修饰包括:(1)DNA甲基化(2)基因组印记 甲基化是指在甲基化酶的作用下,将一个甲基添加在DNA分子的碱基上。DNA甲基化修

《园林植物学》考试大纲.doc

《园林植物学》考试大纲 一.考试大纲的性质 园林植物学是风景园林硕士专业的专业基础课,为帮助考生明确考试复习范围和有关要求,特制定本考试大纲。 本考试大纲主要根据指定参考书《花卉学》、《园林树木学》编制而成。适用于报考中国林业科学院全日制风景园林硕士专业学位研究生的考生。 二.考试内容 (一)花卉学 绪论 花卉的涵义和范围;花卉栽培的意义和作用;我国丰富的花卉种质资源及其对世界园林的贡献;国内外花卉事业(科研、生产等)发展概况。 第一篇 第一章花卉种质资源及其分布 第二章花卉的分类 第三章花卉的生长与发育 第四章花卉与环境因子 第五章花卉栽培的设备 第六章花卉的繁殖 第七章花卉的栽培管理 第八章花卉的应用 第九章花卉的病虫害防治 第二篇 第一章露地花卉 包括:一、二年生花卉;宿根花卉;球根花卉;岩生花卉; 水生花卉学名;形态特征;产地与分布;习性;繁殖;栽培;园 林用途 第二章草坪植物与地被植物 主要草坪植物;主要地被植物 第三章温室花卉 包括:一、二年生花卉;宿根花卉;球根花卉;亚灌木花卉;木本花卉;兰科花卉;蕨类植物;仙人掌及多浆植物 第四章盆景艺术 盆景概念及简史;盆景分类及艺术流派 (二)园林树木学 绪论 园林树木在园林建设中的作用;中国丰富多彩的园林树木资源和宝贵的 科学遗产

第一篇总论 第一章园林树木的分类 植物分类学方法;园林建设中的分类法 第二章园林树木的生长发育规律 树木的生命周期;树木的年周期;树木各器官的生长发育;树 木的整体性及其生理特点 第三章园林树木的生态习性 温度因子;水分因子;光照因子;空气因子;土壤因子;地 形地势因子;生物因子;植物的垂直分布与水平分布;城市环 境概述 第一章园林树木对环境的改善和防护功能 园林树木改善环境的作用;园林树木保护环境的作用 第二章园林树木的美化功能 第十章园林树木的修剪与整形 第十一章园林树木的土、肥、水管理 第二篇各论 国产习见园林树种以及国外产著名种类 包括:学名;形态;分布;习性;繁殖栽培;观赏特性和园林用途 三.考试要求 考生应掌握基本概念、植物资源及分布、分类、生长发育以及和环境间 的相互关系;常见和主要种类的所在科属及学名、栽培繁殖方法及其在 园林中的应用。 四.试卷结构 1.园林植物的拉丁学名互译(20分) 2.名词解释(40分) 3.填空题(30分) 4.综合性答题(60分) 五.考试方式和时间 考试方式:笔试 考试时间:3小时 六.主要考试书 1.《花卉学》中国林业出版社王莲英 2.《园林树木学》中国林业出版社陈有民

动物遗传学试题(A答案)

甘肃农业大学成人高等教育(函授) 动物科学专业《动物遗传学》课程试卷A答案 一、名词解释 遗传学:研究生物遗传信息传递和遗传信息如何决定生物性状发育的科学。. Variation:(变异)子代与亲代不相同的性状。 染色体组型:由体细胞中全套染色体按形态特征和大小顺序排列构成的图形。 减数分裂:在真核生物性细胞形成过程中,染色体只复制一次而细胞连续进行两次分裂,使细胞的染色体数目减半的过程。 Character:(性状)生物体所表现的形态特征和生理生化特征的总称。 完全显性:杂合子表现的形状与亲本之一完全一样的现象。 Linkage group:(连锁群)在染色体中具有不同的连锁程度并按线性顺序排列的一组基因座位。 形态标记:以生物体的形态性状为特征的遗传标记。 物理作图:把基因组分解成为许多较小的DNA片段,然后再把这些DNA片段连接起来,构建一个由DNA片段重叠组成的物理图。 染色体畸变:染色体结构和树木改变. 基因库:一个群体中全部个体所有基因的总和. 缺失:染色体出现断裂并丢失部分染色体片段的一种染色体结构变异类型。 非孟德尔遗传:由于染色体外基因并不是随同染色体的复制和分裂均等的分配给两个字细胞而是在细胞质中随机地传递给子代,因而其遗传规律不符合孟德尔独立分配和自由组合规律,及正交和反交的子代性状表现不一致,或只表现父本性状,或只表现母本性状。 母体效应:也称母性影响,是指子代某一性状的表现性不受本身基因型的支配,而由母体的核基因型决定,导致子代的表现型相关的现象。 剂量补偿:男女之间X染色体连锁基因表达水平相等的现象,人类遗传学上称为剂量补偿。 表观遗传:基因表达的改变不依赖于DNA核苷酸序列的改变,而是受DNA的甲基化、组蛋白修饰以及非编码RNA等作用,而且这种改变能通过细胞的有丝分裂或减数分裂向后代遗传的现象。 基因组印记:后代中来自亲本的两个等位基因只有一个表达的现象。 基因频率:在一群体内,某个特定基因占该座位全部等位基因总数的比率。 二、填空题 1.染色体根据着丝粒位置分为中着丝粒染色体、近端着丝粒染色体和端着丝粒染色体 2.遗传标记有形态标记、细胞学标记、生化标记、和DNA标记四种类型 3.限制性片段长度多态性(RFLP)标记是最早出现的DNA标记 4.染色体变异包括染色体结构变异和染色体数目变异两大类型 5.细胞分裂方式包括有丝分裂、无丝分裂、减数分裂三种方式 6.染色体的结构变异可分为缺失、重复、倒位、异位四种类型 7.有丝分裂可分为G1、 S、 G2 、M 期四个时期 8.与性别有关的遗传包括伴性遗传、限性遗传、从性遗传三种方式。 9.基因突变的原因有自发突变、化学诱变、物理诱变三种途径 10.核外遗传包括线粒体、叶绿体、F因子、质粒四种体系 11.影响群体基因频率变化的因素有突变、迁移、选择、遗传漂变和随机交配的偏移等五种因素 12.数量遗传学中性状可根据复杂程度分为简单性状和复杂性状;根据遗传基因多少和表型连续与否可分为质量性状和数量性状。 13.两对自由组合基因的互作方式主要有互补作用、加黑作用、重叠作用、上位作用、抑制作用。 14.重组率计算公式:重组率(﹪)=(重组型配子数/配子总数)×100﹪或重组率(﹪)=(重组个体数/重组子代的个体总数)×100﹪ 15.脉冲场凝胶电泳突破了琼脂糖凝胶分离大分子DNA限制。 16.最常用的人工染色体有酵母人工染色体(YAC)和细菌人工染色体(BAC)两类 17.染色体的基本结构有着丝粒、端粒和复制起点三个 18.遗传作图的主要任务是测定基因座位在染色体上的排列顺序和相互间的遗传距离19.遗传分析有两点测验和三点测验两种方式 三、选择题 1.鸡的性染色体构型是(B) A.A.XY B.ZW C.XO D.ZO

园林植物遗传育种学

园林植物遗传育种学 教案 适用园林、药用植物高职班 学校:楚雄农校 任课教师:罗春梅 二OO六年八月二十日

第一篇园林植物遗传学 第1章园林植物遗传学基础 计划学时:2学时属累计学时:1-2学时 教学目的:让学生了解遗传与变异的概念和关系,分离规律的实质。 教学重点:基因型和表现型的概念,分离规律的实质。 教学难点:分离规律的实质。 教学方法:理论讲解 教学过程:[A]组织教学 [B]讲授新课 第一节遗传、变异和环境 一、遗传学的概念 遗传学是研究生物遗传与变异的科学。即是一门研究亲子代之间的传递和继承的科学。 如:为什么出现“种瓜得瓜,种豆得豆”,“一娘生九子,九子各不同”等现象,这些都属于遗传学解决的问题。 二、遗传与变异的概念及关系 (一)遗传 1、概念:指亲代的性状又在子代出现的现象。 2、原因:是由于遗传物质从亲代传递给了子代,使得子代按照遗传物质的规定,发育成了与亲代相似的各种性状。 3、遗传物质:指生物体的细胞内部传递遗传信息的物质,能自我复制。染色体是遗传物质的载体。染色体的主要成分是DNA和蛋白质。其中DNA(脱氧核糖核酸)就是遗传物质。少数病毒不含DNA,其遗传物质是RNA(核糖核酸)。 4、基因:是遗传物质(DNA)的基本单位。它是DNA分子链中各个微小的区段。基因控制着生物的某个或某些性状。具有相对的稳定性。 (二)变异 1、概念:指生物的亲代与子代或同一亲本的子代个体之间,有些性状彼此不同的现象。 2、变异的类型

生物的变异是很复杂的,在农业生产中常有这样的情况:在田间选择穗大粒多的变异植株为亲本,把它们的种子种下去后,在子代中有的保持了亲代穗大粒多的性状,有的却不能。这就说明,并不是所有的变异都能遗传。我们把能遗传的变异称为可遗传的变异,不能遗传的称为不遗传的变异。 (1)不遗传的变异 指生物性状的变异不能遗传给子代。 原因主要是由于外界的环境条件而引起,即环境条件仅能使生物的某些外部性状发生变异,而遗传物质并未变化。 (2)可遗传的变异 指能够遗传的变异。 原因主要是由于遗传物质发生了变化,故所产生的变异可遗传给后代。 (3)两种变异的区分及其重要性 两种变异主要根据其变异性状能否遗传来进行区分,这两种变异有时容易分清楚,而有时不易分清。例如:象植物的花冠颜色、形状及籽粒颜色、穗色、芒的长短、茸毛的有无等这些性状,往往受环境影响较小,若发生变异,一般是可以遗传的。如:长芒小麦后代中产生无芒的变异,红粒高粱后代中出现白粒变异单株等。类似这样的性状变异,一般是能够遗传的。 而有些性状如穗子大小、植株高矮、叶色的深浅等,往往受环境条件影响大,类似这里边些性状发生就异,可能是由于遗传物质变化造成,也可能是由于地力肥瘦不同造成,或者是由于两种变异共同作用的结果。对于育种工作来讲,能够遗传的就异是遗传育种工作的重要课题之一,因为只有从可遗传的变异中才能选育出新品种。 三、遗传与变异的关系 遗传和变异是生物界最普遍和最基本的两个特征,两者是生命运动中的一对矛盾,它们是对立而又统一的,正是由于这对矛盾的不断运动才使生物界生生不息、世代留传和更新发展,不断进化。 遗传使生物性状得到相对稳定,但这种不变是相对的,通过变异使得这种稳定性遭到破坏,在一定范围内表现差异,产生新的性状,使生物

医学遗传学教案

教师课程教案 课程名称:医学遗传学 学生专业:眼视光专业 医学检验专业 讲授人:谭湘陵 职称:教授 南通大学生命科学学院 授课时间:2007~2008学年第1学期

《医学遗传学》课程基本信息 (一)课程名称:医学遗传学 (二)学时学分:总学时54,学分3(理论学时42,实验学时12) (三)预修课程:生物化学、人体解剖学、生理学、微生物学 (四)使用教材:《医学遗传学》(第4版),左伋编(著),人民卫生出版社,2004年。 (五)教学参考书: 1.《医学遗传学》,陈竺编(著),人民卫生出版社,2001年。 2.《医学遗传学》,张咸宁编(著),科学出版社,2002年。 3.《医学遗传学》,李璞编(著),人民卫生出版社,1999年。 (六)本课程的性质和任务: 本课程为医学类各专业本科生的必修基础课。 通过学习医学遗传学,了解该学科的发展前沿、热点,使学生牢固掌握医学遗传学的基本理论和基础知识,了解人类病理性状遗传规律以及遗传病的发生、传递、诊断、治疗和预防,为学生今后的学习及工作实践打下宽厚的基础。(七)教学方法:课堂讲授,启发式教学,课堂讨论等。 (八)教学手段:多媒体教学,结合网络教学等。 (九)考核方式:闭卷考试,平时作业,实验考核等。作业占学期总评成绩的10%,实验考核占学生成绩的20%,期末考试占学期总评成绩的70%。 (十)学生创新精神与实践能力的培养:通过学习,掌握基本理论;以病例为基础,提高学生分析问题、解决问题的能力;通过实验操作,培养学生的动手能力;通过学科进展的介绍,拓宽视野,提高学生考研能力。 (十一)其它要说明的问题与事项: 眼视光专业学生的课程为理论42,实验12学时,而医学检验专业学生的学时为理论36学时,没有实验。因此在理论授课中,检验专业较眼视光专业有所压缩,按照教学计划书的安排,压缩内容主要在序论,以及第十八章和第十九章,这些内容的处理采取删除部分节的内容和减少举例的做法,在主要章节内容上,不进行压缩。 本教案针对42学时的眼视光专业。

851园林植物学

851《园林植物学》 园林树木学部分 绪论 0.1园林树木学的概念 0.2园林树木学的主要内容 0.3课程的特点、学习方法和基本要求 0.4我国的园林树木资源概况 第1章园林树木的分类 1.1植物学分类方法 1.1.1 植物分类的等级 1.1.2 植物命名法 1.1.3 植物分类的依据 1.1.4 植物分类检索表 1.1.5 被子植物的分类系统 1.2 园林建设中的分类法 1.2.1 依树木的生长习性分类 1.2.2 依树木的观赏特性分类 1.2.3 依树木的园林用途分类 第2章园林树木的美化功能 2.1树形 2.1.1 树形的观赏特性 2.1.2 树形分类 2.2园林树木的叶及其观赏特性 2.2.1叶形 2.2.2叶色 2.3园林树木的花及其观赏特性 2.3.1花相理论 2.3.2 花的色彩 2.3.3花香 2.4园林树木的果及其观赏特性 2.4.1 果实的形状

2.4.2 果实的色彩 2.5园林树木的枝、干、树皮、刺毛、根等及其观赏特性 2.6园林树木的意境美 第3章园林树木的功能与作用 3.1园林树木改善环境的作用 3.2 园林树木保护环境的作用 3.3 园林树木美化环境的功能 3.4 园林树木的生产功能 第4章园林树木的配植 4.1园林树木的配植原则 4.1.1 综合性 4.1.2 科学性 4.1.3 艺术性 4.1.4 特色性 4.1.5 可塑性 4.1.6 经济性 4.2园林树木的配植方式 4.2.1规则式配植 4.2.2自然式配植 4.2.3 混合式配植 4.3园林树木群落的建造 第5章园林中各种用途树种的选择与应用 5.1行道树的选择与应用 5.2 庭荫树的选择与应用 5.3孤植树的选择与应用 5.4 观花树的选择与应用 5.5 垂直绿化树的选择与应用 5.6 绿篱及造型树的选择与应用 5.7 群植树的选择与应用 5.8 地被树种的选择与应用 第6章园林绿化树种的调查与规划 6.1 园林绿化树种调查 6.1.1 城市自然条件调查 6.1.2 城市绿化情况调查

动物遗传学

遗传学: 遗传学(Genetics)——研究生物的遗传与变异的科学,研究基因的结构、功能及其变异、传递和表达规律的学科。遗传学中的亲子概念不限于父母子女或一个家族,还可以延伸到包括许多家族的群体,这是群体遗传学的研究对象。遗传学中的亲子概念还可以以细胞为单位,离体培养的细胞可以保持个体的一些遗传特性,如某些酶的有无等。对离体培养细胞的遗传学研究属于体细胞遗传学。遗传学中的亲子概念还可以扩充到脱氧核糖核酸(也就是DNA)的复制甚至mRNA的转录,这些是分子遗传学研究的课题。 动物遗传学: 动物遗传学,作为遗传学的一个分支,主要研究与人类有关的各种动物,如家畜、鱼类、鸟类、昆虫等动物性状的遗传规律和遗传改良的原理与方法。除了讲述遗传的物质基础、遗传信息的传递与改变等分子遗传学的一般理论和方法,遗传的基本规律及其扩展、非孟德尔遗传等细胞遗传学的一般理论和方法以及群体遗传学基础以外,还涉及动物基因组学和动物基因工程等方面的一般原理与方法。 意义: 1、遗传因素(如基因)制约每个生命个体的一切生命活动。一切生命活动包括:生命的发生、发展、昌盛、衰落、消亡等。 2、遗传因子(基因)决定了动物的性状、行为、疾病。 性状:高/矮、肥胖/苗条、漂亮/丑陋、秃头、长寿 行为:生物钟、犯罪、聪明、特长发展

疾病:遗传病、肿瘤、常见病 3、遗传育种是动物育种最常用的手段。 4、遗传工程改造是最稳定、最有意义的品种改良技术。 5、遗传因子--基因是生命科学的核心,而21世纪是生命科学的世纪。 发展重要里程碑: 1.1866年,孟德尔(G.Mendel)发现遗传因子,提出分离定律和独立分配定律。 2.1900年,弗里斯、柴马克、柯伦斯三人同时发现孟德尔的理论。这一年作为遗传学建立和开始发展的一年。 3、1910年以后,摩尔根(Morgan)提出连锁遗传定律,创立“基因理论”。 4、1944年,阿委瑞(Avery)等证明DNA是遗传物质。 5、1953年,瓦特森(Watson)和克里克(Crick)阐明DNA分子双螺旋结构。 6、1966Nirenberg破译全部遗传密码。 7、1973Boyer,Cohen建立DNA重组技术。 8、1981Palmiter,Brinster获得转基因小鼠。 9、1988Mullis发明PCR技术。 10、1989Collis主持实施人类基因组计划。 11、1997克隆羊“多莉”在英国诞生。 12、2001.2.12完成人类基因组图谱。

遗传学教案

普通遗传学 理论课教案 教学课题第一章绪论课型普通遗传学 理论课 对象动科2001级 本科 教学目的初步了解动物遗传学的主要内容及其发展过程,对本学科有一个整体的认识,和学习路线。 教学重点关于遗传学的基本概念及其研究的主要内容。 教学难点遗传学研究的基本内容,及发展趋势。 教学方法启发式 课时安排10分钟 30分钟40分钟15分钟教学步骤、内容(详细内容见课件)一、遗传现象。 二、遗传与变异的概念及其相互关系。 三、遗传学研究的主要内容及发展历史。 四、遗传学分类及发展趋势。 小结(5分钟) 本节课要掌握的概念:遗传与变异。遗传研究的主要内容。 思考题1.遗传与变异的关系。

2。你有哪些感兴趣的问题。 普通遗传学 理论课教案 教学课题第二章遗传的物质基础 第一节遗传物质—核酸 第二节核酸的结构课型普通遗传学 理论课 对象动科2001级 本科 教学目的1.了解证明遗传物质是DNA或RNA 的实验经过和过程。 2.掌握DNA的结构模型。 教学重点DNA的结构模型。 教学难点DNA的结构模型。 教学方法启发式 课时安排40分钟 10分钟 10分钟 25分钟 10分钟教学步骤、内容(详细内容见课件) 一、证明遗传物质是DNA或RNA 的实验经过和过程。。 二、间接证明 三、DNA和RNA的化学组成 四、DNA的二级结构模型 五、RNA的类型级特点。 小结(5分钟) 本节课要掌握的概念:转化、信使RNA。DNA的二级结构模型。 思考题DNA的结构模型对现代遗传学的影响。

普通遗传学 理论课教案 教学课题第二章遗传的物质基础 第三节基因的结构特征课型普通遗传学 理论课 对象动科2001级 本科 教学目的1.掌握基因的一般结构特征。 2.了解基因概念的发展。 教学重点真核基因组的特点。 教学难点真核基因组的特点。 教学方法启发式 课时安排20分钟 40分钟20分钟15分钟教学步骤、内容(详细内容见课件) 一、基因概念的发展。 二、基因的一般特征。 四、真核基因组的特点。 五、比较原核生物与真核生物基因组的区别。 小结(5分钟) 1.本节课要掌握的概念:基因组、基因家族、C值、微卫星。2.基因的一般特征。 思考题1.如何理解C值矛盾。 2.为何卫星DNA在密度梯度离心时会形成一个小峰。

园林植物学复习资料整理

绪论 植物(Plant):在生物界中,营固着生活、具有细胞壁、自养的生物。 形态多样性:大小各异,形态多样。 结构多样性:单细胞、群体、多细胞;简单-复杂。 寿命多样性:短命植物、一年生植物、二年生植物、多年生植物、木本植物。 营养多样性:自养:绿色植物;异养:非绿色植物:寄生、腐生 生态多样性:陆生、水生;沙生、盐生、冻原植物。 植物学:是一门研究植物界的植物生活和发展规律的生物科学,包括形态结构的发展规律、生长发育的基本特征、类群的进化与分类、植物与环境的相互关系等方面的内容。 植物分类学、植物系统学或系统植物学:根据植物的特征和植物间的亲缘关系、演化顺序,对植物进行分类,并在研究的基础上建立和逐步完善植物各级类群的进化系统的科学。 植物分类的方法:人为分类自然分类系统发育分类 物种:分类学基本单位,指具有一定的分布区,在形态上有较大差异,并具有地理分布上、生态上或季节上的隔离。 变型:形态特征变异相对较小的类型,如花色不同、花重瓣、单瓣的变异、叶片有无色斑等。品种:由人工培育而来的,具有独特的经济性状,并达到一定数量。 植物形态学:研究植物的个体构造、发育及系统发育中形态建成的科学。 植物生理学:研究植物生命活动及其规律的科学。 植物遗传学:研究植物的遗传和变异规律的科学。 植物生态学:研究植物与环境间相互关系的科学。 植物化学:研究植物代谢产物的成分、结构和分布规律的科学。 植物资源学:研究自然界所有植物的分布、数量、用途及开发的科学。 分子植物学:研究植物材料的核酸、蛋白质等大分子的结构和功能以及基因的结构和功能规律的科学。 系统与进化植物学:是建立在植物分类学、形态学、解剖学、胚胎学、孢粉学、细胞学、遗传学、植物化学、生态学和古植物学等学科基础上的一门综合性学科。 向日葵菊科一年生植物,原产北美,是重要的油料植物。 桔梗是桔梗科多年生植物叶对生。 大花草分布于苏门答腊,大花草科寄生植物。 天麻.,兰科腐生植物,其根状茎入药,有熄风镇痉,通络止疼的作用,用以治疗高血压病、头疼、眩晕、肢体麻木、神经衰弱和小儿惊风等。 第一章园林植物生长发育规律 生活周期:从种子开始,当种子成熟后,在适应的外界条件下萌发成幼苗,再进一步生长发育成具根茎叶的植物体,当植物发展到一定阶段时,由营养生长向生殖生长转化,顶芽或侧芽分化形成花芽,再进一步形成花、果实和种子。 器官:植物体内具有一定的形态结构、担负一定生理功能,由数种组织按照一定的排列方式构成的植物体的组成单位。 营养器官:根、茎、叶 繁殖器官:花、果实、种子 根的类型:主根、侧根、不定根

园林植物遗传育种复习思考题

园林植物遗传育种复习思考题 绪论 1、名词解释 遗传:生物的亲代与子代之间性状的相似性 变异:是生物的亲代与子代之间和自带不同个体间性状的相异性 2、简述遗传学的发展 3、园林植物育种在园林生产中的作用 4、目前国内外园林育种的发展趋势是什么? 5、园林植物育种的基本途径有哪些? 第一章园林植物的细胞学基础 1、名词解释 原核细胞:没有核膜包围的核细胞,其遗传物质分散于整个细胞或集中于某一区域形成拟核。如:细菌、蓝藻等。 真核细胞:有核膜包围的完整细胞核结构的细胞。多细胞生物的细胞及真菌类。单细胞动物多属于这类细胞。 染色体:在细胞分裂时,能被碱性染料染色的线形结构。在原核细胞内,是指裸露的环状DNA分子。 染色单体:由超螺线体折叠和螺旋化形成的染色质的四级结构,长度约为2~10微米,它是超螺线体压缩约5倍的结果。细胞分裂中期的染色体是由两个染色单体组成的,两个染色单体在对应的空间位置上以着丝粒结合在一起。 着丝点:着丝粒两侧的具有三层盘状或球状结构的蛋白 同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 非同源染色体:一对染色体与另一对形态结构不同的染色体,则互称为非同源染色体有丝分裂:真核细胞的染色质凝集成染色体、复制的姐妹染色单体在纺锤丝的牵拉下分向两极,从而产生两个染色体数和遗传性相同的子细胞核的一种细胞分裂类型减数分裂:性细胞分裂时,染色体只复制一次,细胞连续分裂两次,染色体数目减半的一种特殊分裂方式。 联会:减数分裂前期Ⅰ偶线期来自两个亲本的同源染色体侧向靠紧,像拉链似的并排配对现象。 受精:雄配子(精子)与雌配子(卵细胞)融合为1个合子过程。 双受精:1个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。另1精核(n)与两个极核(n+n)受精结合为胚乳核(3n),将来发育成胚乳的过程。 2、植物的细胞质里包括哪些重要的细胞器?各有什么特点和作用?细胞核的构造如何? 线粒体;质体(叶绿体、有色体、白色体);内质网;高尔基体;核糖体;溶酶体;微体;液泡;细胞骨架 线粒体是细胞进行有氧呼吸的主要场所。又称”动力车间”. 叶绿体是绿色植物进行光合作用的场所。 内质网是蛋白质合成和加工的场所。 高尔基体对来自内质网的蛋白质加工,分类和包装的场所。

高中生物-遗传学教案

遗传学专题 知识要点 1、遗传学的三大基本定律(分离定律、自由组合定律、连锁与互换定律); 2、杂交育种(杂交育种的原理和优缺点); 3、遗传病以及遗传系谱图分析(常见遗传病遗传类型、系谱图分析专题)。 基础突破 考点整合一:遗传学三大定律 1.分离定律:控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。(一组相对性状分离比3:1)2.自由组合定律:控制不同性状的遗传因子的分离和组合是互不干扰的;在形成配子时,决定同一性状的成对的遗传因子彼此分离,决定不同性状的遗传因子自由组合。(两组相对性状分离比9:3:3:1) 分离定律和自由组合定律的奠基人:孟德尔(豌豆杂交实验)。 豌豆杂交实验成功的原因:(1)成功运用统计学的方法; (2)选择了合适的实验材料。 豌豆:豆科蝶形花亚科,自花传粉、闭花授粉的植物,自然状态下是纯种;有易于区分的性状,实验结果容易观察和分析;豌豆的花大,便于人工授粉。 3.连锁和互换定律:因为基因位于染色体上,并且一对同源染色体上不止存在一对等位基因,因此, 存在于同一染色体上的两个非等位基因在没有联会交换的情况下,总保持遗传上 的一致,这种情况称为基因的连锁。连锁的基因存在与其同源染色体交换重组的 可能,概率与基因距离有关,这种情况称为基因的互换。 【例1】豌豆黄色(Y)对绿色(y)呈显性,圆粒(R)对皱粒(r)呈显性,这两对基因是自由组合的。甲豌豆(YyRr)与乙豌豆杂交,后代中四种表现型的比例为3︰3︰1︰1,乙豌豆的基因型是()A.YyRr B.YyRR C.yyRR D.yyRr

园林植物遗传育种期末考试复习题

园林植物遗传育种期末考试复习题 名词解释: 1、基因型: 2、相对性状: 3、杂种优势: 4、芽变选种: 5、选择育种: 6、表现型: 7、单位性状: 8、自交不亲和性:9细胞质遗传:10母性影响填空、选择、判断改错题涉及的知识点 1、《中华人民共和国种子法》第二章第十二条指出:“国家实行植物新品种保护 制度,对经过人工培育的或发现的野生植物加以开发的植物品种,具备新颖性、_______、一致性、__________的,授予植物新品种权。 2、“临界剂量”是指照射植物某一器官成活率占____%的剂量。 3、许多基因影响同一个性状的表现,称为_________;一个基因影响许多性状发 育的现象称之为_________。 4、非等位基因之间的相互作用可以分为 5、连锁遗传中,若亲本的两个显性性状联系在一起遗传、两个隐性性状联系在 一起遗传的杂交组合称为_________;若一亲本的显性性状和另一亲本的隐性性状联系在一起遗传的杂交组合称为_________。 6、正常的2n个体称为双体,缺体可表示为_________,单体可表示为________, 三体表示为_________。 7、秋水仙碱能抑制细胞分裂时____________的形成,使已正常分离的染色体不 能拉向两极。 8、A、B、C、D四个亲本参加多系杂交,如进行添加杂交,可用简式表示为 ________________;如进行合成杂交,可用简式表示为________________ 9、植物分类学上的基本单位是______;栽培作物的基本单位是______。 10、通常以引种植物在新地区能_______________作为引种驯化的基本要求。1、 选择按人类是否参与可分为: 11、有性繁殖植物的选择育种有两种基本的选择法,即: 12、杂交的遗传学基础是什么,根据杂交亲本亲缘关系的远近,有性杂交可分为: 13、种质资源的保存方法,从大的角度而言可分为 14、某两对连锁基因之间发生交换的孢母细胞数和重组型配子所占的百分数的关系计算 15、选择的实质 16、种质资源按来源分类可分为 17、杂种优势按其表现可分为: 18、染色体结构的改变包括 19、基因突变可分为哪两种类型 20、概率计算 21、发生点突变时,根据基因转录和翻译产生的蛋白质可把点突变分为哪三种类 型 22、基因定位所采用的两种主要方法是 23、核不育/细胞核不育/核质不育型雄性不育材料的育性特点是 24、秋水仙碱的使用一般采用的浓度范围在0.01%~1.0%,以_____%最为常用。 25、电离辐射作用的过程主要有三个阶段物理阶段、化学阶段和______阶段;________的形成标志着辐射的直接物理作用的结束和化学作用的开始。 26、在园艺植物遗传育种领域中有三个具有划时代意义的人物,他们分别是

遗传学电子教案

遗传学教案生命科学学院遗传学科

教材与参考数目: 教材:朱军主编2002年遗传学,面向二十一世纪课程教材 参考数目: 1.徐晋麟,徐沁,陈淳编著,现代遗传学原理,科学出版社2001年 2.刘祖洞主编:遗传学(上,下),高等教育出版社第二版1991 3.方宗熙编著:普通遗传学,科学出版社1979 4.赵寿元,乔守怡主编,现代遗传学,高等教育出版社,2003 5.王亚馥戴灼华:遗传学,高等教育出版社1999 6.浙江农业大学主编,遗传学(第二版),中国农业出版社,1986 7.WilliamS.Klug.MichaelR.Cummings. EssentialsofGenetics.(影印版),高等教育出版社,2002 8.Winter,G.I.《遗传学》(影印版)科学出版社,1999年 9.D.PeterSnustad.MichaelJ.Simmons. PrinciplesofGenetics.(ThirdEdition). JohnWiley&Sons,Inc.2003

《遗传学》是生命科学中重要的基础学科之一,直接探索生命的起源和生物进化的机理,同时又是一门紧密联系生产实际的基础学科,而且《遗传学》发展迅速,知识更新较快。现根据以上情况将该课程教案设计如下: 第一章绪论(2学时) 本章以遗传的基本概念及遗传与变异的辩证统一关系为重点,论述遗传学的产生与发展,同时说明遗传学与生命科学中其它学科的关系以及在国民经济中的应用。 一、目的和意义 1.掌握遗传、变异的概念和遗传学的概念。 2.熟悉遗传学研究内容和任务。 3.了解遗传学发展的主要阶段,以及有哪些重要的科学家做出了重大贡献。 4.了解遗传学在国民经济中的地位,从工、农、医、环境保护等方面介绍遗 传 学的应用。 二、重点内容: 1、遗传与变异的关系。 遗传与变异的辨证关系:遗传和变异是生物界的共同特征,它们之间是辩证 统一的。生物如果没有变异,那么生物就不能进化,而遗传只是简单的重复;生物如果没有遗传,就是产生了变异也不能遗传下去,变异不能积累,变异就失去了意义。所以说,遗传与变异是生物进化的内因,但遗传是相对的,保守的,而变异是绝对的,发展的。 2、基本概念:遗传学;遗传;变异。 遗传学(Genetics)是研究生物遗传与变异规律的一门科学。 遗传(heredity)是指生物的繁殖过程中,亲代和子代各个方面的相似现象。变异(variation)是指子代个体发生了改变,在某些方面不同于原来的亲代。现代的观点:遗传学是研究生物体遗传信息的组成、传递和表达规律的一门 科学,其主题是研究基因的结构和功能以及两者之间的关系,所以遗传学可称为基因学。 3、遗传学研究的内容: 随着遗传学的不断发展,遗传学研究的范围越来越广泛,它主要包括遗传物质的本质、遗传物质的传递和遗传物质的表达三个方面。 a、遗传物质的结构:化学本质,它所包含的遗传信息、结构、功能、组织和变化;总体结构—基因组—的结构分析;遗传物质的改变(突变和畸变)

相关主题
文本预览
相关文档 最新文档