当前位置:文档之家› 巧用极限法解物理试题

巧用极限法解物理试题

巧用极限法解物理试题
巧用极限法解物理试题

巧用极限法解物理试题

物理题千变万化,解题方法也多种多样。但在有些问题中,若能另辟奚径,寻找解题捷径,则既能培养学生的发散性思维能力,又能节约时间,提高效率.其中极限法就是这样.下面举例说明极限法的运用。

1、在力学解题中的运用

例 1 将一小球以一定初速度竖直向上抛出去,若空气阻力不能忽略,则小球上升时间t 1和下降时间t 2的关系是

A.t 1>t 2

B.t 1

C.t 1=t 2

D.无法确定

分析 由于空气阻力的作用,使得上升加速度增大,下降加速度减小.假设空气阻力足够大,以致小球上升后无法下降,即下降时加速度为零,则下降时间无限大,所以t 1

例2 如图所示,位于斜面上的物块M 在沿斜面向上的

力F 作用下,处于静止状态,则斜面作用于物块的静摩擦力的 (A)方向可能沿斜面向上; (B)方向可能沿斜面向下; (C)大小可能等于零; (D)大小可能等于F

分析 假设F 很大,以致物体有向上运动的趋势,则静摩擦力的方向沿斜面向下;假设F 很小,以致物体有下滑的趋势,则静摩擦力方向沿斜面向上;若F 大小合适,物体既没有向上也没有向下的运动趋势,则摩擦力为零.另外由平衡方程可解得D 也正确,故正确答案为ABCD.

例 3 如图,在一容器中盛有水银,一球浮在水银面上,并有部分露在水银面外.当往水银上方缓慢地注入水时,球是上升还是下降?

分析 未注入水之前,球的上方充满空气,其密度小于水银密度.

现注入水,其密度比空气大而比水银小,假设注入液体的密度再大一

点,比如注入水银,则因球总要浮在水银面上而上升,故当注入水时,球上升.反之,若原来是水,而后把水吸走,则小球会下降.

小结:所谓极限法就是在研究问题时,当问题中的物理量出现不确定情况时,通过恰当选取其中某个物理量将其推向极端(如“极大”、“极小”、“极左”、“极右”、“极高”、“极低”等),从而使隐含的物理关系得以暴露的一种方法.在力学中,如时间、位移、速度、加速度、力等物理量变化时都可用极限法来求分析。

2、在电学解题中的运用

例4 如图,滑动变阻器AB 的总电阻与图中R 的阻值相同,电源电动势为ε,内阻不计.当触动头C 从左端A 点开始一直向

右滑动的过程中,安培表的读数怎么变化? 分析 在A 点时,R 总=R/2,流过安培表的电流为I=ε/R.假设

滑至最右端B 点,则R 总'=R,I '=ε/R =I ,故在A 、B 两点安培表读数相同。这是否说明安培表读数不变呢?再假设滑至中点(因中点是电路的对称点),则 R 总''=5ε/6R,I ''=4ε/5R

利用换元法解方程组

2 例如:x 2 3x x 2 3x 2 3x 2 2x 3x 2 2x 4x 2 5x 观察发现 2 3x 2 3x 2x 4x 2 5x 1,故可设 x 2 3x 2 3x 2 2x v ,原方程变为u 2 uv v 2 ,方程由繁变简,可得解? 第 6 讲利用换元法解方程 、方法技巧 (一) 换元法 解方程是用新元代替方程中含有未知数的某个部分,达到化简的目的 . (二) 运用换元法解方程,主要有三种类型:分式方程、无理方程、整式(高次)方程 解分式方程、无理方程、 整式(高次)方程的基本思想是将分式方程化为整式方程、 无理方程化为有理方程、整式(高次)方程逐步降次 (三) 换元的方法是以所讨论方程的特有性质为依据的, 不同的方程就有不同的换元方 法,因此, 这种方法灵活性大,技巧性强?恰当地换元,可将复杂方程化简,以 便寻求解题的途径. 常用换元方法有局部换元、均值换元、倒数换元、常数换元等. 82,使方程变得易解,这是均值换元法 例如: 5 — 6 0,可使用局部换元法, x 1 ②x 2 0,变形后也可使用局部换元法,设 2x 2 ~2 x x 2 1 19 —,看着很繁冗,变形整理成 6 x 2 x 2 2 x 2 x 19 一 —时,就可使用局部换兀法 6 82 , 可设 口 x 2,方程变成 ⑤6x 4 5x 3 38x 2 5x 符合与中间项等距离的项的系数相等, 如6x 4 与6 , 5x 3与5x 系数相等,可构造 x 1换元,是倒数换元法. x ⑥x 3 2、.3x 2 3x .3 1 0 ,不易求解,若反过来看,把设 x 看作已知数, 把.3设为设t ,则方程就变成x t 2 2x 2 1 t 数字换元法不常用,但不失为一种巧妙的解题方法 有时根 据方程各部分特点可设双元,达到化繁为简, 求解的目的

利用“极限思维法”巧解化学计算题

利用“极限思维法”巧解化学计算题 (湖北松滋湖北省松滋市实验中学) 极限思维法简称极值法,就是把研究的对象或变化过程假设成某种理想的极限状态进行分析、推理、判断的一种思维方法;是将题设构造为问题的两个极端,然后依据有关化学知识确定所需反应物或生成物的量值进行判断分析求得结果。极值法的特点是“抓两端,定中间”。极值法的优点是将某些复杂的、难于分析清楚的化学问题(如某些混合物的计算、平行反应计算和讨论型计算等)变得单一化、极端化和简单化,使解题过程简洁,解题思路清晰,把问题化繁为简,化难为易,从而提高了解题效率。下面就结合部分试题具体谈谈极值法在化学解题中应用的方法与技巧。 一.用极值法确定判断物质的组成 例1:某K2CO3样品中含有Na2CO3、KNO3和Ba(NO3)2三种杂质中的一种或两种,现将6.9g 样品溶于足量水中,得到澄清溶液。若再加入过量的CaCl2溶液,得到4.5g沉淀,对样品所含杂质的判断正确的是() A、肯定有KNO3和Na2CO3,没有Ba(NO3)2 B、肯定有KNO3,没有Ba(NO3)2,还可能有Na2CO3 C、肯定没有Na2CO3和Ba(NO3)2,可能有KNO3 D、无法判断 解析:样品溶于水后得到澄清溶液,因此一定没有Ba(NO3)2。对量的关系用“极值法”可快速解答。设样品全为K2CO3,则加入过量的CaCl2溶液可得到沉淀质量为5g,;若6.9g全为Na2CO3则可得到沉淀质量为6.5g。显然,如果只含有碳酸钠一种杂质,产生沉淀的质量将大于5g;如果只含有KNO3,由于KNO3与CaCl2不反应,沉淀的质量将小于5g,可能等于4.5g。综合分析,样品中肯定有KNO3,肯定没有Ba(NO3)2,可能有Na2CO3。故本题选B。 【点评】用极值法确定杂质的成分:在确定混合物的杂质成分时,可以将主要成分和杂质极值化考虑(假设物质完是杂质或主要成分),然后与实际比较,即可迅速判断出杂质的成分。二.用极值法确定可逆反应中反应物、生成物的取值范围 例2:一定条件下向2L密闭容器中充入3molX气体和1molY气体发生下列反应:2X(g) + Y(g) 3Z(g) +2W(g),在某一时刻达到化学平衡时,测出下列各生成物浓度的数据肯定错误的是() A、c(Z)=0.75mol?L-1 B、c(Z)=1.20mol?L-1 C、c(W)=0.80 mol?L-1 D、c(W)=1.00 mol?L-1 解析:用极限思维假设此反应中3molX和1molY能完全反应,求出最大值。1molY完全反应生成3molZ和2molW。所以,0<c(Z) <1.5 mol?L-1;0<c(W) <1 mol?L-1 故答案为D。 【点评】由于可逆反应总是不能完全进行到底,故在可逆反应中分析反应物、生成物的量时利用极值法把可逆反应看成向左或向右进行完全的反应,这样可以准确、迅速得出答案。三.利用极值法确定多个平行反应中生成物浓度的范围 例3:在标准状况下,将NO2、NO、O2的混合气体充满容器后倒置于水中,气体完全溶解,溶液充满容器。若产物不扩散到容器外,则所得溶液的物质的量浓度为() A、1/22.4 mol?L-1 B、1/28 mol?L-1 C、1/32 mol?L-1 D、1/40 mol?L-1

极限法在初中物理中的应用

教学内容:极限法初中物理教学中的应用 教学重点:极限法初中物理教学中的应用 教学难点:对极限法的理解与运用 引入:问在雨中,一个人从A走到B,是走的快被淋水多,还是走的慢被淋水多?如果说走的慢被淋的水少的话,一下利用极限法就可以排除了,慢的极限就为0,这个人速度为0,那么相当于这个人一直在雨水中淋着。这是生活对极限法很好的诠释。 进行新课:极限法的实质 有些物理问题涉及的因素较多,过程复杂,我们往往难以洞察其变化规律并对其作出迅速准确的判断.但是,如果我们将问题推想到极端状态或极端条件下进行分析,问题有时会顿时变得明朗而简单. 极限法定义:将问题从一般状态推到特殊状态进行分析处理的解题方法就是极限法,又称极端法. 教学重点:极限法的应用 教学难点:极限法的理解 极限法听起来似乎陌生,但这只是在中学教学中没有对学生具体的给以定义,事实上在初中阶段, 很多地方都应用到了极限法,刚刚接触物理时就将这种方法渗透到教学中, 以便于发展学生的科学思维能力。 教材从第二章《声现象》的第一节就开始渗透极限法 .在探究声音的传播是否需要介质时,用另一个手机拨通玻璃罩内的手机,随着罩内空气的不断抽出,听到手机铃声越来越弱,利用极限法,假设罩内被抽成真空,将不能听到铃声.由此得出结论,声音

不能在真空中传播。只不过在这时,我们给它定义为“理想化模型法”,或“建立在实验基础上的推理法”而已。 教材第八章第一节《牛顿第一定律》实验“探究阻力对物体运动的影响”时发现,小车受到的阻力越小,小车运动的路程越远,应用极限法,设想小车在绝对光滑的水平面上运动,即不受到阻力作用小车将永远沿直线运动下去。著名的物理学家牛顿在伽利略等科学家研究的基础上,多次试验,深入研究,最终总结出著名的“牛顿第一定律”。 教材第十二章第三节《机械效率》中,在探究影响斜面机械效率的因素时,先让学生猜想,斜面的机械效率与斜面的倾斜程度有什么关系?由于学生的知识有限很难进行合理的猜想。不妨引导学生利用极限法的思想,让斜面无限制的倾斜以至于水平,将发现总功无限大,机械效率将减小。 教材第十八章《电学》中,实际上也应用到了极限法,就如何认识电路的串联和并联时,由于电压表的内阻很大,将电压表的内阻看作无限大,致使电流无法通过,相当于断路,而电流表的内阻很小,则趋向于零,电流表相当于纯导线,从而使一个既有电压表,又有电流表的复杂电路简化为只有用电器的电路。 1.极限法在速度中的应用 一艘小船以速度V I从上游A点到B点再返回A点用时为t1(河水流动速度为V2),若河水静止,这艘船还是以速度V1从A 点到B点再返回A点用时为t2,则t1与t2的关系是:() At1t2 Ct1=t2 D无法判断 常规解题:t1=s/(V I+V2)+s/(V I-V2) t2=s/V I+s/V I=2s/V I 若利用极限法假设V I与V2相同,则船逆水向上时速度为0,将永远向上运动,故t1

合并法换元法解元次方程组

合并法、换元法解二元一次方程组 (一)知识教学点 1.掌握用合并法、换元法解二元一次方程组的步骤. 2.熟练运用合并法、换元法解二元一次方程组. (二)能力训练点 1.培养学生的观察分析能力; 2.训练学生的运算技巧,养成检验的习惯. (三)德育渗透点 消元,化未知为已知的数学思想. (四)美育渗透点 通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美. 二、学法引导 1.教学方法:引导发现法、练习法,指导法. 2.学生学法:在前面已经学过二元一次方程组的解法,故在求解过程中始终应抓住消元的思想方法. 三、重点、难点、疑点及解决办法 (-)重点 使学生会用合并法、换元法解二元一次方程组. (二)难点 灵活运用合并法、换元法的技巧. (三)疑点 如何“消元”,把“二元”转化为“一元”.

四、课时安排 一课时. 五、教具学具准备 电脑 投影仪. 六、教学过程 一导 运用导学案 自主学习 (一)解二元一次方程组的基本思路是消元,即通过运用代入法和加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解.而对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错.若能根据题目的特点,适时改进方法,不仅可以减少运算量,而且可以又快又准地解出方程组. (二)自主探究请同学们根据提示用合并法解二元一次方程组 (略) 设计意图:以学生的兴趣为主,由易至难,逐层递进,逐步完成各个任务。 (三)总结 二研 合作学习 研究探讨 (一)例题解析 (1) ???-=+=+② 10y 65x ① 1056y x

(2) ???=+-=-+-② 72009)-7(2010y 9)4(2x ① 3)20092010(3)92(2y x 设计意图:合作探究,探索比较,发现规律,使每位学生参与其中,成为课堂的主人,提高解题技巧 (二)练习题 (1)???=+=+② 79y 137x ① 61713y x (2)???=+=+② 74y 1911x ① 1061119y x (3)?????-=--+=-++.1106,3106y x y x y x y x (4)??? ????=--+=-++.86)32(55)1(3,36)32(5)1(2y x y x 设计意图:竞赛完成,激发学习热情,巩固强化 三验 课堂小测验(略) 设计意图:对学生完成情况及时了解,及时总结,对课堂教学及时反思,对下一步的教学进行适时,适当的调整。并对学生的解题情况进行总体的评价,要本着激励的原则,使学生有成就感。

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

巧用换元法求解极限

万方数据

巧用换元法求解极限 作者:林群 作者单位:韩山师范学院数学与信息技术系 刊名: 科技信息 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期):2009,""(6) 被引用次数:0次 参考文献(3条) 1.华中理工大学教学系高等数学 2.同济大学教学系高等数学 2007 3.吉艳霞用等价无穷小量代换求极限的探讨[期刊论文]-运城教育学院学报 2007(02) 相似文献(10条) 1.期刊论文林清华探讨洛必达法则求解极限-湖北广播电视大学学报2008,28(12) 极限作为重要的思想方法和研究工具贯穿于高等数学课程的始终.本文通过对洛必达法则求极限的深入探讨,针对不同题型归纳总结出具体的化简转化的方法;利用数列极限和函数极限的关系间接地应用洛必达法则求数列未定式,充分体现了洛必达法则应用的广泛性,给求极限提供了强有力的工具. 2.期刊论文王悦关于利用洛必达法则求极限的几点探讨-科技信息2009,""(2) <高等数学>是大学中的基础课程,极限是学生一开始就要接触的最基本的知识.其中有一类未定式的极限不能用"商的极限等于极限的商"这一法则,而要用洛必达法则.洛必达法则内容很简单,使用起来也方便,但在具体使用过程中,一旦疏忽,解题就可能出错.对于初学者来讲,若盲目使用此法则,会导致错误.本文就利用该法则解题中的几点注意作以分析与探讨,并举例说明. 3.期刊论文杨黎霞使用洛必达法则求极限的几点注意-科教文汇2008,""(25) 如果当x→a或x→∞时,两个函数∫(x)与F(x)都趋于零或都趋于无穷大,那么极限lim x→a x→∞∫(x)/F(x)可能存在,也可能不存在,洛必达法则是计算此类未定式极限行之有效的方法,然而,对于本科一年级的初学者来讲,若盲目使用此法则,会导致错误.本文就使用该法则解题过程中的几点注意作了分析与探讨. 4.期刊论文吴维峰.Wu Weifeng对等价无穷小代换与洛必达法则求极限的探讨-潍坊教育学院学报2008,21(2) 本文对用等价无穷小代换与洛必达法则求函数的极限进行了探讨. 5.期刊论文于祥洛必达法则应用误区的分析-北京电力高等专科学校学报2010,28(2) 洛必达法则是在柯西中值定理的基础之上推出的一种求不定式极限的重要定理,它的应用避免了因机械使用极限四则运算法则"商的极限等于极限的商"而产生的错误.但不可忽视的是由于对洛必达法则的使用不当,在计算不定式极限时同样得不到正确结果,究其因为主要是对洛必达法则的使用条件把握不够准确.本文结合具体例子对洛必达法则应用中易产生的误区进行了探讨和分析. 6.期刊论文夏滨利用洛必达法则求极限的方法与技巧探讨-现代企业教育2008,""(4) 本文主要通过一些典型例题介绍利用洛必达法则求极限的方法与技巧,从而更好地解决未定式问题. 7.期刊论文汤茂林.TANG Mao-lin用洛必达法则求不定式极限的技巧-职大学报2007,""(2) 本文介绍用洛必达法则求不定式极限的技巧. 8.期刊论文张波.李秀菊.赵广华关于"洛必达法则"求未定式极限的几点思考-网络财富2009,""(11) 本文通过洛必达法则的内客,给出了应用此法财的几类需要注意的情况. 9.期刊论文冯志敏.薛瑞使用洛必达法则的实质及其注意事项-中国科技信息2009,""(15) 本文主要总结了洛必达法则在求未定式极限中的应用,需要注意的问题,并深入分析了在使用洛必过法则的时候实质是对无穷小或无穷大进行降阶,从而经过有限次的使用法则将未定式转化成一般的极限问题,再利用极限的四则运算法则求出极限.另外指出在使用的时需要注意条件的满足,与其它求极限的方法如无穷小的替换的结合. 10.期刊论文刘蒲凰洛必达法则应用两则-高等数学研究2004,7(2) 指出洛必达法则在证明二重极限不存在时的一个应用,并指出了洛必达法则的一个推广 本文链接:https://www.doczj.com/doc/f018252006.html,/Periodical_kjxx200906374.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:bac87a45-fe3a-4be7-ae02-9dcd008a87c0 下载时间:2010年8月9日

(完整word)高中化学极限法

专题7·极限法 极限判断是指从事物的极端上来考虑问题的一种思维方法。该思维方法的特点是确定了事物发展的最大(或最小)程度以及事物发生的范围。 例1 :在120℃时分别进行如下四个反应: A.2H2S+O2=2H2O+2S B.2H2S+3O2=2H2O+2SO2 C.C2H4+3O2=2H2O+2CO2D.C4H8+6O2=4H2O+4CO2 (l)若反应在容积固定的容器内进行,反应前后气体密度(d)和气体总压强(P)分别符合关系式d前=d后和P前>P后的是;符合关系式d前=d后和P前=P后的是(请填写反应的代号)。 (2)若反应在压强恒定容积可变的容器内进行,反应前后气体密度(d)和气体体积(V)分别符合关系式d前>d后和V前d后和V前>V后的是(请填写反应的代号)。 方法:从反应物全部变成生成物来作极限判断。 解析:(1)在容积固定的容器内,四个反应的反应物和生成物中除硫单质外均为气体, 总结:解本题还应用了物理学中气态方程和化学中的阿伏加德罗定律。这是一道物理和化学学科间综合试题,体现了当今的命题方向。 例2 :把含有某一种氯化物杂质的氯化镁粉末95mg溶于水后,与足量的硝酸银溶液反应, 生成氯化银沉淀300mg,则该氯化镁中的杂质可能是() A.氯化钠B.氯化铝C.氯化钾D.氯化钙

方法:采用极值法或平均分子量法。 解析:[解法一]:(极值法) 假设95mg全为MgCl2,无杂质,则有:MgCl2 ~ 2AgCl 95mg2×143.5mg 生成沉淀为287mg,所以假设95mg全部为杂质时,产生的AgCl沉淀应大于300mg。 总结:极值法和平均分子量法本质上是相同的,目的都是求出杂质相对分子量的区间值,或者杂质中金属元素的原子量的区间值,再逐一与选项比较,筛选出符合题意的选项。 例3 :在一个容积固定的反应器中,有一可左右滑动的密封隔板,两侧分别进行如图所示的可逆反应.各物质的起始加入量如下:A、B和C均为4.0mol、D为6.5 mol、F为2.0 mol,设E为x mol.当x在一定范围内变化时,均可以通过调节反应器的温度,使两侧反应都达到平衡,并且隔板恰好处于反应器的正中位置.请填写以下空白:

物理竞赛极限法

五、极限法 极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。 例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度系数为k ,则物块可能获得的最大动能为 。 解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理,小球所受合力为零的位置速度、动能最大。所以速最大时有 mg = kx ① 由机械能守恒有:mg (h + x) = E k +1 2kx 2 ② 联立①②式解得:E k = mgh -22 m g 2k 例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点的时间最短。求该直轨道与竖直方向的夹角β 。 解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关,求时间t 对于β角的函数的极值即可。 由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为: a = gcos β 该质点沿轨道由静止滑到斜面所用的时间为t ,则: 12 at 2 =OP 所以: ① 由图可知,在ΔOPC 中有: o OP sin(90)-α=o OC sin(90) +α-β 所以:OP = OC cos cos() α α-β ② 将②式代入①式得: 显然,当cos(α-2β) = 1 ,即β =2 α 时,上式有最小值。 所以当β = 2 α 时,质点沿直轨道滑到斜面所用的时间最短。 图5—1 图5—2

综合解一元二次方程—换元法

2.2.5《解一元二次方程—换元法》典例解析与同步训练 【知识要点】 1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化, 这叫换元法. 换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理. 2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母 来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元 的方法变成一元二次方程,从而达到降次的目的. 【典例解析】 例1.用适当方法解下列方程: (1)2x2﹣5x﹣3=0 (2)16(x+5)2﹣9=0 2 2 2 . (3)(x+x)+(x+x)=6 例题分析:本题考查了一元二次方程的几种解法:①公式法;②直接开平方法;③换元法(1)用公式法解一元二次方程,先找a,b,c;再求△;再代入公式求解即可; (2)用直接开平方法解一元二次方程,先将方程化为(x+5)2= ,直接开方即可;(3)设t=x2+x,将原方程转化为一元二次方程,求解即可. 解:(1)∵a=2,b=﹣5,c=﹣3,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣3)=25+24=49, ∴x= = = , ∴x1=3,x2=﹣; (2)整理得,(x+5)2=, 开方得,x+5=±, 即x1=﹣4 ,x2=﹣5 , 2 +x,将原方程转化为2 , (3)设t=x t+t=6 因式分解得,(t﹣2)(t+3)=0, 解得t1=2,t2=﹣3. 2 2 ∴x+x=2或x+x=﹣3(△<0,无解), ∴原方程的解为x1=1,x2=﹣2.

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

极限法(特殊值法)在物理高考中的应用

极限法(特殊值法)在物理高考中的应用 “极限法”是一种特殊的方法,它的特点是运用题中的隐含条件,或已有的概念,性质,对选项中的干扰项进行逐个排除,最终达到选出正确答案的目的。 极限法在物理解题中有比较广泛的应用,将貌似复杂的问题推到极端状态或极限值条件下进行分析,问题往往变得十分简单。利用极限法可以将倾角变化的斜面转化成平面或竖直面。可将复杂电路变成简单电路,可将运动物体视为静止物体,可将变量转化成特殊的恒定值,可将非理想物理模型转化成理想物理模型,从而避免了不必要的详尽的物理过程分析和繁琐的数学推导运算,使问题的隐含条件暴露,陌生结果变得熟悉,难以判断的结论变得一目了然。 1.(12安徽)如图1所示,半径为R 均匀带电圆形平板,单位面积带电量为σ,其轴线上任意一点P (坐标为x )的电场强度可以由库仑定律和电场强度的叠加原理求出: E =2πκσ () ??? ? ??? ?+- 2 1 221x r x ,方向沿x 轴。现考虑单位面积带电量为0σ的无限大均匀带电平板,从其中间挖去一半径为r 的圆板,如图2所示。则圆孔轴线上任意一点Q (坐标为x )的电场强度为 ( ) A. 2πκ0 σ () 2 1 2 2 x r x + B. 2πκ0 σ () 2 1 2 2 x r r + C. 2πκ0 σr x D. 2πκ0 σ x r 【解析】当→∝R 时, 2 2 x R x +=0,则0k 2E δπ=,当挖去半径为r 的圆孔时,应在E 中减掉该圆孔对应的场强)(2 2 r x r x -12E +=πκδ,即2 1 2 20 x r x 2E ) (+='π κδ。选项A 正确。 2.(11福建)如图,一不可伸长的轻质细绳跨过滑轮后,两端分别悬挂质量为m 1和m 2的物体A 和B 。若滑轮有一定大小,质量为m 且分布均匀,滑轮转动时与绳之间无相对滑动,不计滑轮与轴之间的磨擦。设细绳对A 和B 的拉力大小分别为T 1和T 2,已知下列四个关于T 1的表达式中有一个是正确的,请你根据所学的物理知识,通过一定的分析判断正确的表达式是( ) A.21112(2)2() m m m g T m m m += ++ B. 12112(2)4() m m m g T m m m += ++ O R ● x P 图 1 图2

极限思维法、特殊值法、量纲法、等解高中物理选择题

高中物理“超纲”选择题解题方法 1.有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断。例如从解的物理量的单位,解随某些已知量变化的趋势,解在一定特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性。 举例如下:如图所示,质量为M、倾角为θ的滑块A放于水平地面上。把质量为m的滑块B放在A的斜面上。忽略 一切摩擦,有人求得B相对地面的加速度a = M+m gsinθ,式中g为重力加速度。 M+msin2θ 对于上述解,某同学首先分析了等号右侧量的单位,没发现问题。 他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都 是“解可能是对的”。但是,其中有一项是错误 ..的。请你指出该项。 () A.当θ=0?时,该解给出a=0,这符合常识,说明该解可能是对的 B.当θ=90?时,该解给出a=g,这符合实验结论,说明该解可能是对的 C.当M≥m时,该解给出a=gsinθ,这符合预期的结果,说明该解可能是对的

D .当m ≥M 时,该解给出a =sin g θ ,这符合预期的结果,说明该解可能是对的 2.某个由导电介质制成的电阻截面如图所示。导电介质的电阻率为ρ、制成内、外半径分别为a 和b 的半球壳层形状(图中阴影部分),半径为a 、电阻不计的球形电极被嵌入导电介质的球心为一个引出电极,在导电介质的外层球壳上镀上一层电阻不计的金属膜成为另外一个电极。设该电阻的阻值为R 。下面给出R 的四个表达式中只有一个是合理的,你可能不会求解R ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。根据你的判断,R 的合理表达式应为 ( ) A .R= ab a b πρ2) (+ B .R= ab a b πρ2) (- C .R=) (2a b ab -πρ D .R= ) (2a b ab +πρ 3.图示为一个半径为R 的均匀带电圆环,其单位长度带电量为η。取环面中心O 为原点,以垂直于环面的轴线为x 轴。设轴上任意点P 到O 点的距离为x ,以无限远处为零电势,P 点电势的大小为Φ。下面给出 Φ的四个表达式(式中k 为静电力常量),其中只有一个是合理的。你 可能不会求解此处的电势Φ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断。根据你的判断,Φ的合理表达式应为 ( ) I

利用换元法解方程(组)教学内容

第6讲 利用换元法解方程 一、方法技巧 (一)换元法解方程是用新元代替方程中含有未知数的某个部分,达到化简的目的. (二)运用换元法解方程,主要有三种类型:分式方程、无理方程、整式(高次)方程. 解分式方程、无理方程、整式(高次)方程的基本思想是将分式方程化为整式方程、无理方程化为有理方程、整式(高次)方程逐步降次. (三)换元的方法是以所讨论方程的特有性质为依据的,不同的方程就有不同的换元方 法,因此,这种方法灵活性大,技巧性强.恰当地换元,可将复杂方程化简,以便寻求解题的途径. 常用换元方法有局部换元、均值换元、倒数换元、常数换元等. 例如:① 256011x x x x ????++= ? ?++? ??? ,可使用局部换元法,设1x y x =+ ②22110x x x x +++=,变形后也可使用局部换元法,设1x t x += ③222212219116 x x x x x x x +++++=+++,看着很繁冗,变形整理成222211191116 x x x x x x +++++=+++时,就可使用局部换元法. ④()()443182x x +++=,可设()()3122x x y x +++==+,方程变成 ()()441182y y ++-=,使方程变得易解,这是均值换元法. ⑤4326538560x x x x +-++=,符合与中间项等距离的项的系数相等, 如46x 与6,35x 与5x 系数相等,可构造1x x + 换元,是倒数换元法. ⑥32310x x +++=,不易求解,若反过来看,把设x 看作已 t ,则方程就变成()() 2232110x t x t x ?+++-=, 数字换元法不常用,但不失为一种巧妙的解题方法. 有时根据方程各部分特点可设双元,达到化繁为简,求解的目的. 例如:

求极限的常用方法典型例题

求极限的常用方法典型例题 掌握求简单极限的常用方法。求极限的常用方法有 (1) 利用极限的四则运算法则; (2) 利用两个重要极限; (3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量); (4) 利用连续函数的定义。 例 求下列极限: (1)x x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1 0)21(lim -→ (4)2 22)sin (1cos lim x x x x x +-+∞→ (5))1 1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x x x 33sin 9lim 0-+→ =) 33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3 3sin 91lim 3sin lim 00++?→→x x x x x =2 1613=? (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1 )1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim 11+?--=→→x x x x x 2 11111=+?= (3)利用第二重要极限计算,即 x x x 1 0)21(lim -→=2210])21[(lim --→-x x x 2e -=。 (4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即

222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。 (5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11 01e 00-=-+?

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .0 x g x f x g x f x x x x x →→→±=± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?=? 又若0)(lim 0 ≠→x g x x ,则 ) () (x g x f 在0x x →时也存在,且有 )()()() (lim lim lim 0 x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、00 等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 " 例1:求24 22 lim ---→x x x 解:原式=()()()022 22lim lim 22 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim 0 =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有

()()1sin lim 0=→x g x g x x 或()()1sin lim =∞ →x g x g x 例2:x x x -→ππ sin lim 解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim 0 ==-→→t t x x t x ππ ~ 例3:求() 11 sin 21 lim --→x x x 解:原式=()()()()()()()211sin 1111sin 1221 21lim lim =--?+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)1 1(lim 来求极限 e x x =+∞ →)1 1(lim 的另一种形式为e =+→α α α1 )1(lim .事实上,令 .1 x =α∞→x .0→?α所以=+=∞ →x x x e )11(lim e =+→ααα1 0)1(lim 例4: 求x x x 1 )21(lim +→的极限 解:原式=221 210)21()21(lim e x x x x x =?? ?+????+→ 利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。 ⒊利用等价无穷小量代换来求极限 所谓等价无穷小量即.1) () (lim =→x g x f x x 称)(x f 与)(x g 是0x x →时的等价无穷小量,记作)(x f )(~x g .)(0x x →.

高中物理极限法的应用

极限法的应用 一. 本周教学容: 物理解题方法复习专题——极限法的应用 二. 重点、难点: (一)物理思想 在物理问题中,有些物理过程虽然比较复杂,但这个较为复杂的物理过程又包含在一个更复杂的物理过程中。若把这个复杂的物理过程分解成几个小过程,且这些小过程的变化是单一的。那么,选取全过程的两个端点及中间的奇变点来进行分析,其结果必然可以反映所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思维法的物理思想。 极限法是一种直观、简捷的科学方法。在我们已学过的物理规律中,常能看到科学家们利用这种思维方法得到的物理规律。例如伽利略在研究从斜面上滚下的小球的运动时就运用了极限思维法将第二斜面外推到极限——水平面;开尔文把查理定律外推到压强为零这一极限制,而引入了热力学温标……这些例子说明,在物理学的发展和物理问题的研究中,极限思维法是一种重要的方法。(二)如何应用极限法解决问题 应用极限思维法时,特别要注意到所选取的某段物理过程研究的物理量的变化应是单一的。如增函数或减函数。但不能在所选过程中既包含有增函数,又包含有减函数的关系,

这种题目的解答是不能应用极限法的。因此,在解题时,一定要先判定物理量间的变化关系是否为单调变化。若物理量间的变化关系为单调变化,可假设某种变化的极端情况,从而得出结论或作出判断。 极限法常见用于解答定性判断题和选择题,或者在解答某些大题时,用极限法确定“解题方向”。在解题过程中,极限法往往能化难为易,达到“事半功倍”的效果。 【典型例题】 例1. 如图所示电路中,当可变电阻R的阻值增大时() A. A、B两点间的电压U增大 B. A、B 两点间的电压U减小 C. 通过R的电流I增大 D. 通过R 的电流I减小 分析: 可变电阻R的变化围在零到无穷大之间连续变化。当R=0 ;当R→∞时,R断路,时,A、B间短路,此时U=0,I E R r =+ () 1 ,()。可见,当R的阻值增大时,U增大而I ==++ I U ER R R r 212 减小,因此A、D选项正确。 点拨:

换元法解方程

换元法解方程 西安市第八十五中学江树基 换元法是用新元代替方程中含有未知数的某个部分,达到化简的目的.换元的方法是以所讨论方程的特有性质为依据的,不同的方程就有不同的换元方法,因此,这种方法灵活性大,技巧性强.恰当地换元,可将复杂方程化简,以便寻求解题的途径.常用方法有均值代换、多元代换、常数代换等. 解分式方程、无理方程、高次方程的基本思想是将分式方程化为整式方程、无理方程化为有理方程、高次方程逐步降次,实现这一基本思想的方法有多种,其中换元法是常用的一种重要方法,本文注重研究用换元法解方程的技能、技巧. 一、分式方程 分析:这个方程左边两个分式互为倒数关系,抓住这一特点,可设 ∴(y-1)2=0,解得y=1. 经检验,x 1,x 2 都是原方程的根. 分析:观察方程的分母,发现各分母均是关于x的二次三项式,仅常数项不同,抓住这一特点,可设y=x2+2x. 解:设y=x2+2x,则原方程可化为 即y2-y-12=0,解得y1=4,y2=-3.

x2+2x=-3,无实数解. 例3 解方程 分析:观察方程的分母,发现三个分母都是关于x的二次三项式,仅一次项不同,抓住这一特点,可设y=x2+2x+10. 解:设y=x2+2x+10,则原方程可化为 解得y =9x,y2=-5x. 1 由x2+2x+10=9x,解得x =5,x2=2. 1 由x2+2x+10=-5x,解得x =-5,x4=-2. 3 经检验知,它们都是原方程的解. 注:以上三个例子可看出,换元时必须对原方程进行仔细观察、分析,抓住方程的特点,恰当换元,化繁为简,达到解方程的目的. 二、无理方程 两边立方,并整理得 y3-2y2+3y=0,即y(y2-2y+3)=0, ∴y=0或y2-2y+3=0,无解. 经检验知x=-1是原方程的解. 可设两个未知数,利用韦达定理解. 原方程为m+n=1,又∵(m+n)3=m3+n3+3mn·(m+n)=4+3mn=1,∴mn=-1.

求函数极限的方法和技巧

求函数极限的方法和技巧 在数学分析和微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。 一、求函数极限的方法 1、运用极限的定义: 例: 用极限定义证明:12 2 3lim 22=-+-→x x x x 证: 由24 4122322-+-=--+-x x x x x x ()22 22 -=--= x x x 0>?ε,取εδ=,则当δ<-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限δε-定义有: 12 2 3lim 22=-+-→x x x x 。 2、利用极限的四则运算性质: 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I)[]=±→)()(lim 0x g x f x x )(lim 0x f x x →±B A x g x x ±=→)(lim 0 (II)[]B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则:B A x g x f x g x f x x x x x x ==→→→)(lim ) (lim )()(lim 0 00 (IV )cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于时也同样成立-∞→+∞→∞→x x x ,, 例:求 4 5 3lim 22+++→x x x x 解: 453lim 22+++→x x x x = 2 5 4252322=++?+ 3、约去零因式(此法适用于型时0 ,0x x →) 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式=() ( ) ) 12102(65) 2062(103lim 2232232+++++--+---→x x x x x x x x x x x

相关主题
文本预览
相关文档 最新文档