当前位置:文档之家› (完整版)初三数学实数的混合运算

(完整版)初三数学实数的混合运算

(完整版)初三数学实数的混合运算
(完整版)初三数学实数的混合运算

初三数学实数的混合运算2

一.填空题(共6小题)

1.计算:=.

2.计算:﹣|﹣2|=.

3.计算:|﹣3|++(﹣1)0=.

4.计算|﹣|+的值是.

5.计算:+(﹣1)0=.

6.(﹣1)0+()﹣1=.

二.解答题(共24小题)

7.计算:cos60°﹣2﹣1+﹣(π﹣3)0.

8.计算:(3﹣π)0+4sin45°﹣+|1﹣|.

9.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.

10.计算:+|2﹣3|﹣()﹣1﹣(2015+)0.11.计算:(+﹣1)(﹣+1)

12.计算:(﹣1)4﹣2tan60°++.

13.(1)计算:2﹣1﹣tan60°+(π﹣2015)0+|﹣|;

(2)解方程:x2﹣1=2(x+1).

14.计算:(2015﹣π)0+(﹣)﹣1+|﹣1|﹣3tan30°+6.15.计算:(π﹣3.14)0+﹣()﹣2+2sin30°.

16.计算:﹣12﹣2+50+|﹣3|.

17.计算:+|﹣2|﹣()﹣2+(tan60°﹣1)0.18.(1)计算:|1﹣|+(﹣)﹣2﹣+;

(2)解方程:=1﹣.

19.计算:2cos30°﹣|﹣1|+()﹣1.

20.计算:(1﹣π)0×﹣()﹣1+|﹣2|.

21.(1)计算:﹣(﹣π)0﹣2sin60°

(2)化简:(1+)?.

22.计算:|﹣3|﹣(5﹣π)0+.

23.计算:(4﹣π)0+(﹣)﹣1﹣2cos60°+|﹣3|

24.计算:(﹣2)2+|﹣1|﹣.

25.计算(﹣5sin20°)0﹣(﹣)﹣2+|﹣24|+.

26.计算:|﹣2|+3tan30°+()﹣1﹣(3﹣π)0﹣.27.计算:|﹣2|++2﹣1﹣cos60°.

28.(1)计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1;(2)解分式方程:+=1.

29.求值:+()2+(﹣1)2015.

30.(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;

(2)解方程:+=1;

(3)解不等式组,并把解集在数轴上表示出来.

初三数学实数的混合运算2

参考答案与试题解析

一.填空题(共6小题)

1.(2015春?江西期中)计算:=.

【解答】解:原式=.

故答案为:.

2.(2014?河南)计算:﹣|﹣2|=1.

【解答】解:原式=3﹣2=1,

故答案为:1.

3.(2014?随州)计算:|﹣3|++(﹣1)0=2.【解答】解:原式=3﹣2+1

=2.

故答案为:2.

4.(2014?盘锦)计算|﹣|+的值是.

【解答】解:原式=﹣+=,

故答案为:

5.(2014?资阳)计算:+(﹣1)0=3.

【解答】解:原式=2+1

=3.

故答案为:3.

6.(2014?烟台)(﹣1)0+()﹣1=2015.

【解答】解:原式=1+2014

=2015.

故答案为:2015.

二.解答题(共24小题)

7.(2016?安顺)计算:cos60°﹣2﹣1+﹣(π﹣3)0.

【解答】解:原式=﹣+2﹣1

=1.

8.(2016?北京)计算:(3﹣π)0+4sin45°﹣+|1﹣|.

【解答】解:(3﹣π)0+4sin45°﹣+|1﹣|

=1+4×﹣2﹣1

=1﹣2+﹣1

=

9.(2015?北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【解答】解:原式=4﹣1+2﹣+4×=5+.

10.(2015?梅州)计算:+|2﹣3|﹣()﹣1﹣(2015+)0.【解答】解:原式=2+3﹣2﹣3﹣1=﹣1.

11.(2015?临沂)计算:(+﹣1)(﹣+1)

【解答】解:原式=[+(﹣1)][﹣(﹣1)]

=()2﹣(﹣1)2

=3﹣(2﹣2+1)

=3﹣2+2﹣1

=2.

12.(2015?岳阳)计算:(﹣1)4﹣2tan60°++.

【解答】解:原式=1﹣2

=2.

13.(2015?兰州)(1)计算:2﹣1﹣tan60°+(π﹣2015)0+|﹣|;

(2)解方程:x2﹣1=2(x+1).

【解答】解:(1)原式=﹣×+1+=﹣1;

(2)方程整理得:x2﹣2x﹣3=0,即(x﹣3)(x+1)=0,

解得:x1=﹣1,x2=3.

14.(2015?广元)计算:(2015﹣π)0+(﹣)﹣1+|﹣1|﹣3tan30°+6.【解答】解:原式=1﹣3+﹣1﹣+2=2﹣3.

15.(2015?张家界)计算:(π﹣3.14)0+﹣()﹣2+2sin30°.

【解答】解:原式=1+2﹣4+2×

=0.

16.(2015?珠海)计算:﹣12﹣2+50+|﹣3|.

【解答】解:原式=﹣1﹣2×3+1+3=﹣1﹣6+1+3=﹣3.

17.(2015?沈阳)计算:+|﹣2|﹣()﹣2+(tan60°﹣1)0.

【解答】解:原式=3+﹣2﹣9+1

=﹣7.

18.(2015?绵阳)(1)计算:|1﹣|+(﹣)﹣2﹣+;

(2)解方程:=1﹣.

【解答】解:(1)原式=﹣1+4﹣﹣2=1;

(2)去分母得:3=2x+2﹣2,

解得:x=,

经检验x=是分式方程的解.

19.(2015?孝感)计算:2cos30°﹣|﹣1|+()﹣1.

【解答】解:原式=2×﹣+1+2=3.

20.(2015?眉山)计算:(1﹣π)0×﹣()﹣1+|﹣2|.【解答】解:原式=1×3﹣7+2

=3﹣7+2

=﹣2.

21.(2015?镇江)(1)计算:﹣(﹣π)0﹣2sin60°(2)化简:(1+)?.

【解答】解:(1)原式=4﹣1﹣2×

=4﹣1﹣3

=0;

(2)原式=?

=.

22.(2015?宁德)计算:|﹣3|﹣(5﹣π)0+.

【解答】解:原式=3﹣1+5

=7.

23.(2015?贺州)计算:(4﹣π)0+(﹣)﹣1﹣2cos60°+|﹣3|

【解答】解:原式=1﹣2﹣2×+3

=1﹣2﹣1+3

=1.

24.(2015?乌鲁木齐)计算:(﹣2)2+|﹣1|﹣.

【解答】解:原式=4+﹣1﹣3=.

25.(2015?常德)计算(﹣5sin20°)0﹣(﹣)﹣2+|﹣24|+.

【解答】解:(﹣5sin20°)0﹣(﹣)﹣2+|﹣24|+

=1﹣9+16﹣3

=5.

26.(2015?六盘水)计算:|﹣2|+3tan30°+()﹣1﹣(3﹣π)0﹣.【解答】解:原式=2﹣+3×+2﹣1﹣2=1.

27.(2015?河池)计算:|﹣2|++2﹣1﹣cos60°.

【解答】解:原式=2+3+﹣

=5.

28.(2015?菏泽)(1)计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1;(2)解分式方程:+=1.

【解答】解:(1)(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1

=﹣1+﹣1+2

=;

(2)+=1

去分母得:

2+x(x+2)=x2﹣4,

解得:x=﹣3,

检验:当x=﹣3时,(x+2)(x﹣2)≠0,

故x=﹣3是原方程的根.

29.(2015?大庆)求值:+()2+(﹣1)2015.

【解答】解:原式=+﹣1=﹣.

30.(2015?通辽)(1)计算:(π﹣)0+()﹣1﹣﹣tan30°;(2)解方程:+=1;

(3)解不等式组,并把解集在数轴上表示出来.

【解答】解:(1)原式=1+2﹣3﹣

=3﹣;

(2)方程两边同时乘以(x+3)(x﹣3)得,3+x(x+3)=x2﹣9,

解得x=﹣4,

代入(x+3)(x﹣3)得,(﹣4+3)(﹣4﹣3)=7≠0,

故x=﹣4是原分式方程的解;

(3),

由①得,y≥1,

由②得,y<2,

故不等式组的解集为:1≤y<2.

人教版九年级数学 知识点总结

第二十一章二次根式 1.二次根式:式子 a≥0叫做二次根式。 2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式; (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式。如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如 , ,..都不是最简二次根式,而 , ,5 , 都是最简二次根式。 3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。如 , , 就是同类二次根式,因为 2 , 3 ,它们与的被开方数均为2。 4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。如与 ,a+ 与a- , - 与 + ,互为有理化因式。 二次根式的性质: 1. a≥0是一个非负数, 即≥0; 2.非负数的算术平方根再平方仍得这个数,即: 2aa≥0; 3.某数的平方的算术平方根等于某数的绝对值,即 |a| 4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即 ? (a ≥0,b≥0)。 5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即 (a≥0,b0)。 21.2 二次根式的乘除 1. 二次根式的乘法 两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。

说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、都是非负数; (2)(≥0,≥0)可以推广为(≥0,≥0); (≥0,≥0,≥0,≥0)。 (3)等式(≥0,≥0)也可以倒过来使用,即(≥0,≥0)。也称“积的算术平方根”。它与二次根式的乘法结合,可以对一些二次根式进行化简。2. 二次根式的除法 两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。 说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,≥0,在分母中,因此>0; (2)(≥0,>0)可以推广为(≥0,>0,≠0); (3)等式(≥0,>0)也可以倒过来使用,即(≥0,>0)。也称“商的算术平方根”。它与二根式的除法结合,可以对一些二次根式进行化简。? 3. 最简二次根式 (1)被开方数中不含能开方开得尽的因数或因式; (2)被开方数中不含分母。 21.3 二次根式的加减 1. 同类二次根式? 注:判断几个二次根式是否为同类二次根式,关键是先把二次根式准确地化成最简二次根式,再观察它们的被开方数是否相同。? (2)合并同类二次根式:合并同类二次根式的方法与合并同类项的方法类似,系数相加减,二次根号及被开方数不变。? 2. 二次根式的加减? (1)二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。? (2)二次根式的加减法与多项式的加减法类似,首先是化简,在化简的基础上去括号再合并同类二次根式,同类二次根式相当于同类项。? 一般地,二次根

新北师大九年级数学下册知识点总结

新北师大九年级数学下 册知识点总结 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

新北师大版九年级数学下册知识点总结 第一章 直角三角形边的关系 一.锐角三角函数 1.正切: 定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切.. ,记作tanA , 即的邻边 的对边A A A ∠∠=tan ; ①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”; ④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切; ⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。 2.正弦.. : 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即 斜边 的对边A A ∠=sin ; 3.余弦: 定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即 斜边的邻边 A A ∠=cos ;

图1 锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。 二.特殊角的三角函数值 三.三角函数的计算 1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.. 2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.. 3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。(2)0≤sin α≤1,0≤cos α≤1。 4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比.. )。用字母i 表示,即A l h i tan == 5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角... 。如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。 6.方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角... 。如图4,OA 、OB 、OC 、OD 的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。 7.同角的三角函数间的关系: 30 o 45 o 60 o sin α cos α tan α 1 图2 h i=h:l l B

(完整版)人教版初中数学知识点汇总

人教版初中数学知识点总结目录 七年级数学(上)知识点(1) 第一章有理数(1) 第二章整式的加减(3) 第三章一元一次方程(4) 第四章图形的认识初步(5) 七年级数学(下)知识点(6) 第五章相交线与平行线(6) 第六章平面直角坐标系(8) 第七章三角形(9) 第八章二元一次方程组(12) 第九章不等式与不等式组(13) 第十章数据的收集、整理与描述(13) 八年级数学(上)知识点(14) 第十一章全等三角形(14) 第十二章轴对称(15) 第十三章实数(16) 第十四章一次函数(17) 第十五章整式的乘除与分解因式(18) 八年级数学(下)知识点(19) 第十六章分式(19) 第十七章反比例函数(20) 第十八章勾股定理(21) 第十九章四边形(22) 第二十章数据的分析(23) 九年级数学(上)知识点(24) 第二十一章二次根式(24) 第二十二章一元二次根式(25) 第二十三章旋转(26) 第二十四章圆(27)

第二十五章概率(28) 九年级数学(下)知识点(30) 第二十六章二次函数(30) 第二十七章相似(32) 第二十八章锐角三角函数(33) 第二十九章投影与视图(34) 1 七年级数学(上)知识点 人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章有理数 一.知识框架 二.知识概念 1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ①??? ??????????负分数负整数负有理数零正分数正整数正有理数有理数②???????????????负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ? a+b=0 ? a 、b 互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

人教版初三数学复习提纲-知识点

初三数学应知应会的知识点 一元二次方程 1. 一元二次方程的一般形式: a ≠0时,ax 2 +bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、 c ; 其中a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式. 2. 一元二次方程的解法:一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少. 3. 一元二次方程根的判别式:当ax 2+bx+c=0 (a ≠0)时,Δ=b 2 -4ac 叫一元二次方程根的判别式.请注意以下等价命题: Δ>0 <=>有两个不等的实根; Δ=0<=>有两个相等的实根; Δ<0 <=>无实根;Δ≥0 <=>有两个实根(等或不等). 4. 一元二次方程的根系关系:当ax 2 +bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式: .a c x x a b x x )2(a 2a c 4b b x ) 1(212122 ,1= -=+-±-=, ; ※ 5.当ax 2 +bx+c=0 (a ≠0) 时,有以下等价命题: (以下等价关系要求会用公式a c x x a b x x 2121=-=+,;Δ=b 2 -4ac 分析,不要求背记) (1)两根互为相反数?a b -= 0且Δ≥0?b = 0且Δ≥0; (2)两根互为倒数?a c =1且Δ≥0?a = c 且Δ≥0; (3)只有一个零根?a c = 0且a b -≠0?c = 0且b ≠0; (4)有两个零根 ?a c = 0且a b -= 0?c = 0且b=0; (5)至少有一个零根 ?a c =0?c=0; (6)两根异号 ?a c <0 ?a 、c 异号; (7)两根异号,正根绝对值大于负根绝对值?a c <0且a b ->0?a 、c 异号且a 、b 异号; (8)两根异号,负根绝对值大于正根绝对值?a c <0且a b -<0?a 、c 异号且a 、b 同号; (9)有两个正根 ?a c >0,a b ->0且Δ≥0?a 、c 同号, a 、b 异号且Δ≥0; (10)有两个负根 ?a c >0,a b -<0且Δ≥0?a 、c 同号, a 、b 同号且Δ≥0. 6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解. ax 2 +bx+c=a(x-x 1)(x-x 2) 或 ax 2 +bx+c=??? ? ?? ----???? ? ?-+--a 2ac 4b b x a 2ac 4b b x a 22. 7.求一元二次方程的公式: x 2 -(x 1+x 2)x + x 1x 2 = 0. 注意:所求出方程的系数应化为整数. 8.平均增长率问题--------应用题的类型题之一 (设增长率为x ): (1) 第一年为 a ,第二年为a(1+x) , 第三年为a(1+x)2 . (2)常利用以下相等关系列方程: 第三年=第三年 或 第一年+第二年+第三年=总和. 9.分式方程的解法: . 0)1(≠),值(或原方程的每个分母验增根代入最简公分母公分母 两边同乘最简 去分母法

人教版数学七年级下册《实数的运算》教案

实数的运算 教学目标: 1.了解有理数的运算率和运算法则在实数运算中同样适用。 2.复习巩固有理数的运算法则,灵活运用运算律。 3.简化运算能正确进行实数的加、减、乘、除、乘方运算。进一步认识近似数与有效数学的概念。 4.了解电子计算器使用基本过程。会用电子计算器进行近似计算。 教学重点:掌握实数运算的法则和顺序。 教学难点:用计算器将实数按要求对结果取近似值。 教学过程: 同学们,你们想飞出地球,遨游太空吗?这是长期以来人类的一种理想,可是地球的吸引力毕竟是太大了,飞机飞得再快也得回到地面,只有当物体速度达到一定值时,才能克服地球引力,围绕地球旋转,这个速度叫第一宇宙速度,计算公式是:gR V =(千米/秒),其中0098.0=g 千米/秒2是重力加速度。R=6370千米。是地球半径。请你用计算器求出第一宇宙速度,看看有多大? 生:9.763700098.0≈?=V (千米/秒)。 师:可见计算器对实数的运算既快又准,那么本节课我们就学习实数的运算。 一、练一练: (1) 由学生写出用字母表示有理数的五条运算律。 (,()(),,()(),()a b b a a b c a b c ab ba a bc ab c m a b ma mb +=+++=++==+=+) 师:数从有理数扩展到实数后,有理数的运算律和运算法则在实数范围内同样适用。 (2) 计算:=81__ ; =?-3625__ ; =94__ (3) 利用计算器计算: =2___ (精确到0.01) =3___ (保留3个有效数字) =5___ (精确到万分位) =?45___ (精确到0.01) =?76___ (保留2个有效数字) 生:981= ; 303625-=?-; 3294= 41.12≈;73.13≈;236.25≈;47.445≈?;5.676≈?

初一数学实数计算题附答案

初一数学实数计算题附 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

实数计算题练习 1 = 2 .= = = = = = = = 10. = = = 13. = 14. ( )2013 1 1 2 +- = 15. = = 17. ( ( -= = 2

= = 2 = = 24 )4= 25. = - = = = = 2 1 2 ?? -= ? ?? 31. ( )() 20130 312014 -+-? = 1 12014 2 ?? -= ? ?? 33. 31 22 = 1 16 += = 36. 21 += 3

= += 2 4 3 ÷?= 13 += + = 3 = 43. ()3 211250 x--= 44. ()2 4190 x--= 45. 41 x-= 46. ()361 121 64 x +-= 47. ()3 20.1 x+= 2 = 49. 3 3 26 4 x-= 50. () 2 2110 x+= 51. 2322 x= 52. ()3 0.70.027 x-= 53. 3 2540 x-= 54. 3 98 1 27 x+=- 55. ()29 21 8 x-= 实数计算题答案: 1. 1 4 7 2.3- 3. 9 4. 4 5 5. 0.2 6. 0.8 7. 2 8. 2 3 - 9. 1 10. 3 2 - 11. 2 12. 11 24 - 13. 2 14. 4

5 -21. 133- 22. 60.15- 24. -1 25. 4 26. 325 27. 323 28. 2.2 29. 125 34. -3 35. 144 36. 1- 39. 5 40. 241. 1 26- 42. 5x =± 43. 3x = 44. 122x =,12x =- 45. 3x =+ 5x =-46. 1 8x = 47. 1950x = 48. 13x = 49. 32x = 50. 2x =± 51. 18x =± 52. 1 4x = 53. 3x = 54. 5 3x =- 55. 314x =,1 4x =

人教版初中数学知识点总结总复习

人教版初中数学知识点总 结总复习 Prepared on 22 November 2020

一、考试指导思想 初中毕业数学学业考试是依据《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》)进行的义务教育阶段数学学科的终结性考试。考试要有利于全面贯彻国家教育方针,推进素质教育;有利于体现九年义务教育的性质,全面提高教育质量;有利于数学课程改革,培养学生的创新精神和实践能力;有利于减轻学生过重的课业负担,促进学生生动、活泼、主动地学习。 数学学业考试命题应当根据学生的年龄特征、思维特点、数学背景和生活经验编制试题,面向全体学生,使具有不同认知特点、不同数学发展程度的学生都能正常表现自己的学习状况。学业考试要求公正、客观、全面、准确地评价学生通过初中教育阶段的数学学习所获得的发展状况。 数学学业考试要重视对学生学习数学的结果与过程的评价,重视对学生数学思考能力和解决问题能力的发展性评价,重视对学生数学认识水平的评价;学业考试试卷要有效发挥选择题、填空题、计算(求解)题、证明题、开放性问题、应用性问题、阅读分析题、探索性问题及其它各种题型的功能,试题设计必须与其评价的目标相一致,加强对学生思维水平与思维特征的考查,使试题的解答过程体现《数学课程标准》所倡导的数学活动方式,如观察、实验、猜测、验证、推理等等。 二、考试内容和要求 (一)考试内容 数学学业考试应以《数学课程标准》所规定的四大学习领域,即数与代数、空间与图形、统计与概率、实践与综合应用的内容为依据,主要考查基础知识、基本技能、基本体验和基本思想。 1.关注基础知识与基本技能 了解数的意义,理解数和代数运算的算理和算法,能够合理地进行基本运算与估算;能够在实际情境中有效地使用代数运算、代数模型及相关概念解决问题。 能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能够对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性。 正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果做合理的预测;了解概率的涵义,能够借助概率模型或通过设计活动解释事件发生的概率。 有条件的地区还应当考查学生能否借助计算器进行较复杂的运算和从事数学规律的探究活动。 2.关注“数学活动过程” 包括数学活动过程中所表现出来的思维方式、思维水平,对活动对象、相关知识与方法的理解深度;从事探究的意识、能力和信心等。也包括能否通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性;能否使用恰当的语言有条理地表达数学的思考过程。 3.关注“数学思考”

北师大版数学九年级下册:综合测试题

D C B A 30° 45° E D C B A o 北师大版九年级数学下册检测试题 一、选择题(每小题3分,共30分) 1.在△ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边.则有( ) A.b =a tan A B.b =c sin A C.a =c cos B D.C =a sin A 2.如图,已知AB 是⊙O 的直径,?BC =?CD =?DE ,∠BOC =40°, 那么∠AOE =( ) A.40° B. 60° C.60° D.120° 3.如图2,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD=60°,则∠DBC 的度数为 ( ) A.30° B.40° C.50° D.60° 4.如图4,在直角坐标系中,圆O 的半径为1 2y x =-+与圆O 的位置关系是( ) A.相离 B.相交 C.相切 D.以上三种情形都有可能 5.二次函数y=ax 2+bx+c 与一次函数y=ax+c ,它们在同一直角坐标系中的图象大致是( ) A . B . C . D . 6.如图,从热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( ) A.200米 3米 3 3+1)米 7.如图,点A 、B 、C 在⊙O 上,∠ACB =30°,则sin ∠AOB 的值是( ) A. 1 2 B.22 C.32 D. 33 8.已知点A (1,y 1),B (-2,y 2),C (-2,y 3)在函数y =12x 2-1 2 的图像上.则y 1、y 2、y 3的 大小关系是( ) A.y 1<y 2<y 3 B.y 1>y 2>y 3 C.y 1>y 3>y 2 D.y 3>y 1>y 9.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线m x a y +-=2 )(顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点横坐标最小值为3-,则点D 的横坐标最大值为( ) A .-3 B .1 C .5 D .8 E D B C A O C B A O O 1 1 1- 1- y x 图4

人教版初三数学知识点总结87881

初三知识整理 全套教科书包含了课程标准(实验稿)规定的“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体 九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。包含以下章节: 第21章二次根式第22章一元二次方程 第23章旋转第24章圆 第25 章概率初步 本册书内容分析如下: 第21章二次根式 学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。“二次根式” 一章就来认识这种式子,探索它的性质,掌握它的运算。 在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论: (1)是一个非负数; (2)≥0); (3) (a≥0). 注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。“二次根式的乘除”一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到 (a≥0,b≥0), (a≥0,b>0), 并运用它们进行二次根式的化简。

“二次根式的加减”一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。 第22章一元二次方程 学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程——一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。 本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念, “22.2降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。 (1)在介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。 (2)在介绍公式法时,首先借助配方法讨论方程的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。 (3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

初一数学:实数运算5

实数运算1 一.解答题(共40小题) 1.计算: (1)?+ (2)?22+(?2)2++(?1)2016. 2.计算: (1)?11?5+3 (2)+?|?3| (3)(?24)×(?+) (4)?32×(?)2+(?2)3÷(2?3) 3.计算 (1)1?12+3; (2)(?+)×(?36); (3)?22×(?)+8÷(?2)2; (4)+. 4.计算: (1)?20+14?18+13 (2)(?+) (3)+?|?3| (4)?23×(?1)2+5×(?6)?(?4)3÷8. 5.已知=4,且(y?2z+1)2与互为相反数,求的值. 6.已知实数a,b,c在数轴上的对应点如图所示,化简:?|b+c|?.

7.计算下列各式 ①??+2?+ ②?+33 ③?14?(1?0.5)××[2?(?3)2] ④4?(?36)×(+?) 8.(1)??+(?1)2015 (2)?(?26.1+6.1)× (3)?14?[2?(1?×0.5)] (4). 9.计算 (1)12+(?3)?15 (2)(??)×36 (3)?22+3×(?2)4+33 (4)+?|2?|. 10.计算: ①2.75?[(?5)?(?0.5)+(?3)]; ②(?)×(?)÷(?); ③?7×(?)+26×(?)?2×; ④?12?÷(?)+5×(?2)2. 11.计算下列运算: (1)?1.3+(?1.7)?(?13); (2)??; (3)1?(??)×(?12);

(4)(?2)3×3+2×(?32). 12.计算题: (1)1+(?2)?(?5) (2)?22+3×(?2)4+33 (3)(?+?)×36 (4)++. 13.(1)计算(结果保留根号): ①|1?|= ②|?|= ③|?|= ④|?|= (2)计算(结果保留根号): |?|+|?|+|?|+…|?| 14.计算: (1)?(?2)+(?3); (2)?; (3)[50?(?+)×(?6)2]÷(?7)2; (4)?+?(?)2. 15.计算下列各题: (1) (2).16.计算 (1)0+(?4)?(+1)?(?) (2)1÷(1)×(?)÷(?12) (3)? (4)[5?2×(?2)]?3×(+1).

七年级数学实数练习题及答案

实数练习题

解析: 该瓶的容积相当于底面与瓶底面相同,高为25 cm 的圆柱体的体积. 答案: 解:1L=1000cm 3,由题意得瓶子的底面积为4025 1000=(cm 2) (1) 瓶内溶液的体积是 40×20=800(cm 3) (2) 设圆柱形杯子的内底面半径为r ,则 πr 2×10=800, ∴r=π80 ≈5.0(cm ) 小结: 解此类等积变形问题的关键是根据体积不变确定数量关系或建立等量关系. 例6 规律探究:观察 284222-=25555?==,即222255-=;32793333=310101010?-==,即333=31010 -. (1)猜想5526- 等于什么,并通过计算验证你的猜想; (2)写出符合这一规律的一般等式. 解析:从给出的运算过程中找出规律,然后依规律计算

答案:(1)55552626 -=, 验证:51252555552626 2626?-===; (2) 22-11 n n n n n n =++ (n 为大于0的自然数). 小结: 此类规律型问题的特点是给定一列数或等式或图形,要求适当地计算,必要的观察,猜想,归纳,验证,利用从特殊到一般的数学思想,分析特点,探索规律,总结结论. 举一反三: 1. 某正数的平方根为3a 和3 92-a ,则这个数为(). A. 1 B. 2 C. 4 D. 9 解析:由平方根定义知3a 与3 92-a 互为相反数, 所以3a +3 92-a =0, 解得a=3, 所以这个数的平方根为±1, 所以这个数为1.选A. 2. 如图3-3,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为点C ,则点C 所表示的数为( ). A. -2-3 B. -1-3 C. -2+3 D. 1+3 解析:∵AB=3+1, ∴C 点表示的数为-1-(3+1)=-2-3. 选A

北师大版九年级下册数学期末试卷

北师大版九年级下册数学期末试卷 一.选择题(共10小题) 1.下列式子错误的是() A.cos40°=sin50°B.tan15°?tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30° 2.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是() A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10° B.C.AC=1.2tan10°米D.AB=米 3.已知,在Rt△ABC中,∠C=90°,AB=,AC=1,那么∠A的正切tanA等于()A.B.2 C. D. 4.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是() A.B.C.D. 5.若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为() A.y=(x﹣2)2+3 B.y=(x﹣2)2+5 C.y=x2﹣1 D.y=x2+4 6.若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为() A.x 1=﹣3,x 2 =﹣1 B.x 1 =1,x 2 =3 C.x 1 =﹣1,x 2 =3 D.x 1 =﹣3,x 2 =1 7.如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()

A .5 B .7 C .9 D .11 8.如图,线段AB 是⊙O 的直径,弦CD ⊥AB ,∠CAB=40°,则∠ABD 与∠AOD 分别等于( ) A .40°,80° B .50°,100° C .50°,80° D .40°,100° 9.已知⊙O 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交⊙O 于点E ,若AB=8,CD=2,则△BCE 的面积为( ) A .12 B .15 C .16 D .18 10.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①b <0;②c >0;③a+c <b ;④b 2﹣4ac >0,其中正确的个数是( ) A .1 B .2 C .3 D .4 二.填空题(共10小题) 11.在△ABC 中,∠C=90°,AB=13,BC=5,则sinA 的值是 . 12.在将Rt △ABC 中,∠A=90°,∠C :∠B=1:2,则sinB= . 13.已知cos α=,则 的值等于 . 14.已知抛物线y=ax 2﹣3x+c (a ≠0)经过点(﹣2,4),则4a+c ﹣1= . 15.若二次函数y=2x 2﹣4x ﹣1的图象与x 轴交于A (x 1,0)、B (x 2,0)两点,则+ 的值为 . 16.已知M 、N 两点关于y 轴对称,且点M 在双曲线 上,点N 在直线y=﹣x+3上, 设点M 坐标为(a ,b ),则y=﹣abx 2+(a+b )x 的顶点坐标为 . 17.若⊙O 的直径为2,OP=2,则点P 与⊙O 的位置关系是:点P 在⊙O .

新人教版初中数学知识点总结(完整版)

人教新版初中数学知识点总结(全面最新) 目录 一、七年级数学(上)知识点 1、有理数 2、整式的加减 3、一元一次方程 4、图形的认识初步 二、七年级数学(下)知识点 5、相交线与平行线 6、实数 7、平面直角坐标系 8、二元一次方程组 9、不等式与不等式组 10、数据的收集、整理与描述 三、八年级数学(上)知识点 11、三角形 12、全等三角形 13、轴对称 14、整式的乘除与分解因式 15、分式

四、八年级数学(下)知识点 16、二次根式 17、勾股定理 18、平行四边形 19、一次函数 20、数据的分析 五、九年级数学(上)知识点 21、一元二次方程 22、二次函数 23、旋转 24、圆 25、概率 六、九年级数学(下)知识点 26、反比例函数 27、相似 28、锐角三角函数 29、投影与视图 七年级数学(上)知识点

第一章 有理数 一. 知识框架 二.知识概念 1.有理数: (1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数. (2)有理数的分类: ① ??? ?????? ????负分数负整数 负有理数零正分数正整数 正有理数有理数 ② ???????????????负分数正分数分数负整数零正整数整数有理数 注意:0即不是正数,也不是负数; -a 不一定是负数,+a 也不一定是正数; π不是有理数; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,互为相反数,即a 和- a 互为相反数;

0的相反数还是0; (2) a+b=0 ? a 、b 互为相反数. 4.绝对值: (1)绝对值的意义是数轴上表示某数的点离开原点的距离; (2) ?? ???<-=>=) 0()0(0) 0(a a a a a a 或???<-≥=)0a (a ) 0a (a a 或???≤->=)0()0(a a a a a ; 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组; 5.有理数比大小: 两个负数比大小,绝对值大的反而小; 数轴上的两个数,右边的数总比左边的数大; 大数-小数 > 0,小数-大数 < 0. 6.倒数:乘积为1的两个数互为倒数; 注意:0没有倒数; 若 a ≠0,那么a 的倒数是a 1; 若ab=1? a 、b 互为倒数; 若ab=-1? a 、b 互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对

七年级下册数学实数计算题练习

七年级下册数学实数计算题练习 一、求下列各式的值 ______)49)(1(2= _______)11)(2(2=- _________)5()3(2=- _______)5()4(2=± _______)13 12(1)5(2=-± _______2425)6(22=- _______256)7(= _________)31()8(2=-- _________9 17)9(=± 二、求下列各式的值 _______027.0)1(3= _______1)2(3=- _______8 1)3(3=- _______)3()4(33=- _______512)5(3=- _______ 27)6(3=-- _______1125 61)7(3=- _______343.0)8(3=- _______)5)(9(33= 三、计算 |)4 1(|495.0)2(33-+- 256311641891)81(278)3(323-----+- 33271816)1(- +--333364 271)4(-+---)313(3)5(-2 )3(223)6(-----π

四、解方程 22)7()32)(3(-=-x 0125)1(27)6(3=+-x 22)7(=+m 2783)7(=-y 51)8(3=-x 五、解答题 的平方根。 求满足、若)1(5|,13|)2(.422--+--=+a b a b a b a 93)1(2=x 0 16)1(9)2(2=-+x 0 258)4(3=+x . ,2,3.1的值求的平方根是如果的平方根是如果n m n m +±±.,21,31.2的立方根求的立方根是如果的平方根是如果n m n m +-+±-.,73.3的值和求和的平方根是如果x m m m x +-

(完整版)新北师大九年级数学下册知识点总结

新北师大版九年级数学下册知识点总结 第一章直角三角形边的关系 一?锐角三角函数 1. 正切: 定义:在Rt △ ABC 中,锐角/A 的对边与邻边的比叫做/A 的正切,记作 tanA , ① tanA 是一个完整的符号,它表示/A 的正切,记号里习惯省去角的符号“/”; ② tanA 没有单位,它表示一个比值,即直角三角形中/A 的对边与邻边的比; ③ tanA 不表示"tan ”乘以"A ”; ④ 初中阶段,我们只学习直角三角形中,/A 是锐角的正切; ⑤ tanA 的值越大,梯子越陡,ZA 越大;ZA 越大,梯子越陡,tanA 的值越大。 2. 正弦: 定义:在Rt △ ABC 中,锐角/A 的对边与斜边的比叫做/A 的正弦,记作sinA ,即sin A A 的对边 ................................... """■ 斜边 3. 余弦: 定义:在Rt △ ABC 中,锐角/A 的邻边与斜边的比叫做/A 的余弦,记作cosA ,即cosA A 的邻边 .............................. ■■■■■ 斜边 之变化 三?三角函数的计算 1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为 仰角 2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为 俯角 值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大 < sin a< 1, 0< cos a< 1。 4. 坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度 i tan A l 5. 方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。如图3,OA OB OC 的方位角分别为 45 °、135 °、225 °。 6. 方向角:指北或指南方向线与目标方向线所成的小于 90°的水平角,叫做方向角.。如图4,OA 、 即 tanA A 的对边 A 的邻边 锐角A 的正弦、余弦和正切都是/A 的三角函数当锐角 A 变化时,相应的正弦、余弦和正切之也随 30 o 45 o 60 o sin a 1 亞 矗 2 2 2 cos a 旦 返 1 2 2 2 tan a 迴 3 1 3. 规律:禾U 用特殊角的三角函数值表,可以看岀, (1)当角度在0 °?90°间变化时,正弦值、正切 (或减小)而减小(或增大)。(2)0 (或坡比)。用字母i 表示,即 二?特殊角的三角函数值 图2

人教版初中数学知识点总结2017

人教最新版初中数学知识点总结2017 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 人教新版初中数学知识点总结 七年级数学(上)知识点 一.有理数 知识框架 二.知识概念 1.有理数: (1)凡能写成)0为整数且,(≠p q p p q 形式的数,都是有理数. (2)有理数的分类: ?????????????负分数负整数负有理数零正分数正整数正有理数有理数 ???????????????负分数正分数分数负整数 零正整数整数有理数 注意:0即不是正数,也不是负数; -a 不一定是负数,+a 也不一定是正数; 不是有理数; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,互为相反数,即a 和- a 互为相反数; 0的相反数还是0; (2) a+b=0 a 、b 互为相反数. 4.绝对值: (1)绝对值的意义是数轴上表示某数的点离开原点的距离; (2) ?? ???<-=>=)0()0(0)0(a a a a a a 或???<-≥=)0()0(a a a a a 或???≤->=)0()0(a a a a a ;

3 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组; 5.有理数比大小: 两个负数比大小,绝对值大的反而小; 数轴上的两个数,右边的数总比左边的数大; 大数-小数 > 0,小数-大数 < 0. 6.倒数:乘积为1的两个数互为倒数; 注意:0没有倒数; 若 a ≠0,那么a 的倒数是a 1 ; 若ab=1 a 、b 互为倒数; 若ab=-1 a 、b 互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ; (2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ; (2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac . 12.有理数除法法则:除以一个数等于乘以这个数的倒数;

(完整)初一数学实数运算一

阶段一 班级 姓名 学号 一、填空题: 1.已知|a+3|+b+1 =0,则实数(a+b )的相反数 2.数-3.14与-Л的大小关系是 3.和数轴上的点成一一对应关系的是 4.和数轴上表示数-3的点A 距离等于2.5的B 所表示的数是 5. 144的算术平方根是 ,16的平方根是 ; 6. 327= , 64-的立方根是 ; 7. 若a 是正数,且252=a ,那么a 的平方根是 8= 。 910.1=,则= 。 10. 若一个数的立方根就是它本身,则这个数是 。 11. a 和 b 互为相反数,c,d 互为倒数,m 的绝对值是2,求|a+b|2m 2+1 +4m-3cd= 。 12.若a,b 满足|4-a 2|+a+b a+2 =0,则2a+3b a 的值是 二、 选择题: 1、若一个有理数的平方根与立方根是相等的,则这个有理数一定是( ) A 、0和±1 B 、1 C 、0或1 D 、0 2、下列各数中,无理数的个数有( ) 1 0.10100142π--, , , A 、4 B 、3 C 、2 D 、1 3、下列各数中:0,32,(-5)2,-4,9,-︱-16︱,π,有平方根的数的个数是( ). A 、3个 B 、4个 C 、5个 D 、6个 4.一个数的绝对值等于这个数的相反数,这样的数是( ) (A )非负数 (B )非正数 (C )负数 (D )正数 5.若x <-3,则|x +3|等于 ( ) (A )x +3 (B )-x -3 (C )-x +3 (D )x -3

4.有下列说法中正确的说法的个数是( ) (1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。 A .1 B .2 C .3 D .4 5.()20.7-的平方根是( ) A .0.7- B .0.7± C .0.7 D .0.49 6.若=,则a 的值是( ) A .78 B .78- C .78 ± D .343512- 7、若a≥0,则24a 的算术平方根是( ) A 、2a B 、±2a C 、a 2 D 、| 2a | 8、若a<0,则a a 22 等于( ) A 、21 B 、2 1- C 、±21 D 、0 9.若225a =,3b =,则a b +=( ) A .-8 B .±8 C .±2 D .±8或±2 10.已知1

相关主题
文本预览
相关文档 最新文档