当前位置:文档之家› 斜拉桥的创新设计

斜拉桥的创新设计

斜拉桥的创新设计
斜拉桥的创新设计

斜拉桥设计计算参数分析

斜拉桥设计计算参数分析 1 概述 斜拉桥属高次超静定结构,所采用的施工方法和安装程序与成桥后的主梁线形、结构内力有着密切的联系。并且在施工阶段随着斜拉桥结构体系和荷载状态的断变化,主梁线形和结构内力亦随之不断发生变化。因此,需对斜拉桥的每一施工阶段进行详尽的分析、验算,从而求得斜拉索张拉吨位和主梁挠度、主塔位移等施工控制参数,并依此对施工的顺序做出明确的规定,并在施工中加以有效的管理和控制。 2 设计参数分析 2.1 主梁的中、边跨跨径比 主梁的中、边跨跨径比反映了结构体系的变形特性和锚索的抗疲劳性能: 从图1、图2可见,三跨钢斜拉桥的中边跨跨径比较多地位于2.0~3.5之间,集中在2.5处;三跨混凝土斜拉桥的相应数值则为1.5~3.0,较集中于2.2处。 就一般而言,中、边跨跨径的比值大于2.0,将能控制锚索的应力幅度在一定的范围内,并提高结构体系的总体刚度。在许多斜拉桥中,虽然中、边跨跨径的比值较小,但边跨中往往采用设置辅助墩或将主梁与引桥连接形成组合体系以提高结构刚度,适应结构的变形要求。 2.2 主梁自重分析 选取某斜拉桥桥5号、9号梁段(见图3),各自增重5 %(其它参数取理论值) ,分别计算得到在浇筑完5号、9号梁段后各控制点挠度及主梁控制截面弯矩变化情况,见图3 、图4 。 图3:主梁自重增大5 %的梁段挠度影响图4:主梁自重增大5 %的梁段弯矩影响 从图3 、图4可见,梁段自重对控制点挠度的影响较大,且悬臂越大,影响越明显。梁段自重对控制点弯矩的影响更加不容忽视, 9 号梁段自重增大5 %,导致6 号梁段的弯矩值增加至1 200 kN •m ,达到合理成桥状态下该截面弯矩值的7 %。 2.3 主梁弹性模量分析

斜拉桥模型制作设计图

斜拉桥模型制作设计图 一、模型概况 斜拉桥主桥结构形式为双塔双索面漂浮体系结构,主梁采用肋板式结构,拉索采用平行钢丝体系。 斜拉桥模型包括桥塔、主梁、斜拉索、桥墩以及基础。 模型全长18.2米,高米,桥面宽米,索96根。 斜拉桥模型三维图见图1、2。 图1 斜拉桥模型全桥三维图 图2 斜拉桥模型桥塔三维图

二、材料 全桥模型材料主要采用有机玻璃制作,主梁、主塔采用有机玻璃制作,斜拉索采用Ф4钢筋,桥墩以及基础为钢筋混凝土结构。 有机玻璃主要材料性能初步假设为:弹性模量E=×103 N/mm2。斜拉索采用Ф4钢筋(Q235),强度标准值f yk=235N/mm2,弹性模量E=×105N/mm2。 三、模型结构图 斜拉桥模型立面布置 斜拉桥模型包括桥塔、主梁、斜拉索以及桥墩。该桥为对称结构,以主梁跨中点为中心左右对称。 6号桥塔 斜拉索 混凝土桥墩 边墩 主梁 边墩 3 7号桥塔 图3 斜拉桥模型布置图(单位:㎜) 注:以后图表中尺寸均采用毫米为单位。 2、主梁 主梁全长米,横截面见图4。 主梁截面图(单位:mm) 图4 主梁横截面图 3、塔 塔高3. 16米,详细尺寸见图5~7。塔与梁不直接连接,依靠拉索连接。梁底距离塔横梁20毫米。 塔墩高米,地面以上米,地面以下开挖米。

为了塔与墩连接牢固,墩上预留洞口,塔柱延伸至墩底部,然后浇注环氧砂浆填补洞口。塔与墩连接处还要加钢板锚固。塔与墩连接的详细构造见图15~17。 索塔立面图 索塔侧面剖面图图5 塔立面、剖面图 图6 塔侧面剖面图

159515 150 100 157015 150 图7 塔结构详图 4、拉索 斜拉索为双索面,共96根,采用Ф4钢筋。 根据位置不同,斜拉索采用不同的标号。比如,“S1”表示边跨的拉索,“M1”表示中跨的拉索,具体标号见图8。

沈阳市公和斜拉桥施工图设计说明书

沈阳市公和斜拉桥施工图设计说明书圆砾14.00,20.30m,圆砾含土8.80,13.10m,其下为砂砾岩(泥质胶结,强风化,沈阳市公和斜拉桥施工图设计说明书呈土状)。 地下水位埋深12m左右 沈阳市公和斜拉桥位于沈阳市老道口,横跨沈阳站站场,现受沈阳市快速干不存在液化土层 道系统工程建设指挥部的委托,由沈阳市市政工程设计研究院与大连理工大学土地震基本烈度为VII度 建勘察设计研究院联合设计,以大连理工大学土建勘察设计研究院为主设计(设场地标准冻深为1.20m 计责任单位)((见设计委托书)。月平均气温:1月,12?,8月24.6?, 极端温度:,30.6?和38.3? 一、设计依据 四、设计规范 1(《沈阳市快速干道系统工程指挥部第七次会议纪要》,代设计委托书; 2(《沈阳市公和桥主桥岩土工程勘察报告》; 1( 城市桥梁设计规范准则 3(沈阳市规划设计研究院提供的‘东西快速干道’规划设计及道路红线图; 2( 公路桥涵设计通用规范(JTJ021,89) 4(经市领导审定的公和桥方案图; 3( 公路桥涵地基与基础设计规范 (JTJ024,85) 5(沈阳市城乡建设委员会‘沈阳建发[1997]30号文件。 4( 公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ023,85)

5( 公路工程抗震设计规范(JTJ004,89) 二、设计标准 6( 公路斜拉桥设计规 范(试行1996.12.1) 1.设计荷载: 7( 施工规范:现行公路桥涵施工技术规范行车道:设计荷载汽,20,验算荷载挂,100 2人行道:3.5KN/m 五、桥梁总体布置 2 非机动车道:4.0KN/m,汽,10验算 公和斜拉桥2.桥面宽度桥为单索面独塔斜拉桥,跨径为114m+120m,桥全长236m,建筑 222桥全宽32m,双向六车道上层为755m 面积,下层为2242 m,共计为9794 m。桥梁纵坡为双向2.5%,竖 曲线半径为3000m,桥梁横向宽度为32米,横坡1%,上层为车行道及人行 道,双侧人行道各宽1.8m 下层非机动车道宽4.5m 下层为非机动车道,索塔处桥面中心线标高为 57.863m(黄海高程),塔高桥面以 桥面横向布置(半幅): 上为69.007m。 , 1.85m人行道+0.5m路缘+11.25m(33.75)车行道+0.5路缘+0.2m 护栏 +3.4m/2索塔=32m/2 六、建筑材料 3.设计时速:80Km/h 4.基本风压:700Pa 1.混凝土:箱梁及主塔为50#砼,墩身为50#砼,承台及桩 基为30#砼。 5(设计地震烈度:7度,按8度设防 2.钢筋:采用I级及II级钢筋,应符合国家标准GB13013,91和GB1499,6(桥上纵坡:2.5%,竖曲线半径3000m 91。 7(桥下净空:?7m 3.预应力钢绞线应符合ASTM A416,92技术标准,直径为 15.24mm,标准强度 为1860Mpa,锚具采用VLM型号,并用相应配套的锚下垫板及螺旋筋,力 筋管道采用镀锌波纹管。三、地质条件 4.精轧螺纹钢标准强度为750Mpa,其他指标应符合国家相应标准,其锚具采用

几种常见形式斜拉桥的特点浅析及设计计算

几种常见形式斜拉桥的特点浅析及设计计算 姓名:XX 学号:X0X0X0XX 摘要:斜拉桥的主要形式有以下几种: 1)双塔三跨式;2)独塔双跨式;3)斜塔但跨式;4)三塔四跨式;5)多塔多跨式等。这些斜拉桥形式有各自的适用范围,应按工程具体情况选用适当的形式运用。 关键词:斜拉桥;跨径;适用条件;跨径设计;分孔尺寸 1 引言 斜拉桥是一种用斜拉索悬吊桥面的桥梁。最早的这种桥梁,其承重索是用藤罗或竹材编制而成。它们可以说是现代斜拉桥的雏形。斜拉桥的发展,有着一段十分曲折而漫长的历程。18世纪下半叶,在西方的法国、德国、英国等国家都曾修建过一些用铁链或钢拉杆建成的斜拉桥。可是由于当时对桥梁结构的力学理论缺乏认识,拉索材料的强度不足,致使塌桥事故时有发生。如德国萨尔河桥(1824)在建成第二年,就在一次有246人举行的火炬游行人群聚集桥上时,桥突然坍塌而酿成50 人丧生的严重惨剧。因此在相当长的一段时间内,斜拉桥这一桥型就销声匿迹了。 直至第二次世界大战后,在重建欧洲的年月中,为了寻求既经济又建造便捷的桥型,使几乎被遗忘的斜拉桥重新被重视起来。世界上第一座现代公路斜拉桥是1955年在瑞典建成的,主跨为182.6m的斯特罗姆海峡钢斜拉桥。近年来斜拉桥在国内外得到了迅速发展,目前已建成跨度最大的是中国苏通长江公路大桥(1088m)。[1] 2 各形式斜拉桥的特点分析 斜拉桥的孔径布臵主要可以分为双塔三跨式、独塔双跨式和多塔多跨式等三种形式。在特殊情况下,斜拉桥也可以布臵成独塔单跨式或者混合式。下面就这几种形式的特点进行简要的分析。 双塔三跨式(图一)是一种最常见的斜拉桥孔径布臵形式。双塔三跨式斜拉桥通常布臵

斜拉桥施工方案(新)

石家庄市仓安路斜拉桥施工组织设计 1、工程概况 1.1 斜拉桥概况 石家庄市仓安路斜拉桥位于石家庄市内,跨越京广电化铁路和铁路编组场。该桥主桥跨度55+125+55 m,为双塔双索面PC斜拉桥式,采用塔墩固结、主梁连续全飘浮体系。主梁采用双主肋断面,梁高1.7m,肋宽2m,桥面宽28.9m,梁上索距6.3m,全桥斜拉索4×9对,共72根。 见图T1-1仓安路跨线桥总体布置图、图T1-2斜拉桥布置图 斜拉桥主塔为“H”型,塔高55m,采用Φ1500钻孔桩基础,每个塔柱下部13根桩,桩长62m;主塔承台尺寸为1050cm×1375cm×450 cm;塔柱为5200×300cm 箱形断面,壁厚顺桥向90cm,横桥向60cm。主塔下横梁采用预应力钢筋混凝土,上横梁为钢管桁架。边墩立柱为200×200cm钢筋混凝土结构,下为Φ1200钻孔灌注桩,桩长为56m。 1.2主要工程数量 主要工程数量表表1-1

1.3工程特点 1.3.1地下管线繁多。斜拉桥主塔及边墩下分布自来水管道、雨水管道、电信电缆等各种管道,施工期间必须对地下管线进行勘探、搬迁或保护,增大了工作量。 1.3.2施工难度大。斜拉桥主跨跨越电气化京广铁路和铁路编组场,且主塔的位置靠近既有铁路的地道桥,为保证铁路正常的运营,需对铁路地道桥基础进行加固处理,施工难度很大。 1.3.3高空作业多,防电要求高。 1.3.4地面交通繁忙,施工干扰大。仓安路交通较为繁忙,来往车辆川流不息,施工期间必须精心组织,合理布置,并对交通进行合理疏导。 1.4施工方案的制定与审核 斜拉桥设计单位:上海市政工程设计研究院 施工方案制定单位:湖南路桥建设集团公司-中铁十七局集团有限公司联营体方案审核专家组:上海同济大学夏建国、洪国智(教授、斜拉桥专家)、石家 庄铁道学院王道斌、吴力宁(教授、斜拉桥专家)、石家庄 市项目办技术顾问张长生、刘容生(原市政设计研究院总工) 2、斜拉桥施工方案 斜拉桥桩基施工采用循环旋转钻孔,泥浆护壁,导管法灌注水下混凝土;主塔及边墩立柱采用翻模技术施工;下横梁采用军用梁及军用墩搭设支架现浇混凝土;上横梁则在工厂分节预制,运至工地拼装成整体,用塔吊提升至安装位置后,与塔柱上的予埋管件焊接;主梁的两边墩处的6.65m段和边跨在支架上浇筑;主梁0号段在托架上浇筑;1-7号(主跨)段采用短平台、复合型牵索挂蓝悬臂浇筑法施工,每段浇筑6.3m,待7号段和7′号段浇筑完成后,先在支架上进行边跨段的合龙,再悬浇8、9号段,最后利用挂蓝完成主跨合拢段的浇筑;斜拉索由塔吊、千斤顶等进行安装。

斜拉桥方案图纸汇总

斜拉桥方案图纸汇总 的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。其可看作是拉索代替支墩的多跨弹性支承连续梁。其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。斜拉桥由索塔、主梁、斜拉索组成。 斜拉桥施工图纸 斜拉桥施工图纸 大桥主通航孔420斜拉桥施工图纸 大桥斜拉桥上部结构图纸 斜拉桥实例 斜拉桥的计算 斜拉桥施工组织设计 桥南汊斜拉桥施工控制设计图纸 大桥主桥斜拉桥主梁牵索挂篮施工工艺 斜拉桥主塔施工技术方案 斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。如武汉长江二桥、白沙洲长江大桥均为钢筋混凝土双塔双索面斜拉桥。现代斜拉桥可以追溯到1956年瑞典建成的斯特伦松德桥,主跨182.6米。 斜拉桥(92第1版)大桥局

斜拉桥设计--刘士林,王似舜主编 斜拉桥施工组织设计 斜拉桥建造技术 斜拉桥125m部分斜拉桥方案设计图纸 某斜拉桥工程毕业设计 预应力混凝土斜拉桥工程毕业设计 双塔双索面斜拉桥施工图集 MIDAS-斜拉桥成桥阶段和正装分析 独塔斜拉桥设计 铁路斜拉桥施工挂篮设计计算书 斜拉桥(cable stayed bridge)作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。第一座现代斜拉桥始建于1955年的瑞典,跨径为182米。目前世界上建成的最大跨径的斜拉桥为中华人民共和国的苏通大桥,主跨径为1088米,于2008年4月2日试通车。 小跨斜拉桥图纸 南京钢箱梁斜拉桥全套图纸

斜拉桥的结构体系及特点

斜拉桥结构体系及特点 斜拉桥亦称矮塔斜拉桥, 其构造特点是在连续梁中支点处设置矮索塔,其塔高只有斜拉桥索塔高度的一半左右, 斜拉索通过矮索塔上设置的鞍座对主梁产生竖向支反力和水平压力。部分斜拉桥主梁自身刚度较大, 能够承担大部分荷载效应,斜拉索对主梁只起到一定程度的帮扶作用。斜拉桥是介于斜拉桥和连续梁桥之间的一种新桥型, 兼具斜拉桥和连续梁桥的双重结构特征。 斜拉桥是由上部结构索、塔、梁三种基本构件和下部结构墩台、基础组成的结构体系,影响部分斜拉桥结构各部分荷载效应最根本的因素是梁、塔、墩之间的结合方式,不同的结合方式产生不同的结构体系。根据部分斜拉桥结构自身的特点和梁、塔、索、墩的结合方式, 可将部分斜拉桥结构体系划分为三种型式: (1)塔梁固结体系;(2)支承体系; (3) 刚构体系, 见图1 所示。(4)半漂浮体系,见图2所示。 (1)塔梁固结体系及特点 塔梁固结、塔墩分离、梁底设支座支承在桥墩上,斜拉索为弹性支承,这是一种完全的主梁具有弹性支承的连续梁结构。这种体系必须有一个固定支座, 一般是一个塔柱处梁底支座固定,而其他支座可纵向活动。这种体系的主要优点是取消了承受很大弯矩的梁下塔柱部分,代之以一般桥墩,中央段的轴向拉力较小, 梁身受力也很均匀, 整体温度变化对这种体系影响较小, 几乎可以略去。这种体系结构整体刚度小, 当中跨满载时,由于主梁在墩顶处的转角位移导致塔柱倾斜,使塔顶产生较大的水平位移, 因而显著增大了主梁的跨中挠度。上部结构重力和活载反力需经支座传递到桥墩, 因此需设置大吨位支座。 我国的漳州战备桥、小西湖黄河大桥、离石高架桥; 日本的蟹泽桥、士狩大桥、木曾川桥、揖斐川桥、新唐柜大桥均采用这种体系。已建部分斜拉桥采用这种结构体系较多, 与连梁体系相同, 符合部分斜拉桥的概念含义。塔梁固结体系的特点:塔、墩内力最小,温变内力也小,主梁边跨负弯矩较大。 (2)支承体系及特点 塔墩固结、塔梁分离, 主梁在塔墩上设置竖向支承, 支座均为活动支座,这种体系接近主梁具有弹性支承的连续梁结构。支承体系与梁塔固结体系主梁受力性能基本相同, 塔墩底部承受较大的弯矩。 我国芜湖长江大桥采用的是支承体系, 该体系在部分斜拉桥结构中较少采用。支承体系的特点:支承体系悬臂施工中不需要额外设置临时支点,施工较方便。

斜拉桥设计规范

路桥隧道管理养护专业网www.rbt mm.co m 中华人民共和国行业标准 公路斜拉桥设计规范(试行) Design Specifications of Highway Cable Stayed Bridge(on trial) JTJ 027—96 主编部门:交通部重庆公路科学研究所 批准部门:中华人民共和国交通部 试行日期:1996年12月1日 l 总则 1.0.1 为了使公路斜拉桥设计达到技术先进、经济合理、安全适用、确保质量,特制定本规范。 1.0.2 本规范适用于混凝土斜拉桥、结合梁斜拉桥、钢斜拉桥的设计,为现行公路桥涵设计规范的补充。除本规范明确规定外,应遵照现行有关公路桥涵设计规范要求执行。 1.0.3 斜拉桥总体方案,应与环境协调并综合考虑经济与安全、设计与施工、材料与机具、营运与管理,以及桥位处地质、水文、气象、地震等因素确定结构体系。 1.0.4 桥宽应满足交通发展的要求,并应符合《公路工程技术标准》 (JTJ 01 —88)(1995 年版 ) 的规定。 1.0.5 设计主梁、索塔与拉索时,宜进行多方案比较2 .

1.0.6 所选方案除进行静力分析外,应重视动力分析,结构体系应满足强度、刚度、稳定性要求,并有较好的抗震性能,混凝土斜拉桥宜注意减小收缩徐变影响。 2 术语 2.0.1 混凝土斜拉桥:主梁为钢筋混凝土或预应力混凝土的斜拉桥。 2.0.2 钢斜拉桥:主梁及桥面系均为钢结构的斜拉桥。 2.0.3 结合梁斜拉桥:主梁为钢结构,桥面系为混凝土结构,主梁与桥面系结合在一起共同受力的斜拉桥。 2.0.4 拉索:承受拉力并作为主梁主要支承的结构构件。 2.0.5 索塔:用以锚固拉索,并将其索力直接传递给下部结构的受力构件。 2.0.6 主梁:主要由拉索支承,直接承受荷载的结构构件。 2.0.7 辅助墩:为改善主跨的受力状态,在边跨内设置的既能承受压力又能承受拉力的墩。 2.0.8 初拉力:安装拉索时,给拉索施加的张拉力。 2.0.9 拉索调整力:为改善主梁及索塔的截面内力状态而调整拉索的拉力。 2.0.10 跨径:原则上为两支座中心线间的距离,中跨为两个索塔中心线间的距离,边跨为后锚索处的墩上支座中心线与临近的索塔中心线间的距离。 3.一般规定 3.1 材料 3.1.1 混凝土 用于斜拉桥各部分构件的混凝土标号、混凝土设计强度和标准强度、混凝土受压及受拉时的弹性模量,按交通部现行《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTJ 023 — 85) 的规定采用。 预应力混凝土主梁的混凝土标号不宜低于 40 号,预应力混凝土索塔的混凝土标号不宜低于 30 号,钢筋混凝土主梁的混凝土标号不宜低于 30 号,钢筋混凝土索塔的混凝土标号不宜低于 30 号。 3.1.2 钢材

双塔斜拉桥设计说明

双塔斜拉桥设计说明 一、设计依据 1、交通部交公路发[2003]252号文《关于二连浩特至河口国道主干线山西省侯马至禹门口段黄河大桥技术设计的批复》。 2、黄河水利委员会黄河务[2001]27号文《关于国道二连浩特至河口公路山西侯马至禹门口段黄河大桥桥位与桥型方案审查意见请示的批复》。 3、中交第二公路勘察设计研究院2002年11月编制的《国道主干线二连浩特至河口公路山西侯马至禹门口段黄河大桥技术设计》。 4、郑州黄河康利经贸有限公司2001年4月编制的《国道主干线二连浩特至河口公路禹门口黄河大桥防洪影响评价》。 5、山西省地震工程勘察研究院1999年2月编制的《国道主干线二连浩特至河口公路禹门口黄河公路大桥桥址地震安全性评价报告》。 二、设计规范 1、公路工程技术标准(JTJ001—97) 2、公路桥涵设计通用规范(JTJ021—89) 3、公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ023—85) 4、公路桥涵地基与基础设计规范(JTJ024—85) 5、斜拉桥热挤聚乙烯拉索技术条件(GB/T18365—2001) 6、公路斜拉桥设计规范(试行)(JTJ027—96) 7、公路砖石及混凝土桥涵设计规范(JTJ/022—85) 8、公路工程抗震设计规范(JTJ004—89) 9、公路桥梁抗风设计指南 10、钢筋焊接网混凝土结构技术规程(JGJ/T 114—97) 三、主要技术标准 1、双塔斜拉桥桥面宽:28+2×1.3(布索区)=30.6m。 2、荷载标准:汽车超—20级,挂车—120。 3、桥面横坡:双向2%。 4、地震烈度:基本烈度7度,按8度采取设防措施。 5、设计洪水频率:1/300。 6、通航:根据山西省、陕西省交通厅航运管理局联合制定的航道规划,桥址处黄河的通航标准为Ⅳ(3)级航道,通航净宽35米,通航净高8米,设计最高通航水位为10年一遇洪水位。 7、船只撞击力:顺桥向300kN,横桥向400kN。 8、风速:初步设计收集了离桥位最近的河津市气象局1973~2002年历年各月份最大风速,根据此系列资料推算出桥位处设计风速为24.1m/s,基本风压为363pa。查《公路桥涵设计通用规范》,桥址区域基本风压为500pa,设计偏安全的按基本风压为500pa进行计算,相应设计风速28.3 m/s。 四、主要材料 1、混凝土 混凝土技术标准应符合公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ023—85)有关规定。砼的配合比、拌制、运输、浇筑、振捣、养生、施工缝、以及砼配合料所采用的水泥、砂、石、水、外加剂等材料的要求,应严格按

公路斜拉桥设计规范

公路斜拉桥设计规范(试行) Design Specifications of Highway Cable Stayed Bridge (on trial) 主编部门:交通部重庆公路科学研究所 批准部门:中华人民共和国交道部 试行日期:1996年12月1日 人民交通出版社 1996-北京 1总则 1.0.1为了使公路斜拉桥设计达到技术先进、经济合理、安全适用、确保质量,特制定本规范。 1.0.2本规范适用于混凝土斜拉桥、结合梁斜拉桥、钢斜拉桥的设计,为现行公路桥涵设计规范的补充。除本规范明确规定外,应遵照现行有关公路桥涵设计规范要求执行。 1.0.3斜拉轿总体方案,应与环境协调并综合考虑经济与安全、设计与施工、材料与机具、营运与管理,以及桥位处地质、水文、气象、地震等因素确定结构体系。 1.0.4桥宽应满足交通发展的要求,并应符合《公路工程技术标准(JTJ01--88)(1995年版)的规定。 1.0.5设计主梁、索塔与拉索时,宜进行多方案比较。 1.0.6所选方案除进行静力分析外,应重视动力分析,结构体系应满足强度、刚度、稳定性要求,并有较好的抗震性能,混凝土斜拉桥宜注意收缩徐变影响 2术语 2.0.1混凝土斜拉桥:主梁为钢筋混凝土或预应力混凝土的斜拉桥。 2.0.2钢斜拉桥:主粱及桥面系均为钢结构的斜拉桥。 2.0.3结合梁斜拉桥:主梁为钢结构,桥面系为混凝土结构,主梁与桥面系结合在一起共同受力的斜拉桥。 2.0.4拉索:承受拉力并作为主梁主要支承的结构构件。 2.0.5索塔:用以锚固拉索,并将其索力直接传递给下部结构的受力构件。

2.0.6主梁:主要由拉索支承,直接承受荷载的结构构件。 2.0.7辅助墩:为改善主跨的受力状态,在边跨内设置的既能承受压力又能承受拉力的墩。 2.O.8训拉力:安装拉索时,给拉索施加的张拉力。 2.0.9拉索调整力:为改善主梁及索塔的截面内力状态而调整拉索的拉力。 2.0.10跨径:原则上为两支座中心线间的距离,中跨为两个索塔中心线间的距离,边跨为后锚索处的墩上支座中心线与临近的索塔中心线间的距离。 3一般规定 3.1材料 3.1.1混凝土 用于斜拉桥各部分构件的混凝土标号、混凝土设计强度和标准强度、混凝土受压及受拉时的弹性模量,按交通部现行《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023--85)的规定采用. 预应力混凝土主粱的混凝土标号不宜低于40号,预应力混凝土索塔的混凝土标号不宜低于30号,钢筋混凝土主梁的混凝土标号小宜低于30号,钢筋混凝土索塔的混凝土标号不宜低子30号。 3.1.2钢材 钢筋混凝土及预应力混凝土构件所采用的钢筋类别、钢筋的设计强度和标准强度、钢筋的弹性模量按交通部现行《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023--85)的规定采用。 拉索采用强度及弹性模量较高的高强钢丝、钢绞线及高强粗钢筋。 销稿拉桥主梁所用钢板、高强螺栓、粗制螺栓、铆钉等材料的技术要求,焊接材料及钢材的弹性模量等按交通部现行《公路桥涵钢结构及木结构设计规范》(JTJ 025--86)的规定采用。 3.1.3锚具用钢材 拉索锚具及预应力锚头应采用45号钢及其他优质钢材。 3.1.4拉索防护材料 拉索防护材料应选用具有防锈蚀、耐老化及经济的聚乙烯、玻璃钢、防腐涂料等材料。 3.2结构型式

斜拉桥的正装分析

斜拉桥正装未闭合力的说明 1. 斜拉桥正装分析和未闭合配合力功能 等,除此之外斜拉桥还需要进行施工阶段分析。 根据施工方法的不同,斜拉桥的结构体系会发生显著的变化,施工中有可能产生比成桥阶段更不利的结果,所以斜拉桥的设计要做施工阶段分析。按施工的顺序进行分析的方法叫施工阶段的正装分析(Forward Analysis)。一般通过正装分析验算各个施工阶段的产生应力,检查施工方法的可行性,最终找出最佳的施工方法。 进行正装分析比较困难的是如何输入拉索的初始张拉力,为了得到初始张拉力值通常先进行倒拆分析,然后再利用求出的初始张拉力进行正装分析。 采用这种分析方法,工程师普遍会经历的困惑是: 1) 在进行正装分析时可以看出正装和倒拆的张力不闭合。 2) 因为合拢段在倒拆分析和正装分析时的结构体系差异,导致正装分析时得到的最终阶段(成桥阶段)的内力与单独做成桥阶段分析(平衡状态分析)的结果有差异。初始平衡状态分析(成桥阶段分析)时,同时考虑了全部结构的自重、索拉力以及二期荷载的影响。但在正装分析时,合拢之前所有阶段的加劲梁会因为自重、索拉力产生变形,合拢时合拢段只受自身的自重影响而不受其它结构的自重和索拉力的影响。如上所述,结构体系的差异导致了初始平衡状态分析(成桥阶段分析)与正装分析的最终阶段的结果产生了差异。 产生上述张力不闭合的原因,大部分是因为工程师没有完全把握索的基本原理或没有适当的分析软件。实际上是不应该产生内力不闭合的,其理由如下: 1) 从理论上讲,在弹性范围内正装分析和倒拆分析在同一阶段的结果应该相同。 2) 如果在计算时考虑合拢段在合拢时的闭合力,就能够得出与初始平衡状态分析(成桥阶段分析)相同的结果。 从斜拉索的基本原理上看,倒拆分析就是以初始平衡状态(成桥阶段)为参考计算出索的无应力长,再根据结构体系的变化计算索的长度变化,从而得出索的各阶段张力。一个可行的施工阶段设计,其正装分析同样可以以成桥阶段的张力为基础求出索的无应力长,然后考虑各施工阶段的索长变化得出各施工阶段索的张力。目前以上述理论为基础的程序都是大位移分析为主,其原因是悬臂法施工在安装拉索时的实际长度取值是按实际位移计算的。一般来说新安装的构件会沿着之前安装的构件切线方向安装,进行大位移分析时时,因为切线安装产生的假想位移是很容易求出来的,但是小位移分析要通过考虑假想位移来计算拉索的张力是很难的。MIDAS/Civil能够在小位移分析中考虑假想位移,以无应力长为基础进行正

矮塔斜拉桥设计说明书

大运河大桥施工图设计说明书 1、 设计依据 1、《京昌路(高丽营至沙峪沟段)工程设计任务委托书》 北京市首都公路发展有限责任公司,2003年 2、《北京市京昌公路(高丽营至沙峪沟段)公路工程初步设计》 北京建达市政建设设计所,2003年 3、《关于京昌公路北京高丽营至沙峪沟段初步设计的批复》 交公路发【2004】42号 2、 设计规范 1、《公路桥涵设计通用规范》(JTJ 021-89) 2、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023-85) 3、《公路桥涵地基与基础设计规范》(JTJ 024-85) 4、《公路工程水文勘测设计规范》(JTG C30-2002) 5、《公路工程抗震设计规范》(JTJ 004-89) 6、《公路桥涵施工技术规范》(JTJ 041-2000) 7、《公路斜拉桥设计规范》(试行1996.12.1) 8、《公路工程技术标准》(JTJ001-97); 9、《公路工程基本建设项目设计文件编制办法》(1996年) 10、《高速公路交通安全设施设计及施工技术规范》(JTJ074-94) 3、 工程概况 大运河是海河北系四大河流之一。潮河、白河在密云的河槽村汇合,形成大运河。大运河是北京市第二大河,从汇合口至市界流经密云、怀柔、顺义、通州四区县,总长83.5公里。大运河河道宽浅,中间有明显的行水深槽,两侧行洪滩地开阔,百年一遇洪水位39.3m,无通航要求。 京昌高速公路与大运河交叉断面位于密云县耿辛庄村东,现状耿辛庄桥附近。交叉断面比较宽阔,断面形式为复式断面,规划河道上口宽为540米,两侧有巡河路。近几年由于无序开采砂石,交叉断面附近有

斜拉桥设计心得

斜拉桥设计要点汇总 一:斜拉桥孔跨布局 1、双塔三跨式 ①边/主跨比值大小 一般边主跨之比应小于0.5; 对于活载比重较小的公路和城市桥梁,合理的边主跨之比应为0.4~0.45; 对于对于活载比重较大的铁路桥梁,边主跨之比宜为0.2~0.25; 钢主梁斜拉桥应比相同跨径的混凝土斜拉桥的边跨小。 ②设置辅助墩的作用 1)可以减小锚索(即背索)的应力幅度,提高主跨的刚度; 2)缓和端支点负反力; 3) 避免梁体直接在伸缩缝处转动,从而导致伸缩缝的受损。 2、独塔双跨式 独塔不对称双跨式斜拉桥的主跨跨径L2与边跨跨径L1之比一般在0.5~0.8左右,多数在0.66附近; 3、三塔、四塔以及多塔式 多塔式斜拉桥较少采用的主要原因是:中塔没有端锚索来有效的限制它的变位。因此对于多塔式斜拉桥,中塔的刚度必须要比边塔的刚度大,目前国内保持中塔的稳定性的构造措施主要有: 1)主塔采用A形塔和X形框架墩 如委内瑞拉的马拉开波湖桥---160+5x236+160m就是每个主塔主梁悬臂端均支撑在X 形框架墩上,中间增设挂梁,该桥实际为独塔组合形式,每个塔主梁均为独立形式,主梁不连续。 2)将两个双塔斜拉桥通过中间一联连续梁桥串联 如日本四国连络桥就是通过岩黑岛上两跨连梁桥串联成,该双塔斜拉桥跨径布置为185+420+185m。 3)用铰将三座独塔斜拉桥串联 如我国台北的淡水河桥就是利用能转动和伸缩的铰将三座独塔斜拉桥连接成一整体。淡水河桥跨径布置为67+134+134+67m。

4)中塔增设锚固斜缆索 如我国香港的汀九大桥就是一座三塔斜索面斜拉桥,该桥桥跨布置为127+448+475+127m。 5)综合处理方法 如我国湖南岳阳洞庭湖大桥为三跨高低塔斜拉桥,跨径布置为130+2*310+130m,为了提高三塔斜拉桥的整体刚度,该桥采用的主要措施有: ①增加主梁的高度和塔身纵向截面的宽度; ②将两边塔的边跨和中跨最外侧两个索距缩小至6m,并增大该边索的截面面积,增大后为313φ7mm; ③在端支点和中跨跨中分别增设2000KN的压重以提高各塔外索的张紧程度。 二:矮塔斜拉桥 1、塔高:矮塔斜拉桥的塔高:跨度=1/8~1/12,而常规斜拉桥位1/4~1/7(双塔),独塔一般在1/2.7~1/4.7; 2、边跨:边跨/主跨一般大于0.5; 3、梁高较大,一般梁高:跨径比值在1/30~1/40,拉索对竖向恒荷载的分担小于30%。三:斜拉桥索距 一般常规斜拉桥的索距在5-15m之内,混凝土主梁因自重较大,索距应密集些,相反对钢或钢-混凝土组合梁则可稍大些。

组合斜拉桥简介及其结构特点分析

2002年增刊广东公路交通 GuallgDOllgc∞gIjlJi日岫总第76期文章编号:167l一7619(2002)增刊一0Q52一03 组合斜拉桥简介及其结构特点分析 苗德山1(1.广东省交通集团有限公司.广州5101叭 孙向东2 2.广东省公路勘察规划设计院。广州5lQ5昕) 摘要:利用斜拉桥自身构件的各种变化,可以派生出众多优美的结构形式,并达到与环境的完美结合。组合斜拉桥跨越能力强,应用广泛,桥型美观。简要介绍了其类型并分析了各桥型的结构受力特点。 关键词:组舍斜拉桥桥掣结构分析 中图分类号:tM8.刀“文献标识码:c 1引言 随着结构分析技术、高强材料及先进施工工艺的发展,斜拉桥凭其自身的特点在太跨径桥梁领域成为了一种竞争能力极强的桥型。虽然现代斜拉桥只有短短的几十年历史,却在实际工程中展现了勃勃生机。利用斜拉桥自身构件的各种变化可以派生出众多优美的结构形式,并达到与环境的完美结合。 斜拉桥的上部结构由梁、索、塔三类构件组成,因上述三者一般不是同一种材料,故从整体上看斜拉桥本身就是一种组合结构。对于任何桥型来说跨度的推进始终是其发展的主题,而斜拉桥在自身的发展过程中,其粱、索、塔在结构形式、材料组成及协作方式等方面均发生了众多演化,其中以粱所派生出的形式最多,影响也最大。斜拉桥的主梁在空间不同的部位可以分别采用不同材料,通常是钢材和混凝土,此类斜拉桥与钢斜拉桥和混凝土斜拉桥相比,可称之为组合斜拉桥。 2组合斜拉桥分类 2.1竖向组合斜拉桥 竖向组合斜拉桥,是指在钢格构或钢梁上铺设钢筋混凝土或预应力混凝土行车道,这也就是通常所说的叠合梁斜拉桥(图1)。此类斜拉桥的代表有加拿大的A11Ilacis桥、中国上海的南浦及杨浦大桥等。 囤1血mads桥的叠台粱断面 2.2纵向组合斜拉桥 纵向组合斜拉桥一般是由边跨混凝土主粱与主跨钢粱在纵向加以连接组成.也就是通常所说的混合粱斜拉桥。此类斜拉桥的代表有法国的 ?52N0Ⅱllalldv桥和日本的生口桥等。 图2所示为N0㈣dy大桥的纵向布置情况,图中显示边跨混凝土粱进人中跨116m后与中跨钢主梁相接,从而减少钢主梁长度,降低造价。 圈2N0mwdv桥的纵向布置

斜拉桥设计桥梁工程设计说明

目录 第一章绪论 (4) 第一节工程概况 (4) 第二节技术指标 (4) 一、公路正桥主要技术指标 (4) 二、铁路正桥主要技术指标 (4) 第三节斜拉桥方案 (5) 一、斜拉桥概况 (5) 二、主桁 (5) 三、铁路桥面系 (5) 四、公路桥面系 (5) 五、主塔 (5) 第二章斜拉桥主桁模型建立 (6) 第一节建模思路 (7) 第二节建模过程 (7) 一、节点编号 (7) 二、节点自由度 (7) 三、同位移约束 (7) 四、杆件单元 (9) 第三章恒载及活载荷载计算 (12) 第一节计算思路 (12) 第二节公路恒载 (12) 一、正交异性板处 (12) 二、混凝土结合板 (13) 三、交接处节点 (13) 第三节铁路自重荷载计算 (14) 一、一级干线铁路自重荷载计算 (14) 二、客运专线铁路自重荷载计算 (14) 三、转化为节点荷载 (15)

第四节活载荷载计算 (15) 一、公路活载 (18) 二、铁路活载 (16) 第四章斜拉索初张力确定 (18) 第一节拉索初张力确定思路 (18) 第二节拉索初张力确定 (18) 一、恒载索力 (18) 二、活载索力 (20) 三、拉索初张力 (23) 第五章斜拉桥结构内力分析 (25) 第一节恒载内力 (25) 一、确定控制断面 (25) 二、恒载作用下跨中断面内力 (25) 三、恒载作用下支座处断面内力 (26) 第二节公路桥面横向分布系数计算 (26) 一、汽车荷载横向分布计算 (26) 二、求弹性支承的刚度系数 (26) 三、建立横梁模型 (27) 四、用移动荷载法求影响线 (27) 五、确定最不利桁架 (28) 六、求中桁的横向分布系数 (28) 第三节公路桥面横向分布系数计算 (29) 一、计算方法 (29) 二、求横向分布系数 (29) 三、确定最不利桁架 (30) 第四节活载内力分析 (31) 一、分析思路 (31) 二、求汽车活载下的内力 (31) 三、求列车活载下的内力 (32)

斜拉桥毕业设计开题报告 - 副本

毕业设计开题报告 设计(论文)题目: 三宝桥斜拉桥初步设计 院系名称: 土木与建筑工程学院 专业班级: 道桥10-1班 学生姓名: 导师姓名: 开题时间: 2014年3月14日

1、毕业设计目的及意义 1.1内容 三宝桥位于黑龙江省东部绥芬河市,地处北纬44o18’~44o32’,东经130o57’~131o13’。该桥是新华街的西延伸线,东起花园路,向西跨过黄河路落至华南山坡上自然地面。综合考虑当地条件拟采用双塔三跨斜拉桥设计方案。本设计采用有限元软件midas和ansys进行全结构仿真分析,并初步进行探索采用BIM设计理念。 1.2背景 世界上第一座现代斜拉桥1955年在德国工程师狄辛格的帮助下建成,同年,莱昂哈特设计了杜塞尔多夫跨越莱茵河的北桥和赛道胡思桥。我国自1977年建成重庆云阳桥以来,已经建成各种斜拉桥200余座,是世界上斜拉桥最多的国家。世界前50座跨径最大的斜拉桥中,中国占半数以上。 进入20世纪90年代尤其是21世纪以来,斜拉桥结构得到了十分迅速的发展,其跨径已经进入了以前悬索桥适用的特大跨径范围,结构分析的进步对于大跨径斜拉桥的发展起到了关键的推动作用。斜拉桥以其结构受力性能好、跨越能力强、结构造型多姿多彩、抗震能力强及施工方法成熟等特点,在桥梁工程中得到了越来越多的应用。 1.3解决的问题 本题目所涉及的桥梁位于黑龙江省东部绥芬河市,地处北纬44o18’~44o32’,东经130o57’~131o13’。该桥是新华街的西延伸线,东起花园路,向西跨过黄河路落至华南山坡上自然地面。本工程是绥芬河市一项重要市政建设工程,鉴于绥芬河市—国门独特的地理位置,该桥的建成,将成为绥芬河市的标志性建筑,向世人展示绥芬河乃至中国改革开放的建设成就,为绥芬河市连接新老城区,提高过境能力起到积极作用。同时,将促进中俄及东亚贸易和旅游的发展,为打造北方深圳开创新局面。 1.4对学术的推进 毕业设计能使我掌握桥梁设计的整个过程,同时对施工过程和关键工艺进行思考和设计,巩固所学专业知识,并在应用中将其融会贯通。通过该桥梁设计,使我能够正确分析现有的桥位地质、气候等自然条件,根据道路等级、荷载等级、桥面净宽等设计技术标准,结合施工队伍技术力量和设备条件,独立查阅、应用文献资料,正确

斜拉桥设计计算书

┊┊┊ ┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 摘要 本设计根据设计任务要求,依据现行公路桥梁设计规范,兼顾技术先进,安全可靠,适用耐久,经济合理的原则,提出了预应力混凝土双索面独塔斜拉桥、预应力混凝土连续刚构、中承式拱桥三个比选桥型。综合各个方案的优缺点并考虑与环境协调,把预应力混凝土双索面独塔斜拉桥作为推荐设计方案。进行结构细部尺寸拟定,并利用Midas6.7.1建模,进行静活载内力计算、配筋设计及控制截面应力验算、变形验算等。经验算表明该设计计算方法正确,内力分布合理,符合设计任务的要求。 关键词:预应力混凝独塔斜拉桥成桥合理状态结构分析 Abstract According to the design assignment and the present Highway Bridge Specifications, after preliminary analysis, three types of bridge are presented, they are single-pylon Prestressed concrete cable-stayed bridge, prestressed concrete continuous rigid frame and through type steel tube with concrete arch. After comparing their characters comprehensively, the prestressed Prestressed concrete cable-stayed bridge are selected as the main design scheme for further analysis. Through create model and run structural analysis, get the effect in the action of dead load, live load,and then calculate the effect in the beam for designing prestressed steel and the checking computation of key section intension, stress, living load distortion, The conclusion can be drawn that the design is up to the assignment. Key word:prestressed concrete;single-pylon cable-stayed bridge;rational dead load state ; structure analysis .

斜拉桥结构设计及问题简析

斜拉桥结构设计及问题简析 摘要:斜拉桥是一种组合受力体系的桥梁,其主体结构由斜拉索、索塔、主梁组成。本文通过分析斜拉桥的结构特点,论述了斜拉桥在结构、布置、选材和审美方面的设计要求及注意事项,并简单介绍了斜拉桥在结构设计和施工建设方面遇到的难题及采取措施。 关键词:斜拉桥;布置形式;结构设计;斜拉桥审美 Abstract: The cable-stayed bridge is a bridge combined stress system, its main structure is composed of cables, towers, girders. In this paper, through the analysis of the structural characteristics of cable-stayed bridge, the cable-stayed bridge in the structure, layout, material selection and design aesthetic requirements and matters needing attention, and briefly introduces the problems encountered in the design and construction of cable-stayed bridge and measures. Keywords: cable-stayed bridge;layout;structure design;cable-stayed bridge aesthetics 自1979年建成的第一座斜拉桥——主跨只有76米云阳桥以来,经过30多年的飞速发展,现今我国斜拉桥无论是在规模和跨度方面,还是在结构设计和施工技术都取得了巨大的成就。目前我国已经是世界上斜拉桥数量最多、跨度最大的国家。我国斜拉桥的设计与施工技术也已经跨入世界的先进行列,并取得了显著的成绩:(1)斜拉索制造工艺实现了专业化和工厂化及防护技术不断完善;(2)斜拉桥的施工技术逐步完善;(3)用计算机进行结构计算和施工过程控制等。目前我国的斜拉桥正在向新型结构、大跨度、轻质和美观等方向发展,以更好的适应交通、经济、环境和安全的要求。 1 斜拉桥整体结构特点 斜拉桥又称为斜张桥,是用许多拉索将主梁直接拉在桥塔上的一种组合受力体系的桥梁,其主体结构由斜拉索、索塔、主梁组成。在斜拉桥结构体系中,索塔主要是承压,斜拉索受拉,梁体主要承受弯矩,外荷载主要由主梁和斜拉索承受,并由斜拉索将受力传递给索塔。主梁由一根根拉索拉起,等于在梁内设置了许多支撑点,可以将其看作由拉索代替支墩的多跨弹性支承连续梁,这种结构能够非常有效的减小梁体内弯矩,从而降低主梁的高度,减轻结构重量,节省建筑材料,有利于斜拉桥向大跨度方向发展。斜拉桥相对悬索桥有较大的刚度,在抵抗风载、地震、竖向活载的作用方面有优势。 2 斜拉桥的布置 2.1斜拉桥整体布置

相关主题
文本预览
相关文档 最新文档