当前位置:文档之家› 乳液聚合的特点

乳液聚合的特点

乳液聚合的特点
乳液聚合的特点

乳液聚合的特点

和其它聚合反应的实施方法——本体聚合、溶液聚合和悬浮聚合相比较,乳液聚合法有如下的重要特点:

1.易散热

众所用知,烯类单体聚合反应的传热特点是

①热负荷大,其聚合热约为60一100KJ/MOLl;

②在聚合过程中放热不均衡,高峰期要比平均放热速率高2—3倍;

③传热条件差.对本体聚合来说,反应后期体系粘度可达几十万mpa.s.传热系数大大降低;

④为了控制聚合反应速率与聚合物分于量及其分布,聚合过程常常对反应温度有着非常苛刻的要求。

为了解决散热问题,即使采用高效搅拌和换热装置,也很难将所产牛的聚合热及时排除,所以聚合过程的散热问题是一个关键问题,常常因为散热问题得不到合理解决而使实验室研究成果不能投人工业生产而转化为生产力。散热问题也严重地影响着安全生产和产品质量,因为散热不好而在聚合体系中造成局部过热,轻则使相对分子质量分布变宽,还会引起支化、交联和碳化,使产品质量变坏,重则会引起爆发性聚合,使产品报废,甚至发生事故。

与本体聚合不同,乳液聚合体系的连续相是水,聚合反应发生在分散于水相中的乳胶粒内部,尽管乳胶粒内粘度很高,但整个反应体系的粘度并不高,基本上接近于连续相水的粘度,并且在聚合过程中体系粘度也不会发生大幅度的变化,因为同本体聚合相比,乳液聚合体系易散热,不会出现局部过热,更不易发生爆聚。

乳液聚合不仅比本体聚合容易散热,而且也比溶液聚合和悬浮聚合更容易散热,许多阅澈热问题得不到解决而上升不到大生产的聚合过程,常常可以很容易地用乳液聚合法进行生产。

2.既可制得高分子量的聚合物,又有高的聚合反应速率

本体聚合、溶液聚合与悬浮聚合遵循共向的动力学规律,即在引发剂浓度一定时,要想提高聚合反应速率,就要提高反应温度,而反市温度的提高会加速引发剂的分解,使自由基浓度增大,从而导致了链终止速率的增大,使聚合物平均相对分子量减小;反过来,要想提高聚合物平均相对分子量,就必须降低反应温度,这义会造成聚合反应速率的降低。就是说,要想提高聚合物平均相对分子量,就必须降低聚合反应速率;而要想提高反应速率,就必须牺牲相对分子量的提高,即两者是矛盾的。而乳液聚合可以把两者统一起来,即乳液聚合既可以具有高的聚合反应速率,又可以得到高分子量的聚合物。这是因为乳液聚合是遵循和其它聚合方法不同的动力学规律而进行的。

乳液聚合中的自由基终止速率要比本体聚合中的低,在反应温度和引发剂浓度不变的前提下,终止反应速率低必会导致自由基浓度提高,故乳液聚合体系中的自由基浓度要比本体聚合体系中的大,因而乳液聚合要比本体聚合反应速率高。

采用乳液聚合方法既可以提高聚合反应速率,又可以制得高分子量的聚合物,高的反应速率会使生产成本降低,而高分子量则是生产高弹性合成橡胶和其他许多产品所必需的。这正是和其它聚合方法相比乳液聚合法的独到之处。

3.以水代替溶剂是发展的方向

由乳液聚合法制成的聚合物乳液是聚合物以乳胶粒的形式在水中的分散体,介质水不燃、不爆、无毒、无味,不污染环境,生产安全,对人体无伤害,大大改善聚合车间、后处理车间及其后应用过程中的劳动条件。水便宜、易得,可显若降低成本,而且避免了采用溶液聚合法溶剂回收的麻烦。随着世界各因环境保护法的相继出台和强化,对易造成环境污染的有机溶剂的用量严加控制,以水代替溶剂来制造各种聚合物的乳液聚合法倍受青睐,故具有强大的生命力,成为今后发展的方向。

4.生产灵活性大

和其他聚合方法相比,乳液聚合法生产设备和工艺简单,操作方便,灵活性大;既可采用间歇法,又可采用半连续法和连续法进行生产;生产弹性大,产量可大可小,既有年产几十万吨合成橡胶、合成材脂的大型生产装置,又可生产各种各样的少量特殊用途的精细聚合物产品;溶于水中的、微溶于水中的和不溶于水中的单体均可用乳液聚合法制备聚合物;既可进行单一单体的均聚,又可进行两种或多种单体的共聚反应,同时还可制备接枝聚合物、定向聚合物、互穿网络结构聚合物、核壳结构及异相结构聚合物等具有各种特异性能的聚合物。

5.聚合物乳液可直接利用

在某些情况下,乳液聚合完成以后,需通过后处理将聚合物乳液凝聚成块状、颗粒状或粉末状聚合物,然后送去加工成型,制成各种用品。但在很多情况下所制造的聚合物乳液本身就是产品,直接在建筑、纺织、造纸、工业涂装、皮革等行业作为涂料、粘合剂和其他工作物质,已成为不可缺少的材料。

乳液聚合技术

乳液聚合新技术的研究进展 摘要:乳液聚合方法具有广泛的应用范围,近期几年备受关注。本文首先介绍了乳液聚合的基本情况,并着重介绍了一些新的乳液聚合方法和研究成果。 关键词:乳液聚合;进展 前言: 乳液聚合技术的开发始于本世纪20年代末期,当时就已有和目前生产配方类似的乳液聚合的专利出现。30年代初,乳液聚合已见于工业生产。随着时问的推移,乳液聚合过程对商品聚合物的生产具有越来越大的重要性,在许多聚合物如合成橡胶、合成树脂涂料、粘合剂、絮凝剂、抗冲击共聚物等的生产中,乳液聚合已经成为主要的生产方法之一,每年通过该方法制作的聚合物数以千万吨计。【1】1.乳液聚合基本情况 乳液聚合定义 生产聚合物的方法有四种:本体聚合、溶液聚合、悬浮聚合及乳液聚合。乳液聚合是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要由单体、介质(水)、乳化剂及溶于介质(水)的引发剂四种基本组分组成。目前的工业生产中,乳液聚合几乎都是自由基加成聚合,所用的单体几乎都是烯烃及其衍生物,所用的介质大多是水,故有人认为乳液聚合是指在水乳液中按照胶柬机理形成比较独立的乳胶粒中,进行烯烃单体自由基加成聚合来生产高聚物的一种技术。但随着聚合理论的逐步完善,对乳液聚合比较完整的定义应该为:乳液聚合是在水或其他液体作介质的乳液中,按照胶束理论或低聚合物机理生成彼此孤立的乳胶粒,并在其中进行自由基加成聚合或离子加成聚合来生产高聚物的一种聚合方法。 乳液聚合体系至少由单体、引发剂、乳化剂和水四个组分构成,一般水与单体的配比(质量)为70/30~40/60,乳化剂为单体的%~%,引发剂为单体的%~%;工业配方中常另加缓冲剂、分子量调节剂和表面张力调节剂等。所得产物为胶乳,可直接用以处理织物或作涂料和胶粘剂,也可把胶乳破坏,经洗涤、干燥得粉状或针状聚合物。 乳液聚合的特点 聚合反应发生在分散在水相内的乳胶粒中,尽管在乳胶粒内部粘度很高,但由于连续相是水,使得整个体系粘度并不高,并且在反应

第5章聚合方法

思考题 2. 本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。 答:本体法制备有机玻璃板过程中,有散热困难、体积收缩、产生气泡诸多问题;本体法制备通用级聚苯乙烯存在散热问题。前者采用预聚合、聚合和高温处理三阶段来控制;后者采用预聚和聚合两阶段来克服。 3. (略) 4. 悬浮聚合和微悬浮聚合在分散剂选用、产品颗粒特性上有何不同? 答:悬浮聚合分散剂主要是水溶性高分子和不溶于水的无机粉末,而微悬浮聚合在分散剂是特殊的复合乳化体系,即由离子型表面活性剂和难溶助剂组成;悬浮聚合产品的粒度一般在50μm~2000μm之间,而悬浮聚合产品的粒度介于0.2μm~1.5μm之间。 5.苯乙烯和氯乙烯悬浮聚合在过程特征、分散剂选用、产品颗粒特性上有何不同? 答:苯乙烯悬浮聚合的初始体系属于非均相,其中液滴小单元则属均相,最后形成透明小珠状,故有珠状(悬浮)聚合之称,而氯乙烯悬浮聚合中,聚氯乙烯将从单体液滴中沉析出来,形成不透明粉状产物,故可称作沉淀聚合或粉状(悬浮)聚合。 聚苯乙烯要求透明,选用无机分散剂为宜,因为聚合结束后可以用稀硫酸洗去,而制备聚氯乙烯可选用保护能力和表面张力适当的有机高分子作分散剂,有时可添加少量表面活性剂。 聚苯乙烯为透明的珠状产品,聚氯乙烯为不透明的粉状产物。 6. 比较氯乙烯本体聚合和悬浮聚合的过程特征、产品品质有何不同? 答:氯乙烯本体聚合除了悬浮聚合具有的散热、防粘特征外,更需要解决颗粒疏松结构的保持问题,多采用两段聚合来解决。本体法聚氯乙烯的颗粒特性与悬浮法树脂相似,疏松,但无皮膜,更洁净。 7. 简述传统乳液聚合中单体、乳化剂和引发剂的所在场所,链引发、链增长和链终止的场所和特征,胶束、胶粒、单体液滴和速率的变化规律。 答:单体的场所:水中、增溶胶束、单体液滴 乳化剂的场所:水中、胶束、增溶胶束、单体液滴表面 引发剂的场所:水中 引发的场所:增溶胶束 增长的场所:乳胶粒内 终止的场所:乳胶粒内 (1)增速期:这一阶段胶数不断减少直至消失,乳胶粒数不断增加,聚合速率相应提高,单体液滴数目不变,但体积减少; (2)恒速期:这一阶段只有单体液滴和乳胶粒,单体液滴数目减少直至消失,乳胶粒数目恒定,聚合速率不变; (3)降速期:这一阶段只有乳胶粒,单体液滴数目减少直至消失,乳胶粒数目恒定,聚合速率随着乳胶粒内单体浓度的降低而降低。 8. 简述胶束成核、液滴成核、水相成核的机理和区别。 答:难溶于水的单体所进行的经典乳液聚合,以胶束成核为主。经典乳液聚合体系选用水溶性引发剂,在水中分解成初级自由基,引发溶于水中的微量单体,在水相中增长成短链自由基。聚合物疏水时,短链自由基只增长少量单元就沉析出来,与初级自由基一起被增容胶束捕捉,引发其中的单体聚合而成核,即所谓胶束成核。

苯丙乳液配方及原理精编版

苯丙乳液配方及原理公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

苯丙乳液生产配方 苯丙乳液是由苯乙烯和丙烯酸酯单体乳化共聚而得。乳白色液体,带蓝光。苯丙乳液附着力好,胶膜透明,耐水、耐油、耐热、耐老化性能良好,是水性涂料,地毯胶,工艺胶的主要成分,市场需求量非常大。 一、基本配方(按照1000公斤投料): 1、苯乙烯:218.8kg 2、丙烯酸丁酯:238.4kg 3、甲基丙烯酸甲酯:19.56kg 4、甲基丙烯酸:9.64kg 5、保护胶体(聚甲基丙烯酸钠):8.36kg 6、乳化剂OS(烷基酚醚磺基琥珀酸酯钠盐):18.85kg 7、碳酸氢钠:0.5kg 8、过硫酸铵:2.4kg 9、去离子水:499kg 二、操作工艺 1、预乳化和配料 (1)在预乳化釜内分别加入去离子水191kg,碳酸氢钠0.5kg,乳化剂OS18.85kg,混合单体(甲基丙烯酸:9.64kg;苯乙烯:218.8kg; 并烯酸丁酯:238.4kg,甲基丙烯酸甲酯:19.56kg),进行预乳 化,得到稳定的预乳化液。 (2)将过硫酸铵2.4kg加入去离子水64kg,配成引发剂溶液,备用。

(3)保护胶体(聚甲基丙烯酸钠)8.36kg加入去离子水44kg,配成保护胶体溶液,备用。 2、聚合 在聚合釜内分别加入去离子水200kg,保护胶体溶液,预乳液60kg,待70摄氏度左右时加入引发剂溶液30kg,在80摄氏度左右引发聚合,进行种子乳液聚合,可观察到釜底乳液泛蓝光。保温10min后,开始滴加剩余的预乳液和引发剂溶液。滴加时维持聚合反应温度84-86摄氏度。滴完后保温1小时。 3、出料包装 冷却到30摄氏度以下,出料用120目滤布过滤,即为苯丙乳液产品。 三、产品主要指标: 1、固含量:48.5% 2、PH值:5.5-6.5 3、粘度(涂-4℃.S.17℃)值:17 苯丙乳液的制备 一、实验目的: 1、掌握用乳液聚合法制备高分子材料的一般原理和合成方法; 2、了解目标乳合物的设计原理。 二、实验原理(概述): 乳液聚合是以水为连续相(分散剂),在表面活性剂(乳化剂)存在下,使聚合反应发生在由乳化剂形成的乳胶粒内部(即表面活性剂形成的胶束作为微反应器),制备高分子材料的一种方法。

影响乳液聚合的因素

影响聚醋酸乙烯乳液质量的因素 单体质量的影响 醋酸乙烯单体应该用新精馏的,并控制一定的质量指标。 外观——无色透明液体 活化度(10ml单体加过氧化苯甲醚——<30min 沸点——72-73℃——20ml在70℃时测定) 含醛(以乙醛计)——<0.02% 含酸(以乙酸计)——<0.01% 醋类是醋酸乙烯单体中的主要杂质,能起到明显的阻聚作用,阻聚作用使得聚合物的分子量不易长大,并且使聚合过程变复杂。在本体聚合和悬浮聚合时经常使用乙醛调节分子量大小。酸对乳液聚合也有影响,活化度实际上是醛、酸和其他杂质在单体中的综合影响,杂质多聚合诱导期变长。杂质少,诱导期短,活化时间也短。活化度太差的单体在乳液聚合反应进行时会出现聚合反应时行缓慢,回流一直很大,使连续加入单体有困难。加单体太慢或中途停止加单体则反应放热少而回流带出的热量多,反应温度就会下降,反应难于控制,无法平稳进行。 引发剂的影响 在乳液聚合中都用水溶性的引发剂,如过硫酸盐和过氧化氢,而不能用溶解于单体中的过氧化苯甲酰和偶氮二异丁腈,引发剂溶解在单体中不好。过氧化氢在存放中易变化,而硫酸盐比过氧化氢易控制,在操作时加水溶解后即加入反应釜内,因此比较稳定,所以一般多采用过硫酸钾、过硫酸铵等。 一般情况下过硫酸钾的用量为单体量的0.2%,实际上在反应中只加入2/3,其余1/3是在反应最后阶段加入的,目的是为了减少乳液中的游离单体。引发剂用量根据设备情况、投料量确定,反应设备越大,投料量越大,引发剂的用量就相应减少些。做小试验的时候,引发剂使用的比例比中试、实际生产的比例要大一点。而在每次反应时间中初加的部分也需视反应情况而稍有不同。 用过硫酸盐为引发剂时,乳液的pH值需加以控制,因为在反应中加入过硫酸盐会使反应液的酸性不断增加,而pH值太低(如小于2时),则反应速度很慢,有时会破坏了乳液聚合反应的正常进行,使乳液粒子变粗,甚至会使反应时间过长或使反应无法进行。若所用聚乙烯醇是碱醇解的产品,水溶液呈弱碱性,则在反应前可不调整pH值,而在反应结束后加入部分碳酸氢钠中和至pH值4-6间。 乳化剂的影响 乳化剂是一种表面活性剂,在乳液聚合过程中能降低单体和水的表面张力,并增加单体在水中的溶解度,形成胶束和乳化的单体液滴。乳化剂的选择对乳液的稳定性和质量有很大影响,乳化剂的用量多少也对乳液的稳定性有影响,乳化剂用量太少乳液的稳定性差,而用量太大耐水性则差。 聚乙烯醇是聚醋酸乙烯乳液聚合中最常用的乳化剂,由于对乳液的质量要求不同,聚乙烯醇的规格和用量也有所不同。聚乙烯醇在乳液中起乳化作用,也起保护胶体的的作用,但也有使胶体增稠的作用,所以其用量不仅以乳化的角度也从增稠的角度,聚乙烯醇地一般用量是为单体的5%左右。

苯乙烯乳液聚合实验报告

实验名称:苯乙烯的乳液聚合姓名:_________ 学号:__________ 实验日期:__________ 一、实验目的 1.了解乳液聚合的原理和乳液聚合的方法。 2.学习并了解乳液聚合和其他聚合方法的区别。 二、实验原理 乳液聚合是以大量水为介质,在此介质中使用能够使单体分散的水溶性聚合引发齐山并添加乳化剂(表面活性剂),以使油性单体惊行聚合的方法。所生成的高分子聚合物为微细的粒子悬浮在水中的乳液。 单体 能进行乳液聚合的单体数量很多,其中应用比较广范的有:乙烯基单体,例:苯乙烯、乙烯、醋酸乙烯酯、氯乙烯、偏二氯乙烯等;共轭二烯单体,例:丁二烯、异戊二烯、氯丁二烯等;丙烯酸及甲基丙烯酸系单体,例:甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸甲酯等。 引发剂 与悬浮聚合不同,乳液聚合所用的引发剂是水溶性的,而且由于高温不利于乳液的稳定性,弓I发体系产生的自由基的活化能应当很低,使聚合可以在室温甚至更低的温度下进行。常用的乳液聚合引发剂有:热分解引发剂,如过硫酸铵[(NH4) 2?O8]、过硫酸钾(K2908);氧化还原引发剂,如过硫酸钾-氯化亚铁体系、过硫酸钾-亚硫酸钠体系、异丙苯过氧化氢-氯化亚铁体系等。 乳化剂 乳化剂是可以形成胶束的一类物质,在乳液聚合中起着重要的作用,常见的乳液聚合体系的乳化剂为负离子型,如十二烷基苯磺酸钠、十二烷基硫酸钠等。乳化剂具有降低表面张力和界面张力、乳化、分散、增溶作用。 三、仪器及药品 三口烧瓶、搅拌器、回流冷凝管、固定夹及铁架、恒温水浴锅、烧杯、量筒、温度计苯乙烯10mL、十二烷基苯磺酸钠0.6g、过硫酸钾0.3g、硫酸铝钾、水 四、实验步骤及现象 1.取0.6g十二烷基苯磺酸钠,50ml H2O加入三口烧瓶升温至80C。 2.加入10ml苯乙烯。 3.取0.3g过硫酸钾溶于10ml H2O缓缓加入三口烧瓶。 4.升温到90C反应1.5小时。 现象:溶液浑浊并发蓝光,后来蓝色消失变为乳白色。 5?加入KAI(SO)2进行破乳 现象:溶液发生固化得到白色固体。 6.转移产物并洗涤仪器。

实验五:苯乙烯乳液聚合

高 分 子 化 学 实 验 报 告 实验五:苯乙烯乳液聚合

一、实验目的 1)、通过实验对比不同量乳化剂对聚合反应速度和产物的相对分子质量的影响,从而了解乳液聚合的特点,了解乳液聚合中各组分的作用,尤其是乳化剂的作用 2)掌握制备聚苯乙烯胶乳的方法。 二、实验药品、仪器及装置 药品:苯乙烯、过硫酸钾、十二烷基磺酸钠、乙醇、蒸馏水 仪器:三口瓶、冷凝管、搅拌器、恒温水浴锅、温度计、量筒、移液管、烧杯、布氏漏斗、抽滤瓶、水泵 装置图: 三、实验原理 乳液聚合是指单体在乳化剂的作用下,分散在介质中加入水溶性引发剂,在机械搅拌或振荡情况下进行非均相聚合的反应过程。它不同于溶液聚合,又不同于悬浮聚合,它是在乳液的胶束中进行的聚合反应,产品为具有胶体溶液特征的聚合物

胶乳。 乳液聚合体系主要包括:单体、分散介质(水)、乳化剂、引发剂,还有调节剂、pH 缓冲剂及电解质等其他辅助试剂,它们的比例大致如下: 水(分散介质):60%-80%(占乳液总质量) 单体:20%-40%(占乳液总质量) 乳化剂:0.1%-5%(占单体质量) 引发剂:0.1%-0.5%(占单体质量) 调节剂:0.1%-1%(占单体质量) 其它:少量 乳化剂是乳液聚合中的主要组分,当乳化剂水溶液超过临界胶束浓度时,开始形成胶束。在一般乳液配方条件下,由于胶束数量极大,胶束内有增溶的单体,所以在聚合早期链引发与链增长绝大部分在胶束中发生,以胶束转变为单体的聚合物颗粒,乳液聚合的反应速度和产物相对分子质量与反应温度、反应地点、单体浓度、引发剂浓度和单位体积内单体-聚合物颗粒数目等有关。而体系中最终有多少单体-聚合物颗粒主要取决于乳化剂和引发剂的种类和用量。当温度、单体浓度、引发剂浓度、乳化剂种类一定时,在一定范围内,乳化剂用量越多、反应速度越快,产物相对分子质量越大。乳化剂的另一作用是减少分散相与分散介质间的界面张力,使单体与单体-聚合物颗粒分散在介质中形成稳定的乳浊液。

浅析乳液聚合的合成原理及和材料及稳定性

浅析乳液聚合的合成原理及和材料及稳定性 在乳液聚合过程中,乳化剂的种类、用量与用法、pH值、引发剂的类型、搅拌形状与搅拌速度、加料方式、聚合工艺等都会影响到聚合物乳液的稳定性。功能性单体如硅烷偶联剂、丙烯酸、丙烯酰胺、丙烯酸羟乙酯等作为交联单体参与共聚,在一定程度上可提高乳液的稳定性,但因具有极强的亲水性,聚合过程中若在水相发生均聚形成水溶性大分子,容易产生絮凝现象,极易破乳。因而选择合适的乳化体系和聚合工艺对乳液聚合过程的稳定性具有极重要。 聚合物乳液承受外界因素对其破坏的能力称为聚合物乳液的稳定性。在乳液聚合过程中局部胶体稳定性的丧失会引起乳胶粒的聚结形成宏观或微观的凝聚物,即凝胶现象。凝胶多为大小不等、形态不一的块状聚合物,有的发软、发粘,有的发硬、发脆、多孔。在搅拌作用下凝胶分散在乳液中,可通过过滤法或沉降法除去,但有时也会形成大量肉眼看不到的、普通方法很难分离的微观凝胶,使乳液蓝光减弱颜色发白,外观粗糙。严重时甚至整个体系完全凝聚,造成抱轴、粘釜和挂胶现象。凝聚物的生成在乳液研究和生产中具有极大的危害性,它不仅降低单体的有效转化率,增加聚合装置的停机时间和处理的费用,而且还会加大各釜和各批次间产品性能的不一致性,污染环境。 目前比较权威的用于解释聚合物乳液稳定性的理论是双电层理论和空间位阻理论。乳胶粒子的表面性质与吸附或结合在其上的起稳定作用的物质有关,酸性、碱性离子末端以及吸附在乳胶粒表面上的乳化剂在一定的pH值下都是以离子形式存在的,使乳胶粒子表面带上一层电荷,从而在乳胶粒子之间就存在静电斥力,乳胶粒难于互相接近而不发生聚结。当乳胶粒表面吸附有非离子型乳化剂或高分子保护胶体时,其稳定性则与空间位阻有关。 乳化剂的选择是决定乳液聚合体系稳定性的关键因素之一。乳化剂虽不直接参与反应,但乳化剂的种类及用量将直接影响到引发速率、链增长速率以及聚合物的分子量和分子量分布。此外乳化剂的类型、用量和加入方式对乳胶粒的粒径和粒径分布、乳液粒度也有着决定性的影响。如果所选用的乳化剂不适合本乳液聚合体系,则不论怎样改变乳化剂的浓度和调节聚合工艺参数,乳液聚合仍不能平稳进行或是所得到的乳液产品缺乏实用价值。 离子型乳化剂的特点是乳化效率高,可有效地降低表面张力,胶束和乳胶粒子尺寸小,机械稳定性好,但由于其离子特性对电解质比较敏感;非离子型乳化剂对电解质有较好的稳定性,但机械稳定性不好,对搅拌速度比较敏感。 离子型乳化剂主要靠静电斥力使乳液稳定,而非离子型乳化剂主要靠水化,两种乳化剂复合使用时,两类乳化剂分子交替吸附在乳胶粒子表面上,既使乳胶粒间有很大的静电斥力,又在乳胶粒表面形成很厚的水化层,二者双重作用的结果可使聚合物乳液稳定性大大提高。目前乳液聚合体系多采用阴离子型与非离子型复配乳化体系,所得乳液兼有粒子尺寸小、低泡和稳定性好的特点。 引发剂对整个聚合过程起到重要的作用,不同的引发剂制得的聚合物具有不同的分子结构及性能。乳液聚合引发剂分为两类:受热分解产生自由基的引发剂(如过硫酸铵APS、过硫酸钾KPS、过硫酸钠NPS、过氧化氢等无机过氧化物);有机过氧化物和还原剂组合可构成另一

乳液聚合中乳胶粒粒径大小及分布的影响因素

乳液聚合中乳胶粒粒径大小及分布的影响因素 王竹青葛圣松 (山东科技大学化学与环境工程学院山东青岛 266510) 摘要在乳液聚合中,乳胶粒的大小及分布对乳液的性能及其应用有很大的影响,同时也反映了乳液聚合反应进行的过程。本文综述了影响乳胶粒粒径大小及分布的各种因素,如聚合工艺、乳化剂、单体种类、聚合温度、引发剂等,并介绍了不同粒径乳液的性能及其应用。关键词乳液聚合;乳胶粒粒径;影响因素;应用 引言 乳液聚合中,乳胶粒子的直径大小及其分布是表征聚合物乳液的重要指标之一。目前分子设计中的核心体现在乳液聚合中乳胶粒大小及分布的控制上[1]。粒径大小不同的乳液有不同的应用价值,如微乳液,粒径在 10~100nm 之间,是理想的小粒径、单分散聚合物颗粒的合成介质[2],在食品、医药、透明材料的填料等领域都有广泛的应用[3];大粒径(即微米级)、单分散、具有不同颗粒形态和表面特征的聚合物微球已经应用到高档涂料、粘合剂、浸渍剂、化妆品等科学技术领域,尤其是应用到高分子、生物医学和临床医学等高新技术领域中,成为不可缺少的材料和工作物质[4]。 本文综述了影响乳胶粒粒径大小的各种因素,并介绍了不同粒径乳液的性能及其应用。 1乳化剂的影响 在乳液聚合中,乳液稳定是因为分界面上亲水基团的存在,这种

基团为残留的引发剂、共聚单体,大部分是被吸附的乳化剂[5]。乳化剂作为乳液聚合体系中关键组分之一,它的组成、结构与性能直接影响最终乳液体系的稳定性、粒径大小及分布[6]。乳化剂用量越大,形成的胶束就越多,乳胶粒也越多,乳胶粒粒径就越小。付永祥[7]通过实验总结出随着乳化剂用量增加,乳液聚合转化率提高,乳胶粒粒径减小的结论。张文兴[8]讨论了高固含量条件下各因素对微胶乳粒径及分布的影响,通过控制乳化剂用量制备了固含量 40%、粒径50nm、分布 0.050 级别的纳米微胶乳。 在乳液聚合中,阴离子乳化剂因其能使乳胶粒子外层具有静电荷,防止离子聚集,使乳液的机械稳定性好,在工业中应用最广泛。而阳离子型乳化剂中胺类化合物具有阻聚作用,且易被过氧化物引发剂氧化而发生副反应,因此阳离子乳化剂的应用较少。非离子型乳化剂不怕硬水,化学稳定性好。一般而言,单纯用非离子型乳化剂进行乳液聚合反应,反应速率低于阴离子乳化剂参加的反应,且生产出的乳胶粒子粒径较大,涂膜光泽差[9]。与非离子型乳化剂相比,由于乳化剂离子带电荷,同时还会产生一定程度的水化作用,在乳胶粒子间静电斥力和水化层的空间位阻的双重作用下可使聚合物乳液更稳定,另一方面离子型乳化剂比非离子型乳化剂相对分子质量小得多,加入质量相同的乳化剂时,离子型乳化剂所产生的胶束数目多,成核几率大,会生成更多的乳胶粒,聚合反应速率大,合成的乳胶粒径小。因此在有离子型和非离子型乳化剂可供选择时,优先选择离子型乳化剂。两性乳化剂由于价格昂贵,尚未能在乳液聚合工业上体现其独特的性能

丙烯酸聚合原理word版本

丙烯酸聚合原理

2.1.2乳液聚合机理 1、引发机理 乳液聚合的引发剂是水溶性引发剂,根据引发剂生成自由基的机 理分为两大类:(1)热分解引发剂,通常应用较多的有过硫酸氨、过硫酸钾 (2)氧化还原引发剂,应用较多的有:过硫酸盐一亚硫酸氢 盐体系 通常情况下乳液聚合过程中引发作用分为以下几步:(1)引发剂在水相中分解成初始自由基;(2)初始自由基在水相中引发聚合;(3)水相中的初始自由基单体扩散到乳胶粒中或单体液滴中;(4)自由基在乳胶粒中引发聚合,生成高分子聚合物,使得乳胶粒不断长大。 2、乳液聚合机理 常规乳液聚合是指烯类单体在水介质中,由乳化剂分散成乳液状态进行的聚合,反应体系中主要由单体、水、水溶性引发剂及乳化剂四中基本组分组成。 乳液聚合过程大致可以分为下列三个阶段(如图2.2所示): 第一阶段一一乳胶粒生成期。从开始引发聚合,直至乳化剂形成 的胶束消失,聚合速率递增。水相中产生的自由基扩散进入胶束内,进行引发、增长,不断形成乳胶粒,同时水相中单体也可以引发聚合,吸附乳化剂分子形成乳胶粒。随着引发聚合的继续进行,增溶胶束不断成核,乳胶粒不断增多或增大。单体转化率达15%左右,胶束全部消失,不再形成新的乳胶粒,以后引发聚合完全在乳胶粒内进行

第二阶段一一恒速期。胶束消失后,聚合进入第二阶段。链引发、增长和终止反应继续在乳胶粒内进行,液滴仍起着仓库的作用,不断向乳胶粒供应单体。乳胶粒中单体浓度保持不变,加上乳胶粒数恒定,这一阶段的聚合速率也基本一定。单体转化率达50%左右,液滴全部消失,单体全部进入乳胶粒,开始转入大三阶段。 第三阶段一一降速期。乳胶粒内由单体和聚合物两部分组成,水中的自由基可以继续扩散到乳胶粒引发或终止,但单体再无补充来源,聚合速率将随乳胶粒内单体浓度的降低而降低。 叔碳酸乙烯酯

乳液聚合

. 乳液聚合技术进展—超大微粒与超高浓度乳液聚合 熊鹏鹏2010214110 关健词:超大微粒核/ 壳乳液聚合超高浓度乳液聚合胶冻状乳液 引言: 乳液聚合是制备聚合物材料的主要方法之一。由于乳液聚合机理的复杂性,应用领域的广泛性及某些方面的优越性,一直受到人们的重视。几十年来,从乳液聚合机理、聚合方法、聚合物乳胶的性质到应用技术的研究,方兴未艾,日渐深入。除了对聚合体系中的主要组份、新的单体体系、引发体系、乳化体系等方面进行广泛的研究开发外,在乳液聚合技术和方法的研究方面更是层出不穷,日新月异。在传统乳液聚合基础上,早期发展的聚合技术有种子乳液聚合、核/ 壳乳液聚合、无皂乳液聚合、反相乳液聚合、微乳液聚合、超微乳液聚合等。 上述乳液聚合技术的理论研究、不同体系的动力学、成核机理、聚合物乳胶的性质及特点已进行了较为详细的报道和阐述。为了进一步改善聚合物乳胶的性质,以适应不同用途、不同施工工艺及不同使用条件更广泛、更苛刻的要求,最近几年,国外的一些专家和学者们对乳液聚合中的新组份和新的聚合技术又有了进一步的研究和开发,并且显示了良好的发展前景。这些技术包括超大微粒核/壳乳液聚合、超高浓度乳液聚合、递变进料乳液聚合、和高聚物表面活性AI 的乳液聚合等。

本文将对前两种乳液聚合技术分别予以简要介绍,以期对国内乳液聚合的研究有些助益。 1、超大微粒核/ 壳乳液聚合 单分散性大乳胶微粒在聚合物掺混改性中有着特殊的增韧效果,如PBA/PSt(聚丙烯酸丁醋/聚苯乙烯) 核/ 壳复合乳胶可作为环氧树脂和聚苯乙烯的典型增韧剂,但乳胶粒子直径必须在2μm以上才能得到最佳的增韧效果。传统的乳液聚合,即用水溶性引发剂,在乳化剂胶束中成核,所制得的聚合物乳胶粒子的直径最大只有2μm,欲制备更大的粒子,则会导致乳胶的凝聚或形成次级粒子。 悬浮聚合和非水分散聚合可制得粒径较大的粒子,但其单分散性和核/ 壳形态难以控制。乳液聚合技术进展一超大微粒与超高浓度乳液聚合制备了较大的乳胶粒子。但这些方法条件特殊,所制得的乳胶固含量较低。用普通乳液聚合制备超大乳胶粒子、固含量较高的乳液聚合技术最近由加拿大的Co ok等人进行了开发研究。 2 制法、粒子大小和形态超大微粒核/ 壳乳胶,如PBA/PSt 的制备要点是: (1)用油溶性引发剂; (2) 种子多步核/ 壳聚合; (3)“挨饿”进料技术; (4) 在配方设计中严格控制乳化剂用量,使之既能保证乳胶体系的稳定性,又能得到单分散性乳胶粒子; (5) 同时加人少量的交联单体。乳胶粒子大小、分布、粒子形态结

乳液聚合合成及生产工艺

乳液聚合 班级:高分0942 姓名:冯会科学号:200910211239 乳液聚合(emulsion polymerization)是在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。乳液聚合是高分子合成过程中常用的一种合成方法。 乳液聚合体系至少由单体、引发剂、乳化剂和水四个组分构成,一般水与单体的配比(质量)为70/30~40/60,乳化剂为单体的0.2%~0.5%,引发剂为单体的0.1%~0.3%;工业配方中常另加缓冲剂、分子量调节剂和表面张力调节剂等。所得产物为胶乳,可直接用以处理织物或作涂料和胶粘剂,也可把胶乳破坏,经洗涤、干燥得粉状或针状聚合物。 乳液聚合的发展 自由基聚合反应是聚合物生产中应用最为广泛的方法之一,乳液聚合则是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要有单体、水、乳化剂和引发剂四种基本组分构成。 乳液聚合技术萌生于上世纪早期,一般公认最早见于文献的是德国Bayer公司的H.Hofmann的一篇关于异戊二烯单体水乳液的聚合专利。30年代见于工业生产,40年代Harkins定性地阐明了在水中溶解度很低的单体乳液聚合机理。后来,Smith和Ewart,建立了定量的理论,提出了乳液聚合的三种情况及乳液聚合过程的三个阶段,即乳胶粒生成阶段(阶段I)、乳胶粒长大阶段(阶段II)及乳液聚合完成阶段(阶段III),这一理论被视为乳液聚合的经典理论。此后乳液聚合成为研究热点。 随着乳液聚合理论的发展,乳液聚合技术也在不断的发展和创新。关于常规乳液聚合目前研究主要集中在:多组分乳液聚合体系的研究、合成高固含量的乳胶、反应型乳化剂的使用等方面。另外,在传统乳液聚合工艺的基础上,目前国内外已开发出无皂乳液聚合、细乳液聚合、反相乳液聚合、分散聚合和微乳液聚合等新的聚合工艺。从本质上来说,这些新的聚合技术与乳液聚合有着共同的特征,即都是分隔体系的聚合反应,有着共同的一些优点。 乳液聚合—聚合机理

苯丙乳液配方及原理

苯丙乳液生产配方 苯丙乳液是由苯乙烯和丙烯酸酯单体乳化共聚而得。乳白色液体,带蓝光。苯丙乳液附着力好,胶膜透明,耐水、耐油、耐热、耐老化性能良好,是水性涂料,地毯胶,工艺胶的主要成分,市场需求量非常大。 一、基本配方(按照1000公斤投料): 1、苯乙烯:218.8kg 2、丙烯酸丁酯:238.4kg 3、甲基丙烯酸甲酯:19.56kg 4、甲基丙烯酸:9.64kg 5、保护胶体(聚甲基丙烯酸钠):8.36kg 6、乳化剂OS(烷基酚醚磺基琥珀酸酯钠盐):18.85kg 7、碳酸氢钠:0.5kg 8、过硫酸铵:2.4kg 9、去离子水:499kg 二、操作工艺 1、预乳化和配料 (1)在预乳化釜内分别加入去离子水191kg,碳酸氢钠0.5kg,乳化剂OS18.85kg,混合单体(甲基丙烯酸:9.64kg;苯乙烯:218.8kg; 并烯酸丁酯:238.4kg,甲基丙烯酸甲酯:19.56kg),进行预乳 化,得到稳定的预乳化液。 (2)将过硫酸铵2.4kg加入去离子水64kg,配成引发剂溶液,备用。 (3)保护胶体(聚甲基丙烯酸钠)8.36kg加入去离子水44kg,配成

保护胶体溶液,备用。 2、聚合 在聚合釜内分别加入去离子水200kg,保护胶体溶液,预乳液60kg,待70摄氏度左右时加入引发剂溶液30kg,在80摄氏度左右引发聚合,进行种子乳液聚合,可观察到釜底乳液泛蓝光。保温10min后,开始滴加剩余的预乳液和引发剂溶液。滴加时维持聚合反应温度84-86摄氏度。滴完后保温1小时。 3、出料包装 冷却到30摄氏度以下,出料用120目滤布过滤,即为苯丙乳液产品。 三、产品主要指标: 1、固含量:48.5% 2、PH值:5.5-6.5 3、粘度(涂-4℃.S.17℃)值:17 苯丙乳液的制备 一、实验目的: 1、掌握用乳液聚合法制备高分子材料的一般原理和合成方法; ?2、了解目标乳合物的设计原理。 二、实验原理(概述): 乳液聚合是以水为连续相(分散剂),在表面活性剂(乳化剂)存在下,使聚合反应发生在由乳化剂形成的乳胶粒内部(即表面活性剂形成的胶束作为微反应器),制备高分子材料的一种方法。 目前,因为在世界范围内采用乳液聚合法制备大量的、各种类型的乳液聚合物和聚合物乳液产品,因此乳液聚合 被广泛应用于各个技术领域,成为不可缺少的材料或工作物质。特别是人们环境保护意识的加强,乳液聚合技术已成为制备“环境友好材料”的主要方法。在工业生产中有多种用途: ?(1)用乳液聚合法可大量生产合成橡胶如丁苯橡胶、丁腈橡胶、氯丁橡胶、聚丙烯酸酯橡胶等。 ?(2)用乳液聚合法生产合成塑料、合成树脂。如聚氯乙烯树脂、树脂、聚四氯乙烯树脂、聚丙烯酸树脂等。(3)用乳液聚合生产各种用途的聚合物乳液,如各种粘合剂(聚醋酸乙烯脂乳液—白胶等)、涂料(如建筑涂料、金属涂料、木制器涂装涂料等)。 乳液聚合技术较本体聚合、溶液聚合、悬浮聚合相比较,有许多重要特点、优点,既可制备高分子量的聚合物,又有高的聚合反应速率。反应体系易散热,有利于聚合反应的控制。生产设备和工艺简单,操作方便,灵活性大,代表了环境保护技术的发展方向,很多场合下,聚合物乳液可直接利用。因此,近年来乳液聚合技术发展很快,特别是在聚合技术上派生、发展了多种新技术、新方法。?

乳液聚合的特点及应用

乳液聚合的特点及应用 和其它聚合反应的实施方法——本体聚合、溶液聚合和悬浮聚合相比较,乳液聚合法有如下的重要特点: 1.易散热 众所用知,烯类单体聚合反应的传热特点是 ①热负荷大,其聚合热约为60一100KJ/MOLl; ②在聚合过程中放热不均衡,高峰期要比平均放热速率高2—3倍; ③传热条件差.对本体聚合来说,反应后期体系粘度可达几十万mpa.s.传热系数大大降低; ④为了控制聚合反应速率与聚合物分于量及其分布,聚合过程常常对反应温度有着非常苛刻的要求。 为了解决散热问题,即使采用高效搅拌和换热装置,也很难将所产牛的聚合热及时排除,所以聚合过程的散热问题是一个关键问题,常常因为散热问题得不到合理解决而使实验室研究成果不能投人工业生产而转化为生产力。散热问题也严重地影响着安全生产和产品质量,因为散热不好而在聚合体系中造成局部过热,轻则使相对分子质量分布变宽,还会引起支化、交联和碳化,使产品质量变坏,重则会引起爆发性聚合,使产品报废,甚至发生事故。 与本体聚合不同,乳液聚合体系的连续相是水,聚合反应发生在分散于水相中的乳胶粒内部,尽管乳胶粒内粘度很高,但整个反应体系的粘度并不高,基本上接近于连续相水的粘度,并且在聚合过程中体系粘度也不会发生大幅度的变化,因为同本体聚合相比,乳液聚合体系易散热,不会出现局部过热,更不易发生爆聚。 乳液聚合不仅比本体聚合容易散热,而且也比溶液聚合和悬浮聚合更容易散热,许多阅澈热问题得不到解决而上升不到大生产的聚合过程,常常可以很容易地用乳液聚合法进行生产。 2.既可制得高分子量的聚合物,又有高的聚合反应速率 本体聚合、溶液聚合与悬浮聚合遵循共向的动力学规律,即在引发剂浓度一定时,要想提高聚合反应速率,就要提高反应温度,而反市温度的提高会加速引发剂的分解,使自由基浓度增大,从而导致了链终止速率的增大,使聚合物平均相对分子量减小;反过来,要想提高聚合物平均相对分子量,就必须降低反应温度,这义会造成聚合反应速率的降低。就是说,要想提高聚合物平均相对分子量,就必须降低聚合反应速率;而要想提高反应速率,就必须牺牲相对分子量的提高,即两者是矛盾的。而乳液聚合可以把两者统一起来,即乳液聚合既可以具有高的聚合反应速率,又可以得到高分子量的聚合物。这是因为乳液聚合是遵循和其它聚合方法不同的动力学规律而进行的。 乳液聚合中的自由基终止速率要比本体聚合中的低,在反应温度和引发剂浓度不变的前提下,终止反应速率低必会导致自由基浓度提高,故乳液聚合体系中的自由基浓度要比本体聚合体系中的大,因而乳液聚合要比本体聚合反应速率高。 采用乳液聚合方法既可以提高聚合反应速率,又可以制得高分子量的聚合物,高的反应速率会使生产成本降低,而高分子量则是生产高弹性合成橡胶和其他许多产品所必需的。这正是和其它聚合方法相比乳液聚合法的独到之处。 3.以水代替溶剂是发展的方向 由乳液聚合法制成的聚合物乳液是聚合物以乳胶粒的形式在水中的分散体,介质水不燃、不爆、无毒、无味,不污染环境,生产安全,对人体无伤害,大大改善聚合车间、后处理车间及其后应用过程中的劳动条件。水便宜、易得,可显若降低成本,而且避免了采用溶液聚合法溶剂回收的麻烦。随着世界各因环境保护法的相继出台和强化,对易造成环境污染的有机溶剂的用量严加控制,以水代替溶剂来制造各种聚合物的乳液聚合法倍受青睐,故具有强大的生命力,成为今后发展的方向。 4.生产灵活性大

乳液聚合

在自由基聚合反应的四种实施方法中,乳液聚合和本体聚合、溶液聚合、悬浮聚合相比有其可贵的、独特的优点。 烯类单体聚合反应放热量很大,其聚合热约为6 0~100kJ/mol,在聚合物生产过程中,反应热的排除是一个关键性的问题。它不仅关系到操作控制的稳定性和能否安全生产,而且严重地影响着产品.的质量。对本体聚合和溶液聚合来说,反应后期粘度急剧增大,可达几甚至几十Pa·s。这样一来,散热问题就成了难以克服的困难,即使采用高效的换热装置及高效搅拌器,也很难将所产生的反应热及时排除。散热不良必然会造成局部过热,使分子量分布变宽,还会引起支化和交联,使产品质量变坏,严重时会引起暴聚,使产品报废,甚至发生事故。 但是,对乳液聚合过程来说,聚合反应发生在水相内的乳胶粒眼。尽管在乳驶粒内部粘度很高,但由予连续相是水,使得整个体系粘度并不高,并且在反应过程中体系的粘度变化也不大。在这样的体系巾:由内向外传热就很容易,不会出现局部过热,更不会暴聚:同时,象这样的低粘度系统容易搅拌,便于管

道输送,容易实现连续化操作。另外,乳液聚合和悬浮聚合散热情况类似,但也有区别。对悬浮聚合来说,聚合反应发生在水相中的单体珠滴中,单体珠滴的直径约在50~2000μm范围之内,而在乳液聚合体系中,乳胶粒直径一般在0.05~1μm之间。若把悬浮聚合中的一个单体珠.滴比作一个lOm直径的大球,那么乳胶粒仅象一个绿豆粒那么大。所以从乳胶粒内部向外传热比从悬浮聚合的珠滴内部向外传热要容易得多。故在乳液聚合体系的乳胶粒中的温度分布要比在悬浮聚合体系的珠滴中的温度分布均匀得多。 在烯类单体的自由基本体.溶液及悬浮聚合中,当自由基浓度一定时,要想提高反应速率,就得提高反应温度。而反应温度的提高,又会加速引发剂的分解,使自由基总浓度增大。因为链终止速率随自由基浓度平方成正比,故随自由基总浓度增大链终止速率显著增加,这样就要引起聚合物平均分子量减小;反过来,要想提高聚合物平均分子量,就必须降低反应温度,又会造成反应速率降低。就是说,要想提高分子量,必须降低反应速率,而要想提高反应速率,就必须牺牲分子量的提高,故=者是矛盾的。但是乳液聚合可以将二者统一起来,即既有高的反应速率,又可得到高分子量的聚合物。这是因为乳液聚合是按照和其他

苯丙乳液配方及原理

苯丙乳液配方及原理 Revised by Petrel at 2021

苯丙乳液生产配方苯丙乳液是由苯乙烯和丙烯酸酯单体乳化共聚而得。乳白色液体,带蓝光。苯丙乳液附着力好,胶膜透明,耐水、耐油、耐热、耐老化性能良好,是水性涂料,地毯胶,工艺胶的主要成分,市场需求量非常大。 一、基本配方(按照1000公斤投料): 1、苯乙烯:218.8kg 2、丙烯酸丁酯:238.4kg 3、甲基丙烯酸甲酯:19.56kg 4、甲基丙烯酸:9.64kg 5、保护胶体(聚甲基丙烯酸钠):8.36kg 6、乳化剂OS(烷基酚醚磺基琥珀酸酯钠盐):18.85kg 7、碳酸氢钠:0.5kg 8、过硫酸铵:2.4kg 9、去离子水:499kg 二、操作工艺 1、预乳化和配料 (1)在预乳化釜内分别加入去离子水191kg,碳酸氢钠0.5kg,乳化剂OS18.85kg,混合单体(甲基丙烯酸:9.64kg;苯乙烯: 218.8kg;并烯酸丁酯:238.4kg,甲基丙烯酸甲酯:19.56kg), 进行预乳化,得到稳定的预乳化液。 (2)将过硫酸铵2.4kg加入去离子水64kg,配成引发剂溶液,备用。

(3)保护胶体(聚甲基丙烯酸钠)8.36kg加入去离子水44kg,配成保护胶体溶液,备用。 2、聚合 在聚合釜内分别加入去离子水200kg,保护胶体溶液,预乳液60kg,待70摄氏度左右时加入引发剂溶液30kg,在80摄氏度左右引发聚合,进 行种子乳液聚合,可观察到釜底乳液泛蓝光。保温10min后,开始滴加剩余的预乳液和引发剂溶液。滴加时维持聚合反应温度84-86摄氏度。 滴完后保温1小时。 3、出料包装 冷却到30摄氏度以下,出料用120目滤布过滤,即为苯丙乳液产品。 三、产品主要指标: 1、固含量:48.5% 2、PH值:5.5-6.5 3、粘度(涂-4℃.S.17℃)值:17 苯丙乳液的制备 一、实验目的: 1、掌握用乳液聚合法制备高分子材料的一般原理和合成方法; 2、了解目标乳合物的设计原理。 二、实验原理(概述): 乳液聚合是以水为连续相(分散剂),在表面活性剂(乳化剂)存在下,使聚合反应发生在由乳化剂形成的乳胶粒内部(即表面活性剂形成的胶束作为微反应器),制备高分子材料的一种方法。 目前,因为在世界范围内采用乳液聚合法制备大量的、各种类型的乳液聚合物和聚合物乳液产品,因此乳液聚合被广泛应用于各个技术领域,成为不可缺少的材料或工作物质。特别是人们环境保护意识的加强,乳液聚合技术已成为制备“环境友好材料”的主要方法。在工业生产中有多种用途: (1)用乳液聚合法可大量生产合成橡胶如丁苯橡胶、丁腈橡胶、氯丁橡胶、聚丙烯酸酯橡胶等。(2)用乳液聚合法生产合成塑料、合成树脂。如聚氯乙烯树脂、树脂、聚四氯乙烯树脂、聚丙烯酸树脂等。 (3)用乳液聚合生产各种用途的聚合物乳液,如各种粘合剂(聚醋酸乙烯脂乳液—白胶等)、涂料(如建筑涂料、金属涂料、木制器涂装涂料等)。

乳液聚合(完整)-2012.11.19

乳液聚合(完整) 乳液聚合的基本概念 乳液聚合:是指在单体、水、乳化剂形成的乳状液中进行的聚合反应过程。 1.乳液聚合体系:主要有单体、水、乳化剂、引发剂和其它助剂所组成。在此,其它助剂主要包括:pH缓冲剂、分子量调节剂、电解质、链终止剂、防老剂、抗冻剂和保护胶体。 2.乳液聚合的各组分介绍 (1)单体:如苯胺、乙烯基类、丙烯酸酯类、二烯烃类等,要求纯度>99%,不含阻聚剂。 (2)反应介质(水):尽可能降低反应介质水中的Ca2+、Mg2+、Fe3+ 等离子含量;用量应超过单体体积,质量一般为单体量的150%-200%。溶解氧可能起阻聚作用,加入适量还原剂(如连二亚硫酸纳Na2S2O4·2H2O) ,用量为0.04% 左右。 (3)引发剂 引发剂,即氧化剂,主要包括水溶性引发剂和油溶性引发剂。乳液聚合过程中一般使用水溶性引发剂。 a.热分解型引发剂 无机或有机过氧化物(过硫酸钾、过硫酸铵等) b.氧化-还原引发剂体系 1)有机过氧化物-还原剂体系 有机过氧化物:对甲基异丙苯过氧化氢 还原剂:亚铁盐如硫酸亚铁、葡萄搪、抗坏血酸等

2)无机过硫酸盐-亚硫酸盐体系 过硫酸盐:过硫酸钾或过硫酸铵还原剂:亚硫酸氢钠、亚硫酸钠等。 (4)pH缓冲剂:常用的缓冲剂是磷酸二氢钠、碳酸氢钠等。 (5)分子量调节剂:控制产品的分子量,例如丁苯橡胶生产中用正十二烷基硫醇或叔十二烷基硫醇作为链转移剂。 (6)电解质:微量电解质(<10-3 mol/L) 的存在,由于电荷相斥增高了胶乳的 稳定性。 (7)链终止剂:在乳液聚合过程结束后加入链终止剂,如亚硝酸钠、多硫化钠等。 (8)防老剂:合成橡胶分子中含有许多双键,与空气氧接触易老化。胺类防老剂用于深色橡胶制品,酚类用于浅色橡胶制品。 (9)抗冻剂:加入抗冻剂以便将分散介质的冰点降低,防止因气温降低影响乳液稳定性,常用的有乙二醇、甘油、氯化钠、氯化钾等。 (10)保护胶体:为有效地控制乳胶粒的粒径、粒径分布及保持乳液的稳定性,常常需要在乳液聚合反应体系中加入一定量的保护胶体如聚乙烯醇、聚丙烯酸钠、阿拉伯胶等。 (11)乳化剂 1)乳化剂的定义:能使油水变成相当稳定且难以分层的乳状液的物质。乳化剂是一种表面活性剂,为一种可形成胶束的物质。通常由亲水的极性基团和亲油的非极性基团组成。 2)乳化剂的作用 降低水的表面张力; 降低油水的界面张力; 乳化作用(利用乳化剂形成的胶束,将不溶于水的单体以乳液的形式稳定悬浮在水中);分散作用(利用吸附在聚合物粒子表面的乳化剂分子将聚合物粒子

乳液聚合方法在材料制备上的应用

聚合方法在材料制备上的应用及发展 材料的合成与制备首先是单体通过聚合反应合成聚合物,然后通过相应的加工工艺制备成所需的材料或产品。聚合反应常需要通过一定的聚合方法来实施,根据聚合物的性能指标以及应用环境条件等要求,常用的聚合方法有本体聚合、溶液聚合、悬浮聚合、乳液聚合以及固相聚合、熔融聚合、界面聚合等等,不同的聚合反方法有不同的工艺及设备要求,所得的聚合物产物在纯度、分子量、物态及性能等方面也各有差异。如本体聚合体系中仅有单体和引发剂组成,产物纯净后处理简单,可直接用模板模具成型,如有机玻璃的制备;溶液聚合是将单体和引发剂均溶于适当的溶剂中的聚合方法,体系得粘度较低,具有传热散热快、反应条件容易控制,可避免局部过热,减少凝胶效应等特点适应于聚合物溶液直接使用的场合,如涂料、胶粘剂等;悬浮聚合是单体以小液滴状悬浮在水中进行的聚合方法,,其特点是以水作为反应介质,为了让非水溶性的单体能在水中很好地分散需要使用分散剂,所以悬浮聚合体系一般由单体、油溶性引发剂、分散剂以及水组成,悬浮聚合的产物一般以直径为0.05~2mm的颗粒沉淀出来,后处理简单方便生产成本低,但产物中常带有少量分散剂残留物;乳液聚合是在乳化剂的作用下,单体分散在水中形成乳液状态的聚合方法,体系由单体、水溶性引发剂、乳化剂和水组成,由于是以水为介质,具有环保安全、乳胶粘度低、便于传热、管道输送和连续生产等特点,同时聚合速度快,可在较低的温度下进行聚合,且产物分子量高,所得乳胶可直接用于涂料,粘结剂,以及纸张、织物、皮革的处理剂等众多领域,乳液聚合因其生产过程中安全、环保等特点深受人们的广泛重视,下面主要以乳液聚合为例就聚合方法在材料制备上的应用及进展进行

乳液聚合

乳液聚合 目录[隐藏] 定义及简介 特点 组成与作用 乳液聚合机理 工业化品种 定义及简介 在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由引发剂引发而进行的聚合反应。乳液聚合(emulsion polymerization)是高分子合成过程中常用的一种合成方法,因为它以水作溶剂,对环境十分有利。 [编辑本段] 特点 优点: (1)聚合热易扩散,聚合反应温度易控制; (2)聚合体系即使在反应后期粘度也很低,因而也适于制备高粘性的聚合物; (3)能获得高分子量的聚合产物; (4)可直接以乳液形式使用 缺点: 需破乳,工艺较难控制 [编辑本段] 组成与作用 1 单体 2 水 3 引发体系 引发体系主要是油溶性或水溶性引发剂。油溶性引发剂主要有偶氮引发剂和过氧类引发剂,偶氮类引发剂有偶氮二异丁腈、偶氮二异庚腈、偶氮二异戊腈、偶氮二环己基甲腈、偶氮二异丁酸二甲酯引发剂等,水溶性引发剂主要有过硫酸盐、氧化还原引发体系、偶氮二异丁脒盐酸盐(V-50引发剂)、偶氮二异丁咪唑啉盐酸盐(VA-04 4引发剂)、偶氮二异丁咪唑啉(VA061引发剂)、偶氮二氰基戊酸引发剂等。

4 乳化剂 乳化剂是可使互不相容的油与水转变成难以分层的乳液的一类物质。乳化剂通常是一些亲水的极性基团和疏水(亲油)的非极性基团两者性质兼有的表面活性剂。 (1)种类 (i)阴离子型:亲水基团一般为-COONa, -SO4Na, -SO3Na等,亲油基一般是C11~ C17的直链烷基,或是C3~C6烷基与苯基或萘基结合在一起的疏水基; (ii)阳离子型:通常是一些胺盐和季铵盐 (iii)两性型:氨基酸 (ⅳ)非离子型:聚乙烯醇,聚环氧乙烷等 (2)作用 (i)降低表面张力,便于单体分散成细小的液滴,即分散单体; (ii)在单体液滴表面形成保护层,防止凝聚,使乳液稳定; (iii)增溶作用 (3)主要参数 (i)临界胶束浓度(简称CMC):CMC越小,越易形成胶束,乳化能力越强. (ii)亲水亲油平衡值(HLB值):8-18为宜 (iii)三相平衡点与浊点 [编辑本段] 乳液聚合机理 1 乳化体系各组分在各相中的分布情况 2 成核期 根据聚合反应速率、及体系中单体液滴、乳胶粒、胶束数量的变化情况,可将乳液聚合分为三个阶段。 第一阶段称乳胶粒形成期,或成核期、加速期,直至胶束消失。 第二阶段称恒速期。 第三阶段称降速期。

相关主题
文本预览
相关文档 最新文档