当前位置:文档之家› 高三物理专题二 动量与能量(学生版)

高三物理专题二 动量与能量(学生版)

高三物理专题二  动量与能量(学生版)
高三物理专题二  动量与能量(学生版)

专题二动量与能量

①灵活性强,难度较大,能力要求高,内容极丰富,多次出现在两个守恒定律网络交汇的综合计算中;

②题型全,年年有,不回避重复考查,平均每年有3—6道题,是区别考生能力的重要内容;

③两个守恒定律不论是从内容上看还是从方法上看都极易满足理科综合试题的要求,经常与牛顿运动定律、圆周运动、电磁学和近代物理知识综合运用,在高考中所占份量相当大.

从考题逐渐趋于稳定的特点来看,我们认为:对两个守恒定律的考查重点仍放在分析问题和解决问题的能力上.因此在第二轮复习中,还是应在熟练掌握基本概念和规律的同时,注重分析综合能力的培养,训练从能量、动量守恒的角度分析问题的思维方法.

【典型例题】

【例1】(理科综合)下列是一些说法:

①一质点受到两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同;

②一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一时间内做的功或者都为零,或

者大小相等符号相反;

③在同样时间内,作用力力和反作用力的功大小不一定相等,但正负符号一定相反;

④在同样的时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反.

以上说法正确的是()

A.①②B.①③C.②③D.②④

【例2】(石家庄)为了缩短航空母舰上飞机起飞前行驶的距离,通常用弹簧弹出飞机,使飞机获得一定的初速度,进入跑道加速起飞.某飞机采用该方法获得的初速度为v0,之后,在水平跑道上以恒定功率P沿直线加速,经过时间t,离开航空母舰且恰好达到最大速度v m.设飞机的质量为m,飞机在跑道上加速时所受阻力大小恒定.求:

(1)飞机在跑道上加速时所受阻力f的大小;

(2)航空母舰上飞机跑道的最小长度s.

【例3】如下图所示,质量为m=2kg的物体,在水平力F=8N的作用下,由静止开始沿水平面向右运动.已知物体与水平面间的动摩擦因数μ=0.2.若F作用t1=6s后撤去,撤去F后又经t2=2s物体与竖直墙壁相碰,若物体与墙壁作用时间t3=0.1s,碰墙后反向弹回的速度v'=6m/s,求墙壁对物体的平均作用力(g 取10m/s2).

【例4】有一光滑水平板,板的中央有一小孔,孔内穿入一根光滑轻线,轻线的上端系一质量为M的小球,轻线的下端系着质量分别为m1和m2的两个物体,当小球在光滑水平板上沿半径为R的轨道做匀速圆周运动时,轻线下端的两个物体都处于静止状态(如下图).若将两物体之间的轻线剪断,则小球的线速度为多大时才能再次在水平板上做匀速圆周运动?

【例5】 如图所示,水平传送带AB 长l =8.3m ,质量为M =1kg 的木块随传送带一起以v 1=2m/s 的速度向左匀速运动(传送带的传送速度恒定),木块与传送带间的动摩擦因数μ=0.5.当木块运动至最左端A 点时,一颗质量为m =20g 的子弹以0v -

=300m/s 水平向右的速度正对射入木块并穿出,穿出速度u =50m/s ,以后每隔1s 就有一颗子弹射向木块,设子弹射穿木块的时间极短,且每次射入点各不相同,g 取10m/s .求:

(1)在被第二颗子弹击中前,木块向右运动离A 点的最大距离? (2)木块在传达带上最多能被多少颗子弹击中?

(3)从第一颗子弹射中木块到木块最终离开传送带的过程中,子弹、木块和传送带这一系统产生的热能是多少?(g 取10m/s )

【例6】 质量为M 的小车静止在光滑的水平面上,小车的上表面是一光滑的曲面,末端是水平的,如下图所示,小车被挡板P 挡住,质量为m 的物体从距地面高H 处自由下落,然后沿光滑的曲面继续下滑,物体落地点与小车右端距离s 0,若撤去挡板P ,物体仍从原处自由落下,求物体落地时落地点与小车右端距离是多少?

【例7】 如下图所示,一辆质量是m =2kg 的平板车左端放有质量M =3kg 的小滑块,滑块与平板车之间的动摩擦因数μ=0.4,开始时平板车和滑块共同以v 0=2m/s 的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反.平板车足够长,以至滑块不会滑到平板车右端.(取g =10m/s 2)求:

v 0 m A

B

M

(1)平板车每一次与墙壁碰撞后向左运动的最大距离. (2)平板车第二次与墙壁碰撞前瞬间的速度v .

(3)为使滑块始终不会滑到平板车右端,平板车至少多长?

【例8】 如图所示,光滑水平面上有一小车B ,右端固定一个砂箱,砂箱左侧连着一水平轻弹簧,小车和砂箱的总质量为M ,车上放有一物块A ,质量也是M ,物块A 随小车以速度v 0向右匀速运动.物块A 与左侧的车面的动摩擦因数为 ,与右侧车面摩擦不计.车匀速运动时,距砂面H 高处有一质量为m 的泥球自由下落,恰好落在砂箱中,求:

(1)小车在前进中,弹簧弹性势能的最大值.

(2)为使物体A 不从小车上滑下,车面粗糙部分应多长?

专题二 《动量与能量》专题训练和高考预测

1.如图所示,半径为R ,内表面光滑的半球形容器放在光滑的水平面上,容器左侧靠在竖直墙壁.一个质

量为m 的小物块,从容器顶端A 无初速释放,小物块能沿球面上升的最大高度距球面底部B 的距离为

M

m

v 0

m

H

A

B

v 0

3

4

R .求: (1)竖直墙作用于容器的最大冲量; (2)容器的质量M .

2.离子发动机是一种新型空间发动机,它能给卫星轨道纠偏或调整姿态提供动力,其中有一种离子发动机

是让电极发射的电子撞击氙原子,使之电离,产生的氙离子经加速电场加速后从尾喷管喷出,从而使卫星获得反冲力,这种发动机通过改变单位时间内喷出离子的数目和速率,能准确获得所需的纠偏动力.假设卫星(连同离子发动机)总质量为M ,每个氙离子的质量为m ,电量为q ,加速电压为U ,设卫星原处于静止状态,若要使卫星在离子发动机起动的初始阶段能获得大小为F 的动力,则发动机单位时间内应喷出多少个氙离子?此时发动机动发射离子的功率为多大?

3.如图所示,粗糙的斜面AB 下端与光滑的圆弧轨道BCD 相切于B ,整个装置竖直放置,C 是最低点,圆心角∠BOC =37°,D 与圆心O 等高,圆弧轨道半径R =0.5m ,斜面长L =2m ,现有一个质量m =0.1kg 的小物体P 从斜面AB 上端A 点无初速下滑,物体P 与斜面AB 之间的动摩擦因数为 =0.25.求: (1)物体P 第一次通过C 点时的速度大小和对C 点处轨道的压力各为多大?

(2)物体P 第一次离开D 点后在空中做竖直上抛运动,不计空气阻力,则最高点E 和D 点之间的高度

差为多大?

(3)物体P 从空中又返回到圆轨道和斜面,多次反复,在整个运动过程中,物体P 对C 点处轨道的最

小压力为多大?

4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点衔接,导轨半径为R .一个质量为m 的静止

物块在A 处压缩弹簧,在弹力的作用下获一向右的速度,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C 点.求: (1)弹簧对物块的弹力做的功.

(2)物块从B至C克服阻力做的功.

(3)物块离开C点后落回水平面时其动能的大小.

5.如图所示,质量M=0.45kg的带有小孔的塑料块沿斜面滑到最高点C时速度恰为零,此时与从A点水平射出的弹丸相碰,弹丸沿着斜面方向进入塑料块中,并立即与塑料块有相同的速度.已知A点和C点距地面的高度分别为:H=1.95m,h=0.15m,弹丸的质量m=0.050kg,水平初速度v0=8m/s,取g=10m/s2.求:(1)斜面与水平地面的夹角θ.(可用反三角函数表示)

(2)若在斜面下端与地面交接处设一个垂直于斜面的弹性挡板,塑料块与它相碰后的速率等于碰前的速率,要使塑料块能够反弹回到C点,斜面与塑料块间的动摩擦因数可为多少?

6.图中,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处在原长状态.另一质量与B相同的滑块A,从导轨上的P点以某一初速度向B滑行.当A滑过距离l1时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连.已知最后A恰好返回到出发点P并停止.滑块A和B与导轨的滑动摩擦因数都为 ,运动过程中弹簧最大形变量为l2,重力加速度为g.求A从P点出发时的初速度

v 0.

7.如下图所示,A 、B 是静止在水平地面上完全相同的两块长木板.A 的左端和B 的右面端相接触.两板的

质量皆为M =2.0kg ,长度皆为l =1.0m .C 是一质量为m =1.0kg 的小物块.现给它一初速度v 0=2.0m/s ,使它从B 板的左端开始向右滑动,已知地面是光滑的,而C 与A 、B 之间的动摩擦因数为 =0.10.求最后A 、B 、C 各以多大的速度做匀速运动.(取重力加速度g =10m/s 2)

B

A

v 0 C

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

专题二动量和能量

专题二动量和能量 【专题指导】 动量守恒与能量守恒是近几年高考理科综合物理命题的重点和热点,也是考生的难点.动量守恒与能量守恒贯穿于整个高中物理的始终,是联系各部分知识的主线,守恒观点是物理学中极为重要的基本观点,是开启物理学大门的金钥匙,它不仅为解决力学问题开辟了两条重要途径,同时也为我们分析和解决物理问题提供了重要依据,它是进行方法教育和能力培养的重要素材.因此,两个守恒可谓高考物理的重中之重,常作为压轴题出现在物理试卷中,如05年、06年、07年各地高考均有大题. 纵观近几年高考理科综合试题,对两个守恒定律的考查具有如下特点:①常以两个守恒定律综合运用的形式出现在计算题中,在同一物理模型(或主干知识)上重复命题,且注重物理情景的设置或设问角度的翻新。这类试题渗透物理学重要的思想方法,思维含量高;密切联系生产、生活实际,具有较强的实践性和应用性;对物理过程(特别是学生易错的典型物理过程)和物理状态的分析要求高,能有效地鉴别学生的能力。②突出运用数学知识分析和解决物理问题的能力的考查。③经常出现两个守恒定律与牛顿运动定律、圆周运动、电磁学和近代物理等知识的综合运用. 从考题逐渐趋于稳定的特点来看,我们认为:2008年两个守恒定律的综合仍是高考考查的重点.在第二轮专题复习中,在正确理解相关基本概念和基本规律的同时,还应通过强化训练掌握从能量守恒、动量守恒的角度分析问题的一般思维方法,从而提高分析综合能力. 本专题的知识结构如下:

一、从动量角度分析实际问题 1、正确理解冲量、动量和动量的变化等概念。 2、应用动量定理解题的一般思路: (1)选取研究对象; (2)确定所研究的物理过程及其初、末状态; (3)分析研究对象在所经历的物理过程中的受力情况;(4)选定正方向,根据动量定理列出方程; (5)统一单位,列方程求解.

2019高考物理动量与能量专题测试题及答案及解析

2019高考物理动量与能量专题测试题及答案及解析 一、单选题 1.【河北省衡水中学2019届高考模拟】如图所示,A、B、C三球的质量分别为m、m、2m,三个小球从同 一高度同时出发,其中A球有水平向右的初速度,B、C由静止释放。三个小球在同一竖直平面内运动,小球与地面之间、小球与小球之间的碰撞均为弹性碰撞,则小球与小球之间最多能够发生碰撞的次数为() A.1次 B.2次 C.3次 D.4次 2.【河北省武邑中学2018-2019学年高考模拟】如图所示,有一条捕鱼小船停靠在湖边码头,一位同学想用一个卷尺粗略测定它的质量。他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,而后轻轻下船。他用卷尺测出船后退的距离为d,然后用卷尺测出船长L,已知他自身的质量为m,则船的质量为( ) A.B.C.D. 3.【全国百强校山西大学附属中学2018-2019学年高考模拟】如图所示,倾角θ = 30°的光滑斜面固定在水平地面上,斜面长度为60m。质量为3kg的滑块A由斜面底端以初速度v0 = 15 m/s沿斜面向上运动,与此同时,一质量为2kg的物块B从静止由斜面顶端沿斜面向下运动,物块A、B在斜而上某处发生碰撞,碰后A、B粘在一起。已知重力加速度大小为g =10 m/s2。则

A.A、B运动2 s后相遇 B.A、B相遇的位置距离斜面底端为22.5 m C.A、B碰撞后瞬间,二者速度方向沿斜而向下,且速度大小为1m/s D.A、B碰撞过程损失的机械能为135J 4.【湖北省宜昌市英杰学校2018-2019学年高考模拟】光滑水平地面上,A,B两物块质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩到最短时 A.A、B系统总动量为2mv B.A的动量变为零 C.B的动量达到最大值 D.A、B的速度相等 5.【陕西省西安市远东第一中学2018-2019学年高考模拟】如图所示,质量为0.5kg的小球在距离车底面高20m处以一定的初速度向左平抛,落在以7.5m/s速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4kg,设小球在落到车底前瞬间速度是25m/s,则当小球与小车相对静止时,小车的速度是() A.5m/s B.4m/s C.8.5m/s D.9.5m/s 二、多选题 6.【山东省烟台二中2019届高三上学期10月月考物理试题】如图所示,在光滑的水平面上有一辆平板车,人和车都处于静止状态。一个人站在车上用大锤敲打车的左端,在连续的敲打下,下列说法正确的是

动量和能量结合综合题附答案解析

动量与能量结合综合题 1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()A.cd始终做减速运动,ab始终做加速运动,并将追上cd B.cd始终做减速运动,ab始终做加速运动,但追不上cd C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动 D.磁场力对两金属杆做功的大小相等 h,如图所示。2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 3h的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点一物块从木板正上方距离为 后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为2m时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求: 1,质量为m时物块与木板碰撞后的速度; 2,质量为2m时物块向上运动到O的速度。 3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度0v,若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热Q最多是多少? (2)当ab棒的速度变为初速度的4/3时,cd棒的加速度a是多少?

动量和能量综合专题

动量和能量综合例析 例1、如图,两滑块A、B的质量分别为m1和m2, 置于光滑的水平面上,A、B间用一劲度系数 为K的弹簧相连。开始时两滑块静止,弹簧为 原长。一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。【解】(1)设子弹射入后A的速度为V1,有: mV0=(m+m1)V1(1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: (m+m1)V1=(m+m1+m 2)V (2) (3) 由(1)、(2)、(3)式解得: (2) mV0=(m+m1)V2+m2V3(4) (5)

由(1)、(4)、(5)式得: V3[(m+m1+m2)V3-2mV0]=0 解得:V3=0 (最小速度)(最大速度)例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。 【解】由于A、B碰撞过程极短,C球尚未开始摆动, 故对该过程依前文解题策略有: m A V0=(m A+m B)V1(1) E内= (2) 对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A+m C)V0=(m A+m B+m C)V2(3) (4)

高中物理二轮复习2021届专题学案二 动量与能量第2讲 动量和能量观点的应用

第2讲 动量和能量观点的应用 【核心要点】 1.基本的概念对比 (1)冲量与功的比较 ①定义式???冲量的定义式:I =Ft (作用力在时间上的 积累效果) 功的定义式:W =Flcos θ(作用力在空间上 的积累效果) ②性质???冲量是矢量,既有大小又有方向(求合冲量应按矢量合成法则来计算)功是标量,只有大小没有方向(求物体所受外力的总功只需按代数和计算) (2)动量与动能的比较 ①定义式? ??? ?动量的定义式:p =m v 动能的定义式:E k =12m v 2 ②性质???动量是矢量(按矢量运算法则来计算) 动能是标量(按代数运算法则来计算) ③动量与动能间的关系???? ?p =2mE k E k =p 22m =12p v 2.动量观点的基本物理规律 (1)动量定理的基本形式与表达式:I =Δp 。 分方向的表达式:I x 合=Δp x ,I y 合=Δp y 。 (2)动量定理推论:动量的变化率等于物体所受的合外力,即Δp Δt =F 合。 (3)动量守恒定律 ①动量守恒定律的研究对象是一个系统(含两个或两个以上相互作用的物体)。

②动量守恒定律的适用条件 a.标准条件:系统不受外力(理想)或系统所受合外力为零(平衡)。 b.近似条件:系统所受合外力虽不为零,但比系统的内力小得多(如碰撞问题中的摩擦力、爆炸问题中的重力等外力与相互作用的内力相比小得多),可以忽略不计。 c.分量条件:系统所受合外力虽不为零,但在某个方向上的分量为零,则系统总动量在该方向上的分量保持不变。 【备考策略】 1.解决力学问题的三大观点 (1)力的观点:主要是牛顿运动定律和运动学公式相结合,常涉及物体的受力、加速度或匀变速运动的问题。 (2)动量的观点:主要应用动量定理或动量守恒定律求解,常涉及物体的受力和时间问题,以及相互作用物体的问题。 (3)能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及系统内能量的转化问题时,常用能量守恒定律。 2.力学规律的选用原则 (1)单个物体:宜选用动量定理、动能定理和牛顿运动定律。若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律。 (2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题,应选用动量守恒定律,然后再根据能量关系分析解决。 动量定理的应用 1.应用动量定理的四点提醒 (1)恒力的冲量可应用I=Ft直接求解,变力的冲量优先考虑应用动量定理求解。 (2)物体动量变化是由合外力的冲量决定的,物体动能变化是由合外力做的功决定的。 (3)动量定理是过程定理,解题时必须明确过程及初末状态的动量。

专题四:动量与能量(含答案)

专题四:动量与能量 1、如图所示,A 、B 两物体质量比为3∶2,原来静止在平板小车上,A 、B 之间有一根被压缩的弹簧,A 、B 与车面间的摩擦系数相同,平板小车与地之间的摩擦不计。当弹簧释放后,若弹簧释放时弹力大于两物体与车间的摩擦力,则下列判断正确的是:AD A 、小车将向左运动; B 、小车将向右运动; C 、A 、B 两物体的总动量守恒; D 、A 、B 与小车的总动量守恒。 2、如图所示,质量分别为m 1和m 2的物块,分别以速度v 1、v 2沿斜面上的同一条直线向下匀速滑行,且v 1> v 2。m 2的右端安有轻弹簧。在它们发生相互作用后,两物块又分开。在m 1和m 2(包括弹簧) 相互作用的过程中,下列说法中正确的是 C A .由于有重力和摩擦力作用,所以该过程不适用动量守恒定律 B .由于系统所受合外力为零,所以该过程一定适用动量守恒定律 C .当m 1∶m 2的值足够大时,该过程一定适用动量守恒定律 D .当m 1∶m 2的值足够小时,该过程一定适用动量守恒定律 3、在质量为M 的小车中挂有一单摆,摆球的质量为m 0,小车和单摆一起以恒定的速度v 沿光滑水平面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪个说法是可能发生的( )BC (A)小车、木块、摆球的速度都发生变化,分别变为v 1、v 2、v 3,满足(M +m)v=Mv 1+mv 2+m 0v 3 (B)摆球的速度不变,小车和木块的速度分别变为v 1和v 2,满足Mv=Mv 1+mv 2 (C)摆球的速度不变,小车和木块的速度都变为v 1,满足Mv=Mv 1+mv 1 (D)小车和摆球的速度都变为v 1,木块的速度变为v 2,满足(M +m 0)v=(M +m 0)v 1+mv 2 4、如图所示,沙车沿光滑水平面以速度V 0作匀速直线运动,运动过程中,从沙车上方落入一只质量不能忽略的铁球,使沙车的 速度变为V ,则 C A 、V=V 0,沙车仍作匀速直线运动; B 、V

动量与能量之难点解析专题5

动量与能量之难点解析 专题01 动量与能量分析之“碰撞模型” 专题02 动量与能量分析之“板-块模型” 专题03 动量与能量分析之“含弹簧系统” 专题04 动量与能量分析之“爆炸及反冲问题” 专题05 动量与能量观点在电磁感应中的应用 专题5 动量与能量观点在电磁感应中的应用 【方法总结】 解决电磁感应问题往往需要力电综合分析,在电磁感应问题中需要动量与能量分析求解时,学生往往无从下手,属于压轴考查,需要学生平时吃透典型物理模型和积累解题经验,现将动量与能量观点求解电磁感应综合问题时常出现典型模型和思路总结如下: 1. “双轨+双杆”模型 以“2019全国3卷第19题”物理情景为例:如图,方向竖直向下的匀强磁场中有两根位于同一水 平面内的足够长的平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。t =0时,棒ab 以初速度v 0向右滑动。运动过程中,ab 、cd 始终与导轨垂直并接触良好: 模型分析:双轨和两导体棒组成闭合回路,通过两导体棒的感应电流相等,所受安培力大小也相等,ab 棒受到水平向左安培力,向右减速;cd 棒受到水平向右安培力,向右加速,最终导体棒ab 、cd 系统共速,感应电流消失,一起向右做匀速直线运动,该过程由导体棒ab 、cd 组成的系统合外力为零,动量守恒:共v m m v m cd ab ab )(0+= 2. 巧用“动量定理”求通过导体电荷量q 思路:动量定理得:p t BIL p t F ?=????=??安,由于t I q ??=,所以p BLq ?=,

即:BL p q ?= 【精选试题解析】 1. (2019全国Ⅲ卷)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的 平行金属导轨,两相同的光滑导体棒ab 、cd 静止在导轨上。t =0时,棒ab 以初速度v 0向右滑动。运动过程中,ab 、cd 始终与导轨垂直并接触良好,两者速度分别用v 1、v 2表示,回路中的电流用I 表示。下列图像中可能正确的是( ) 2. [多选]如图所示,两根相距为d 的足够长的光滑金属导轨固定在水平面上,导轨电阻不计。磁感应强度为B 的匀强磁场与导轨平面垂直,长度等于d 的两导体棒M 、N 平行地放在导轨上,且电阻均为R 、质量均为m ,开始时两导体棒静止。现给M 一个平行导轨向右的瞬时冲量I ,整个过程中M 、N 均与导轨接触良好,下列说法正确的是( ) A .回路中始终存在逆时针方向的电流 B .N 的最大加速度为B 2Id 2 2m 2R C .回路中的最大电流为BId 2mR D .N 获得的最大速度为I m 3. (2019浙江选考)如图所示,在间距L =0.2m 的两光滑平行水平金属导轨间存在方向垂直于 纸面(向内为正)的磁场,磁感应强度为分布沿y 方向不变,沿x 方向如下: 10.2{50.20.2 10.2Tx m B xT m x m Tx m >=-≤≤-<- 导轨间通过单刀双掷开关S 连接恒流源和电容C =1F 的未充电的电容器,恒流源可为电路提供恒定电流I =2A ,电流方向如图所示。有一质量m =0.1kg 的金属棒ab 垂直导轨静止放置于x 0=0.7m 处。开关S 掷向1,棒ab 从静止开始运动,到达x 3=-0.2m 处时,开关S 掷向2。已知棒ab 在运动过程中始终与导

(江浙选考1)202x版高考物理总复习 专题四 动量与能量观点的综合应用 考点强化练42 动量与能量

考点强化练42动量与能量观点的综合应用 1.如图所示,水平放置的宽L=0.5 m的平行导体框,质量为m=0.1 kg,一端接有R=0.2 Ω的电阻,磁感应强度B=0.4 T的匀强磁场垂直导轨平面方向向下。现有一导体棒ab垂直跨放在框架上,并能无摩擦地沿框架滑动,导体棒ab的电阻r=0.2 Ω。当导体棒ab以v=4.0 m/s的速度向右匀速滑动时,试求: (1)导体棒ab上的感应电动势的大小及感应电流的方向? (2)要维持导体棒ab向右匀速运动,作用在ab上的水平拉力为多大? (3)电阻R上产生的热功率为多大? (4)若匀速后突然撤去外力,则棒最终静止,这个过程通过回路的电荷量是多少? 2.(2018浙江嘉兴选考模拟)如图甲,两条足够长、间距为d的平行光滑非金属直轨道MN、PQ与水平面成θ角,EF上方存在垂直导轨平面的如图乙所示的磁场,磁感应强度在0~T时间内按余弦规律变化(周期为T、最大值为B0),T时刻后稳定为B0。t=0时刻,正方形金属框ABCD在平行导轨向上的恒定外力作用下静止于导轨上。T时刻撤去外力,框将沿导轨下滑,金属框在CD边、AB边经过EF 时的速度分别为v1和v2。已知金属框质量为m、边长为d、每条边电阻为R,余弦磁场变化产生的正弦交流电最大值E m=,求: (1)CD边刚过EF时,A、B两点间的电势差; (2)撤去外力到AB边刚过EF的总时间; (3)从0时刻到AB边刚过EF的过程中产生的焦耳热。

3.(2018浙江台州高三上学期期末质量评估)如图所示,两根相同平行金属直轨道竖直放置,上端用导线接一阻值为R的定值电阻,下端固定在水平绝缘底座上。底座中央固定一根绝缘弹簧,长L质量为m 的金属直杆ab通过金属滑环套在轨道上。在直线MN的上方分布着垂直轨道面向里,磁感应强度为B的足够大匀强磁场。现用力压直杆ab使弹簧处于压缩状态,撤去力后直杆ab被弹起,脱离弹簧后以速度为v1穿过直线MN,在磁场中上升高度h时到达最高点。随后直杆ab向下运动,离开磁场前做匀速直线运动。已知直杆ab与轨道的摩擦力大小恒等于杆重力的k倍(k<1),回路中除定值电阻外不计其他一切电阻,重力加速度为g。求: (1)杆ab向下运动离开磁场时的速度v2; (2)杆ab在磁场中上升过程经历的时间t。 4.(2018浙江宁波六校期末)如图所示,两根平行金属导轨MN、PQ相距d=1.0 m,两导轨及它们所在平面与水平面的夹角均为α=30°,导轨上端跨接一阻值R=1.6 Ω的定值电阻,导轨电阻不计。整个装置处于垂直两导轨所在平面且向上的匀强磁场中,磁感应强度大小B=1.0 T。一根长度等于两导轨间距的金属棒ef垂直于两导轨放置(处于静止),且与导轨保持良好接触,金属棒ef的质量m1=0.1 kg、电阻r=0.4 Ω,到导轨最底端的距离s1=3.75 m。另一根质量m2=0.05 kg的绝缘棒gh,从导轨最底端以速度v0=10 m/s沿两导轨上滑并与金属棒ef发生正碰(碰撞时间极短),碰后金属棒ef沿两导轨上滑s2=0.2 m后再次静止,此过程中电阻R产生的焦耳热Q=0.2 J。已知两棒(ef和gh)与导轨间的动摩擦因数均为μ=,g取10 m/s2,求:

能量和动量的综合应用(超详细)

【本讲主要内容】 能量和动量的综合应用 相互作用过程中的能量转化及动量守恒的问题 【知识掌握】 【知识点精析】 1. 应用动量和能量的观点求解的问题综述: 该部分是力学中综合面最广,灵活性最大,内容最为丰富的部分。要牢固树立能的转化和守恒思想,许多综合题中,当物体发生相互作用时,常常伴随多种能量的转化和重新分配的过程。因此,必须牢固地以守恒(系统总能量不变)为指导,这样才能正确无误地写出能的转化和分配表达式。 2. 有关机械能方面的综述: (1)机械能守恒的情况: 例如,两木块夹弹簧在光滑水平面上的运动,过程中弹性势能和木块的动能相互转化;木块冲上放在光滑面上的光滑曲面小车的过程,上冲过程中,木块的动能减少,转化成木块的重力势能和小车的动能。等等…… (2)机械能增加的情况: 例如,炸弹爆炸的过程,燃料的化学能转化成弹片的机械能;光滑冰面上两个人相互推开的过程,生物能转化成机械能。等等…… (3)机械能减少的情况: 例如,“子弹击木块”模型,包括“木块在木板上滑动”模型等;这类模型为什么动量守恒,而机械能不守恒(总能量守恒),请看下面的分析: 如图1所示,一质量为M 的长木板B 静止在光滑水平面上,一质量为m 的小滑块A 以水平速度v 0从长木板的一端开始在长木板上滑动,最终二者相对静止以共同速度一起滑行。 滑块A 在木板B 上滑动时,A 与B 之间存在着相互作用的滑动摩擦力,大小相等,方向相反,设大小为f 。 A 、 B 为系统,动量守恒。(过程中两个滑动摩擦力大小相等,方向相反,作用时间相同,对系统总动量没有影响,即系统的内力不影响总动量)。 由动量守恒定律可求出共同速度0 v m M m v += 上述过程中,设滑块A 对地的位移为s A ,B 对地位移为s B 。由图可知,s A ≠s B , 且s A =(s B +Δs ),根据动能定理: 对A :W fA =2020202B 2 1)(212121)(mv m M mv m mv mv s s f -+=-=?+-

动量和能量综合专题

动H和能H综合例析 例1、如图,两滑块A、B的质量分别为m i和m2, 皇8 . 置丁光滑的水平■面上,A、B问用一劲度系数7 77 // [/ 为K的弹簧相连。开始时两滑块静止,弹簧为原长。一质量为m的子弹以速度V 0沿弹簧长度方向射入滑块A并留在其中。试 求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量);(2)滑块B相对丁地面的最大速度和最小速度。 【解】(1 )设子弹射入后A的速度为V】,有: V1 = — m V o= ( m + m i) Vi (1) 得:此时两滑块具有的相同速度为V,依前文中提到的解题策略有: )V (2) (m + m 1) Vi = (m + m i + m 2 十= -^(m + mj + 十 (2) mVo= (m + m 1) V2 + m?V3 :(皿*m])V技 +!也¥^ 由(1)、(4)、(5)式得:

V3 [ (m + m i+ m 2) V 3 — 2mV 0]=0 解得:V 3=0 (最小速度) 例2、如图,光滑水平面上有A 、B 两辆小车,C 球用0 .5 m 长的细线悬挂在A 车的 支架上,已知mA =m B =1kg , m c =0.5kg 。开始时B 车静止,A 车以V 。=4 m/s 的速度驶向B 车并与 其正碰后粘在一起。若碰撞时间极短且不计空气阻力, g 取10m/s 2 ,求C 球摆起的 最大高度。 【解】由丁 A 、B 碰撞过程极短,C 球尚未开始摆动, B A 1 _ ~~i I 1 ., “一橙一、厂 / / / / / / / / / / / / / / / 故对该过程依前文解题策略有: m A V °=(m A +m B )V I (1) -m A VQ 3 --C m A +m —)W E 内= 」 ⑵ B 、 C 有共同速度,该状态为终了状态,这个过程同样依解题策略处理有: (m A +mC )V 0=(m A +m B +m C )V 2 (3) 由上述方程分别所求出A 、B 刚粘合在一起的速度V 1=2 m / s, E 内=4 J, 系统最后的共同速度V 2= 2 .4 m/s,最后求得小球C 摆起的最大高度 h=0.16m 。 例3、质量为m 的木块在质量为 M 的长木板中央,木块与长木板间的动摩擦因数为 ,木 块和长木板一起放在光滑水平面上,并以速度 v 向右运动。为了使长木板能停在水平面上, 可以在木块上作用一时间极短的冲量。试求: (1) 要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何? (2) 木块受到冲量后,瞬间获得的速度为多大?方向如何? (3) 长木板的长度要满足什么条件才行? 2mV 0 (最大速度) 对A 、B 、C 组成的系统,图示状态为初始状态, C 球摆起有最大高度时,A 、

电学中的动量和能量问题__二轮专题

第2 课时电学中的动量和能量问题 高考题型 1 电场中的动量和能量问题 例1 (2018省市期末检测)如图1所示,轨道ABCDP位于竖直平面,其中圆弧段CD与水平段 AC 及倾斜段 DP 分别相切于 C 点和 D 点,水平段 BC 粗糙,其余都光滑, DP 段与水平面的夹角0= 37° D、C两点的高度差h= 0.1 m,整个轨道绝缘,处于方向水平向左、电场强度大小未知的匀强电场中,一个质量m1= 0.4 kg、带正电、电荷量未知的小物块I在 A点由 静止释放,经过时间t= 1 s,与静止在B点的不带电、质量 m2= 0.6 kg的小物块n碰撞并粘在一起后,在BC段上做匀速直线运动,到达倾斜段DP上某位置,物块I和n与轨道 BC段的动摩擦因数 尸 0.2, g= 10 m/s2, sin 37 = 0.6, cos 37= 0.8.求:

(1)物块i和n在BC段上做匀速直线运动的速度大小; ⑵物块I和n第一次经过圆弧段C点时,物块i和n对轨道压力的大小. 答案 (1)2 m/s (2)18 N 解析(1)物块I和n粘在一起在BC段上做匀速直线运动,设电场强度大小为 E,物块I带 电荷量为q,物块I与物块n碰撞前速度为V1,碰撞后共同速度为 V2,则 qE = p(m1 + m2)g qEt = m1V1 m1V1= (m1+ m2)V2 联立解得V2= 2 m/s; ⑵设圆弧段CD的半径为R,物块I和n经过C点时圆弧段轨道对物块支持力的大小为F N 则 R(1 - cos 0)= h V22 F N- (m1 + m2)g= (m1+ m2) — 解得:F N = 18 N,由牛顿第三定律可得物块I和n对轨道压力的大小为 18 N. 拓展训练1 (多选)(2018全国卷川21)如图2, 一平行板电容器连接在直流电源上,电容器的极板水平;两微粒a、b所带电荷量大小相等、符号相反,使它们分别静止于电容器的上、下 极板附近,与极板距离相等.现同时释放a、b,它们由静止开始运动.在随后的某时刻t, a、 b经过电容器两极板间下半区域的同一水平面. a、b间的相互作用和重力可忽略.下列说确 的是( )

专题20 动量与能量综合问题(解析版)

2021届高考物理一轮复习热点题型归纳与变式演练 专题20 动量与能量综合问题 【专题导航】 目录 热点题型一 应用动量能量观点解决“子弹打木块”模型 ..................................................................................... 1 热点题型二 应用动量能量观点解决“弹簧碰撞”模型 ......................................................................................... 4 热点题型三 应用动量能量观点解决“板块”模型 ............................................................................................... 9 热点题型四 应用动量能量观点解决斜劈碰撞现象 ............................................................................................. 13 【题型演练】 (16) 【题型归纳】 热点题型一 应用动量能量观点解决“子弹打木块”模型 子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。 设质量为m 的子弹以初速度0v 射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。 要点诠释:子弹和木块最后共同运动,相当于完全非弹性碰撞。 从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0……① 从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f ,设子弹、木块的位移大小分别为1s 、2s ,如图所示,显然有d s s =-21 对子弹用动能定理:20212 121mv mv s f -=?- ……① 对木块用动能定理:222 1 Mv s f =? ……① ①相减得:()() 2 22022121v m M Mm v m M mv d f +=+-= ? ……① 对子弹用动量定理:0 -mv mv t f -=? ……① s 2 d s 1 v 0

高中物理动量和能量知识点

学大教育设计人:马洪波 高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a)F=ma 、运动状态发生变化牛顿第二定律 时间积累效应( 冲量)I=Ft 、动量发生变化动量定理 空间积累效应( 做功)w=Fs 动能发生变化动能定理 2.动量观点:动量:p=mv= 2mE 冲量:I = F t K 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---= p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:' p p ;p 0;p1 - p 2 P=P′(系统相互作用前的总动量P 等于相互作用后的总动量P′) ΔP=0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P1+P2=P1′+P2′(系统相互作用前的总动量等于相互作用后的总动量) m1V 1+m2V 2=m1V 1′+m2V2′ ΔP=-ΔP'(两物体动量变化大小相等、方向相反) 实际中应用有:m1v1+m2v2= ' ' m1v m v ;0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v 1 2 2 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢 量运算简化为代数运算。 相对性: 所有速度必须是相对同一惯性参照系。 同时性:表达式中v1 和v2 必须是相互作用前同一时刻的瞬时速度,v ’和v ’必须是相互作用后同一时刻 1 2 的瞬时速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t ( p= w t = F S t =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = Fv (F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率;P 一定时,F 与V 成正比) 动能:E K= 1 2 mv 2 2 p 2m 重力势能E p = mgh (凡是势能与零势能面的选择有关)

高中物理复习专题 动量与能量

专题三动量与能量 思想方法提炼 牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题. 一、能量 1.概述 能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度. 高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。在每年的高考物理试卷中都会出现考查能量的问题。并时常发现“压轴题”就是能量试题。 2.能的转化和守恒定律在各分支学科中表达式 (1)W合=△E k包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。(动能定理) (2)W F=△E除重力以外有其它外力对物体做功等于物体机械能的变化。(功能原理) 注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能 (2)W F=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。 (3)W G=-△E P重力做正功,重力势能减小;重力做负功,重力势能增加。重力势能 变化只与重力做功有关,与其他做功情况无关。 (4)W电=-△E P 电场力做正功,电势能减小;电场力做负功,电势能增加。在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。 注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。 (5)W+Q=△E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。 (6)mv02/2=hν-W 光电子的最大初动能等于入射光子的能量和该金属的逸出功之差。 (7)△E=△mc2在核反应中,发生质量亏损,即有能量释放出来。(可以以粒子的动能、光子等形式向外释放)

2010届高三物理备考专题复习:动量与能量

2010届高三物理专题复习:动量与能量 一、知识概要 注意汽车的两种启动方式。 二、对比区别基本概念和基本规律 1、?????? ?? ????? ?=?? ?=总功 总冲量一般由动能定理求解変力做功,方法较多, 恒力做功功(标量)定理求解変力冲量,一般由动量恒力冲量的方向决定)冲量(矢量,方向有力αcos FS W Ft I 2、??? ? ?????==--=----=--k K k mE P m P E v mv E v mv p 22212 2或二者大小关系瞬时状态量大小有关)(只跟动能(标量)瞬时状态量同向)(方向与动量(矢量) 3 、

?? ?----差(顺序不能变)等于末动能与初动能之动能变化量(标量) 要规定正方向)矢量差(顺序不能变,等于末动量与初动量的动量变化量(矢量) ???? ? ?? ???????????-=???++-=?? ?-=???++-=2022 1202021021212 121cos 4mv mv W W mv mv S F mv mv Ft Ft mv mv t F t t t t 于动能变化量各外力所做功的总和等变化量合外力做的功等于动能)动能定理(标量表达式于动量变化量各外力冲量的矢量和等 变化量合外力的冲量等于动量 )动量定理(矢量表达式、合合α 5 、 ?? ? ? ? ??? ????某个系统的机械能守恒单个物体的机械能守恒意问题)表达式,守恒条件,注机械能守恒定律(标量问题)达式,守恒条件,注意动量守恒定律(矢量表 6、功能原理 ????? ? ?-=-=初 末其他初 末其他于系统机械能增量其他力所做功代数和等内部弹簧弹力做功外,对系统,除重力及系统 于机械能增量其他力所做功代数和等对单个物体,除重力外E E W E E W 7、重力做功与重力势能变化 三、注意事项 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对位移的积累,其作用效果是改变物 体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,对此,要像熟悉力和运动的关系一样熟悉。在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。 应用动量定理和动能定理时,研究对象可以是单个物体,也可以是多个物体组成的系统,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下几点: 1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。

专题3.1 动量和能量答案2

动量和能量 第一讲答案 训练1:(1)根据动量守恒:v M m mv )(0+= 系统机械能的减少量:2220111222 E mv mv Mv mgl μ?=--= (2)m 、M 相对位移为l ,根据能量守恒得:Q mgl μ=,可解出L 训练2:小球与斜面之间的摩擦力对小球做功使小球的机械能减小,选项A 错误;在小球运动的过程中,重力、摩擦力对小球做功,绳的张力对小球不做功.小球动能的变化等于重力、摩擦力做功之和,故选项B 、D 错误,C 正确. 训练3:(1)由A 到B 过程,根据动能定理:mgR=2 1m v 2 ∴物体到达B 点时的速率v =gR 2=8.0102??=4m/s (2)由A 到C 过程,由动能定理:mgR -μmgs =0 ∴ 物体与水平面间的动摩擦因数μ=R /s =0.8/4=0.2 训练4:(1)根据机械能守恒 E k =mgR (2)根据机械能守恒 ΔE k =ΔE p mv 2=12 mgR 小球速度大小 v=gR 速度方向沿圆弧的切线向下,与竖直方向成30° (3)根据牛顿运动定律及机械能守恒,在B 点N B -mg=m v B 2R ,mgR =12 mv B 2 解得 N B =3mg 在C 点:N C =mg 训练5: ①小球经过B 点时,重力与支持力的合力提供向心力,由公式可得:R v m mg F B NB 2=- 解得:mg F NB 3= ②小球离开B 点后做平抛运动,在竖直方向有:221gt R H =- 水平方向有:t v S B = 解以上两式得: R R H S )(2-= ③由R R H S )(2-=,根据数学知识知,当R R H =-(即2 1=H R )时,S 有最大值,其最大值为:H R R S m ===222 训练6:(1)物块沿斜面下滑C 到B 的过程中,在重力、支持力和摩擦力作用下做匀加速运动,设下滑到达斜面底端B 时的速度为v ,则由动能定理可得:21cos 0sin 2 h mgh mg mv μθθ-?=- 所以 v = 代入数据解得:0.6=v m/s (2)设物块运动到圆轨道的最高点A 时的速度为v A ,在A 点受到圆轨道的压力为N 。 物块沿圆轨道上滑B 到A 的过程中由动能定理得:2211222 A mg r mv mv -?=- 物块运动到圆轨道的最高点A 时,由牛顿第二定律得:r v m mg N A 2=+ 由以上两式代入数据解得: N =20N 由牛顿第三定律可知,物块运动到圆轨道的最高点A 时,对圆轨道的压力大小N A =N =20N 训练7:20381mv M m E ??? ?? -=? g h M mv s 20=

相关主题
文本预览
相关文档 最新文档