当前位置:文档之家› 煅烧,焙烧和烧结的区别

煅烧,焙烧和烧结的区别

煅烧,焙烧和烧结的区别
煅烧,焙烧和烧结的区别

焙烧

焙烧与煅烧是两种常用的化工单元工艺。焙烧是将矿石、精矿在空气、氯气、氢气、甲烷和氧化碳等气流中不加或配加一定的物料,加热至低于炉料的熔点,发生氧化、还原或其他化学变化的单元过程,常用于无机盐工业的原料处理中,其目的是改变物料的化学组成与物理性质,便于下一步处理或制取原料气。煅烧是在低于熔点的适当温度下,加热物料,使其分解,并除去所含结晶水、二氧化碳或三氧化硫等挥发性物质的过程。两者的共同点是都在低于炉料熔点的高温下进行,不同点前者是原料与空气、氯气等气体以及添加剂发生化学反应,后者是物料发生分解反应,失去结晶水或挥发组分。

烧结也是一种化工单元工艺。烧结与焙烧不同,焙烧在低于固相炉料的熔点下进行反应,而烧结需在高于炉内物料的熔点下进行反应。烧结也与煅烧不同,煅烧是固相物料在高温下的分解过程,而烧结是物料配加还原剂、助熔剂的化学转化过程。烧结、焙烧、煅烧虽然都是高温反应过程,但烧结是在物料熔融状态下的化学转化,这是它与焙烧、煅烧的不同之处。

焙烧

1. 焙烧的分类与工业应用

矿石、精矿在低于熔点的高温下,与空气、氯气、氢气等气体或添加剂起反应,改变其化学组成与物理性质的过程称为焙烧。在无机盐工业中它是矿石处理或产品加工的一种重要方法。

焙烧过程根据反应性质可分为以下六类,每类都有许多实际工业应用。

(1) 氧化焙烧

硫化精矿在低于其熔点的温度下氧化,使矿石中部分或全部的金属硫化物变为氧化物,同时除去易于挥发的砷、锑、硒、碲等杂质。硫酸生产中硫铁矿的焙烧是最典型的应用实例。硫化铜、硫化锌矿的火法冶炼也用氧化焙烧。

硫铁矿(FeS 2)焙烧的反应式为:

4FeS 2+11O 2=2Fe 2O 3+8SO 2↑

3FeS 2+8O 2=Fe 3O 4+6SO 2↑

生成的SO 2就是硫酸生产的原料,而矿渣中Fe 2O 3与Fe 3O 4都存在,到底那一个比例大,要视焙烧时空气过剩量和炉温等因素而定。一般工厂,空气过剩系数大,含Fe 2O 3较多;若温度高,空气过剩系数较小,渣成黑色,且残硫高,渣中Fe 3O 4多。焙烧过程中,矿中所含铝、镁、钙、钡的硫酸盐不分解,而砷、硒等杂质转入气相。

硫化铜(CuS)精矿的焙烧分半氧化焙烧和全氧化焙烧两种,分别除去精矿中部分或全部硫,同时除去部分砷、锑等易挥发杂质。过程为放热反应,通常无需另加燃料。半氧化焙烧用以提高铜的品位,保持形成冰铜所需硫量;全氧化焙烧用于还原熔炼,得到氧化铜。焙烧多用流态化沸腾焙烧炉。

锌精矿中的硫化锌(ZnS)转变为可溶于稀硫酸的氧化锌也用氧化焙烧,温度850~900℃,空气过剩系数1.1~1.2,焙烧后产物中90%以上为可溶于稀硫酸的氧化锌,只有极少量不溶于稀酸的铁酸锌(ZnO·Fe 2O 3)和硫化锌。

氧化焙烧是钼矿化学加工的主要方法,辉钼矿(MoS 2)含钼量大于45%,被粉碎至60~80目,在焙烧炉中于500~550℃下氧化焙烧,生成三氧化钼。三氧化钼是中间产品,可生成多种钼化合物与钼酸盐。

有时,氧化焙烧过程中除加空气外,还加添加剂,矿物与氧气、添加剂共同作用。如铬铁矿化学加工的第一步是纯碱氧化焙烧,工业上广泛采用。原料铬铁矿(要求含Cr 2O 335%以上),在1000~1150℃下氧化焙烧为六价铬:

2Cr 2O 3+4Na 2CO 3+3O 2=4Na 2Cr 2O 4+4CO 2↑

(2) 硫酸化焙烧

使某些金属硫化物氧化成为易溶于水的硫酸盐的焙烧过程,主要反应有

2MeS+3O 2→2MeO+2SO 2

2MeO+ SO 2+O 2→MeO·MeSO 4

MeO·MeSO 4+ SO 2+O 2→2MeSO 4

式中Me 为金属。例如一定组成下的铜的硫化物,在600℃下焙烧时,生成硫酸铜;在800℃下焙烧时,生成氧化铜。所以控制较高的SO 2气氛及较低的焙烧温度,有利于生成硫酸盐;反之,则易变为氧化物,成为氧化焙烧。

对锌的硫化矿及其精矿,用火法冶炼时,用氧化焙烧;用湿法处理时,采用硫酸化焙烧。

(3) 挥发焙烧

将硫化物在空气中加热,使提取对象变为挥发性氧化物,呈气态分离出来,例如,火法炼锑中将锑矿石(含Sb 2S 3)在空气中加热,氧化为易挥发的Sb 2O 3:

2Sb 2S 3+9O 2→2Sb 2O 3↑+6SO 2↑

此反应从290℃开始,至400℃可除去全部硫。

(4) 氯化焙烧

借助于氯化剂(如Cl 2、HCl 、NaCl 、CaCl 2等)的作用,使物料中某些组分转变为气态或凝聚态的氯化物,从而与其他组分分离。金属的硫化物、氧化物或其他化合物在一定条件下大都能与化学活性很强的氯反应,生成金属氯化物。金属氯化物与该金属的其他化合物相比,具有熔点低、挥发性高、较易被还原,常温下易溶于水及其他溶剂等特点。并且各种金属氯化物生成的难易和性质上存在明显区别。化工生产中,常利用上述特性,借助氯化焙烧有效实现金属的分离、富集、提取与精炼的目的。视原料性质及下一步处理方法的不同,可分为中温氯化焙烧与高温氯化焙烧,前者是使被提取的金属氯化物在不挥发条件下进行,所产生的氯化物用水或其他溶剂浸取而与脉石分离;后者是被提取的金属氯化物在能挥发的温度下进行,所形成的氯化物呈蒸气状态挥发,与脉石分离,然后冷凝回收。此法用于菱镁矿(MgCO 3)与金红石(TiO 2)的氯化,以生产镁和钛,也用于处理黄铁矿烧渣,综合回收铜、铅、锌、金、银等。

氯化离析焙烧是氯化焙烧的一种特例,在矿石中加入适量的碳质还原剂(如煤或焦炭)和氯化剂,在弱还原气氛中加热,使矿石中难选的金属成氯化物挥发,再在炭粒表面还原为金属,并附着在炭粒上,随后用选矿方法富集,制成精矿。此法可用于某些难选或低品位的氧化矿(如氧化铜矿)。

氯化焙烧用于火法冶金具有以下优点:① 对原料适应性强,可处理各种不同类型的原料;② 作业温度比其他火法反应过程低;③ 分离效率高,综合利用好。在高品位矿石资源日趋枯竭的情况下,对储量很大的低品位、成分复杂难选的贫

矿来说,氯化焙烧将发挥更大作用。但是氯化焙烧要解决以下两个问题:① 提高氯的利用率与氯化剂的再生回收是关键问题;② 设备的防腐蚀问题与环境保护问题。

在无机盐生产中,新建的钛白粉(TiO 2)装置多采用氯化法。金红石矿或钛铁矿渣与适量的石油焦混合后,加入流态化炉中,通入氯气在800~1000℃下进行氯化,其反应式为:

TiO 2+(1+β)C+2Cl 2→TiCl 4+2βCO+(1-β)CO 2

式中β为排出炉气中CO/(CO+ CO 2)的比值。纯TiCl 4是无色透明液体,但此过程所得粗TiCl 4含有杂质,将杂质分离后,可制金属Ti 或TiO 2。

(5) 还原焙烧

将氧化矿预热至一定温度,然后用还原气体(含CO 、H 2、CH 4等)使其中某些氧化物部分或全部还原,以利于下一步处理。例如贫氧化镍矿预热到780~800℃,用混合煤气还原,使铁的高价化合物大部分还原为Fe 3O 4,少量还原为FeO 及金属铁,镍与钴的氧化物还原成易溶于NH 3-CO 2-H 2O 溶液的金属镍和钴。

磁化焙烧也属于还原焙烧,其目的是将弱磁性的赤铁矿(Fe 2O 3)还原为强磁性的磁铁矿(Fe 3O 4),以便于磁选,使之与脉石分离。

无机盐生产中,重晶石(主要含BaSO 4)的化学加工主要采用还原焙烧法,是生产各种钡化合物最经典、最重要、使用最广的方法。还原焙烧所用重晶石矿的品位要高,一般含BaSO 4>98%,SiO 2<2%,否则将影响产品质量。重晶石与煤粉在转炉中,于1000~1200℃的高温下,还原焙烧成硫化钡(俗称黑灰),反应式为:

BaSO 4+2C→BaS+2CO 2

经浸取分离所得的硫化钡溶液,可进而制成其他钡化合物。亦可用氢气、甲烷、天然气代替煤粉进行还原焙烧,在悬浮炉中还原重晶石,该法可强化还原过程。

(6) 氧化钠化焙烧

向矿石中加适量钠化剂(如Na 2CO 3、NaCl 、Na 2SO 4等),焙烧后生成易溶于水的钠盐,例如,湿法提钒过程中,细磨钒渣,经磁选除去铁后,加钠化剂并在回转炉中焙烧,渣中的三价钒氧化成五价的偏钒酸钠:

Na 2CO 3+V 2O 3+O 2→2NaVO 3+CO 2

Na 2SO 4+ V 2O 3+O 2→2NaVO 3+SO 3

NaCl + V 2O 3+3/2O 2→2NaVO 3+Cl 2

2. 焙烧过程的物理化学基础

(1) 焙烧过程热力学

焙烧过程中有气体产物产生,一般为不可逆反应。研究焙烧过程热力学主要是根据相图确定反应产物的相区。

焙烧过程中发生许多反应。以方铅矿焙烧为例,总反应式为:

2PbS+3O 2→2Pb O+2SO 2

此为全脱硫焙烧,或完全程度的氧化焙烧。对锌、铜、铁也能写出类似的完全焙烧反应式。

若焙烧温度较低,则形成硫酸盐:

2PbS+3O 2→2PbSO 4

2PbO+2SO 2→2PbSO 4

温度较高时,氧化物可被硫化物还原得到金属:

2PbO+PbS→3Pb+ SO 2

可以采用控制温度和氧势(即压力)以得到所需的氧化态。以锌精矿而言,因最后要用碳还原,故需要氧化焙烧尽可能将硫除净。而对浸出之矿石,目的是形成尽可能的水溶性硫酸盐。

研究焙烧热力学时,还要注意气相中会生成三氧化硫:

SO 2+1/2O 2=SO 3

MeSO 3=MeO+SO 2(Me 为金属离子)

在一定反应条件下,反应的产物到底是氧化物还是硫酸盐要由

的优势图来判断,由相图来确定产物组成。

温度为1000K 的Ni-O-S 优势区域图见图4-1-01。在总压为0.1MPa(1大气压)下,若气体组成为O 23~10%,SO 23~10%,则所得区域见小方形A ,此时稳定的固相是NiSO 4。若气体组成为O 21%,SO 21%,则 为B 点,此时NiO 是稳定的。对于图中的点C ,相应的

,要求压力如此之小,在工业生产中是不可能形成的。

温度为950K 时焙烧铜、钴的硫化矿能产出97%的可溶性铜与93.5%的可溶性钴。焙烧炉气体分析为SO 28%,O 24%,将950℃的铜与钴优势区域图重迭于图4-1-02。表示在工业焙烧铜钴矿石的作业点(点A)恰好在CoSO 4、CuSO 4区域中。

如果需要在浸取时,将铜与钴分离,焙烧条件可控制在点B,则会生成不溶于水的氧化铜与可溶的氧化钴,此分离操作也已在工业中应用。

也可用温度对平衡的影响以移动优势区域位置以便产生出所需之最终产品。

(2) 焙烧过程动力学与影响焙烧速率的因素

焙烧过程是气-固相非催化过程,由于颗粒之间无微团混合,所以反应速率的考察对象是颗粒本身。宏观反应过程包括气膜扩散(外扩散)、固膜扩散(又称产物层扩散或灰层扩散,内扩散)及在未反应芯表面上的化学反应。目前研究宏观反应速率最常用的是收缩未反应芯(又称缩芯)模型,当颗粒大小不变或颗粒大小改变时,当反应控制、或内扩散控制或外扩散控制时,可以推导出不同的反应速率式,详见化学反应工程专著。这类宏观反应速率式还不能得心应手地用于设计,设计工作多仍停留在经验或半经验的状态。

焙烧炉生产能力的大小,取决于焙烧反应速率,反应速率越快,在一定的残硫指标下,单位时间内焙烧的固体矿物就越完全,矿渣残硫就低。在实际生产中不仅要求焙烧的矿物量多,而且要求烧得透,即排出的矿渣中残硫要低。

影响焙烧速率的因素很多,有温度、粒度、氧含量等。

①温度的影响

一般来说,温度越高,焙烧速度也越快。以硫铁矿氧化焙烧为例,在200℃以下,只能缓慢进行氧化作用,生成少量二氧化硫。当温度达到硫铁矿着火点以上才开始燃烧。各种硫铁矿的着火点要看它的矿物组成,杂质特性及粒度大小。硫铁矿的理论焙烧温度可达1600℃,但沸腾焙烧炉一般维持焙烧温度为800~900℃之间,多余的热量需要移走,包括设置冷却装置或废热锅炉。虽然硫铁矿的焙烧速度是随着温度增高而加快,但工厂生产中并不是把温度无限制提高,而是控制在一定范围内,这主要是受到焙烧物的熔结和设备损坏的限制。例如FeS 和FeO能够组成熔点为940℃的低熔点混合物,远离他们各自熔点而熔结。一旦熔结成铁,燃烧速度会显著下降,烧结过程迅速恶化,操作不当引起结疤。为了防止焙烧过程中的熔结现象,各生产厂都采取有效冷却措施,严格控制温度。

②固体原料粒度影响

焙烧过程是一个气-固相非催化反应过程,焙烧速度在很大程度上取决于气固相间接触表面的大小,接触表面大小主要取决于原料的粒度,即它的粉碎度。当粒度小时,空气中的氧能较易地和固体颗粒表面接触,并易于达到被焙烧的颗粒内部,生成的二氧化硫气体也能很快离开,扩散到气流主体中去。如果矿石粒度过大,除接触面减少外,还在未反应芯外部,生成一层致密的产物层,阻碍氧气继续向中心扩散,生成的二氧化硫也不能很快离开,造成在炉中停留时间内,原料矿中的硫来不及燃烧透,使排出的矿渣中硫增高。

实际生产中是否要求矿石愈小愈好呢?也不是。粒度过小,不但会增加矿石被粉碎磨细的工作量,而且会增加除尘处理的工作量,故一般在沸腾焙烧中使用的固体颗粒平均粒度在0.07~3.0mm之间。

③氧气含量的影响

气体中氧的含量对固体原料的焙烧速度也有很大影响。因为金属硫化物矿物的焙烧速度,取决于氧通过遮盖在颗粒表面的产物层向内扩散的速度,如果进入焙烧炉气体中的氧含量少,则单位时间内氧分子向矿粒内部扩散分子就要少,金属矿物的焙烧速度就要慢些。所以在金属矿物焙烧时必须搅动矿粒,使矿物表面更新、改善矿粒间接触情况、促使氧气达到被焙烧物料的表面上。以提高焙烧速度。多膛机械炉是用耙齿不停地转动来搅动矿粒的,沸腾炉焙烧时,用空气直接搅动矿料,使矿石在流化状态下焙烧,单位反应表面积大,气固接触充分,焙烧过程能以极快速度进行。

3. 典型氧化焙烧工艺-硫铁矿焙烧制硫酸原料气

硫铁矿是硫化铁矿物的总称,它包括主要成分为FeS

2

的黄铁矿与主要成分为

Fe

n S

n+1

(n≥5)的磁硫铁矿。纯粹黄铁矿含硫53.45%,磁硫铁矿含硫36.5~40.8%。

硫铁矿有块状与粉状两种。块状硫铁矿是专门从矿山开采供制酸使用的含硫量符合工业标准的原矿,也包括从煤矿中检出的块状含煤硫铁矿;粉状硫铁矿包括专为制硫酸而开采的、经过浮选符合工业标准的硫精矿。对于块矿,在焙烧前要经

过破碎、筛分等作业,一般不需进行干燥;对于粉矿,在焙烧前需进行干燥、破碎与筛分。

硫铁矿焙烧的主要化学反应是FeS 2的氧化,它分两步进行,首先是FeS 2的热分解,尔后为分解产物的氧化。

2FeS 2→2FeS+S 2(g)

S 2(g)+2O 2→2SO 2↑

2FeS+3O 2→2FeO+2SO 2↑

2FeO+1.5O 2→Fe 2O 3

实际上焙烧炉中过剩空气较少,故矿渣中的铁有Fe 2O 3和FeO 两种形态,Fe 2O 3、FeO 的比例取决于炉中氧的分压。

硫铁矿焙烧总的反应式为:

4FeS 2 +11O 2=2Fe 2O 3+8SO 2↑

3FeS 2 +8O 2=Fe 3O 4+6SO 2↑

硫铁矿的焙烧是强烈放热反应,除可供反应自热外,还需要移走反应余热。在空气中焙烧黄铁矿获得的含SO 3炉气,理论最高浓度为16.2%。现代硫铁矿的焙烧都采用沸腾焙烧技术。

硫铁矿焙烧工艺流程见图4-1-03。焙烧工序的主要设备有沸腾焙烧炉、废热锅炉和电除尘器。沸腾焙烧炉出口炉气约900℃,经废热锅炉降温至350℃。炉气中矿尘部分在废热锅炉中沉降,其余大部分在旋风除尘器中除去,剩余矿尘在电除尘器中除去。送往净化工序的气体含尘量<0.2g/m3。当电除尘器具有更高捕集效率时,也可不用旋风除尘器。所有矿渣(矿灰)经矿渣增湿器喷水增湿,降温至80℃以下,以便运输。

4. 典型还原焙烧工艺-重晶石(硫酸钡)焙烧制硫化钡

钡盐是一种重要无机盐类。锌钡白(立德粉,等摩尔硫酸钡和硫化锌的混合物)用于涂料、橡胶、油墨、造纸等工业,氯化钡用于制造含钡有机颜料,硼酸钡用于陶瓷与涂料工业,硝酸钡用于制造烟火、信号弹等。

钡盐制造过程中,首先要将重晶石矿进行还原焙烧,得到硫化钡,然后再以硫化钡为原料制造各种钡盐,如硫化钡与硫酸锌反应生成锌钡白,与氯化氢反应生成氯化钡,在碱性溶液中与硼矿作用生成偏硼酸钡,与纯碱作用生成碳酸钡等。

重晶石矿物的主要组成是硫酸钡,含量为95%~98%,其余是二氧化硅、硫酸钙等杂质。目前世界各国大都是在转窑内用煤或石油焦为还原剂,在1000~1250℃高温下将重晶石还原为硫化钡:

+4C→BaS+4CO

BaSO

4

其生产过程如下:研细的粒度为0.2~5mm的重晶石粉与粒度为2~3mm的煤粉,经自动混料器混料送至贮斗,再由自动运料机送入转窑。转窑直径1.5~2.0m,长20~40m,以天然气、油或煤粉为热源。物料在转窑中停留时间为1.5~2.0h。焙烧后黑色或暗灰色含硫化钡的黑灰放入冷却筒中冷却,再送至螺旋浸取器中浸取,溶液中含硫化钡12%~15%,除渣后将溶液进一步精制后即可作为生产其他钡盐的原料。

5. 典型氯化焙烧工艺-氯化法制造钛白粉

)是一种重要的无机化工产品,在涂料、油墨、造纸、塑料、橡胶、钛白粉(TiO

2

化纤、陶瓷等工业中有重要用途。

钛白粉的生产工艺有硫酸法和氯化法两种工艺路线。硫酸法工艺路线长,生产过程中有大量的废气排放,污染严重。氯化法是钛白粉生产的主要方向。氯化法工艺简单,20世纪50年代末实现工业化,由于其流程紧凑合理,“三废”少,产品质量高,现在氯化法钛白粉产量已超过硫酸法。

含量90%~95%以上的天氯化法钛白粉的原料要求比硫酸法高,要使用TiO

2

然金红石矿。主要工艺过程有天然金红石矿的氯化焙烧制取四氯化钛,四氯化钛的氧化及钛白粉的表面处理三个部分。

(1) 天然金红石矿的氯化焙烧

氯化通常在沸腾炉中进行。先用空气使干燥的金红石矿粉流态化,并加热至650℃左右,然后加入焦炭粉,待温度升至900℃时,用氯气替代空气入炉。金红石矿与氯气、焦炭粉发生如下反应:

TiO 2 (天然金红石矿)+2C+2Cl 2→TiCl 4+2CO

从氯化焙烧炉出来的气体含有TiCl 4,还含有其他杂质。气体冷却到200℃左右,大部分杂质冷凝在炉灰上沉降,气体经过进一步冷却,冷凝为液态粗TiCl 4,经提纯后送往氧化炉。由于TiCl 4的沸点与FeCl 3、AlCl 3、SiCl 4等的沸点不同,可采用精馏法将粗TiCl 4进行提纯,得到高浓度的液态TiCl 4。

(2) TiCl 4的氧化

TiCl 4的氧化反应是一个气相反应,温度在1400~1500℃,反应时间只需几毫秒,不象硫酸法焙烧时间要几个小时。

TiCl 4+O 2→TiO 2+2Cl 2

进氧化炉前,液态TiCl 4先气化并预热至90~100℃,氧气也要预热至此温度,两者同时喷入氧化炉,进行快速强放热反应。反应在几毫秒内发生,为避免生成的TiO 2晶体在高温下长大并相互粘结而结疤,初生的TiO 2晶体不可碰器壁,且需急剧降温,以极高流速通过冷却套管冷却至600℃左右。反应产物经旋风分离

器进一步冷却后,用袋滤器将TiO

2

收集下来,含氯尾气经处理后返回氯化焙烧

使用。TiCl

4氧化时需加入AlCl

3

作为成核剂(晶种),AlCl

3

随TiCl

4

一同蒸发气化,

混合后进入氧化炉内。TiCl

4

在氧气中燃烧所放出的热量还不足以使物料上升到氧化反应的温度,需要外供热量帮助升温。

TiCl

4的氧化是一个技术难度很高的高温反应,其难度在于:高温下TiCl

4

腐蚀

性很强,在1000℃高温下对材料的防腐蚀要求很高;TiCl

4

与氧气喷入反应器的

速度达10m/s,这种高速混合有很大的难度;而且在几微秒的时间中控制TiO

2

晶体颗粒大小也是很困难的事情。此外还要防止TiO

2

在器壁结疤。

(3) 钛白粉的表面处理

生成的钛白粉还要用无机或有机表面处理剂进行处理。无机表面处理剂中铅、硅包膜用得最多,以提高钛白粉产品的耐候性与在不同介质中的分散性能;有机表面处理剂有乙醇胺、丙二醇、三羰甲基丙烷等,以提高钛白粉产品在不同介质中的润湿性能。

6. 焙烧设备

焙烧过程的主产物如果是固体物料,应使其物理化学性质适合后继作业,而且要提供适宜的物理状态。用反射炉焙烧的金属,如铜,焙烧后的物料应是细粉料。相反,鼓风炉炼铅,必须是一定大小的烧结块;焙烧过程的主产物如是气体,

在粉尘与杂质含量方面有一定的要求。工业主要焙烧技术有炉膛焙烧、飘悬焙烧、沸腾焙烧与烧结焙烧。

(1)炉膛焙烧

在一直立多膛炉中进行,有8~12层炉床。矿石由顶部加入,并由炉膛内一层层向下降落,此时硫化矿颗粒与上升气流接触进行焙烧.内壁衬以耐火砖,在中心轴上连结旋转耙臂随轴转动,矿石被耙推向外缘或内缘之开孔,降至下一层。转动耙臂需冷却。每天可焙烧块矿炉料100~200吨,通常过程是自热的,炉料氧化足以提供热能。

(2)飘悬焙烧

由多膛焙烧炉改进而来。对多膛焙烧的研究发现,氧化主要发生在与炉气接触的矿石表面,特别是由一层降落到另一层的瞬间,据此开发出飘悬焙烧。焙烧在类似于拆除中间几层的多膛炉中进行,精矿通常是湿的;在上部一、二层干燥后,穿过燃烧室下落,焙烧矿下落并汇集于底层后从炉内卸出。此过程中燃烧量不足,需燃烧辅助燃料以维持焙烧温度

(3)沸腾焙烧

又称流态化焙烧,是固体流态化技术在化工、冶金中的应用。沸腾焙烧炉中,矿石粒子在悬浮状态下进行焙烧,床层由上升的气流及运动着的烧渣粒子群所构成,气体与固体粒子在床层中剧烈湍动,加快了气一固两相间传递过程,因此焙烧强度高,且床层温度均匀。

化工行业应用沸腾焙烧炉对金属硫化物(包括浮选矿或经破碎的块矿等)进行氧化焙烧,硫酸化焙烧,磁化焙烧等作业,过程中都有二氧化硫气体。伴随金属硫化物的氧化,有反应热放出,大多数反应能自热进行。产生的烧渣用作冶金原料,产生的二氧化硫气体用于制造硫酸或用于亚硫酸盐法造纸工厂制蒸煮液。

1950年德国巴登苯胺与碱公司( BASF)首次将工业装置硫铁矿沸腾焙烧炉投入生产,能力为36吨 H 2SO 4/日,1952年美国多尔公司设计的湿法加矿沸腾焙烧炉在布朗造纸厂投产,能力为75吨磁黄铁矿/日。中国1956年开始在工业上应用沸腾焙烧炉,并很快取代了多膛块矿炉。沸腾炉的出现给硫酸工业与有色冶金工业的矿物焙烧带来重大变革。目前世界上容积最大的沸腾焙烧炉设在西班牙帕洛斯厂的硫酸装置内,其炉床面积为123m 2,容积为2800m 3,于八十年代初建成,设计能力为10O0吨 H 2SO 4/日.

沸腾焙烧炉结构见图4-1-04。炉体为钢壳衬保温砖,内层衬耐火砖,为防止冷凝酸腐蚀,钢壳外面有保温层;炉子的下部是风室,设有空气进口管,其上是空气分布板。空气分布板上是耐火混凝土炉床,埋设有许多侧面开有小孔的风帽。炉膛中部为向上扩大的圆锥体,上部焙烧空间的截面积比沸腾截面积要大,以减

少固体粒子吹出。沸腾层中装有与余热锅炉循环泵联接的冷却管,炉体还有加料口、矿渣出口、炉气出口、二次空气进口、点火口等接管,炉顶设有防爆孔。

沸腾焙烧炉分直筒型炉与扩大型炉两种。直筒型炉多用于有色金属精矿的焙烧,其焙烧强度低。中国大部分铜精矿与锌精矿沸腾炉,美国多尔型沸腾炉均属此型。上部扩大的异径炉早期用于破碎块矿的焙烧,后来发展到用于多种浮选矿焙烧,德国的鲁奇型沸腾炉属此类型。

沸腾焙烧炉的主要操作条件是焙烧强度、沸腾层高度、沸腾层温度及炉气成分等。① 焙烧强度。习惯上以吨(折合成含硫35%的矿)/米2;日计算。焙烧强度与沸腾层操作气速成正比,气速一般在 l ~3米/秒范围内,焙烧不太细的浮选矿,焙烧强度为 l5~20吨/米2·日;焙烧通过3×3毫米筛孔的破碎块矿时,焙烧强度为30吨/米2·日。② 沸腾层高度。炉内排渣溢流堰离风帽的高度可看作是沸腾层高度,一般为0.9~1.5米,相应的风室压力为0.1~0.15巴(表压);③ 沸腾层温度。随硫化矿物及焙烧方法不同而异。黄铁矿氧化焙烧约850~950℃,铜、钴、镍等精矿硫酸化焙烧约640—700℃,锌精矿氧化焙烧约1070~l100℃,锌精矿硫酸化焙烧约900~930℃;④ 炉气成分。空气是焙烧的反应剂与流化介质,黄铁矿焙烧时,空气用量略多于化学计量,炉气中SO 2为13%~13.5%,SO 3<0.1%。而硫酸化焙烧时,空气过剩系数较大,故炉气中SO 2浓度低而SO 3含量较高。

焙烧工艺学

一、焙烧的概念和机理 1 焙烧的概念:焙烧是把压型后的生制品装在焙烧炉内、保护介质(填充料)中,在隔绝空气的条件下,按规定的升温速度进行间接加热,使生制品内的黏结剂焦化,并与骨料颗粒固结成一体的热处理过程。 2 焙烧的机理: 炭素生产用的黏结剂一般为煤沥青,是一种由多种多环和杂环芳香族化合物及少量高分子物质组成的混合物。生制品中的骨料已经过1300℃左右的高温煅烧,所以焙烧的过程主要就是黏结剂煤沥青焦化形成沥青焦的过程。 二、焙烧目的 焙烧的主要目的是使黏结剂成为沥青焦,把骨料颗粒结成一个整体,获得最大的残炭量,使制品具有良好的物理化学性能。具体物理化学性能主要有以下几个方面: 1、排除挥发分 2、降低比电阻,提高导电性能 3、固定几何形状 4、黏结剂焦化 5、提高各项物理化学性能 三、焙烧过程的四个不同阶段 1、低温预热阶段 明火温度350℃时,制品温度在200℃左右,黏结剂软化,制品成塑性状态,这段的升温速度要快一些。 2、挥发分大量排除,黏结剂焦化阶段 明火温度在350℃—800℃之间,制品本身温度在200℃—700℃之间,黏结剂开始分解,挥发分大量排除。450℃—500℃时黏结剂焦化成沥青焦。此阶段必须均匀缓慢的升温。 3、高温烧结阶段 明火温度达到800℃—1200℃,制品本身温度达到700℃以上,黏结焦化过程基本结束。此阶段升温速度可以适当加快一些,当达到最高温度后保温15—20小时,这是为了缩小焙烧炉内水平和垂直方向的温差。 4、冷却阶段 冷却过程温度下降太快,会引起产品内外收缩不均产生裂纹废品,也会对焙烧炉炉体带来不利影响,因此,冷却降温速度控制在50℃/h为宜,到800℃以下可使其自然冷却,一般到400℃以下方可出炉。 四、对焙烧过程产生影响主要有以下因素 (一)、升温速度的影响 (二)、压力的影响 (三)、制品收缩的影响 (四)、焙烧炉室温度场分布的影响 (五)、黏结剂迁移的影响 (详细论述省略) 一、填充料的主要作用 1、防止制品氧化 2、固定制品几何形状 3、传导热量 4、阻碍挥发分的顺利排除,同时导出挥发分

烧结矿与球团矿的比较

第一节烧结矿与球团矿的比较 烧结和球团都是粉矿造块的方法。但它们的生产工艺和固结成块的基本原理却有很大区别,在高炉上冶炼的效果也有各自的特点。 烧结与球团的区别主要表现在以下几方面: 1、原料条件:球团和烧结对原料条件要求的主要差别在于粒度不同。 1)球团对原料要求严格。要求造球料粒度细(-200网目大于80%),比表面 积大,原料的 品位要高,SiO2含量要少。 2)烧结对原料粒度要求可粗一些,对原料的适应性强。烧结原料中-150目粒 级的应小于 20%,一般SiO2含量要高于5%;可使用富矿粉和钢铁厂的其他副产品,如钢渣、炉尘、轧钢皮、焦粉等都可充分利用。 2、固结成块的机理不同: 1)烧结矿是靠液相固结的,为了保证烧结矿的强度,要求产生一定数量的液相 (一般>25%), 因此混合料中必须有燃料,为烧结过程提供热源。 2)球团矿主要是依靠矿粉颗粒的高温再结晶固结的,要避免产生过多液相 (<5%),防止 球团粘结;热量由焙烧炉内的燃料燃烧提供,混合料中不加燃料。 3、冶金性能: 1)球团矿粒度小而均匀,常温强度高,可作为商品买卖;含铁品位高,氧化度 高,还原性

好;酸性氧化球团的高温性能较差,需要防止还原膨胀率过高。 2)烧结矿是不规则的多孔质块矿,粒度不够均匀,最好分级入炉,运输和贮存 时粉末较多, 一般不作为商品买卖;含铁品位比球团矿低,高碱度烧结矿高温性能较好。4、冶炼效果:二者均属于人造富矿,与天然矿相比,具有含铁品位高、还原性 好、强度合 适、软熔温度高、有害杂质少等的优点。代替天然块矿冶炼时,能大幅度提高产量,改善煤气利用,降低焦比。 5、环境状况:球团矿的生产环境明显优于烧结。 1)球团矿的强度好,粉末少,料层透气性好,抽风负压低,烟气含粉尘量少, 除尘负荷轻, 排人大气的粉尘就少。 2)由于烧结是以固体燃料为主,与气、液体燃料相比,其含硫量较高,挥发分 中又含有氮。 1、设备投资和生产费用 带式焙烧机和链箅机—回转窑比带式烧结机设备复杂、庞大,加之增加了原料细磨与造球设备,因而球团的建厂投资费用要高于烧结。一般生产单位质量的球团矿比烧结矿的建厂投资约高15%左右。就生产费用而言,球团和烧结各有高低。球团磨矿和供风系统电耗高,但余热利用率高,热能消耗少,总能耗低于烧结。而烧结的维修费用比球团要少,从综合生产费用看,球团略高于烧结,但按含铁量计算,球团又比烧结略低一些。

煅烧,焙烧与烧结的区别

焙烧 焙烧与煅烧是两种常用的化工单元工艺。焙烧是将矿石、精矿在空气、氯气、氢气、甲烷和氧化碳等气流中不加或配加一定的物料,加热至低于炉料的熔点,发生氧化、还原或其他化学变化的单元过程,常用于无机盐工业的原料处理中,其目的是改变物料的化学组成与物理性质,便于下一步处理或制取原料气。煅烧是在低于熔点的适当温度下,加热物料,使其分解,并除去所含结晶水、二氧化碳或三氧化硫等挥发性物质的过程。两者的共同点是都在低于炉料熔点的高温下进行,不同点前者是原料与空气、氯气等气体以及添加剂发生化学反应,后者是物料发生分解反应,失去结晶水或挥发组分。 烧结也是一种化工单元工艺。烧结与焙烧不同,焙烧在低于固相炉料的熔点下进行反应,而烧结需在高于炉内物料的熔点下进行反应。烧结也与煅烧不同,煅烧是固相物料在高温下的分解过程,而烧结是物料配加还原剂、助熔剂的化学转化过程。烧结、焙烧、煅烧虽然都是高温反应过程,但烧结是在物料熔融状态下的化学转化,这是它与焙烧、煅烧的不同之处。 焙烧 1. 焙烧的分类与工业应用 矿石、精矿在低于熔点的高温下,与空气、氯气、氢气等气体或添加剂起反应,改变其化学组成与物理性质的过程称为焙烧。在无机盐工业中它是矿石处理或产品加工的一种重要方法。 焙烧过程根据反应性质可分为以下六类,每类都有许多实际工业应用。 (1) 氧化焙烧 硫化精矿在低于其熔点的温度下氧化,使矿石中部分或全部的金属硫化物变为氧化物,同时除去易于挥发的砷、锑、硒、碲等杂质。硫酸生产中硫铁矿的焙烧是最典型的应用实例。硫化铜、硫化锌矿的火法冶炼也用氧化焙烧。 硫铁矿(FeS2)焙烧的反应式为: 4FeS2+11O2=2Fe2O3+8SO2↑ 3FeS2+8O2=Fe3O4+6SO2↑ 生成的SO2就是硫酸生产的原料,而矿渣中Fe2O3与Fe3O4都存在,到底那一个比例大,要视焙烧时空气过剩量和炉温等因素而定。一般工厂,空气过剩系数大,含Fe2O3较多;若温度高,空气过剩系数较小,渣成黑色,且残硫高,渣中Fe3O4多。焙烧过程中,矿中所含铝、镁、钙、钡的硫酸盐不分解,而砷、硒等杂质转入气相。

焙烧工国家职业标准概况

国家职业标准 焙烧工 (审定稿) 柳州华锡集团有限责任公司代拟二○○三年十月二十五日

焙烧工国家职业标准 1.职业概况 1.1 职业名称 焙烧工。 1.2 职业定义 操作、控制、调节焙烧炉、煅烧炉、烧结机及附属设备等,制备熔炼炉原料的人员。 1.3 职业等级 本职业共设四个等级,分别为:初级(国家职业资格五级)、中级(国家职业资格四级)、高级(国家职业资格三级)、技师(国家职业资格二级)、高级技师(国家职业资格一级)。 1.4 职业环境 室内、外,粉尘,有毒有害,高温,噪音。 1.5 职业能力特征 有一定的观察、判断和计算能力,动作协调性较好,具有从事一定劳动强度工作的能力。 1.6 基本文化程度 初中毕业。 1.7 培训要求 1.7.1 培训期限

全日制职业学校教育,根据其培养目标和教学计划确定。晋级培训期限:初级、中级、高级均不少于120标准学时;技师、高级技师均不少于100标准学时。 1.7.2 培训教师 培训初、中级的教师应具有本职业高级及以上职业资格证书或本专业初级及以上专业技术职务任职资格,培训高级的教师应具有本职业技师以上职业资格证书或本专业中级及以上专业技术职务任职资格;培训技师的教师应具有本职业高级技师职业资格证书或相关专业高级专业技术职务任职资格;培训高级技师的教师应具有本职业高级技师职业资格证书2年以上或本专业高级专业技术职务任职资格。 1.7.3 培训场地及设备 标准教室及相应的焙烧设备。 1.8 鉴定要求 1.8.1 适用对象 从事或准备从事本职业的人员。 1.8.2 申报条件 ──初级(具备以下条件之一者) ⑴经本职业初级正规培训达规定标准学时数,并取得结业证书。 ⑵在本职业连续见习工作1年以上。 ⑶本职业学徒期满。 ──中级(具备以下条件之一者) ⑴取得本职业初级职业资格证书后,连续从事本职业工作2年以上,经本职业中级正规培训达规定标准学时数,并取得结业证书。 ⑵取得本职业初级职业资格证书后,连续从事本职业工作3年

烧结矿与球团矿的区别

3.4球团矿的显微结构及矿物组成 与烧结矿比较,球团矿的矿物组成比较简单。因为球团矿的原料含铁品位高。杂质少。球团矿的配料也较简单,几乎为单一的铁精矿粉,只配进极少量添加剂。仅在生产自熔性球团矿时,才配加熔剂。此外焙烧工艺也较简单,一般为高温氧化过程。 一、对于酸性球团矿 95%以上为赤铁矿。球团矿的固结,以赤铁矿单一相固相反应为主,液相数量极少。在氧化气氛中石英与赤铁矿不进行反应,所以可见到独立的石英颗粒。赤铁矿经过再结晶和晶粒长大连成一片。少量添加剂-皂土已经熔融,粘附在赤铁矿晶粒表面,只有放大显微倍率,才能偶尔发现尚未全熔的大颗粒皂土,由于球团矿的固结,以赤铁矿单一相固相反应为主,液相数量极少。它的气孔呈不规则形状,多连通气孔,全气孔率与开口气孔率的判别不大。这种结构的球团矿,具有相当高的抗压强度和良好的低温、中温还原性。目前世界上大多数球团矿属于这一类。 用磁铁矿精矿生产球团矿,如果氧化不充分,其显微结构将内外不一致,沿半径方向可分三个区域: 表层氧化充分,和一般酸性球团矿一样。赤铁矿经过再结晶和晶粒长大,连接成片。少量未熔化的脉石,以及少量熔化了的硅酸盐矿物,夹在赤铁矿晶粒之间。 中间过渡带的主要矿物仍为赤铁矿。赤铁矿连晶之间,被硅酸铁和玻璃质硅酸盐液相充填,在这个区域里仍有未被氧化的磁铁矿。 中心磁铁矿带,未被氧化的磁铁矿在高温下重结晶,并被硅酸铁和玻璃质硅酸盐液相粘结,气孔多为圆形大气孔。 具有这样显微结构的球团矿,一般抗压强度低。因为中心液相较多,冷凝时体积缩小,形成同心裂纹,使球团矿具有双层结构。即以赤铁矿为主的多孔外壳,以及以磁铁矿和硅酸盐液相为主的坚实核心,中间被裂缝隔开。因此用磁铁矿生产球团矿时,务必使它充分氧化。 二、对于自熔性球团矿 自熔性球团矿与酸性球团矿相比,其矿物组成比较复杂。除赤铁矿为主外,还有铁酸钙、硅酸钙、钙铁橄榄石等。焙烧过程中产生的液相较多,故气孔呈圆形大气孔,其平均抗压强度较酸性球团矿低。, 实验证明,当有硅酸盐同时存在的情况下,铁酸盐只有在较低温度下才能稳定。1200℃时,铁酸盐在相应的硅酸盐中固溶,超过1250℃,铁酸盐在熔体中已难发现,球团矿的粘结相中出现了玻璃质硅酸盐。 用磁铁矿生产自熔性球团矿,若氧化不充分,沿球团矿半径方向,也会出现明显的层状结构。, 综上分析,可以看出,影响球团矿的矿物组成和显微结构的因素有二:一为原料的类别和组成,二为焙烧工艺条件,主要是温度、气氛以及在高温下保持的时间。球团矿的矿物组成和显微结构,对其冶金性质影响极大。

焙烧技术

焙烧技术 目录 焙烧技术-焙烧 把物料(如矿石)加热而不使熔化,以改变其化学组成或物理性质 焙烧:roasting 焙烧技术-简介 固体物料在高温不发生熔融的条件下进行的反应过程,可以有氧化、热解、还原、卤化等,通常用于无机化工和冶金工业。焙烧过程有加添加剂和不加添加剂两种类型。 不加添加剂的焙烧也称煅烧,按用途可分为:①分解矿石,如石灰石化学加工制成氧化钙,同时制得二氧化碳气体; ②活化矿石,目的在于改变矿石结构,使其易于分解,例如:将高岭土焙烧脱水,使其结构疏松多孔,易于进一步加工生产氧化铝;③脱除杂质,如脱硫、脱除有机物和吸附水等;④晶型转化,如焙烧二氧化钛使其改变晶型,改善其使用性质。 加添加剂的焙烧添加剂可以是气体或固体,固体添加剂兼有助熔剂的作用,使物料熔点降低,以加快反应速度。按添加剂的不同有多种类型: 焙烧技术-氧化焙烧 粉碎后的固体原料在氧气中焙烧,使其中的有用成分转变成氧化物,同时除去易挥发的砷、锑、硒、碲等杂质。在硫酸工业中,硫铁矿焙烧制备二氧化硫是典型的氧化焙烧。冶金工业中氧化焙烧应用广泛,例如:硫化铜矿、硫化锌矿经氧化焙烧得氧化铜、氧化锌,同时得到二氧化硫。 焙烧技术-还原焙烧 在矿石或盐类中添加还原剂进行高温处理,常用的还原剂是碳。在制取高纯度产品时,可用氢气、一氧化碳或甲烷作为焙烧还原剂。例如:贫氧化镍矿在加热下用水煤气还原,可使其中的三氧化二铁大部分还原为四氧化三铁,少量还原为氧化亚铁和金属铁;镍、钴的氧化物则还原为金属镍和钴。因为该过程中的三氧化二铁具有弱磁性,四氧化三铁具有强磁性,利用这种差别可以进行磁选,故此过程又称磁化焙烧。 焙烧技术-氯化焙烧 在矿物或盐类中添加氯化剂进行高温处理,使物料中某些组分转变为气态或凝聚态的氧化物,从而同其他组分分离。氯化剂可用氯气或氯化物(如氯化钠、氯化钙等)。例如:金红石在流化床中加氯气进行氯化焙烧,生成四氯化钛,经进一步加工可得二氧化钛。又如在铝土矿化学加工中,加炭(高质煤)粉成型后氯化焙烧可制得三氯化铝。若在加氯化剂的同时加入炭粒,使矿物中难选的有价值金属矿物经氯化焙烧后,在炭粒上转变为金属,并附着在炭粒上,随后用选矿方法富集,制成精矿,其品位和回收率均可以提高,称为氯化离析焙烧。 焙烧技术-硫酸化焙烧

烧结球团厂设计复习资料

1新建的烧结(球团)厂为什么一定要进行设计? (1)项目确定之前,它为项目决策提供科学依据(可行性、效益等); (2)项目确定之后,它为项目建设提供设计文件(初步设计文件:设计说明书、图纸、设备表、概算书等); (3)它是科学技术转化为生产力的枢纽,生产中的先进经验、先进技术以及科研新成果,都要通过设计推广到生产中设计一个烧结厂:为钢铁厂加工各种含铁原料,生产出优质高炉炉料(烧结矿、球团矿) 2烧结厂设计的任务是什么? 设计一个烧结厂:为钢铁厂加工各种含铁原料,生产出优质高炉炉料(烧结矿、球团矿),做到技术先进、经济合理、安全适用。 3烧结厂设计的要求是什么? (1)设计原则和方案的确定必须符合国家标准和行业标准; (2)设计要具有合理性、可靠性、完善性和一定的先进性; 完善性:有机械化和自动化程度较高的原料场,有铺底料,有冷矿工,有整粒系统,有提高烧结矿产质量的措施 先进性:有较高机械化和自动化水平;集散控制、在线控制 (3)设备通用化、标准化,便于岗位维护设备配置紧凑,便于清扫,安全措施完善;(4)环保要符合国家标准:对噪音有消音和隔音措施,尽可能利用废气物; 考虑余热利用; 4烧结厂设计一般分为哪几个阶段,各个阶段的工作内容? 三个阶段: 1设计前期阶段 2设计阶段 3配合施工及试生产阶段 1设计前期(立项、预算) (1)文件工作(编制) ①企业建设规划 ②项目建议书 ③可行性研究报告(原料、地址、经费等) ④设计任务书 厂址选择报告 (2)制订入厂原料条件和产品质量指标 (3)提出试验要求,参加试验,审查试验报告,参与制订有关协议,收集资料 2设计阶段 一般情况包括:初步设计和施工图设计,复杂、特大、新工艺、新任务:初步设计、技术设计、施工图设计 3配合施工及试生产阶段 (1)交待设计意图; (2)解释设计文件; (3)解决施工中出现的问题; (4)监督施工质量 (5)参加试生产及交工验收 5烧结厂规模是怎么划分的?确定的依据是什么?

烧结和球团

烧结和球团 富选得到的精矿粉,天然富矿破碎筛分后的粉矿,以及一切含铁粉尘物料(如高炉、转炉炉尘,轧钢皮,铁屑,硫酸渣等)不能直接加入高炉,必须将其重新造块,烧结和球团是最重要最基本的造块方法。这不仅解决了入炉原料的粒度问题,扩大了原料来源,同时,还大大改善了矿石的冶金性能,提高高炉冶炼效果。 烧结 1)烧结生产工艺流程 一.烧结的概念 将各种粉状含铁原料,配入适量的燃料和熔剂,加入适量的水,经混合和造球后在烧结设备上使物料发生一系列物理化学变化,将矿粉颗粒黏结成块的过程。 二. 烧结生产的工艺流程 主要包括烧结料的准备,配料与混合,烧结和产品处理等工序,如下图所示:

1.烧结原料的准备 ①含铁原料 含铁量较高、粒度<5mm的矿粉,铁精矿,高炉炉尘,轧钢皮,钢渣等。 一般要求含铁原料品位高,成分稳定,杂质少。 ②熔剂 要求熔剂中有效CaO含量高,杂质少,成分稳定,含水3%左右,粒度小于3mm 的占90%以上。 在烧结料中加入一定量的白云石,使烧结矿含有适当的MgO,对烧结过程有良好的作用,可以提高烧结矿的质量。 ③燃料 主要为焦粉和无烟煤。 对燃料的要求是固定碳含量高,灰分低,挥发分低,含硫低,成分稳定,含水小于10%,粒度小于3mm的占95%以上。 2.配料与混合 配料目的:获得化学成分和物理性质稳定的烧结矿,满足高炉冶炼的要求。 混合目的:使烧结料的成分均匀,水分合适,易于造球,从而获得粒度组成良好的烧结混合料,以保证烧结矿的质量和提高产量。 混合作业:加水润湿、混匀和造球。 根据原料性质不同,可采用一次混合或二次混合两种流程。 一次混合的目的:润湿与混匀,当加热返矿时还可使物料预热。 二次混合的目的:继续混匀,造球,以改善烧结料层透气性。 3.烧结生产 烧结作业是烧结生产的中心环节,它包括布料、点火、烧结等主要工序。 ①布料 将铺底料、混合料铺在烧结机台车上的作业。 当采用铺底料工艺时,在布混合料之前,先铺一层粒度为10~25mm,厚度为20~25mm 的小块烧结矿作为铺底料,其目的是保护炉箅,降低除尘负荷,延长风机转子寿命,减少或消除炉箅粘料。 铺完底料后,随之进行布料。布料时要求混合料的粒度和化学成分等沿台车纵横方向均匀分布,并且有一定的松散性,表面平整。 目前采用较多的是圆辊布料机布料。 ②点火 点火操作是对台车上的料层表面进行点燃,并使之燃烧。 点火要求有足够的点火温度,适宜的高温保持时间,沿台车宽度点火均匀。 ③烧结 准确控制烧结的风量、真空度、料层厚度、机速和烧结终点。 a.烧结风量:平均每吨烧结矿需风量为3200m3,按烧结面积计算为(70~90)m3/(cm2.min)。

不同焙烧条件对载体性质的影响

不同焙烧条件对载体性质的影响 向绍基李亚昆方维平 (中石化抚顺石油化工研究院,辽宁省抚顺市,113001) 一、前言 l本文主要考察了挤条成型之后的载体经不同干燥,焙烧方式对其性质的影响,以揭示其中的规律.供工业生产之借鉴和利用:t 有关氧化铝载体的性质受制备条件影响的工作主要集中在氢氧化铝中和成胶过程诸多因素对其性质的影响“、2、3];中国发明专利CNl087289cn中提出一种大孔Y—Al:0。载体的制各方法:将Y—Al:0。前身物的含水颗粒物料,瞬问升温至500—650℃,并在高温下维持数小时,能制得的Y—Al:0。载体平均孔径大、孔分布集中、强度好、堆积密度适中.Jaworska等嘲发现不同的焙烧方式和气氛可形成不同的氧化铝晶相。而有关挤压成型的过程及其随后的干燥、焙烧过程对氧化铝载体的孔结构、强度等的影响往往没有得到重视.早期的工作中,人们的观点认为载体的强度越大越好,其实不然。 近来通过实验工作发现,要获得较好的载体强度往往以牺牲载体的孔结构性质为代价。对于细小的条,若强度过好,还会带来切条的困难,由于目前工业上切条技术不过关,当小条的强度过高时,在切条过程中收率降低、损失大、不经济,因此提出一些新的观点:挤条成型过程中,仔细地考查每一个环节的影响因素.控制载体的强度,在满足工业使用要求的前提下,降低强度,改若载体的孔结构性质,挤条成型之后的条,经过传输、干燥、浸渍等生产过程之后,在自然力的作用下,自动断条成符合要求的长度范围.这样可以去掉切条的生产步骤,有利于降低整个载体韵生产成本,但对挤条成型的技术提出了挑战,有必要仔细的考查挤条成型前后各细节对载体强度、孔结丰目性质的影响。 二、实验部分 采用工业上最常用的成型方法: ①硝酸、田菁粉、氢氧化铝干胶粉挤条制得的氧化铝载体;②醋酸、田菁粉、硅溶胶和氢氧化铝于胶橙制得的硅铝载体。 焙烧方式: l、挤出条凉干、干燥、升温至550"C、恒温4小时; 2、挤出条直接干燥、升温至550℃、恒温4小时; 3、挤出条升温至550℃、恒温4小时; 4、挤出条直接放入550℃焙烧炉中恒温4小时。 表I载体的性质 —磊磊——1蕊r——面F——芤j至—面表面强度孔容孔径比表面方式N/ramm垤Ⅱmm‘,gN/mmml,gn”竺:!! r18.70.5688.9825318.30.6008.80273 219.10.5839.42247一一一一 314.20.6099.5925415.50.6399.6l266 111::坐壑!!:塑2塾!!:!!:§墅!:;!!墼.载体低温氮吸附曲线和孔分布数据略。 43

铜矿焙烧

黄铜矿加硫焙烧提铜新工艺 200905060226 09选2 王川【摘要】:在低温、惰性气体保护下,采用差热分析及x射线衍射分析方法研究黄铜矿加硫焙烧过程。结果表明,黄铜矿硫化焙烧转化为CuS和FeS2的最佳条件为:温度350-400℃;时间4h;粒度-74um,矿:硫= 10:1.11。转化产物可通过常规湿法冶金工艺生产金属铜或中间产品。 【关键词】冶金技术;铜;硫化焙烧;黄铜矿 在铜冶金中,火法工艺成熟、操作稳定,但投资大,存在SO2烟气问题【1】,湿法流程在消除SO2烟害及扩大铜资源利用范围等方面具有一定的优越性,因此越来越受到重视[2]。国外湿法炼铜工艺已成功地用于处理低品位氧化铜精矿、废石堆,但是对于硫化铜精矿来说,除焙烧一浸出和氨浸流程在工业上得到应用外,其他流程多处于研究阶段。关于湿法冶金中极难处理的黄铜矿在酸性FeC13和酸性Fe2(SO4) 溶液中溶浸动力学的报导甚多【3】,作为处理硫化矿的工业方法,其缺点是流程长,大量铁进入溶液,除铁或再生FeC13困难、效果差。一般采用传统的水解选择沉淀法,铁与硫以氢氧化物胶体形式存在,难以过滤,且胶体含母液铜离子多,不易洗涤。虽可采用絮凝剂使胶体凝集,但也因成本高而难于在工业上广泛应用。即便是使用微波浸出黄铜矿效果也不理想,虽说在浸出过程中加入适量的氧化剂MnO2,用H2SO4溶液浸取,避免了溶浸液中Fe(OH)3·nH2O胶体的生成,但溶浸次数多达7次以上【6】,因此,在工业上应用也将成为实际问题。为了简化工艺,使操作易于掌握和控制,提出了在低温、惰性气体保护下对黄铜矿进行硫化焙烧一溶浸除铁的新工艺方法制取精铜【9】,从而克服了上述缺点。该工艺具有溶浸剂可循环使用、设备投资小、流程短、浸取率高、不产生SO2溶浸时不产生胶体、溶浸液易过滤、溶浸次数少等优点。 1实验方法 1.1 物料化学分析和x射线衍射分析 试验用原料为云南大理某地的铜精矿,破碎至-74um,化学组成见表1,X射线衍射分析见图1。试剂元素硫(为光谱纯)用玛瑙碾钵磨至-74um,二者按10:1.11配料,混合均匀,装入编号的瓷坩埚中,于真空干燥器中保存待用。 由表1可知,除脉石成分,如SiO2、A2lO3、 CaO、MgO外的杂质金属如Zn、Pb、Co及As 等含量均很少,其总量不过0.76%。将金属硫化物作基础,用合理矿相计算求得黄铜矿(CuFeS2)在所有硫化物中占95.60%,其他硫化物如ZnS、PbS、CoS等总和仅占4.4%,这与X射线衍射分析一致。在试验结果计算中,转化率均以黄铜矿为100%作基础。

烧结、球团工艺的区别及混合料水分在线连续测量方法

烧结球团工艺的区别及混合料水分在线连续测量方法 球团与烧结是钢铁冶炼行业中作为提炼铁矿石的两种常用工艺。即将高品位粉矿通过烧结法或球团焙烧法制成适合高炉冶炼的块矿的工艺过程。 一、烧结工艺 烧结工艺,是指把粉状物料转变为致密体,是一个传统的工艺过程。人们很早就利用这个工艺来生产陶瓷、粉末冶金、耐火材料、超高温材料等。一般来说,粉体经过成型后,通过烧结得到的致密体是一种多晶材料,其显微结构由晶体、玻璃体和气孔组成。烧结过程直接影响显微结构中的晶粒尺寸、气孔尺寸及晶界形状和分布,进而影响材料的性能。 二、球团工艺 球团工艺是一种提炼球团矿的生产工艺,球团矿就是把细磨铁精矿粉或其他含铁粉料添加少量添加剂混合后,在加水润湿的条件下,通过造球机滚动成球,再经过干燥焙烧,固结成为具有一定强度和冶金性能的球型含铁原料。 三、烧结、球团工艺中混合料水分在线连续测量方法 德国默斯MS-580烧结、球团近红外水分测量仪,适用于各类烧结、球团生产线上对混合料的水分含量进行在线动态连续测量。 优势特点: 1、全球唯一不受烧结混合料颜色变化、 成份变化影响的红外水分仪。 2 、全球唯一不受外界环境光线影响的 近红外水分仪。 3 、直接LED红外光源,无滤光镜片、 无飞轮可移动部件等易损件,最高可达 10年使用寿命。 4、可自动关联外部控制开关。 5、高精度:最高精度0.2%;宽量程比:水分测量范围宽至0%-100%。 6 、内置校准曲线,一次校准成功后,无需经常校准。 7、安装简易、完全适用于恶劣的烧结生产工况,多种通讯方式和数据传输方式可选。 技术参数: 1、水分测量范围:0-100% 2、精度:0.2-1% 根据不同工况和测量对象 3、电源要求:85 – 270 VAC

关于发布《钢铁烧结 球团工业大气污染物排放标准》等

附件2 关于发布《钢铁烧结、球团工业大气污染物排放标准》等20项国家污染物排放标准修改单的公告 (征求意见稿) 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,加大大气污染防治力度,进一步完善国家污染物排放标准,我部决定对《钢铁烧结、球团工业大气污染物排放标准》等20项国家污染物排放标准进行修改,现将有关事项公告如下: 一、修改内容 修改钢铁、建材、有色、火电、锅炉、焦化等行业污染物排放标准(具体见附表)和《大气污染物综合排放标准》(GB16297-1996),对物料(含废渣)运输、装卸、储存、转移与输送,以及生产工艺过程等,全面增加无组织排放控制措施要求。 修改《钢铁烧结、球团工业大气污染物排放标准》(GB28662-2012)大气污染物特别排放限值,增加烧结烟气基准含氧量要求。修改《平板玻璃工业大气污染物排放标准》(GB26453-2011)、《陶瓷工业污染物排放标准》(GB25464-2010),增加大气污染物特别排放限值。修改《砖瓦工业大气污染物排放标准》(GB29620-2013)大气污染物排放限值和基准含氧量,增加大气污染物特别排放限值。 二、执行要求

钢铁(烧结球团、炼铁、炼钢、轧钢、铁矿采选、铁合金)、建材(水泥、平板玻璃、陶瓷、砖瓦)、有色(铝、铅锌、铜钴镍、镁钛、锡锑汞、再生铜铝铅锌)、火电、锅炉、焦化行业的无组织排放控制措施要求,按相应行业排放标准修改单规定内容执行;石化(石油炼制、石油化工、合成树脂)、油品储运销(储油库、汽油运输、加油站)行业的无组织排放控制措施要求,按行业排放标准已有规定执行;其他行业的无组织排放控制措施要求,按《大气污染物综合排放标准》修改单规定内容执行,将来发布行业排放标准或修改单规定无组织排放控制措施要求的,按相应行业排放标准或修改单规定内容执行。 三、执行时间 新建项目无组织排放控制措施要求自修改单发布之日起执行。现有企业无组织排放控制措施要求自2019年1月1日起执行,其中京津冀大气污染传输通道城市自2017年10月1日起执行。 京津冀大气污染传输通道城市包括北京市,天津市,河北省石家庄、唐山、廊坊、保定、沧州、衡水、邢台、邯郸市,山西省太原、阳泉、长治、晋城市,山东省济南、淄博、济宁、德州、聊城、滨州、菏泽市,河南省郑州、开封、安阳、鹤壁、新乡、焦作、濮阳市(以下简称“2+26”城市)。 四、其他要求 《钢铁烧结、球团工业大气污染物排放标准》(GB28662-2012)、《平板玻璃工业大气污染物排放标准》(GB26453-2011)、《陶瓷工业污染物排放标准》(GB25464-2010)和《砖瓦工业大气污染物排放标

煅烧-焙烧与烧结的区别

煅烧-焙烧与烧结的区别

焙烧 焙烧与煅烧是两种常用的化工单元工艺。焙烧是将矿石、精矿在空气、氯气、氢气、甲烷和氧化碳等气流中不加或配加一定的物料,加热至低于炉料的熔点,发生氧化、还原或其他化学变化的单元过程,常用于无机盐工业的原料处理中,其目的是改变物料的化学组成与物理性质,便于下一步处理或制取原料气。煅烧是在低于熔点的适当温度下,加热物料,使其分解,并除去所含结晶水、二氧化碳或三氧化硫等挥发性物质的过程。两者的共同点是都在低于炉料熔点的高温下进行,不同点前者是原料与空气、氯气等气体以及添加剂发生化学反应,后者是物料发生分解反应,失去结晶水或挥发组分。 烧结也是一种化工单元工艺。烧结与焙烧不同,焙烧在低于固相炉料的熔点下进行反应,而烧结需在高于炉内物料的熔点下进行反应。烧结也与煅烧不同,煅烧是固相物料在高温下的分解过程,而烧结是物料配加还原剂、助熔剂的化学转化过程。烧结、焙烧、煅烧虽然都是高温反应过程,但烧结是在物料熔融状态下的化学转化,这是它与焙烧、煅烧的不同之处。 焙烧 1. 焙烧的分类与工业应用 矿石、精矿在低于熔点的高温下,与空气、氯气、氢气等气体或添加剂起反应,改变其化学组成与物理性质的过程称为焙烧。在无机盐工业中它是矿石处理或产品加工的一种重要方法。 焙烧过程根据反应性质可分为以下六类,每类都有许多实际工业应用。 (1) 氧化焙烧 硫化精矿在低于其熔点的温度下氧化,使矿石中部分或全部的金属硫化物变为氧化物,同时除去易于挥发的砷、锑、硒、碲等杂质。硫酸生产中硫铁矿的焙烧是最典型的应用实例。硫化铜、硫化锌矿的火法冶炼也用氧化焙烧。 硫铁矿(FeS2)焙烧的反应式为: 4FeS2+11O2=2Fe2O3+8SO2↑ 3FeS2+8O2=Fe3O4+6SO2↑ 生成的SO2就是硫酸生产的原料,而矿渣中Fe2O3与Fe3O4都存在,到底那一个比例大,要视焙烧时空气过剩量和炉温等因素而定。一般工厂,空气过剩系数大,含Fe2O3较多;若温度高,空气过剩系数较小,渣成黑色,且残硫高,渣中Fe3O4多。焙烧过程中,矿中所含铝、镁、钙、钡的硫酸盐不分解,而砷、硒等杂质转入气相。

烧结球团机械设备复习题

1.生产过程的主要作业(原料准备、配料混合、制粒造球、烧结焙烧及冷却),都是助于机械设备(破 碎机、筛分机、磨矿机、混合机、造球机、烧结机、焙烧机、冷却机)来完成。对造块机械设备的要求应该是性能先进,效率高、操作方便、安全可靠、结构简单、不需要大量的特殊材质以及易损部件的标准化。就是要好用、好修、好造、好配套。 1、破碎方法是指破碎力对破碎物料的作用方式,破碎方法主要根据物料的物理机械性质、物料的粒度和 所要求的破碎比进行选择。 2、锤式破碎机的优点为:生产能力高,破碎比大,破碎机较宽,给料粒度一般为80毫米左右,甚至可达 200毫米,因此大块物料及冬季时的冻块对破碎作业均不会带来较大困难,构造简单;机器尺寸紧凑; 功率消耗少;工作时维护简单;修理和更换零件较容易等。它的缺点是:因机器高速旋转,锤头、圆盘及轴承磨损较快,特别是锤头易磨损引起不稳定的运转;当破碎物料水分大时或含有较多的粘性物料时,破碎机的蓖条容易堵塞,从而降低生产率,有时也会造成事故。 3、反击式破碎机的优点是:破碎效率高。产品粒度均匀。破碎比大,适应性很强,可破碎硬性、脆性、 粘性较潮湿的矿石,。可选择性破碎,机器结构简单,重量轻,体积小,动力消耗小,金属材料消耗比锤式破碎机少。工作较安全,不受外来的杂物和超负荷的影响。 4、随着转子速度的增加,破碎比增大,生产能力得到提高。同时,大量试验证明:在破碎机的可能条件 下,速度越高,则产品粒度越细,破碎效率显著提高。 5、齿面辊式破碎机的破碎作用主要是劈碎,附带有些研磨作用。辊式破碎机的规格是用辊子的直径及其 长度表示。辊子的长度通常比其直径小。将辊子造得过长是不合理的,因为这时辊套的磨损很不均匀。 6、当辊子直径和两辊之间间隙已定时,要使啮角减小只有减小破碎物料的给矿粒度。 7、球磨机可以破碎各种硬度的矿石物料,其破碎比很大,通常为200~300。 8、球磨机既能开路工作又能闭路工作,在闭路工作时,如是湿磨,通常配置有分级机;如是干磨,则通 常配置有抽风、分离设备,以使尚未达到一定细度的产品重新返回球磨机中再磨。 9、棒磨机用于细碎和粗磨时的效率较高,且产品粒度均匀。棒磨机一般在第一段磨矿中用于矿石的细碎 和粗磨,它与球磨机相比,优点是棒的磨损比球慢得多,可获得更均匀的产品,不会过粉碎,这对于烧结厂用来破碎燃料是很有利的,但它的生产率比球磨机低。 10、装球量的多少对磨矿效率有一定的影响。装球少,磨矿效率低;装球过多,内层球运动时,则会产生 干涉作用,破坏了球的正常循环,磨矿效率也要降低。 11、由于润磨作业的入磨物料有一定的水分,因而要求润磨机具有特殊的结构型式,其特点如下:周边排 料、强制给料、橡胶衬板。 根据不同的任务和目的,筛分作业可以分为如下几种:独立筛分、准备筛分、辅助筛分。 12、物料颗粒物料的水分,对筛分效率和生产力有较大影响。水分的影响主要是附着在表面的外在水分, 处在物料孔隙和裂缝中的水分以及与物料化合的水分,同无多大影响。物料的外在水分,能使细颗粒互相粘结成团,并附在大块上.致使颗粒分层困难,同时会把筛孔堵住,使颗粒难于通过筛孔,筛分效率显著降低。 13、振动筛在造块工厂等部门得到了广泛的应用。它与其他类型的筛子比较,具有下列优点:由于筛子工 作时,产生强烈的振动,物料堵塞筛孔的现象大为减少,使筛子具有较高的筛分效率和生产率。这种筛子构造比较简单,操作及拆换筛面比较方便。应用范围广泛,可用来粗筛、中筛和细筛。筛分每吨物料所消耗的电能少。 14、热矿振动筛是用来筛分热烧结矿的一种筛分机械。振动筛筛分热烧结矿的必要性,早已为人们所公认。 它的主要作用在于:减少烧结矿粉末,以利于高炉冶炼.为冷却作业创造条件,提高冷却效果。缩小返矿粒度上限,强化烧结过程。降低厂房标高,改善环境卫生。 15、圆盘给料机包括传动部分,机体部分及保护衬板、套筒和闸门等组成。圆盘给料机的生产能力与盘的 转速成正比,转速越大,生产能力越大。

焙烧车间试题库及答案

焙烧炉系统试题及答案 1.V19主燃烧站联锁启动条件? 答:有“远方”信号 有“允许启动”信号 P01T1、P02T1温度均不超高,(PO2T1≤600℃) P04T1、P04T2温度不低超低≥550℃ ID引风机已运行, V08辅助燃烧站运行,有火焰 2.叙述焙烧炉正常操作主要的技术条件控制和技术指标调整? 答:1、氢氧化铝下料量的调整 氢氧化铝下料量决定了氧化铝的产量,操作中给出申克喂料机下料量的设定值,申克喂料机的运行过程得以自动调整。 2、焙烧炉主炉温度 根据氧化铝质量来决定焙烧炉温度,以控制瓦斯气用量和进料量来控制焙烧炉温度.提高焙烧炉温度可降低灼减百分含量,但热耗也相应增高. 3、文丘里闪干燥器出口温度控制 A02出口温度要高于140℃以上,温度低时可启动T11。 4、烟气中的O2和CO含量 P02烟气出口和ESP进口装有O2和CO含量测点,以判断焙烧炉过剩空气大小,保证瓦斯气能充分燃烧,为了使废气中不含有任何未燃物质,避免对电收尘造成损坏,并充分降低能耗,需保持废气中的氧(O2)含量在2%左右,可以通过瓦斯气用量和风机转速、风门开度来控制调整.

5)出料温度控制 为保证氧化铝输送设备的安全稳定运行,氧化铝出料温度控制在80℃以下,生产上要保持稳定,冷却水流量正常,进水温度在35℃以下. 3.GSC旋风筒锥部堵塞事故现象和处理方法? 答:现象:A被堵塞部位以下旋风筒的温度上升很快,所测锥部负压降低B被堵塞旋风筒的负压降低,并触发报警 处理方法:A减少Al(OH)3下料量、V19燃气量 B在堵塞部位插入高压风管,用风管将其疏通. C如出现顽固性堵塞,上述办法不能奏效时则需停止下料,关闭V19,开始降温,降至合适的温度时疏通旋风筒锥部堵塞部份 4.标出焙烧炉物料的走向? 答:AH小仓皮带称F01 进料螺旋A01 文丘里干燥器A02 P01旋风器P02预热旋风器P04主炉P03热分离旋风器C01冷却旋风器C02冷却旋风器C03冷却旋风器C04冷却旋风器流化床冷却器AO 出料小溜槽。 5.ID引风机DCS联锁启动条件? 答:有“远方”信号 无“电气故障”信号, ID冷却风机预先启动正常, 引风门关闭,开度设置为0%, ID风机速度设置较小值如:10% 电收尘入口、出口温度均不超高,(入口温度≤350℃) 6.V08辅助燃烧站联锁停止条件?

烧结矿与球团矿生产

《烧结矿与球团矿生产》课程标准 本课程标准是根据高职高专专业人才培养方案编写的。编写本课程标准时,坚持“理论联系实际”的原则,突出应用能力的培养。 课程标准中教学内容和学时,可根据具体教学需要做适当的调整和补充。 一、课程简介 1.课程名称:烧结矿与球团矿生产 2.课程代码:093313 3.学时:56学时 4.学分:3.5学分 5.适用专业:冶金技术 6.课程性质: 本课程是冶金技术专业方向的一门专业核心课程。是一门综合性、实践性较强的专业核心课程,在专业人才培养中具有十分重要的地位。本课程系统介绍了高炉冶炼的含铁原料烧结矿、球团矿生产的基本理论、生产工艺和主体设备,以及实验研究和产品质量检验方法,环境保护措施等。此外,根据生产实际要求,还介绍了设备操作要点和维护检修知识。 二、课程教学目标 1.职业专门技术能力目标 掌握烧结原料的基本知识、生产工艺、关键设备的操作原理维护、产品质量检验及环境保护等知识。 2.理论知识目标 掌握烧结矿及球团矿生产的基本理论。 3.职业关键能力目标 独立思考、自主完成项目任务;善于总结经验、有创新意识;乐于合作、发挥集体力量、共同完成任务;坦诚相待、乐于助人、树立良好的职业道德意识;坚韧、诚信,遵守秩序。熟悉与职业相关的劳动保护要求和安全操作规程。能熟练查阅常用手册、国家及行业标准等。 三、课程教学内容、要求及学时分配

1.师资要求 ①从事本课程教学的教师,应具备以下相关知识、能力和资质: ◆获得高校教师资格证(专任教师); ◆熟悉相应行业标准和工艺规范。 ②本课程师资由专兼职教师共同组成。课程中20%以上的教学任务由兼职教师承担。 2.教学硬件设施及配备 ◆多媒体教室:1间; ◆校外实习实训基地:2个; ◆每名学生配备必要的劳保用品。 3.教材及参考资料 《烧结矿与球团矿生产》/王悦祥主编,冶金工业出版社 《炼铁原理与工艺》/王明海主编,冶金工业出版社 《炼铁工艺》/卢宇飞主编,冶金工业出版社 《铁合金生产实用技术手册》/赵乃成,张启轩主编,冶金工业出版社 4.教学方法 教学实施过程中采用以学生为主体、以教学项目为载体、以行动为导向的有效教学方法,结合讲授、演示、讨论、工艺参观等方法进行教学。 五、考核方式 为了更全面评价学生对铸造工艺及相关知识的掌握情况及其应用能力,将课程教学评价成绩分为平时过程考核和期末考核两部分。其中,平时过程考核成绩占60%,期末考试成绩占40%。平时过程考核成绩包含考勤情况(10%)、应用能力考核(30%)、平时作业和测验成绩(50%)、平时提问成绩(10%)。

还原焙烧(一)

书山有路勤为径,学海无涯苦作舟 还原焙烧(一) 在一定温度和还原气氛条件下,使含于矿物原料中的金属氧化物转变为 相应的低价金属氧化物或金属的过程称为还原焙烧。除汞和银的氧化物在低于400℃的温度条件下于空气中加热可以分解析出金属外,绝大多数金属氧化物 不可能用热分解的方法将其还原,只有采用相应的还原剂才能将其还原。金属 氧化物的还原可以下式表示:MO+R=M+RO △G°=△G°RO-△G°MO-△G°R 式中MO——金属氧化物;R、RO——还原剂及还原剂氧化物。上式可由 MO、RO 的生成反应合成: 金属氧化物(MO)能被还原剂(R)还原的必要条件是△G°<0,即 Po2(RO)<Po2(MO),因此,凡是对氧的亲和力比被还原的金属对氧的亲和力大 的物质均可作为该金属氧化物的还原剂。图1 为不同温度下某些金属氧化物的 标准生成自由能变化曲线,从图中曲线可知,在焙烧条件下,多数金属能被氧 氧化,其氧化物较稳定,其稳定性随温度的升高而降低,图中曲线位置愈低的 金属氧化物愈稳定,愈难被还原剂还原;反之,曲线位置愈高的金属氧化物愈 易被还原剂还原。 还原焙烧时可采用固体还原剂、气体还原剂或液态还原剂。从图1 可知, 一氧化碳的生成自由能随温度的升高而显著降低,因此,在较高温度条件下, 碳可作为许多金属氧化物的还原剂。[next] 固体碳燃烧时可发生下列反应: 1)C+O2=CO2 △G°1=-393.76~0.0008T 千焦/摩[尔] 2)2C+O2=2CO △G°S=- 223.21-0.175T 千焦/摩3)2CO+O2=2CO2 △G3°=-564.8+0.173T 千焦/摩4)CO2+C=2CO △G°4=-170.54-0.174T 千焦/摩C-O2 系的△G°-T 关系如图2 所示,

小球团烧结技术

武汉科技大学 高等造块学课程论文 题目:小球团烧结工艺概述 学院:资源与环境工程学院 专业:矿物加工工程 年级:2008级研究生 姓名:汪彬 学号:08112017 指导老师:张一敏 日期:2009年7月20日 小球团烧结工艺概述 汪彬 (武汉科技大学资源与环境工程学院,武汉430081) 摘要:本文简要介绍了小球团烧结工艺特点以及其与球团烧结的区别,并详细叙述了小球团烧结的工艺参数与设备的选择,且对其工艺生产中存在的不足做了简单分析。概述了我国小球团烧结的工艺研究与应用。 关键词:小球团烧结;工艺特点;雾化加水;偏析布料; 前言 烧结工艺和球团工艺各有长处,同时都具有工艺本身难以克服的缺陷,开发新型的造块工艺是十分必要的。新型的人造块矿应该保持有利于高炉布料控制的烧结矿宏观外形,同时也能象球团工艺一样,可以处理粒度越来越细的精矿粉。而小球团烧结工艺就是近年来开发的烧结新工艺。该工艺集中了球团与烧结两种造块工艺的优点,强化制粒并改善混合料透气性,减少了烧结过程中料层的阻力。因此改变了烧结矿的生产指标: (1)提高了垂直烧结速度,提高烧结矿产量。 (2)增加了氧化性气氛,有利于铁酸钙(FSCA)的大量生成,改善了烧结矿的矿物组成,提高烧结矿强度和还原性。 (3)可进一步提高料层厚度,更加有效地利用热能,降低能耗,并使烧结过程反应更加充分,使烧结矿的矿物组成和结构更加均匀。因此小球团烧结工艺是强化烧结生产。提高烧结矿产量和质量,降低能耗的有力措施。为高炉提供优质炉料,为我国以细精矿为主要原料的烧结工艺开辟了一条新的途径。 1小球团烧结法的工艺特点

(1)原料的适应范围宽。从普通烧结用原辫到高水分的l全精矿烧结,则晤碱崖刘高碱度,燃料采用焦粉或无烟煤粉一,都能适应。 (2)增加丁强化制粒和外滚煤粉工艺环节。在一、二混之间增加面盘造璩机,将混合料粒度造成5~l0mm的小球。采用燃料分加技术,在配料室内配2O%,造球后外滚80%。通过强化制粒使外滚煤包裹在生球表面,改变烧结过程中燃料的燃烧条件。改善了料层透气性,使生产能力提高.燃料消耗降低。 (3)燃料粒度要求较细特别是内配煤要求更严(<1mm),需磨煤设备。 (4)为避免生球破碎.融台带式球团焙烧机布料系统,在烧结机前不设混合料矿槽。而是采用摆式皮带和宽皮带联合布料方式。 (5)烧结点火前。利用环玲机亲热进行抽风干燥。以减少过湿层的影响和点火时生球破裂。该工艺的实质是:将烧结混合料全部造成5~lOmm的小球,外滚煤粉后进行烧结,以得到新型烧结矿。 2球团烧结法与小球烧结法的区别 球团烧结法与小球烧结法有共同点和差别。球团烧结法是烧结和球团工艺的结合,从固结机理分析,烧结矿带有球圃矿和烧结矿两者的特点,上部及边缘带呈球状,以固相扩散型为主,磁铁矿部分氧化,产生赤铁矿"连结桥",中、下部有一部分小球烧结矿呈葡萄状结构。还有液相熔结块。小球烧结法则完全属于烧结矿范畴,宏观结构与普通烧结矿无明显差别,微观结构铁酸钙和磁铁矿呈交织、熔蚀结构,铁酸钙量比普通烧结矿明显增多。从工艺设备上讲,球团烧结法需要圆盘造球机造球,外滚燃料粒度要求小于l mm,而小球烧结法可以利用现有的圆筒混合机加以改造进行造球,外滚燃料粒度一般小于3mm。球团烧结法已在酒钢、安钢烧结厂投产。由钢铁研究总院开发的小球烧结法在山东泰山钢铁公司应用。由于两法的共同点都是强化制粒,提高混合料透气性,从这个意义来讲本文把它们统称为小球团烧结法。 3小球团烧结工艺参数与设备的选择 3.1工艺参数的选择 3.1.1造球粒度的选择 由于原料的特性和工艺条件不同,造球粒度也各不相同。安钢与泰钢烧结厂小球直径为 3-10mm的达到80左右。酒钢烧结厂的小球直径为5-12mm,鞍钢烧结厂实验室试验小球烧结直径为8-5mm。生产实践证明球径控制在上限而不要过大,球径过大,球外壳和其核心内部的温度就会相差较大,出现烧不透的现象,烧结反应不充分,烧结矿强度差,并在点火时小球出现爆裂,影响料层透气性。 3.1.2料层高度和负压的选择 由于小球团结烧工艺是将混合料预先造球,从而改善了烧结料层的透气性。使得小球团烧结工艺能以较低的抽风负压取得较高的生产率,同时也为进一步提高料层厚度创造了条件。鞍钢小球烧结试验表明,料层每提高10ram,焦粉消耗降低0.31kg/t。安钢小球团烧结料层高度为500mm,烧结负压10kPa.焦粉消耗降到47.29kg/t。包钢试验结果料层为550mm,烧结负压5.30kPa,煤耗为62.6kg/t。 3.1.3不同焦粉用量的选择 料层中的物料实现熔融和烧结是靠料层中的焦炭的燃烧来完成的。焦炭的不同配量对小球强度,利用系数有较大的影响。配炭过高造成铁酸钙大量分解,影响产品质量和烧结速度。安钢与泰钢小球烧结焦粉用量为4.5-5.0。试验结果认为焦粉用量过多,烧结矿FeO含量提高,还原性变差。选择合适的配炭量是小球烧结工艺的关键。

相关主题
文本预览
相关文档 最新文档