当前位置:文档之家› 管道外爬行机器人的设计与仿真

管道外爬行机器人的设计与仿真

管道外爬行机器人的设计与仿真
管道外爬行机器人的设计与仿真

管道机器人结构设计

φ700mm-φ1000mm管道机器人结构设计 在工农业生产及日常生活中,管道作为一种重要的物料运输手段,其应用范围极为广泛。管道在使用过程中,由于各种因素的影响,会产生各种各样的管道堵塞与管道故障和损伤。如果不及时的管道进行检测、维修及清理就可能产生事故,造成不必要的损失。然而,管道所处的环境往往是不易直接达到或不允许人们直接进入的,检测及清洗难度很大。因此最有效的方法之一就是利用管道机器人来实现管道内的在线检测、维修和清洗。管道机器人在我国处于发展阶段,具有广阔的市场前景。管道机器人相对于人工操作来说,有无可比拟的优势。管道机器人在计算机控制下,可进行采样、检测等动作。而单片机技术的发展,为管道机器人的方便应用提供了一个良好的基础技术。利用单片机,可以实现管道机器人的控制,是管道机器人设计中较好的选择。 通过对国内外管道机器人研究现状分析,总体看来,国内外已经在管内作业机器人领域取得了大量的成果,主要应用在管道检测、维修及空调通风管道的清洗等方面。但对于金属冶炼厂烟气输送管道中烟灰堆积层的清理这种特殊管内作业的自动化装置研究目前少有报道。因此研制适应于金属冶炼厂烟气管道烟灰清理的管道清灰机器人将具有重大的现实意义。 此次设计的管道机器人主要应用在金属冶炼厂、化工企业等烟气输送管道烟灰堆积层的清理,作为载体,通过安装不同的设备可实现排水管道的监测、清理。 编辑:林冰宁波广强机器人科技有限公司管道检测机器人是由控制器、爬行器、高清摄像头、电缆等组成。在作业的时候主要是由控制器控制爬行器搭载检测设备进入管道进行检测。检测过程中,管道机器人可以实时传输管道内部情况视频图片以供专业维修人员分析管道内部故障问题。 使用管道检测机器人的优势: 1.安全性高。使用广强管道机器人进入管道查明管道内部情况或排除管道隐患,如果是人工作业的话,往往存在较大的安全隐患,而且劳动强度高,不利于工人的健康。广强管道机器人智能作业可有效提高作业的安全性能。 2.节省人工。管道检测机器人小巧轻便,一个人即可完成作业,控制器可装载在车上,节省人工,节省空间。 3.提高效率和品质。广强管道机器人智能作业定位准确,可实时显示出日期时间、爬行器倾角(管道坡度)、气压、爬行距离(放线米数)、激光测量结果、方位角度(选配)等信息,并可通过功能键设置这些信息的显示状态;镜头视角时钟显示(管道缺陷方位定位)。 4.防护等级高,摄像头防护等级IP68,可用于5米水深,爬行器防护等级IP68,可用于10米水深,均有气密保护,材质防水防锈防腐蚀,无需担心质量问题,因为广强只做国内 最好的管道机器人。 5.高精度电缆盘,收放线互不影响,可选配长度。

最新西华大学机器人创新设计实验报告(工业机械手模拟仿真)

实验报告 (理工类) 课程名称: 机器人创新实验 课程代码: 6003199 学院(直属系): 机械学院机械设计制造系 年级/专业/班: 2010级机制3班 学生姓名: 学号: 实验总成绩: 任课教师: 李炜 开课学院: 机械工程与自动化学院 实验中心名称: 机械工程基础实验中心

一、设计题目 工业机器人设计及仿真分析 二、成员分工:(5分) 三、设计方案:(整个系统工作原理和设计)(20分) 1、功能分析 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力,从某种意义上说它也是机器的进化过程产物,它是工业以及非产业界的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。 本次我们小组所设计的工业机器人主要用来完成以下任务: (1)、完成工业生产上主要焊接任务; (2)、能够在上产中完成油漆、染料等喷涂工作; (3)、完成加工工件的夹持、送料与转位任务; (5)、对复杂的曲线曲面类零件加工;(机械手式数控加工机床,如英国DELCAM公司所提供的风力发电机叶片加工方案,起辅助软体为powermill,本身为DELCAM公司出品)

管道机器人工作原理

管道机器人工作原理 本产品集成了传统的管道视频检测系统、GIS技术和新兴的物联网技术以及图形处理技术等,通过操纵人员根据排水管道内部情况和工程要求进行操纵,采集视频检测数据,软件系统进行视频处理,将各类管道检测数据实时上报至管道检测数据服务器进行分类保存。以及通过分析视频检测数据所得的结果(判读报告、3D管道内壁图)并结合物联网进行任务指派等工程决策。使得该系统不仅能实现对给排水管道进行直观视频检测的功能,而且能对视频检测数据进行精准分析判读,同时兼有对检测成果进行管理提高工作效率的功能。 机器人硬件部分下放到管道内部后,地面操纵人员通过工程要求控制爬行器的移动,而爬行器搭载的镜头通过照明等在管壁上投射的光圈进行成像,同时通过爬行器上的传感器感知爬行器在管道中的情况。得到视频检测数据及爬行器情况数据后通过电缆盘或无线传输传到主控制器上,主控制器通过接口将得到的视频检测数据储存在相应的存储设备中,而主控制器的屏幕上可显示管道内部情况。将得到的数据可以进行如下处理:将各类管道检测数据实时上报至管道检测数据服务器进行分类保存。通过各类分析软件进行分析处理后的检测结论(如判读分析报告)工程成果数据(管道内壁3D视图,管道内壁倾斜情况缺陷),可按照接口定义的规范进行录入和上传。 中仪物联X5-W 3000型管道CCTV机器人由爬行器、镜头、电缆盘和主控制器四部分组成。其中,爬行器可根据功能需求搭载不同规格型号的镜头(如:旋转镜头、直视镜头、鱼眼镜头),并通过电缆盘与主控制器连接后,受控于主控制器的操作命令,如:爬行器的前进、后退、转向、停止、速度调节;镜头座的抬升、下降、灯光调节;镜头的水平或垂直旋转、调焦、变倍等、前后视切换等。在检测过程中,主控制器可实时显示、录制镜头传回的画面以及爬行器的状态信息(如:气压、倾角、行走距离、日期时间),并可通过键盘录入备注信息。通过内置的无线传输模块(可选),可将画面实时传送到200m范围内的其它监视器上显示,从而实现远程监视。

真空吸附式爬壁机器人设计

Ξ №.4 西北轻工业学院学报 D ec.1997?18? JOU RNAL O F NOR THW EST I N ST ITU T E O F L IGH T I NDU STR Y V o l .15 真空吸附式爬壁机器人设计 何雪明1 丁毅 朱明波2 (机械工程系) 摘 要 运用壁虎爬行原理,设计构思了真空吸附式爬壁机器人.采用多组橡胶吸 盘将机器人吸附在墙面上,配以简单四杆机构完成其行走功能,从而达到擦洗整个 墙面的目的.该机器人可用于建筑行业和洁净业. 关键词:壁面机器人,真空吸附,蠕行运动 中图法分类号:TQ 242.1(TH 122) 1 引言 目前,瓷砖、玻璃装璜的墙壁均采用人工直接擦洗.因高空擦洗作业具有很大的危险性,因此,研制一种适用于高楼墙壁擦洗的墙壁机器人有着重要的意义. 壁面机器人是集机构学、传感技术、控制和信息技术等科学为一体的高技术产品,自80年代以来在国内外取得了迅速的发展,有的已开始进入实用试验阶段.到1992年底,国外已有不同类型的爬壁机器人研制成功,其中以日本发展最快.国内较早的是哈尔滨工业大学,他们已研制成功壁面爬行遥控检测机器人,采用真空吸附式,通过运载小车使机器人在壁面上下左右自由行走.另外, 上海大学研制了用于高层建筑窗户擦洗的真空吸附足式爬行机器 图1 爬壁机器人总体框架图人.上海交通大学亦于1995年研制了磁吸 附爬壁机器人用于油罐检测. 2 真空吸附式爬壁机器人总体设计 要实现机器人在普通壁面上的自由移 动,必须具备粘着功能与移动功能.常见粘 着功能主要靠吸附即负压吸附实现.根据吸 附力量产生装置不同,又可分为真空泵式、 喷射器式.移动方式一般有轮式、履带式及 足式三种.针对壁面移动机器人的工作条件以及壁面非金属性、金属性等其它原因,经过比较选择了多子真空吸附、足式移动的方案.其吸附性好,结构简单,由于吸盘采用列吸盘组, Ξ收稿日期:1997-05-10 第一作者:男,32岁,硕士 1、2作者单位:无锡江南大学机电系,邮编:214063

管道爬壁机器人的设计

管道爬壁机器人设计 作品内容简介 现在的管道机器人在竖直或者是水平方向都很好的实现了检测与清理功能。但至今还没有管道产品在复杂的管道中很好的工作。为此我们设计了这款管道爬壁机器人,它既可以在水平管道中很好的工作还可以在竖直管道中完成工作,能够自如的在水平竖直交叉的复杂管道中完成检测,清理等工作。 该产品的主题结构为车体结构,在水平方向依靠车载力运动,在车体上安装有四个机械手臂,在机械手臂的前端安装有吸盘跟电磁铁,在塑料管道中依靠吸盘在竖直方向上运动,在铁质管道上利用电磁铁的磁力和机械手臂的交叉前进实现竖直方向的运动。该作品灵活多变,不但可以适应复杂的管道还能够进行多样的工作。 我们依靠机械臂的灵活度与吸盘,电磁铁的吸力来实现该产品的爬壁功能,在水平方向上利用最传统的智能车作为动力,这样的设计完全可以满足水平方向与竖直方向的灵活转变,实现复杂管道的自由穿梭,进而可以让该机器人更好的实现其检测与清理功能。该管道爬行机器人实现远程电脑控制,所得数据通过反馈处理使机器人能够完成各项做业。 一、研制背景及意义 1、随着社会的快速发展,国家生产水平不断提高,产品更新也越来越快。管道运输在我国运用比较普遍,但管道长期处在压力大的恶劣环境中,受到水油混合物、硫化氢等有害气体的腐蚀。这些管道受腐后,管壁变薄,容易产生裂缝,造成漏油、漏气的问题,存在重大安全隐患和经济损失。在管道广泛使用的今天,管道的检测、清理、维护成了一个亟待解决的问题。但是管道的封闭性和工作环境决定了这项工作的艰难。时至今日,虽然经过各国学者的努力,已经有各种各样的机器人,但是他们大都存在这样或那样的问题,而且功能不够强大。 2、人民对管道清洁机械的要求是不仅科技含量要高,而且还要绿色、节能、环保。能够满足不同类型管道的检测、维护、清理等要求。 3、管道爬行机器人的研究更好地为管道的检测、维护、清理提供了新的技术手段,这种技术更好的提高了管道监测的准确性和管道清理的安全性,也便于管道工程管理维护人员制定维护方案,清除管道垃圾防止堵塞,事前消除管道的安全隐患,从而节约大量的维修费用,降低管道维护成本,保障工业生产和人民生活及财产安全。 4、近些年来人们对自然环境、工作环境、工作工具及其方式的要求逐步提高。随着中国城市化建设事业的发展推进中国西气东输工程的全面启动 特别是大型化工厂、大型天然气厂、大型地下管道处理系统的建成大型管道或类似管道装置组合处理系统设施以其高质量的工作效率、圆形管道结构占地少、有效工作空间大、美化生活环境等优点得到了广泛的应用。为研究高效的管道机器人提供了良好的市场环境。 5、随着计算机技术的广泛普及和应用国内外检测技术都得到了迅猛发展管道检测技术逐渐形成管道内、外检测技术 涂层检测、智能检测两个分枝。通常情况下涂层破损、失效处下方的管道同样受到腐蚀管道外检测技术的目的是检测涂层及阴极保护有效性的基础上通过挖坑检测达到检测管体腐蚀缺陷的目的对于目前大多数布局内检测条件的管道是十分有效的。 6、管道内检测技术主要用于发现管道内外腐蚀、局部变形以及焊缝裂纹等缺陷也可间接判断涂层的完好性。因此各种大口径天然气管道、大口径石油运

六足爬行机器人总体设计方案

本文的设计为六足爬虫机器人,机器人以交流-直流开关电源作为动力源,单片机为控制元件,伺服电机为执行部件,机器人采用三足着地进行运动,通过单片机对伺服电机的控制,机器人能够实现前进、后退等运动方式,三足着地运动方式保证了机器人能够平稳运行。伺服电机具有力量大,扭矩大,体积小,重量轻等特点。单片机产生20ms 的PWM 波形,通过软件改写脉冲的占空比,从而达到改变伺服电机角度的目的。 1 机器人运动分析 1.1 六足爬虫式机器人运动方案比较 方案一:六足爬虫式机器人的每条腿都能单独完成抬腿、前进、后退运动。 此方案的特点: 每条腿都能自由活动,每条腿都能单独进行二自由度的运动。每条腿的灵活性好,更容易进行仿生运动,六足爬虫机器人可以完成除要求外的很多动作,运动的视觉效果更好。由于每条腿能单独完成二自由度的运动,所以每条腿上要安装两个舵机,舵机使用数量大,舵机的安装难度加大,机械结构部分的制作相对复杂,又由于每个舵机都要有单独的信号控制,电路控制部分变得复杂了,控制程序也相应的变得复杂。 方案二:六足爬虫式机器人采取三腿为一组的运动模式,且同一侧的前腿、后腿的前后转动由同一侧的中腿进行驱动。采用三腿为一组(一侧的前足、后足与另一侧的中足为一组)的运动方式,各条腿能够协调的进行运动,机器人的运动相对平稳。 此方案特点:相比上述方案,个腿能够协调运动,在满足运动要求的情况下,舵机使用数量少,节约成本。机器人运动平稳,控制、驱动部分都得到相应的简化,控制简单。选择此方案,机器人还可进行横向运动。 两方案相比,选择方案二更合适。 1.2 六足爬虫式机器人运动状态分析 1.2.1 机器人运动步态分析 六足爬虫式机器人的行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并

管内爬行机器人行走机构的设计

管内爬行机器人行走机构的设计 【摘要】随着管内检测爬行机器人技术的不断成熟,它在工业中的应用也越来越广,本文所设计的管内爬行机器人驱动机构,即管内步伐式行走机构,是在分析以往的轮式和履带式机器人的基础上设计的一种新型的管内爬行机器人行走机构。 【关键词】管内爬行机器人;步伐式;驱动机构 0.引言 目前工业管道系统已广泛应用于冶金、石油、化工及城市水暖供应等领域,因其工作环境非常恶劣,容易发生腐蚀、疲劳破坏或使管道内部潜在缺陷发展成破损而引起泄漏事故等,必须定期地对这些管道进行检修和维护,然而管道所处的环境往往是人力所限或人手不及,检修难度很大, 所以燃气管道管内探测是一项十分重要的实用化工程,关系到燃气的安全、合理地应用和管理。管道检测机器人(管内爬行机器人驱动机构)就是为满足该需要而产生的。 根据管内步伐式行走机器人的运动模仿人在井筒中四肢扶壁上下运动的模式,设计了机器人的行走机构,有效的解决了机器人在管道内的行走。 1.管内爬行机构总体设计 管内爬行机构主要由撑脚机构及其传动,牵引机构及传动,转向机构3部分组成:见图1所示: 该管内爬行机构的运动控制过程大致为:主、副电机不同时工作,分别控制其牵引机构和撑脚机构,并且镜面对称的两单元,其支撑脚同一时间径向所处状态相反,即前脚踩在管壁上时,后脚处在抬起状态;反之亦然。具体过程为通过副电机16带动齿轮与齿圈啮合旋转,齿圈背面的平面螺纹驱动滑杆沿滑道径向移动,从而实现支撑脚的转换。主电机1通过联轴器与丝杠连接,带动丝杠旋转,将丝杠的旋转运动转换为螺母的轴向移动,从而通过连杆机构拖动身躯和前后单元向前移动,另一部分的控制过程相同。上述动作是管内爬行机构的一个步进过程,循环执行步进过程机器人继续前进,实现管内的均匀连续行走。 2.撑脚机构及其传动 撑脚机构的作用是使管道机器人被支承在管道中心线上。其机构及传动(见图1)由电机16、小齿轮15、齿圈及平面螺纹14、滑杆13、脚靴12组成。当电机16带动小齿轮15和齿圈14旋转时,齿圈背面的平面螺纹驱动滑杆13在筒体10的径向轨道内外伸推动脚靴踩在管壁上,电机反向旋转时,滑杆内缩带动脚靴径向抬起离开管壁。脚靴三套在圆周上间隔120°布置,三套脚靴同步伸缩,其动作与车床三爪卡盘的动作类同。三套脚靴伸出踩在管壁上时,使机器人处在管道的中心线上。为了使机器人在脚靴缩回时,仍能维持在中心线上,安装4组辅助支承轮18,每组三套,在圆周上间隔120°安装,支承轮通过支承柱19、弹簧20分别与支架3和筒体10固连。当撑脚缩回时支承轮使机器人基本上维持在管道中心线上。当机器人行走过程中支承轮遇到障碍时弹簧被压缩通过障碍。 3.牵引机构及传动 牵引机构的作用是拖动机器人前进.牵引机构(见图1)由电机1、螺杆2、螺母5拨销4、拨杆7和支承杆9组成。当电机1带动螺杆转动时,螺母受拨杆的约束不能转动而沿螺杆轴向移动,固连其上的拨销4拨动拨杆7顺时针方向转动,由于脚靴12锁死在管壁上,支承杆9不能向后运动,拨杆7通过销6带动支架3及其

创新SIT多功能爬壁机器人

湖南省大学生研究性学习和创新性实验计划 项目申报表

者) 兴起于清洁领域。

图5已有专利爬壁机器人 与此同时,如今常用投影设备是固定的,不能全方位全角度摄影与自拍。最近风靡的自拍神器一一自拍杆,也受到距离的限制。该爬壁机器人可在壁面上携带微型摄像头任意行走,自动捕捉识别人脸,图像通过蓝牙自动传输至移动终端设备,带来极大便利。此外在机器人上可配备微型投影仪,通过控制系统输入源文件,经过融合调试,组建成显示系统。随着机器人运动而形成移动的投影,可有效地渲染各种效果。 我们也注意到,墙绘作为建筑物的附属部分,它的装饰和美化功能使它成为环境艺术的宠儿。目前墙绘普遍均由人工绘制而成(如图7),耗时长,对工 人水平要求高。在机器人功能末端上安装可拆卸的颜料绘笔,通过控制系统,在移动终端设备上输入需要的绘画程序,通过控制机器人运动轨迹完成墙绘。 人工与机器特点对比见表1 表人工与机器特点对比 图6人工墙绘 鉴于此,我们小组通过市场调研和论证后决定设计一种高效的便携式多功能爬壁机器人来弥补这方面的空白。 2、研究内容和要解决的问题: 该项目以高层建筑作业比较困难为创意来源,通过真空式主辅双层四吸盘实现真空吸附,可以跨越缝隙,气密性好,安全性高;采用大变形柔性铰链,实现竖直平面至天花板的翻转;通过变速箱减速,由主轴驱动硅胶履带实现灵活运动与转向;该机器人集机械结构,电气控制,终端操纵于一体,是一台机电一体化、自动化、智能化的代表产物,可广泛应用于生活各个方面。 对于普通家庭,可作为清洁利器,能清洁有缝隙的多种壁面,在各个墙面间实现翻转;对于电器爱好者,可作为二次开发的模型,制作出更加便利的产品;对于学校或科普馆,该机器人可用于科普教育,开启学生想象力大门的钥匙;对于高层维护人员,降低高层建筑的作业成本,改善工人的劳动环境的同时提高了劳动生产率;对于产品宣传,移动投影作为“可移动的电视”,给产品润色了许多;同时,作为一款拓展性强大的产品,可以用作摄像、自

竖直管道爬行机器人

竖直管道爬行机器人 小组成员:刘晓燕、周平、时佳、王迪阳、刘传亮 一、设计背景: 随着科学技术的发展,管道在当今社会已经得到了广泛的应用。管道在长期的使用中难免会出现破裂、堵塞等,人们往往为了寻找管道上的一个裂纹而花费大量的人力和物力。如今水平管道的检测、清理、维护已经不再是个难题,但竖直管道中的检测、清理、维护仍然有待解决。而我们设计的机器人正是为满足在竖直管道的爬行而设计的,它具有一定的承载能力,可以成为管道检测、清洗设备的载体、检修的运输工人,使得管道的检测、清洁等工作易于实现。 二、组成介绍: 该机器人由三部分组成,包括一个伸缩模块和两个支撑模块。伸缩模块主要由曲柄连杆构成,利用驱动电机的转动来实现机器人的行走;两个支撑模块结构上完全一样,都是由初始弹簧提供微张力而贴附在竖直管道内壁。由电动机的转动产生推力,使机器人的脚与管壁压紧而锁死,从而产生机器人行走所需的静摩擦力。伸缩模块和支撑模块按一定的顺序工作,从而实现机器人在管道内的爬行。 三、结构设计: (1)支撑架的设计 为满足不同内径管道的需求,将支撑架设计为可伸缩的。同时将上下两组支撑架设计为空间十字交叉形,这样就满足机器人在管道中爬行的稳定性,,并在上下两组支撑架中各安装有被压缩的弹簧,以提供一初始的张力,使摩擦滑块与管道内壁能够充分接触。 (2) 摩擦滑块的设计 摩擦滑块与管道内壁接触的部分,滑块的上部分有圆滑过渡以防止遇到障碍物时机器人被卡死。而且这部分是可拆卸的,对不同材质的管道可选用不同材料的滑块接触面与管道内壁接触。 (3)微电机及曲柄滑块部分设计 微电机通过杆件固定在机器人下肢的正下方,一方面为可降低机器人的重心使机器人在一开始时能够稳定的贴在管道内壁而不下滑,另一方面使上肢与电动

一种码垛机器人的设计与仿真

一种码垛机器人的设计与仿真 节 1.01 摘要 21世纪,科学技术的发展可谓日新月异,各种信息技术的不断发展进步,推动着社会生产的各个领域的进步,尤其是自动化技术的应用。码垛技术是近年来活跃在物流自动化领域的一项新兴的技术。码垛技术的概念是指在日常的物流运输的过程中,为了实现实现物料的搬运、装卸等物流的活动,设计一定的物料的堆码成垛的模式,这种模式是基于集成单元化的思想之上的,这种堆码成垛实现物流运输的技术就是码垛技术。 我们在实现码垛技术的同时,发明了相关的码垛机器人。码垛机器人是基于码垛技术而产生的,它是一种具备特殊功能的机器人,具有垂直的多关节型的特点。码垛机器人自产生以来,已经广泛应用于社会生产的不同的专业领域,比如食品加工、石油化工等。对于不同的物流对于码垛要求参数的不同,码垛机器人可以通过自身的主计算机进行相应的参数的设置,从而进一步实现不同产品包装的码垛要求。现代物流的发展,对于码垛机器人的要求也呈现出越来越高的趋势,比如物料的码垛的精度的提高,是的码垛机器人必须具有一定的刚度和强度,防止搬运过程中出现差池。 本文主要是设计一种码垛机器人的机械部分,应用于自动化生产线的物料的码垛。在进行码垛机器人的设计的时候,主要是结果机械、电子以及码垛机器人的软件等方面,根据不同方面的特点进行综合的分析,实现码垛机器人的设计。 关键词:码垛技术,机器人,有限元分析,运动仿真 Abstract In the 21st century, the development of science and technology is changing, all kinds of the continuous development of information technology progress, push the progress of the various fields of social production, especially the application of automation technology. Stacking technology is active in recent years a new technology in the field of logistics automation. Stacking technology refers to the concept of in the daily logistics transportation process, in order to achieve the

六足爬行机器人设计--第2章 六足爬行机器人的方案设计

第2章六足爬行机器人的方案设计 2.1 总体设计要求 技术参数: 自由度数:每条腿有3个,共有16个; 本体体重:≤6kg; 行走速度:≥20mm/s; 设计要求: 能够完成前进、倒退、转弯、摆头、避障等任务,并且便于人工控制。 工作要求: 1)机器人的重量控制在6公斤左右,但是这是设计的爬行机器人,为适应不同地形, 它的最大负重加20%。为1.2公斤; 2)机器人机体运动时离地最低为100mm; 3)机器人机步长不低于50mm; 4)为保证电机良好工作和不至于使电机在重负重下工作,机器人小腿和地的夹角不小 于10度,不大于40度,小腿往内倾斜; 多足爬行机器人的一般设计准则: 1) 能够实现机器人多种姿态间的灵活调整; 2) 机器人机体结构简单、紧凑,重量轻; 3) 机器人整体结构强度高、刚度好、负载能力达到要求; 4) 在满足功能要求的情况下,尽量减少驱动及配套装置数量,简化控制的复杂性。

2.2六足爬行机器人的步态规划 步态设计是实现爬行的关键之一,也是系统控制难易的标志,为达到较为理想的爬行,考虑下列要求: 1)步行平稳、协调,进退自如,无明显的左右摇晃和前后冲击; 2)机体和关节间没有较大的冲击,特别是当摆动腿着地时,与地面接触为软着陆; 3)机体保持与地面平行,且始终以等高运动,没有太大的上下波动; 4)摆动腿胯步迅速,腿部运动轨迹圆滑,关节速度与加速度轨迹无奇点; 5)占空系数β的合理取值。 根据占空系数β的大小可分为3种情况: 1)β=0.5,在摆动腿着地的同时,支撑腿立即抬起,即任意时刻同时只有支撑相 或摆动相; 2)β>0.5,机器人移动较慢时,摆动相与支撑相有一短暂的重叠过程,即机器人 有所有腿同时着地的状态; 3)β<0.5,机器人移动较快时,所有腿有同时为摆动相的时刻,即所有腿同时在 空中,处于腾空状态,因此在交替过程中要求机器人机构具有弹性和较快的速 度,否则难以实现。 通过以上分析,我们设计出β>0.5(β=0.55)的六足机器人步态为满足其平稳性的要求,六足机器人采用占空系数为0.55(即在运动过程中有六条腿同时着地)的三角步态。如图2.1(a)所示,机器人开始运动时,六条腿先同时着地,然后2、4、6三条腿抬起进行向前摆动的姿态准备,另外三条腿1、3、5处于支撑状态,支撑起机器人本体以确保机器人的重心位置始终处于三条支腿所构成的三角形内,使机器人处于稳定状态而不至于摔倒,摆动腿2、4、6抬起向前跨步(如图2.1(b)所示),支撑腿1、3、5 一面支撑机器人本体,一面在动力的作用下驱动机器人机体向前运动半步长s(如图 2.1(c)所示)。在机器人机体移动结束后,摆动腿2、4、6立即放下,呈支撑态,使机器人的重心位置处于2、4、6三腿支撑所构成的三角形稳定区内,同时原来的支撑腿1、3、5经短暂停留后抬起并准备向前跨步(如图2.1(d)所示),当摆动腿1、3、5向前跨步时(如图2.1(e)所示),支撑腿2、4、6此时一面支撑机器人,一面驱动机器人本体,使机器人机体向前行进半步长s(如图2-1(f)所示),如此不断循环往复,以实现机器人的向前运动,由于设计速度并不是非常精确,所以其行进轨迹并不是一条笔直的直线。

爬杆机器人设计.docx

爬杆机器人 班级:自动化 08-1 姓名:李刚 学号:

目录 1.设计题目?????????????????1 目的??????????????????1 目介????????????????1 条件及要求?????????????1 2.运动方案设计??????????????2机械期的功能要求 ?????????????2 功能原理????????????????2 运律????????????????3 2.3.1工作分解?????????????????3 2.3.2运方案?????????????????5 2.3.3行机构形式???????????????6 2.3.4运和力分析????????????????7 2.3.5行系运???????????????8 3.计算内容 4.应用前景 5.个人小结 6.参考资料?????????????????8 ?????????????????10?????????????????11?????????????????12 附录?????????????????????13

1. 设计题目 1.1设计目的 机械设计是根据使用要求对机械的工作原理、结构、运动方式、力和能量的传递方式、各个零件的材料和形状尺寸以及润滑方式等进行构思、分析和计算, 并将其转化为制造依据的工作过程。 机械设计是机械产品生产的第一步,是决定机械产品性能的最主要环节,整个过程蕴涵着创新和发明。 为了综合运用机械原理课程的理论知识,分析和解决与本课程有关的实际问题,使所学知识进一步巩固和加深,我们参加了此次的机械原理课程设计。 1. 2设计题目简介 我们此次做的课程设计名为爬杆机器人。该机器人模仿虫蠕动的形式向上爬行,其爬行运用简单的曲柄滑块机构。其中电机与曲柄固接,驱动装置运动。曲 柄与连杆铰接,其另一端分别铰接一自锁套(即上下两个自锁套),它们是实现上爬的关键结构。当自锁套有向下运动的趋势时,由力的传递传到自锁套,球、 锥管与圆杆之间形成可靠的自锁,阻止构件向下运动,而使其运动的方向始终向 上(运动示意见右图)。 1. 3设计条件及设计要求 首先确定机器人运动的机构原理及所爬行管道的有关数据,制定多套运动方案。再查阅相关资料,通过精确的计算和运用相关应用软件(例如CAXA,Solidworks ,ADAMS等造型、分析软件)进行运动模拟,对设计题目进行创新设计和运动仿真,最后在多方面的考虑下确定一套方案并完成整套课程设计说明书 及相关的软件分析图表和文件并由三维动画模拟出该机器人的运动。 2 . 运动方案设计 该机器人模仿的动作是沿杆向上爬行,整个机构为曲柄滑块机构,而且我们 目前所设计机器人爬行的杆是圆杆。

管道爬行器的研究与设计

管道爬行器的研究与 设计

1 绪论 随着社会的发展和人民生活水平的提高,天然气管道以及各种输送管道的应用越来越多。在我国及世界各个国家内,由于地形的限制和土地资源的有限,在地下都埋设了很多的输送管道,例如,一方面天然气管道、石油管道等,在埋有管道的地面上都已经建成了很多的建筑物、公路等,给管道的维修和维护造成了很大的困难。当这些管道由于某些原因造成了泄露、堵塞等问题时,人们普通的做法是挖开道路进行维修,有些时候如果不能准确判断泄露和堵塞的具体位置时,会浪费很多的时间和精力,同时降低了工作效率[7]。另一方面石油、天然气、化工、电力、冶金等工业的管道工程大多采用焊接管路。为了保证焊接管路的焊接质量和运行安全,管道工程都要对焊缝进行检测,检测焊接部位是否存在虚焊、漏焊、伤痕等焊接缺陷。常用的焊缝检测方法是采用无损检测,如超声、射线、涡流等。对于管路检测,则大多采用管道内爬行探伤检验设备(简称爬行器) 对焊缝进行射线检测。这类爬行器由于受管道尺寸的限制,大多结构十分紧凑。在检测过程中,爬行器在其控制系统的控制下,可连续对同一管道不同位置上的焊缝质量进行检验。考虑管道焊缝检测的效率,常常当管道焊接具有一定长度之后,才集中对管道进行检测。如果一次要检测的管道比较长,爬行器的控制系统应采用车载式布置。使用时,通过外部的控制器对爬行器上的控制系统发出指令,决定爬行器的工作状态。 随着机电一体化技术的发展,以及机器人技术的发展和管道测试等技术的进一步发展,相互之间的渗透程度越来越深,管道爬行机器人是在狭窄空间中进行精密操作、检测或作业的机器人系统。其中机器人的作业环境一般是危险的。火力发电厂、核电厂、化工厂、民用建筑等用到各种各小管道,其安全使用需要定期检修。但由于窄小空间的限制,自动维修存在一定难度。仅以核电站为例,检查时工人劳动条件恶劣。因此管道内机器人化自动检查技术的研究与应用十分必要。人们不再为了维修、维护管道时挖开道路,节省了大量的人力,物力和财力。 目前的管道机器人都是以履带、轮子等实现在管道中的移动,其技术有着或多或少的缺陷,市场尚不成熟。例如:不能适应大范围的管道内径变化,运行中姿态的调整不够理想,在十字型、丁字型等较复杂的管道内径中不能较平稳的通过等等;结合目前管道机器人所存在的缺点,应用机械设计、机械原理等专业知识,设计出了新型管道爬行机器人。此机器人可实现大范围内的管道内径变化,顺利通过十字型、丁字型等较复杂管道;在运行中的姿态调整也得到了较好的解决。

基于PLC的爬行机器人设计

基于PLC的爬行机器人设计 吴伟健张春光* (电子工程学院电气工程及其自动化专业) 摘要:机器人需要能够感知外界环境,通过处理感知信息来控制其肢体。为了实现机器人在未知环境里,智能地工作,本设计以PLC为中心,设计爬行机器人如何采集周围信息,并规划和实现其行走。以机器人构架作为机器人最基本的结构,其包含驱动控制系统;再设计信息采集系统,用于采集机器人周围环境的信息;最后设计以PLC为核心的机器人控制系统,实现机器人能通过PLC的输入口,手动控制爬行机器人,也能让机器人自动感知外界环境,对感知信号进行判断后控制机器人行走。 关键词:爬行机器人;信息周围采集;行走 1 引言 由于机器人需要根据身处的环境,而执行不同的动 作。在本系统里面就设计了信息采集系统,用于采集机器 人周围信息。为了让机器人的肢体根据主控信号而执行对 应动作,系统配置了机器人驱动系统。 本系统以PLC为控制中心对信息采集系统和机器人 构架进行控制。如下图1-1是控制结构框图 。 图1-1 控制结构框图 1.1 信息采集系统与PLC联系的设计 PLC通过串口通信与信息采集系统取得联系。信息 图2-1 PLC的I/O接线图采集系统是一个独立的系统,信息采集系统自动地采集机器人周围信号,有3路超声波信号、有温度、湿度、12路红外传感信号。并且把采集到的信息储存起来,通过串口通信PLC可以查询到采集到的信息。 1.2 机器人驱动系统与PLC联系的设计 机器人驱动系统也是一个独立的系统,机器人驱动系统反复读取并口上的动作信号,这样PLC就可以通过并口把指定动作信号传送给机器人驱动系统,该系统根据信号的内容来发出18路PWM信号,进而驱动18个舵机,使其运动到指定的位置,每当执行完一次任务后,该系统会通过I/O口反馈一个信号。 2 系统的设计 2.1 PLC的I/O接线设计 本系统需要一个通信接口,8个数字量输出及12个数字量输入,所以选择西门子PLC S7-224CN。该可编程控制器有一个RS485通信接口,有10个数字量输入和14 个数字量输出,正适合本系统, PLC的I/O接线见图2-1。图中 的J_A VR是接到机器人驱动系 统对应的接口上,通信口 PORT0在下载完程序之后,与 信息采集系统的通信端相连。 2.2 信息采集系统的设计 信息采集系统主要工作是 采集机器人周围信息,图2-2 是该系统最小系统。在本系统 里面需要实现以下功能: 1)能采集机器人前方,左前 方和右前方的障碍物信 息。本系统运用3个超声波测距模块分别检测这3个方向的障碍物的距离。 最电子工程学院教师,教授,本文指导教师

爬杆机器人(机械原理课程设计)

机械原理课程设计设计说明书 设计题目:爬杆机器人 设计者: 设计小组成员: 指导老师: 机械原理教研室

目录 1.设计题目……………………………………………11.1设计目的………………………………………………11.2设计题目简介…………………………………………1 1.3设计条件及设计要求…………………………………1 2.运动方案设计……………………………………22.1机械预期的功能要求…………………………………22.2功能原理设计…………………………………………22.3运动规律设计…………………………………………3 2.3.1工艺动作分解……………………………………………3 2.3.2运动方案选择……………………………………………5 2.3.3执行机构形式设计………………………………………6 2.3.4运动和动力分析…………………………………………7 2.3.5执行系统运动简图………………………………………8 3.计算内容……………………………………………8 4.应用前景 (10) 5.个人小结 (11) 6.参考资料 (12) 附录 (13)

1.设计题目 1.1设计目的 机械设计是根据使用要求对机械的工作原理、结构、运动方式、力和能量的传递方式、各个零件的材料和形状尺寸以及润滑方式等进行构思、分析和计算,并将其转化为制造依据的工作过程。 机械设计是机械产品生产的第一步,是决定机械产品性能的最主要环节,整个过程蕴涵着创新和发明。 为了综合运用机械原理课程的理论知识,分析和解决与本课程有关的实际问题,使所学知识进一步巩固和加深,我们参加了此次的机械原理课程设计。1.2设计题目简介 我们此次做的课程设计名为爬杆机 器人。该机器人模仿虫蠕动的形式向上 爬行,其爬行运用简单的曲柄滑块机构。 其中电机与曲柄固接,驱动装置运动。 曲柄与连杆铰接,其另一端分别铰接一 自锁套(即上下两个自锁套),它们是实 现上爬的关键结构。当自锁套有向下运 动的趋势时,由力的传递传到自锁套, 球、锥管与圆杆之间形成可靠的自锁, 阻止构件向下运动,而使其运动的方向 始终向上(运动示意见右图)。 1.3设计条件及设计要求 首先确定机器人运动的机构原理及所爬行管道的有关数据,制定多套运动方案。再查阅相关资料,通过精确的计算和运用相关应用软件(例如CAXA,Solidworks,ADAMS等造型、分析软件)进行运动模拟,对设计题目进行创新设计和运动仿真,最后在多方面的考虑下确定一套方案并完成整套课程设计说明书及相关的软件分析图表和文件并由三维动画模拟出该机器人的运动。

二自由度机器人的结构设计与仿真

二自由度机器人的结构设计与仿真 学院:专业:姓名:指导老师: 机械与车辆学院 机械电子工程 学号: 职称:教授 中国·XX 二○一二年五月

毕业设计诚信承诺书 本人郑重承诺:本人承诺呈交的毕业设计《二自由度机器人的结构设计与仿真》是在指导教师的指导下,独立开展研究取得的成果,文中引用他人的观点和材料,均在文后按顺序列出其参考文献,设计使用的数据真实可靠。 本人签名: 日期:年月日

二自由度机器人的结构设计与仿真 摘要 并联机器人有着串联机器人所不具有的优点,在应用上与串联机器人形成互补关系。二自由度并联机器人是并联机器人家族中的重要组成部分,由于结构简单、控制方便和造价低等特点,有着重要的应用前景和开发价值。本论文研究了一种新型二自由度平移运动并联机构,该并联机构采用类五杆机构,平行四边形刚架结构来实现,可有效地消除铰链间隙,提高动平台的工作性能,同时有抵抗切削颠覆力矩的能力。 根据该二自由度平面机构的工作空间,利用平面几何的方法求得连杆的长度,并通过Pro/E软件进行仿真检验,并通过软件仿真的方式,优化连杆长度,排除奇异点,同时合理设计机械结构的尺寸,完成结构设计。 对该二自由度并联机器人,以Pro/E为平台,建立两自由度平移运动并联机器人运动仿真模型,验证了机构的实际工作空间和运动情况。最后指出了本机构的在实际中的应用。并使用AutoCAD软件进行了重要装置和关键零件的工程图绘制工作,利用ANSYS 软件分析了核心零件的力学性能。研究结果表明,本文所设计的二自由度机器人性能良好、工作灵活,很好地满足了设计指标要求,并已具备了一定的实用性。 关键词:二自由度;并联机器人;仿真;结构设计;Pro/E

油管内壁爬行机器人的设计

前言 随着现代科学技术的发展,管道运输作为一种高效、安全、可靠的手段应用日益广泛,城市中的地下排水系统、取暖系统、煤气系统、自来水系统等都应用了各种管道;另外,在现代工农业、石油、化学、核工业等领域也大量使用了管道。经过长期使用,它们会出现裂纹、腐蚀、堵塞等故障。有的管道中输送的是剧毒或放射性介质,若这些管道产生裂纹、漏孔会造成介质泄漏,引起事故甚至发生灾难。为了防患于未然,必须对这些管道进行定期检测和维修。但是它们有的埋在地下,甚至埋在海底,有的口径很小,人无法进入。挖出管道进行检测、维修既不经济又不现实,由此可见,管道机器人有着广阔的市场。 我国早在1987年就开展了管内机器人的研究,并试制了几种模型,但总体水平较国外差。管内机器人研究是机电一体化的高科技研究项目。在石油、化工、核工业、给排水等许多管道工程中,都需要进行管内检测、喷涂及加工等工作,管内机器人在完成这些工作中会发挥重要作用,因此,开发研究管内机器人意义很大[1]。 本次题目的内容就是设计一种可在油管内壁爬行,并且搭载工作体的部分可协助工作体完成相应作业的机器人。采用机械结构和电气控制来达到设计目的。要实现的理想过程是:人对主机输入一个控制信号,可以通过单片机对电机、电磁铁进行电气控制,从而使机器人能够按照所搭载工作体的要求进行移动,并在工作体的工作位置做出相应的辅助动作。机器人在行进过程中可在任意位置停止前进,并可以在该位置开始作业,工作体可在步进电机驱动下完成小于360度的任意角度的旋转。

1 方案的结构选择 1.1 总体选择 总体上,本次设计主要采用机械结构设计来完成指定的动作,而用电气设计来控制这些动作。 1.2 前进方案的选择 目前在管道内机器人的行进方式多种多样,本设计采用蠕动式行进的方式。前进方案由旋转式步进电机、直线式步进电机、气缸中进行选择。现将3种方式在本设计中的应用进行比较。由于本设计前进方式为直线,所以其中使用直线式电机最为简便,直线电机的电机轴是丝杠形式的,于是可以通过丝杠的导程来计算机器人的行进距离。 使用旋转式步进电机的原理与直线式步进电机相似,可通过一个小型连轴器与丝杠相连组成一个直线式步进电机,也可以通过一组齿轮减速器将丝杠与电机轴相连,简图见图1-1。 图1-1结构简图 第三种方法是使用气缸推动机器人前进。综合比较三种方法后发现,气缸实现直线运动过程简单,但其行程不易控制,要实现精确控制需要成本过高。两种步进电机的特点相似,但直线式的步进电机在安装时不易对心,且价格远高于旋转式步进电机。所以综合考虑最终选择采用旋转电机的方案。 1.3 卡紧方案的选择 机器人在蠕动式爬行的时候,需要卡紧装置进行配合。所以需要选择合理的卡紧方案。

外管式爬壁机器人的设计

外管式爬壁机器人的设计 关键词:外管机器人,爬管机器人,管道检测,机构设计植物中的管道,包括发电厂和化工厂,需要稳定的保养,因为管道内流体的腐蚀和磨损和外部环境的发生。但是,作为检查管道的过程不是自动的,手工检查是一个非常耗时的工作。因此,为了减少检查时间和成本,我们提出了管道爬壁机器人管道检测。所提出的机器人是适用于工厂的操作,因为这个机器人是一个出管式,它允许它移动以外的管道。并且机器人可以覆盖直的和弯曲的长度可调的独立控制和驱动轮在不同直径的管道。该机器人的机构和控制系统的设计已经提出并且所推荐的机器人的可行性已被攀登实验证明。 1.简介 各种植物,包括核电厂,在其结构体系中使用各种管道。由于在管道内的流体和外部环境存在的连续腐蚀和磨损,管道的检查对植物和设备的维护是至关重要的。作为检验过程,通常是无损检测(无损检测),因此,管道是不是自动化的,这样的手动测试通常是非常耗时的任务,通常由设置检查位置,安装的无损检测设备,释放的无损检测设备我的管道,并改变检查位置。因此这个过程的自动化有一个稳定的迫切需求。然而,大多数的原型已经是沿管道内移动的管道类型。使用这些设备如果不先关闭工厂是困难的。因此,我们提出了一种可以克服管道机器人模型限制的外管式爬壁机器人。 一些研究小组报告了管式机器人。基姆等人。提出了一种尺蠖式巡检机器人重加压水反应堆核电站。但是这个机器人是用于小型管道并且它的最大移动速度由继承的限制它的结构和移动基于尺蠖原理限制到1.5毫米/秒。和二汤川,等人报道了磁轮式管道机器人可避免对管法兰,但无法移动沿遏制管道。并联机器人是由日本坂等人提出的。这个机器人有一个圆形的扫描轨道,可以沿着弯曲的管道移动。但它不能主动覆盖管道的不同半径。由于这项研究的最终目标是开发一个机器人包括直管和弯管和覆盖范围在10英寸(254毫米)和30英寸(762毫米)之间的直径,我们提出了一个管式管道机器人能够沿着直线和各种管径管道弯曲。 在第二章中,对结构和执行器的设计进行了描述。在第二章中,对结构和执行器的设计进行了描述。直管和弯管的实验结果在4章提出了。 2.设计 2.1机构设计 我们的第一个设计目标是创建一个模型能够覆盖的范围内在254和762毫米之间的管道直径,但因为508毫米的覆盖直径太大不能用一个机器人覆盖,我们决定设计2种类型的机器人相对于覆盖直径。因为每个机器人的结构和工作原理是相同的,我们将提出的覆盖直径为从300毫米到500毫米的机器人。 机构设计的主要目的是使一个机器人能够沿直线和弯曲的管道移动,以及覆盖管的一个大品种的直径。图1显示了由主机,驱动模块,固定和运动稳定器组成的设计机器人的概述。主机是机器人的基础上,驱动模块和持有人连接。主机是驱动模块和稳定器连接的机器人的基础。它有一个开放的'碳'的形状结构,以避免障碍,其直径为1000毫米,以覆盖300毫米和500毫米之间如图2所示的大口径管道。在驱动模块和支持机构的结构和更换的线性致动器的轻微修改,覆盖范围可以很容易改变。 驱动模块由一个线性致动器和一个驱动轮组成,并产生2度的自由运动:在管的轴向方

相关主题
文本预览
相关文档 最新文档