当前位置:文档之家› 六足爬行机器人设计

六足爬行机器人设计

六足爬行机器人设计
六足爬行机器人设计

仿生六足机器人中期报告

编号: 哈尔滨工业大学 大一年度项目中期检查报告 项目名称:仿生六足机器人 项目负责人:学号 联系电话:电子邮箱: 院系及专业:机电工程学院 指导教师:职称: 联系电话:电子邮箱: 院系及专业:机电工程学院 哈尔滨工业大学基础学部制表 填表日期:2014 年 6 月28 日

一、项目团队成员(包括项目负责人、按顺序) 二、指导教师意见 三、项目专家组意见

四、研究背景 1.研究现状 4.1国内研究现状 随着电子技术发展,计算机性能的提高,使多足步行机器人技术进入了基于计算机控制的发展阶段。其中有代表性的研究为1993年,美国卡内基-梅隆大学开发出有缆的八足步行机器人DANTE,图1所示,用于对南极的埃里伯斯火山进行了考察,其结构由2个独立的框架构成。这一阶段研究的重点在于机器人的运动机构的设计、机器人的步态生成与规划及传统的控制方法在机器人行走运动控制过程的应用。Boston Dynamics公司的Big Dog四足机器人用于为军队运输装备,其高3英尺,重165磅,可以以3.3英里的速度行进,其采用汽油动力。 图1 Adaptive Suspension Vehicle 图2 Odex1步行机器人 图3 MIT腿部实验室的四足和双足机器人图4 DANTE步行机器人 由于新的材料的发现、智能控制技术的发展、对步行机器人运动学、动力学高效建模方法的提出以及生物学知识的增长促使了步行机器人向模仿生物的方向发展。 4.2国外研究现状 我国步行机器人的研究开始较晚,真正开始是在上世纪80年代初。1980年,中国科学院长春光学精密机械研究所采用平行四边形和凸轮机构研制出一台八足螃蟹式步行机,主要用于海底探测

六足机器人设计参考解析

摘要 六足机器人有强大的运动能力,采用类似生物的爬行机构进行运动,自动化程度高,可以提供给运动学、仿生学原理研究提供有力的工具。本设计中六足机器人系统基于仿生学原理,采用六足昆虫的机械结构,通过控制18个舵机,采用三角步态和定点转弯等步态,实现六足机器人的姿态控制。系统使用 RF24L01射频模块进行遥控。为提高响应速度和动作连贯性,六足机器人的驱动芯片采用ARM Cortex M4芯片,基于μC/OS-II操作系统,遥控器部分采用ARM9处理器S3C2440,基于Linux系统。通过建立六足机器人的运动模型,运用正运动学和逆运动学对机器人进行分析,验证机器人步态的可靠性。 关键字:六足机器人,Linux,ARM,NRF24L01,运动学 Abstract Bionic hexapod walking robot has a strong ability of movement, the use of similar creatures crawling mechanism movement, high degree of automation, can be provided to the kinematics, the principle of bionics research provides powerful tool. Six feet in the design of this robot system based on bionics principle, the mechanical structure of the six-legged insect, through 18 steering gear control, use the gait, such as triangle gait and turning point to control the position of six-legged robot. Remote control system use RF24L01 rf modules. In order to improve the response speed and motion consistency, six-legged robot driver chip USES the ARM architecture (M4 chip, based on mu C/OS - II operation system, remote control part adopts ARM9 processor S3C2440, based on Linux system. By establishing a six-legged robot motion model, using forward kinematics and inverse kinematics analysis of robot, verify the reliability of the robot gait. KEYWORD:Bionic hexapod walking robot;Linux,ARM,NRF24L01;Kinematics

六足机器人的发展史

一、前言 談到足式機器人,當然目前主流大多是聯想到和人相似、有親切感的雙足機器“人”,從某一層面來看,以雙足步行為演化上的一個極為小眾的特例,本身對達到穩定運作控制的困難度很高,從瞭解「生物出生到可以開始自行運動所需的時間」便可以窺知一二。從另一個角度來看,人類所能自在運動的地表也侷限在某一些型態之中,若要探討如何在各式自然地形上運動的法則,勢必得回過頭來探討多足動物的運動機制。而從物理直覺來評析,單就在崎嶇路面上運動的穩定性來探討,採用多足機器人會比較簡單且實際。基於這一些原因,仿生多足機器人的研發便有了背後的動機,模仿經過長時間演化後動物的構造,藉由觀察牠們的運動,了解為什麼有如此的動作,再利用機構或是控制去完成。在自然界中,我們看到體型較大、有優秀運動能力的動物像馬、獵豹、羚羊等等都是四隻腳的哺乳類動物,但考慮到穩定性卻是六足比較佔優勢,只要用簡單的三腳步態(tripod gait)即可讓重心輕易落在支撐的三角形中。四足動物的腳可能需要比較大的力量才能表現出他的特性,但人類尚無法仿造出重要的肌肉和控制系統,以現有機構和馬達組成的系統,重量太重而無法有效運動。這時,自由度的選擇以及機構設計便成了一個很重要的課題。 這二、三十年學業界創造出了許多各式各樣的多足機器人,在後續的文章中便為各位讀者進行介紹[2, 3]。 二、學術界開發仿生多足機器人 (1)Quadruped 圖一 Quadruped[4] 由Prof. Marc Reibert所領導的MIT Leg Lab於1984~1987年製作,重38公斤,整體長度1.05公尺,高度0.95公尺,採用長柱狀的腳,每一隻腳連接身體的關節是由兩個液壓致動器(hydraulic actuators)組成,分別控制腳的前後及左右的旋轉,腳上有一個線性致動器來提供推進力。在控制上將腳簡易的分成兩組,不同的分組方法便產生了小跑(trot)、跑

真空吸附式爬壁机器人设计

Ξ №.4 西北轻工业学院学报 D ec.1997?18? JOU RNAL O F NOR THW EST I N ST ITU T E O F L IGH T I NDU STR Y V o l .15 真空吸附式爬壁机器人设计 何雪明1 丁毅 朱明波2 (机械工程系) 摘 要 运用壁虎爬行原理,设计构思了真空吸附式爬壁机器人.采用多组橡胶吸 盘将机器人吸附在墙面上,配以简单四杆机构完成其行走功能,从而达到擦洗整个 墙面的目的.该机器人可用于建筑行业和洁净业. 关键词:壁面机器人,真空吸附,蠕行运动 中图法分类号:TQ 242.1(TH 122) 1 引言 目前,瓷砖、玻璃装璜的墙壁均采用人工直接擦洗.因高空擦洗作业具有很大的危险性,因此,研制一种适用于高楼墙壁擦洗的墙壁机器人有着重要的意义. 壁面机器人是集机构学、传感技术、控制和信息技术等科学为一体的高技术产品,自80年代以来在国内外取得了迅速的发展,有的已开始进入实用试验阶段.到1992年底,国外已有不同类型的爬壁机器人研制成功,其中以日本发展最快.国内较早的是哈尔滨工业大学,他们已研制成功壁面爬行遥控检测机器人,采用真空吸附式,通过运载小车使机器人在壁面上下左右自由行走.另外, 上海大学研制了用于高层建筑窗户擦洗的真空吸附足式爬行机器 图1 爬壁机器人总体框架图人.上海交通大学亦于1995年研制了磁吸 附爬壁机器人用于油罐检测. 2 真空吸附式爬壁机器人总体设计 要实现机器人在普通壁面上的自由移 动,必须具备粘着功能与移动功能.常见粘 着功能主要靠吸附即负压吸附实现.根据吸 附力量产生装置不同,又可分为真空泵式、 喷射器式.移动方式一般有轮式、履带式及 足式三种.针对壁面移动机器人的工作条件以及壁面非金属性、金属性等其它原因,经过比较选择了多子真空吸附、足式移动的方案.其吸附性好,结构简单,由于吸盘采用列吸盘组, Ξ收稿日期:1997-05-10 第一作者:男,32岁,硕士 1、2作者单位:无锡江南大学机电系,邮编:214063

山东建筑大学计算机网络课程设计《基于Python的网络爬虫设计》

山东建筑大学 课程设计成果报告 题目:基于Python的网络爬虫设计课程:计算机网络A 院(部):管理工程学院 专业:信息管理与信息系统 班级: 学生姓名: 学号: 指导教师: 完成日期:

目录 1 设计目的 (1) 2 设计任务内容 (1) 3 网络爬虫程序总体设计 (1) 4 网络爬虫程序详细设计 (1) 4.1 设计环境和目标分析 (1) 4.1.1 设计环境 (1) 4.1.2 目标分析 (2) 4.2 爬虫运行流程分析 (2) 4.3 控制模块详细设计 (3) 4.3 爬虫模块详细设计 (3) 4.3.1 URL管理器设计 (3) 4.3.2 网页下载器设计 (3) 4.3.3 网页解析器设计 (3) 4.4数据输出器详细设计 (4) 5 调试与测试 (4) 5.1 调试过程中遇到的问题 (4) 5.2测试数据及结果显示 (5) 6 课程设计心得与体会 (5) 7 参考文献 (6) 8 附录1 网络爬虫程序设计代码 (6) 9 附录2 网络爬虫爬取的数据文档 (9)

1 设计目的 本课程设计是信息管理与信息系统专业重要的实践性环节之一,是在学生学习完《计算机网络》课程后进行的一次全面的综合练习。本课程设计的目的和任务: 1.巩固和加深学生对计算机网络基本知识的理解和掌握; 2.培养学生进行对网络规划、管理及配置的能力或加深对网络协议体系结构的理解或提高网络编程能力; 3.提高学生进行技术总结和撰写说明书的能力。 2 设计任务内容 网络爬虫是从web中发现,下载以及存储内容,是搜索引擎的核心部分。传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。 参照开放源码分析网络爬虫实现方法,给出设计方案,画出设计流程图。 选择自己熟悉的开发环境,实现网络爬虫抓取页面、从而形成结构化数据的基本功能,界面适当美化。给出软件测试结果。 3 网络爬虫程序总体设计 在本爬虫程序中共有三个模块: 1、爬虫调度端:启动爬虫,停止爬虫,监视爬虫的运行情况 2、爬虫模块:包含三个小模块,URL管理器、网页下载器、网页解析器。 (1)URL管理器:对需要爬取的URL和已经爬取过的URL进行管理,可以从URL 管理器中取出一个待爬取的URL,传递给网页下载器。 (2)网页下载器:网页下载器将URL指定的网页下载下来,存储成一个字符串,传递给网页解析器。 (3)网页解析器:网页解析器解析传递的字符串,解析器不仅可以解析出需要爬取的数据,而且还可以解析出每一个网页指向其他网页的URL,这些URL被解析出来会补充进URL管理器 3、数据输出模块:存储爬取的数据 4 网络爬虫程序详细设计 4.1 设计环境和目标分析 4.1.1 设计环境

六足爬行机器人总体设计方案

本文的设计为六足爬虫机器人,机器人以交流-直流开关电源作为动力源,单片机为控制元件,伺服电机为执行部件,机器人采用三足着地进行运动,通过单片机对伺服电机的控制,机器人能够实现前进、后退等运动方式,三足着地运动方式保证了机器人能够平稳运行。伺服电机具有力量大,扭矩大,体积小,重量轻等特点。单片机产生20ms 的PWM 波形,通过软件改写脉冲的占空比,从而达到改变伺服电机角度的目的。 1 机器人运动分析 1.1 六足爬虫式机器人运动方案比较 方案一:六足爬虫式机器人的每条腿都能单独完成抬腿、前进、后退运动。 此方案的特点: 每条腿都能自由活动,每条腿都能单独进行二自由度的运动。每条腿的灵活性好,更容易进行仿生运动,六足爬虫机器人可以完成除要求外的很多动作,运动的视觉效果更好。由于每条腿能单独完成二自由度的运动,所以每条腿上要安装两个舵机,舵机使用数量大,舵机的安装难度加大,机械结构部分的制作相对复杂,又由于每个舵机都要有单独的信号控制,电路控制部分变得复杂了,控制程序也相应的变得复杂。 方案二:六足爬虫式机器人采取三腿为一组的运动模式,且同一侧的前腿、后腿的前后转动由同一侧的中腿进行驱动。采用三腿为一组(一侧的前足、后足与另一侧的中足为一组)的运动方式,各条腿能够协调的进行运动,机器人的运动相对平稳。 此方案特点:相比上述方案,个腿能够协调运动,在满足运动要求的情况下,舵机使用数量少,节约成本。机器人运动平稳,控制、驱动部分都得到相应的简化,控制简单。选择此方案,机器人还可进行横向运动。 两方案相比,选择方案二更合适。 1.2 六足爬虫式机器人运动状态分析 1.2.1 机器人运动步态分析 六足爬虫式机器人的行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并

仿生机械蜘蛛设计与仿真

vvv学院毕业论文(设计)任务书 毕业论文(设计)题目 仿生机械蜘蛛设计与仿真 学生姓名 vvv 专业 机制 班级 0912 指导教师 vvv 一、毕业论文(设计)的主要内容及要求 设计一种步行仿生机械蜘蛛,要求: 1、绘制仿生机械蜘蛛零部件三维图型和装配图; 2、绘制仿生机械蜘蛛零部件工程图; 3、对仿生机械蜘蛛进行运动仿真; 4、设计仿生机械蜘蛛运动控制方案。 二、毕业论文(设计)应收集的资料及主要参考文献 [1]孙立宁,王鹏飞,黄博. 四足仿生机器人嵌入式多关节伺服控制器的研究[J]. 机 器人,2005,06:517-520. [2] 许宏岩 , 付宜利 , 王树国 , 刘建国 . 仿生机器人的研究 [J]. 机器 人,2004,03:283-288. [3]徐小云,颜国正,丁国清. 微型六足仿生机器人及其三角步态的研究[J]. 光学精 密工程,2002,04:392-396. [4]马光. 仿生机器人的研究进展[J]. 机器人,2001,05:463-466. [5]迟冬祥,颜国正. 仿生机器人的研究状况及其未来发展[J]. 机器 人,2001,05:476-480. [6]徐小云,颜国正,丁国清,刘华,付轩,吴岩. 六足移动式微型仿生机器人的研究[J]. 机器人,2002,05:427-431. [7]刘鹏,郑浩峻,关旭. 基于并联腿机构的四足仿生机器人开发[J]. 微计算机信 息,2007,No.19205:226-227+264. [8]漆向军,陈霖,刘明丹. 控制六足仿生机器人三角步态的研究[J]. 计算机仿

真,2007,04:158-161. [9]张争艳,刘彦飞,冯敏,杨艳芳. 基于虚拟样机技术的六足仿生机器人设计与仿 真[J]. 装备制造技术,2007,No.15410:35+43. [10]王丽慧,周华. 仿生机器人的研究现状及其发展方向[J]. 上海师范大学学报 (自然科学版),2007,06:58-62. [11]赵涓涓,李强,任美荣,郭晓东,李晓飞. 六足仿生机器人运动控制系统的设计[J]. 机电工程技术,2008,v.37?No.20112:44-45+76+106. [12]王鹏飞,黄博,孙立宁. 四足仿生机器人稳定性判定方法[J]. 哈尔滨工业大学 学报,2008,07:1063-1066. [13] 孙立宁 , 胡海燕 , 李满天 . 连续型机器人研究综述 [J]. 机器 人,2010,v.3205:688-694. [14]谭云福,党培. 一种四足仿生机器人步态协调控制的策略[J]. 微计算机信 息,2010,v.26?No.34132:152-154. [15]姜铭,李鹭扬. 混联仿生机器狗构型研究[J]. 机械工程学报,2012,v.4801:19-24. 三、毕业论文(设计)进度及要求 1、1~3周阅读资料、撰写开题报告; 2、4~10周完成毕业设计任务指定工作; 3、11~13周撰写毕业论文; 4、14周毕业答辩 5、要求每周至少向指导教师汇报一次工作进度。

l六足昆虫机器人机械原理

l六足昆虫机器人机械原理 一、基本原理 本项目的机器人,传动系统还是继续利用“摆动曲柄滑块机构”原理,把减速电机的旋转运动转换为驱动腿迈步的往复摆动运动,再结合简单的连杆结构,协调六条腿按照昆虫的步态规律实现爬行运动。 1、运动方式 本项目机器人是模仿拥有六条腿的昆虫的爬行运动。昆虫爬行想必大家都是见过的,但是由于昆虫的六条腿还是多了些,而且一般昆虫的动作都比较迅速,观察起来有点眼花缭乱,所以可能很多人并不是很了解昆虫爬行时这六条腿是如何协调动作的。而要做好六足爬行机器人,就要清晰的了解这六条腿的每个阶段的步伐状态,也就是我们常说的“步态”。 实际上,一般六条腿的昆虫,是以三条腿为一组、共两组交叉进行协调运动的。同一时间内,有一组也就是三条腿着地,另外一组的三条腿是离开地面的,然后两组交替切换往前爬行。我们都知道,三点可以确定一个平面,即三条腿可以保证整个身体的平衡,这也许就是很多昆虫都是长了六条腿的主要原因吧。 以下是六足昆虫爬行步态的分解,以前进方向为例进行说明: 1、静止时六条腿都是同时着地; 2、前进时,先迈出第1组三条腿(左前、右中、左后),第2组三条腿着地(右前、左中、右后); 3、第1组三条腿(左前、右中、左后)往前迈出着地后保持不动,然后换第2 组三条腿(右前、左中、右后)往前迈出; 4、第2组三条腿(右前、左中、右后)往前迈出着地后保持不动,再换第1组……

如此循环往复,同一时间都保证有一组三条腿着地以保持身体的平衡,并不断往前进。 2、驱动机理 本项目机器人是采用六足爬行的方式运动,对于六足的驱动力量也是有一定要求的,所 以与前几个仿生类机器人项目一样都是借助减速电机所具有的“低转速、高扭矩”的特性来实现的。 与PVC-Robot 11号、PVC-Robot 12号机器人驱动双臂以及与PVC-Robot 13号驱动双足类似,本项目机器人六足中的中间两足是主动足,是由减速电机直接驱动的,而采用的减速电机同样也必须要满足两个条件: 1、拥有足够的动力,能够支撑双足行走; 2、减速电机左右两侧同轴输出。 为此,需要利用“蜗杆传动机构”对现有减速电机进行改造,相关方案在前面的项目中也已经进行了详细的阐述,这里不再重复,具体可以点击这里:PVC-Robot 11号——减速机构 本项目机器人实现六足爬行机械结构,其实是和PVC-Robot 12号、PVC- Robot13号类似的“连杆机构”——“摆动曲柄滑块机构”,只不过说这个在PVC-Robot 15号中这个连杆机构驱动六足的中间两足,然后再通过连杆带动其他四足 联动的。相关资料请参考:PVC-Robot 12号——驱动机理、PVC-Robot 13号——驱动机理。

仿生蜘蛛机器人的设计与研究

毕业设计(论文)仿生蜘蛛机器人的设计与研究 姓名:寇艳虎 学号: 专业:机械工程与自动化 系别:机械与电气工程系 指导教师:孔繁征 2021年4月

摘要 本文总结了背景和目标,仿生蜘蛛机器人的简单介绍。通过研究机器人的六足仿生的运动,这种设计已确定脚结构,使用3自由度的分析实现向前运动,把运动的机器人。想象的组件和装配映射仿生蜘蛛机器人以与相关部件的检查,确保机械设计的可行性都包含在总设计。 关键词:仿生;机器人;机构

ABSTRACT The paper has summarized the background and the goal of its topic and has made the simple introduction of the bionic hexapod robot. Through the research of the motion of the six feet of the robot, This design has determined the foot structure,using the analysis of 3 degrees of freedom realizes the forward motion and turning motion of the robot . Picturing of the component and assembly mapping of the bionic hexapod robot as well as the inspection of related parts which ensures the feasibility of the machinery design are both included in the total design. KEYWORDS:bionics ;hexapod robot ;machinery

红外遥控六足爬虫机器人设计(单片机)

六足爬虫机器人设计 设计人:李海鹰 日期:2004年9月30日

目录 前言 (3) (一)、机器人的大脑 (3) (二)、机器人的眼睛耳朵 (3) (三)、机器人的腿——驱动器与驱动轮 (4) (四)、机器人的手臂——机械传动专制 (5) (五)、机器人的心脏——电池 (5) 一、AT89S51单片机简介 (6) (一)、AT89S51主要功能列举如下: (6) (二)、AT89S51各引脚功能介绍: (6) 二、控制系统电路图 (9) 三、微型伺服马达原理与控制 (10) (一)、微型伺服马达内部结构 (10) (二)、微行伺服马达的工作原理 (10) (三)、伺服马达的控制 (11) (四)、选用的伺服马达 (11) 四、红外遥控 (12) (一)、红外遥控系统 (12) (二)、遥控发射器及其编码 (12) (三)、红外接收模块 (13) (四)、红外解码程序设计 (13) 五、控制程序 (14) 六、六足爬虫机器人结构设计图 (21)

前言 今年年初,学校为参加中央电视台举办的第三届全国大学生机器人电视大赛,组建了机器人制作小组。我积极参加,有幸成为了其中的一员。因为我们以前没有参加过类似的比赛,也没有制作机器人的经验。可以说我们什么都是从零开始,边学习边制作。通过这半年多的制作过程,我从中学到了很多书本上学不到的东西,也得到了很好的学习与锻炼的机会。 最初,我们组建了机器人制作实验室。到五金机电市场购买了必要的工具和一些制作材料。然后开始制作实验机器人的身体——框架。 实验机器人的框架我们是使用轻型万能角钢制作的,这种角钢的两侧都有间隔均匀的孔槽,可以很方便的用螺栓进行连接。用不同长度的角钢组合后,就可以得到不同大小的立方体和长方体及多边形。机器人身体的框架就搭建好了。在它的上面将装上:机器人的大脑——可编程控制器、机器人的眼睛耳朵——传感器、机器人的腿——驱动轮、机器人的手臂——机械传动专制、机器人的心脏——电池……之所以使用轻型万能角钢,主要是因为是在制作试验机型,而轻型万能角钢安装拆卸方便和便于修改长度,调整设计。 实验机器人定型后,就照其尺寸用不锈钢方管焊接制作机器人的身体。再在上面进行打孔等工作,后就可以将机器人的其它部分安装上去。这样一个机器人就制作好了。 下面我介绍一下机器人的基本组成部分: (一)、机器人的大脑 它可以有很多叫法,可以叫做:可编程控制器、微控制器,微处理器,处理器或者计算器等,不过这都不要紧,通常微处理器是指一块芯片,而其它的是一整套控制器,包括微处理器和一些别的元件。任何一个机器人大脑就必须要有这块芯片,不然就称不上机器人了。在选择微控制器的时候,主要要考虑:处理器的速度,要实现的功能,ROM和RAM的大小,I/O端口类型和数量,编程语言以及功耗等。 其主要类型有:单片机、PLC、工控机、PC机等。 单有这些硬件是不够的,机器人的大脑还无法运行。只有在程序的控制下,它才能按我们的要求去工作。可以说程序就是机器人的灵魂了。而程序是由编程语言所编写的。 编程语言是一个控制器能够接受的语言类型,一般有C语言,汇编语言或者basic语言等,这些通常能被高级一点的控制器直接执行,因为在高级控制器里面内置了编译器能够直接把一些高级语言翻译成机器码。微处理器将执行这些机器码,并对机器人进行控制。 (二)、机器人的眼睛耳朵 传感器,是机器人的感觉器官,是机器人和现实世界之间的纽带,使机器人

六足仿生机器人实验室开放项目结项报告

淮北师范大学实验室开放项目
总结报告
基于 STC12C5A60S2 单片机的六足机器人

院: 物理与电子信息学院 韩润 陆家双
负 责 人:
小组成员: 史浩东 史良东 张莹莹 指导老师: 方 振 康强强 国

一 、项目重述
1.1 项目名称:智能六足机器人 1.2 项目背景及意义:
背景:在社会迅速发展的今天,单片机的的运用已经渗透到我们生活的每个 角落,也似乎很难找到哪个领域没有单片机的足迹。智能仪表、医疗器械,导弹的 导航装置, 智能监控、通讯与数据传输 ,工业自动化过程的实时控制和数据处理 , 广泛使用的各种智能 IC 卡, 汽车的安全保障系统, 动控制领域的机器人 , 数码像 机、电视机、全自动洗衣机的控制,电话机以及程控玩具、电子宠物等等,这些都 离不开单片机。 意义:单片机的学习、开发与应用将对于现代社会的发展,经济的繁荣,和提高 满足人类日益增长的物质文化需求有着至关重要的作用。 也成就了一批又一智能 化控制的工程师和科学家。科技越发达,智能化的东西就越多。学习单片机是社 会发展的必然需求,也是我们现代高级技工所必须要掌握的技能。
1.3 项目内容:
以 51 单片机为控制器的核心, 利用单片机内部中断产生 PWM 波控制舵机。 利用开环函数组成的动作组使六足做仿生动作,制作出了动作灵活、价格低廉以 及模块化结构的六足机器人。该机器人能够严格按三角步态进行行走,实现诸如 直线、转弯、躲避障碍物和追踪物体等行走功能。

二、方案简介
本项目可细分为控制部分、机械部分、恒流源部分、超声波检测部分。 控制部分采用 STC12C5A60S2 单片机为核心处理器。通过 PWM 波使舵机 转动,机械部分采取合理的机械构造,实现机器人在行走的情况下的平稳。恒流 源部分采取 LM7805 稳压芯片为单片机和舵机供电, 由于舵机在运转的过程中会 有较大的电流波动。 因此采用恒流电路进行恒流。超声波壁障采用超声波遇故障 反射的原理。实现对物体识别和规避。

管内爬行机器人行走机构的设计

管内爬行机器人行走机构的设计 【摘要】随着管内检测爬行机器人技术的不断成熟,它在工业中的应用也越来越广,本文所设计的管内爬行机器人驱动机构,即管内步伐式行走机构,是在分析以往的轮式和履带式机器人的基础上设计的一种新型的管内爬行机器人行走机构。 【关键词】管内爬行机器人;步伐式;驱动机构 0.引言 目前工业管道系统已广泛应用于冶金、石油、化工及城市水暖供应等领域,因其工作环境非常恶劣,容易发生腐蚀、疲劳破坏或使管道内部潜在缺陷发展成破损而引起泄漏事故等,必须定期地对这些管道进行检修和维护,然而管道所处的环境往往是人力所限或人手不及,检修难度很大, 所以燃气管道管内探测是一项十分重要的实用化工程,关系到燃气的安全、合理地应用和管理。管道检测机器人(管内爬行机器人驱动机构)就是为满足该需要而产生的。 根据管内步伐式行走机器人的运动模仿人在井筒中四肢扶壁上下运动的模式,设计了机器人的行走机构,有效的解决了机器人在管道内的行走。 1.管内爬行机构总体设计 管内爬行机构主要由撑脚机构及其传动,牵引机构及传动,转向机构3部分组成:见图1所示: 该管内爬行机构的运动控制过程大致为:主、副电机不同时工作,分别控制其牵引机构和撑脚机构,并且镜面对称的两单元,其支撑脚同一时间径向所处状态相反,即前脚踩在管壁上时,后脚处在抬起状态;反之亦然。具体过程为通过副电机16带动齿轮与齿圈啮合旋转,齿圈背面的平面螺纹驱动滑杆沿滑道径向移动,从而实现支撑脚的转换。主电机1通过联轴器与丝杠连接,带动丝杠旋转,将丝杠的旋转运动转换为螺母的轴向移动,从而通过连杆机构拖动身躯和前后单元向前移动,另一部分的控制过程相同。上述动作是管内爬行机构的一个步进过程,循环执行步进过程机器人继续前进,实现管内的均匀连续行走。 2.撑脚机构及其传动 撑脚机构的作用是使管道机器人被支承在管道中心线上。其机构及传动(见图1)由电机16、小齿轮15、齿圈及平面螺纹14、滑杆13、脚靴12组成。当电机16带动小齿轮15和齿圈14旋转时,齿圈背面的平面螺纹驱动滑杆13在筒体10的径向轨道内外伸推动脚靴踩在管壁上,电机反向旋转时,滑杆内缩带动脚靴径向抬起离开管壁。脚靴三套在圆周上间隔120°布置,三套脚靴同步伸缩,其动作与车床三爪卡盘的动作类同。三套脚靴伸出踩在管壁上时,使机器人处在管道的中心线上。为了使机器人在脚靴缩回时,仍能维持在中心线上,安装4组辅助支承轮18,每组三套,在圆周上间隔120°安装,支承轮通过支承柱19、弹簧20分别与支架3和筒体10固连。当撑脚缩回时支承轮使机器人基本上维持在管道中心线上。当机器人行走过程中支承轮遇到障碍时弹簧被压缩通过障碍。 3.牵引机构及传动 牵引机构的作用是拖动机器人前进.牵引机构(见图1)由电机1、螺杆2、螺母5拨销4、拨杆7和支承杆9组成。当电机1带动螺杆转动时,螺母受拨杆的约束不能转动而沿螺杆轴向移动,固连其上的拨销4拨动拨杆7顺时针方向转动,由于脚靴12锁死在管壁上,支承杆9不能向后运动,拨杆7通过销6带动支架3及其

六足步行机器人的毕业设计说明书

本科毕业设计(论文) 六足步行机器人设计与仿真 燕山大学 2012年6月

本科毕业设计(论文) 六足步行机器人设计与仿真 学院(系):里仁学院 专业:机械电子工程 学生姓名:牛智 学号: 0811******** 指导教师:田行斌 答辩日期: 20012.6.17

燕山大学毕业设计(论文)任务书

摘要 摘要 基于仿生学原理,在分析六足昆虫运动机理的基础上,采用了仿哺乳类的腿部结构,并针对这种腿部结构设计了六足的行走方式,通过对18个直流伺服电机的控制,采用三角步态,实现了六足机器人的直行功能。仿真证明,这种结构能较好地维持六足机器人自身的平衡,并且对今后更深入地研究六足机器人抬腿行走姿态及可行性,具有较高的参考价值。 针对仿生六足步行机器人关节较多,其步态轨迹规划和关节控制量计算都较为复杂的现状,采用Solidworks软件与UG软件相结合的方式对六足仿生步行机器人的样机模型进行了运动学仿真与分析。通过仿真,验证了所设计的三角步态的适用性。 关键词六足机器人;步行;三角步态;运动学仿真

燕山大学本科生毕业设计(论文) Abstract A bionic leg structure which is similar to the legs of mammals was used,and a hexapod walking mode was designed according to this structure.By controlling 18 step motors straight walking function of the hexapod robot has been implemented with tripod gait movement.Simulation and experiment show that this structure can keep the hexapod robot balance better,providing high reference value to research the advantage and feasibility of leg raising walking gesture. As there are many joints in the bionic hexapod walking robot and the calculation of its walking track and joints control unit are comparatively comp- licated,the kinematical simulation and analysis of the model of bionic hexapod walking robot have been done by using solidworks and UG.Through simulation,the applicability of designed tripod gait are validated. Keywords Hexapod robot;Walking;Tripod gait;Kinematics simulation

仿生六足机器人研究报告学士学位论文

项目研究报告 ——小型仿生六足探测机器人 一、课题背景: 仿生运动模式的多足步行机器人具有优越的越障能力,它集仿生学原理、机构学理论、自动控制原理与技术、计算机软件开发技术、传感器检测技术和电机驱动技术于一体。 不论在何种地面上行走,仿生六足机器人的运动都具有灵活性与变化性,但其精确控制的难度很大,需要有良好的控制策略与精密的轨迹规划,这些都是很好的研究题材。 二、项目创新点: 作为简单的关节型伺服机构,仿生六足机器人能够实现实时避障,合理规划行走路线。 简单的关节型机器人伺服系统不仅具有可批量制造的条件,作为今后机器人群系统的基本组成,也可以作为探索复杂伺服机构的研究对象。 三、研究内容: 1.仿生学原理分析: 仿生式六足机器人,顾名思义,六足机器人在我们理想架构中,我们借鉴了自然界昆虫的运动原理。 足是昆虫的运动器官。昆虫有3对足,在前胸、中胸和后胸各有一对,我们相应地称为前足、中足和后足。每个足由基节、转节、腿节、胫节、跗节和前跗节几部分组成。基节是足最基部的一节,多粗短。转节常与腿节紧密相连而不活动。腿节是最长最粗的一节。第四节叫胫节,一般比较细长,长着成排的刺。第五节叫跗节,一般由2-5个亚节组成﹔为的是便于行走。在最末节的端部还长着两个又硬又尖的爪,可以用它们来抓住物体。 行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。这样就形成了一个三角形支架结构,当这三条腿放在地面并向后蹬时,另外三条腿即抬起向前准备替换。 前足用爪固定物体后拉动虫体向前,中足用来支持并举起所属一侧的身体,后足则推动虫体前进,同时使虫体转向。 这种行走方式使昆虫可以随时随地停息下来,因为重心总是落在三角支架之内。并不是所有成虫都用六条腿来行走,有些昆虫由于前足发生了特化,有了其他功用或退化,行走就主要靠中、后足来完成了。 大家最为熟悉的要算螳螂了,我们常可看到螳螂一对钳子般的前足高举在胸前,而由后面四条足支撑地面行走。

最新六足爬虫机器人

本文的设计为六足爬虫机器人,机器人以锂电池为动力源,单片机为控制元件,伺服电机为执行部件,机器人采用三足着地进行运动,通过单片机对伺服电机的控制,机器人能够实现前进、后退等运动方式,三足着地运动方式保证了机器人能够平稳运行。伺服电机具有力量大,扭矩大,体积小,重量轻等特点。单片机产生20ms 的PWM 波形,通过软件改写脉冲的占空比,从而达到改变伺服电机角度的目的。 1 机器人运动分析 1.1 六足爬虫式机器人运动方案比较 方案一:六足爬虫式机器人的每条腿都能单独完成抬腿、前进、后退运动。 此方案的特点: 每条腿都能自由活动,每条腿都能单独进行二自由度的运动。每条腿的灵活性好,更容易进行仿生运动,六足爬虫机器人可以完成除要求外的很多动作,运动的视觉效果更好。由于每条腿能单独完成二自由度的运动,所以每条腿上要安装两个舵机,舵机使用数量大,舵机的安装难度加大,机械结构部分的制作相对复杂,又由于每个舵机都要有单独的信号控制,电路控制部分变得复杂了,控制程序也相应的变得复杂。 方案二:六足爬虫式机器人采取三腿为一组的运动模式,且同一侧的前腿、后腿的前后转动由同一侧的中腿进行驱动。采用三腿为一组(一侧的前足、后足与另一侧的中足为一组)的运动方式,各条腿能够协调的进行运动,机器人的运动相对平稳。 此方案特点:相比上述方案,个腿能够协调运动,在满足运动要求的情况下,舵机使用数量少,节约成本。机器人运动平稳,控制、驱动部分都得到相应的简化,控制简单。选择此方案,机器人还可进行横向运动。 两方案相比,选择方案二更合适。 1.2 六足爬虫式机器人运动状态分析 1.2.1 机器人运动步态分析

六足爬行机器人设计--第2章 六足爬行机器人的方案设计

第2章六足爬行机器人的方案设计 2.1 总体设计要求 技术参数: 自由度数:每条腿有3个,共有16个; 本体体重:≤6kg; 行走速度:≥20mm/s; 设计要求: 能够完成前进、倒退、转弯、摆头、避障等任务,并且便于人工控制。 工作要求: 1)机器人的重量控制在6公斤左右,但是这是设计的爬行机器人,为适应不同地形, 它的最大负重加20%。为1.2公斤; 2)机器人机体运动时离地最低为100mm; 3)机器人机步长不低于50mm; 4)为保证电机良好工作和不至于使电机在重负重下工作,机器人小腿和地的夹角不小 于10度,不大于40度,小腿往内倾斜; 多足爬行机器人的一般设计准则: 1) 能够实现机器人多种姿态间的灵活调整; 2) 机器人机体结构简单、紧凑,重量轻; 3) 机器人整体结构强度高、刚度好、负载能力达到要求; 4) 在满足功能要求的情况下,尽量减少驱动及配套装置数量,简化控制的复杂性。

2.2六足爬行机器人的步态规划 步态设计是实现爬行的关键之一,也是系统控制难易的标志,为达到较为理想的爬行,考虑下列要求: 1)步行平稳、协调,进退自如,无明显的左右摇晃和前后冲击; 2)机体和关节间没有较大的冲击,特别是当摆动腿着地时,与地面接触为软着陆; 3)机体保持与地面平行,且始终以等高运动,没有太大的上下波动; 4)摆动腿胯步迅速,腿部运动轨迹圆滑,关节速度与加速度轨迹无奇点; 5)占空系数β的合理取值。 根据占空系数β的大小可分为3种情况: 1)β=0.5,在摆动腿着地的同时,支撑腿立即抬起,即任意时刻同时只有支撑相 或摆动相; 2)β>0.5,机器人移动较慢时,摆动相与支撑相有一短暂的重叠过程,即机器人 有所有腿同时着地的状态; 3)β<0.5,机器人移动较快时,所有腿有同时为摆动相的时刻,即所有腿同时在 空中,处于腾空状态,因此在交替过程中要求机器人机构具有弹性和较快的速 度,否则难以实现。 通过以上分析,我们设计出β>0.5(β=0.55)的六足机器人步态为满足其平稳性的要求,六足机器人采用占空系数为0.55(即在运动过程中有六条腿同时着地)的三角步态。如图2.1(a)所示,机器人开始运动时,六条腿先同时着地,然后2、4、6三条腿抬起进行向前摆动的姿态准备,另外三条腿1、3、5处于支撑状态,支撑起机器人本体以确保机器人的重心位置始终处于三条支腿所构成的三角形内,使机器人处于稳定状态而不至于摔倒,摆动腿2、4、6抬起向前跨步(如图2.1(b)所示),支撑腿1、3、5 一面支撑机器人本体,一面在动力的作用下驱动机器人机体向前运动半步长s(如图 2.1(c)所示)。在机器人机体移动结束后,摆动腿2、4、6立即放下,呈支撑态,使机器人的重心位置处于2、4、6三腿支撑所构成的三角形稳定区内,同时原来的支撑腿1、3、5经短暂停留后抬起并准备向前跨步(如图2.1(d)所示),当摆动腿1、3、5向前跨步时(如图2.1(e)所示),支撑腿2、4、6此时一面支撑机器人,一面驱动机器人本体,使机器人机体向前行进半步长s(如图2-1(f)所示),如此不断循环往复,以实现机器人的向前运动,由于设计速度并不是非常精确,所以其行进轨迹并不是一条笔直的直线。

六足仿生机器人

六足仿生机器人 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人们完成各种工作。1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变为现实。随着机器人工作环境和工作任务的复杂化,要求机器人具备有更高的运动灵活性和特殊位置环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求。在仿生技术、控制技术和制造技术不断发展的今天,各种各样的仿生机器人相继被研制出来,仿生机器人已经成为机器人家族重要的成员。 仿生爬行机器人是一种基于仿生学原理研制开发的新型足式机器人。与传统的轮式或者履带机器人相比,足式机器人自由度多,可变性大、结构发杂、控制繁琐,但其在运动特性方面具有独特的优点:首先是足式机器人具有较好的机动性,对不平地面的适应能力十分突出,由于其立足点是离散的,与地面的接触面积较小,因而可以在可能达到的地面上选择最优支撑点,从而能够相对容易的通过松软地面以及跨过比较大的障碍;其次是足式机器人的运动系统可以实现主动隔振,允许机身运动轨迹与足轨迹解耦。尽管地面高

低不平,机身的运动仍可达到相对平稳。 本课题主要研究的内容是一种六足仿生机器人的机械机构部分的设计和分析,围绕六足仿生机器人的前沿技术,主要仿生对象为蚂蚁,主要实现机器人前后左右移动,具有良好的仿生特性,研究具有抗冲击性以及地形适应能力的仿生机设计技术,六足仿生机器人系统模型;研究六足机器人适应不同地形环境的能力。研制系统设计与仿真等核心单元。研制高速、高负载力、对典型非结构化地形具有高适应能力的六足仿生机器人,并开展系统结构、地形适应能力以及对抗控制实验验证。本次设计的预期要达到的效果是可以实现灵活进退和转向,跨越障碍物,通过洼地和台阶并且保持平衡防止倾翻,能够实现实时避障,合理规划行走路线。 1、技术方案 一、机器人功能介绍: a)可实现前进后退转弯等基本动作,加装传感器后对小障碍物越过、大障碍物绕开,具有遥控模式,可通过无线装置无线控制。 b)机器人机械机构: 舵机在仿生机器人中的应用:舵机有体积紧凑,便于安装,输出力矩大,稳定性好等优点。一个放上机器人,机器人各个关节都有一定的自由度数,而每个舵机正是实现其中一个个关节在一个自由度上的运动。

六足爬虫机器人设计

六足爬虫机器人设计 设计人: 日期:

目录 前言 (3) (一)、机器人的大脑 (3) (二)、机器人的眼睛耳朵 (3) (三)、机器人的腿——驱动器与驱动轮 (4) (四)、机器人的手臂——机械传动专制 (5) (五)、机器人的心脏——电池 (5) 一、AT89S51单片机简介 (6) (一)、A T89S51主要功能列举如下: (6) (二)、A T89S51各引脚功能介绍: (6) 二、控制系统电路图 (9) 三、微型伺服马达原理与控制 (10) (一)、微型伺服马达内部结构 (10) (二)、微行伺服马达的工作原理 (10) (三)、伺服马达的控制 (11) (四)、选用的伺服马达 (11) 四、红外遥控 (12) (一)、红外遥控系统 (12) (二)、遥控发射器及其编码 (12) (三)、红外接收模块 (13) (四)、红外解码程序设计 (13) 五、控制程序 (14) 六、六足爬虫机器人结构设计图 (20)

前言 今年年初,学校为参加中央电视台举办的第三届全国大学生机器人电视大赛,组建了机器人制作小组。我积极参加,有幸成为了其中的一员。因为我们以前没有参加过类似的比赛,也没有制作机器人的经验。可以说我们什么都是从零开始,边学习边制作。通过这半年多的制作过程,我从中学到了很多书本上学不到的东西,也得到了很好的学习与锻炼的机会。 最初,我们组建了机器人制作实验室。到五金机电市场购买了必要的工具和一些制作材料。然后开始制作实验机器人的身体——框架。 实验机器人的框架我们是使用轻型万能角钢制作的,这种角钢的两侧都有间隔均匀的孔槽,可以很方便的用螺栓进行连接。用不同长度的角钢组合后,就可以得到不同大小的立方体和长方体及多边形。机器人身体的框架就搭建好了。在它的上面将装上:机器人的大脑——可编程控制器、机器人的眼睛耳朵——传感器、机器人的腿——驱动轮、机器人的手臂——机械传动专制、机器人的心脏——电池……之所以使用轻型万能角钢,主要是因为是在制作试验机型,而轻型万能角钢安装拆卸方便和便于修改长度,调整设计。 实验机器人定型后,就照其尺寸用不锈钢方管焊接制作机器人的身体。再在上面进行打孔等工作,后就可以将机器人的其它部分安装上去。这样一个机器人就制作好了。 下面我介绍一下机器人的基本组成部分: (一)、机器人的大脑 它可以有很多叫法,可以叫做:可编程控制器、微控制器,微处理器,处理器或者计算器等,不过这都不要紧,通常微处理器是指一块芯片,而其它的是一整套控制器,包括微处理器和一些别的元件。任何一个机器人大脑就必须要有这块芯片,不然就称不上机器人了。在选择微控制器的时候,主要要考虑:处理器的速度,要实现的功能,ROM和RAM的大小,I/O端口类型和数量,编程语言以及功耗等。 其主要类型有:单片机、PLC、工控机、PC机等。 单有这些硬件是不够的,机器人的大脑还无法运行。只有在程序的控制下,它才能按我们的要求去工作。可以说程序就是机器人的灵魂了。而程序是由编程语言所编写的。 编程语言是一个控制器能够接受的语言类型,一般有C语言,汇编语言或者basic语言等,这些通常能被高级一点的控制器直接执行,因为在高级控制器里面内置了编译器能够直接把一些高级语言翻译成机器码。微处理器将执行这些机器码,并对机器人进行控制。 (二)、机器人的眼睛耳朵 传感器,是机器人的感觉器官,是机器人和现实世界之间的纽带,使机器人

相关主题
文本预览
相关文档 最新文档