当前位置:文档之家› 《数学分析》函数极限

《数学分析》函数极限

《数学分析》函数极限
《数学分析》函数极限

第三章 函数极限 (计划课时:1 4 时)P42—68

§1 函数极限概念 ( 4时 )

一、∞→x 时函数的极限:

1. 以+∞→x 时x

x f 1

)(=和arctgx x g =)(为例引入.

2. 介绍符号: +∞→x ,+∞→x ,+∞→x 的意义,)(lim x f 的直观意义.

3. 函数极限的“M -ε”定义(A x f x =+∞

→)(lim ,A x f x =-∞

→)(lim ,A x f x =∞

→)(lim ).

4. 几何意义: 介绍邻域{}M x x U >=+∞)(,{}

M x x U -<=-∞)(,

{}M x x U >=∞)(其中M 为充分大的正数.然后用这些邻域语言介绍几何意义.

5. 函数在∞与∞+,∞-极限的关系: Th1 .)()( )(A f f A f =+∞=-∞?=∞ 例1 验证.01

lim

=∞→x

x 证明格式:0>?ε(不妨设 <<ε0□)(不妨设>x □或>x □,

要使-A x f )(ε,

只须>x □(∞→x )或>x □(+∞→x ),?ε,=?M □0>,当>x M (或>x M ,

ε< □ - □.

根据函数极限的“M -ε”定义知∞

→x lim □ = □(或+∞

→x lim □ = □,-∞

→x lim □ = □).

例2 验证:1)2

lim π

=

+∞

→arctgx x ; 2)2

lim π

-

=-∞

→arctgx x .

例3 验证.22

2lim 22=-+∞→x x x x

证 . 42

2 2 4 24 222 2

423222x x

x x x x x x x x x x =-+-+=--+>>…… 6. ε的正值性, 任意性与确定性, ε以小为贵.

7. M 的存在性与非唯一性,对M 只要求存在,在乎其大的一面. 二.0x x →时函数)(x f 的极限:

1. 由 ??

?=≠+=.2

,0,2 ,12)(x x x x f 考虑2→x 时的极限引入. 2. 函数极限的“δε-”定义.

3. 几何意义.

4. 用定义验证函数极限的基本思路. 例4 验证 .lim 0

C C x x =→

例5 验证 .lim 00

x x x x =→

例6 验证 .512

3

72933lim 2233=+--+-→x x x x x x 证 由,3≠x 512)3( )12()3( )3( 5123

72933 22

23----+=-+--+-x x x x x x x x x = .1

2395125395 512

123

2---≤---=--+x x x x x x x x 为使 ,11635615595≤+-≤+-=-x x x 需有 ;13<-x

为使 ,1325562 12>--≥+-=-x x x 需有 .23<-x

于是, 倘限制 130<-

512

3

72933 2

23-+--+-x x x x x 12395---≤x x x .3111311-=-≤x x 证明格式:0>?ε(不妨设 <<ε0□)(不妨设<-0x x □或>-0x x □,<-0x x □,

则□<

要使-A x f )(ε,

只须<-0x x □(0x x →)或<-<00x x □(00+→x x ),<-

于是0>?ε,=?δ□0>,当δ<-<00x x (或δ<-<00x x ,

δ<-

根据函数极限的“δε-”定义知0

lim x x → □ = □(或0

0lim +→x x □ = □,0

0lim -→x x □ = □).

例7 验证 ). 1 (

,11lim 02

020

<-=-→x x x x x 例8 验证 .s i n s i n l i m

00

x x x x =→ ( 类似有 ) .cos cos lim 00

x x x x =→ 5. ε的正值性, 任意性与确定性, ε以小为贵.

6.

δ的存在性与非唯一性,对δ只要求存在,在乎其小的一面.

7. A x f x x =→)(lim 0

存在并不意味着)(x f 在0x 有定义,即就是有定义也并不意味着

)(0x f A =(如例6).

例9 证明 1lim 0

=→x

x a )1(>a .

三.单侧极限:

1. 定义: 单侧极限的定义及记法.

2. 几何意义: 介绍半邻域 },0 {),(δδ<-≤=+a x x a =-),(δa ],(a a δ-

). , (),( ), , (),( 0

0a a a a a a δδδδ-=+=-+ 然后介绍)(lim 0

x f x x +

→等的几何意义. 例9 验证 .01lim 2

1

=--

→x x 证 考虑使

22

2

1ε<-x

的 .δ

3. 单侧极限与双侧极限的关系:

Th2 .)0()0( )(lim 000

A x f x f A x f x x =-=+?=→

例10 证明: 极限 x x sgn lim 0

→不存在.

例11 设函数)(x f 在点0x 的某邻域内单调. 若)(lim 0

x f x x →存在, 则有)(lim 0

x f x x →=).(0x f

Ex [1]P 47 1—7.

§2 函数极限的性质( 2时 )

我们引进了六种极限: ),(lim

),(lim ),(lim x f x f x f x x x ∞

→-∞

→+∞

→ )(l i m 0

x f x x →, )0( ),0(00-+x f

x f .以下以极限)(lim 0

x f x x →为例讨论性质. 均给出证明或简证. 一.函数极限的性质: 以下性质均以定理形式给出.

1.

唯一性: 2. 局部有界性: 3. 局部保号性:

4.

单调性( 不等式性质 ):

Th 4 若)(lim 0

x f x x →和)(lim 0

x g x x →都存在, 且存在点0x 的空心邻域),(00

δ'x , 使

),(00

δ'∈?x x 都有 ),()(?≤x g x f )(lim 0

x f x x →).(lim 0

x g x x →≤

证 设)(lim 0

x f x x →=.)(lim ,0

B x g A x x =→ ( 现证对,0>?ε 有.2ε+

.2 ,)()( ),,( ,0 ,000

εεεδδε+?>?B A B x g x f A x x

註: 若在Th 4的条件中, 改“)()(x g x f ≤”为“)()(x g x f <”,未必就有.B A <以

0 ,1)( ,1)(02=≡+=x x g x x f 举例说明.

5. 迫敛性( 双逼原理 ): 例1 求??

????→x

x x 1lim 0.

6. 四则运算性质: ( 只证“+”和“?”)

Ex [1]P 51 5——7.

二. 利用极限性质求极限: 已证明过以下几个极限:

;cos cos lim ,sin sin lim ,lim ,lim 0000

x x x x x x C C x x x x x x x x ====→→→→

.2

lim ,01lim

π

±==±∞→∞→arctgx x x x ( 注意前四个极限中极限就是函数值 ) 这些极限可作为公式用.通过有关性质, 把所求极限化为基本极限,代入基本极限的值,

即计算得所求极限.

例1 ).1(lim 4

-→

xtgx x π

( 利用极限224

sin

sin lim 4

=

=→

π

π

x x 和.22

cos lim 4

=→

x x π ) 例2 ) 1 ( . 1311

lim 31-??

? ??+-+-→x x x

例3 .5

237

35l i m 23

3+++-∞→x x x x x 註:关于x 的有理分式当∞→x 时的极限.

例4 .1

1

l i m 10

71--→x x x [ 利用公式).1)(1(121++++-=---a a a a a n n n ] 例5 .2

122lim 221-+-+-→x x x x x 例6 .5

31

32lim

22++++∞

→x x x x

例7 .23)

102sin(lim 25

4x

x x x x --+∞→

例8 .1

1lim

3

1

--→x x x

例9 .1

111lim

3

-+-+→x x x

例10 已知 .3

16lim 23B x A

x x =--+→ 求 A 和.B

Ex [1]P 51 1——4.

补充题: 已知.74

lim 222-=-++→B x B

Ax x x 求A 和.B (.320 ,316=-=B A )

§3 函数极限存在的条件( 2时 )

本节介绍函数极限存在的两个充要条件. 仍以极限)(lim 0

x f x x →为例.

一、Heine 归并原则 —— 函数极限与数列极限的关系:

Th 1 设函数f 在点0x 的某空心邻域)(00

x 内有定义.则极限)(lim 0

x f x x →存在?对任何

)(00

x x n ∈且)(lim ,0n n n x f x x ∞

→→都存在且相等. ( 证 )

Heine 归并原则反映了离散性与连续性变量之间的关系,是证明极限不存在的有力工具. 对单侧极限,还可加强为}{n x 单调趋于0x . 参阅[1]P 70. 例1 证明函数极限的双逼原理.

例2 证明.01

sin

lim 0≠→x

x

例3 证明x

x 1

sin lim 0→不存在.

Th 2 设函数)(x f 在点0x 的某空心右邻域)(0x U

+有定义.则A x f x x =+

→)(lim 0

?对任何以0x 为极限的递减数列{}?n x )(0x U

+,有A x f n n =∞

→)(lim .

Th 3 设函数)(x f 为定义在)(0x U

+上的单调有界函数.则)(lim 0

x f x x +

→存在. 二、Cauchy 准则:

Th3 (Cauchy 准则)设函数)(x f 在点0x 的某空心邻域),(00

δ'x 内有定义.则)(lim 0

x f x x →存在

∈'''?'<>?>??x x , ),(0 ,0 δδδε),(00

δx ,.)()( ε<''-'?x f x f

证 )?

)? ( 利用Heine 归并原则 )

Cauchy 准则的否定: )(lim 0

x f x x →不存在的充要条件.

例4 用Cauchy 准则证明极限x

x 1

sin

lim 0

→不存在. 证 取 .2

1 ,1

π

ππ

+

=''=

'n x n x

例5 设在 [) , ∞+a 上函数)(x f ↘. 则极限)(lim x f x +∞

→存在)( x f ?在[) , ∞+a 上有

界. ( 简证, 留为作业 ).

Ex [1]P55 1——4.

§4 两个重要极限( 2时 )

一. .1s i n l i m

0=→x x x (证) (同理有 ,1sin lim 0=→x x x .11

s i n l i m =∞→n n n ) 例1 .s i n lim

x x

x -→ππ 例2 2

0c o s 1lim x x

x -→.

例3 .3s i n 5s i n lim

0x x

x → 例4 .a r c s i n

lim

0x

x x → 例5 证明极限 x

x x sin lim

→不存在.

二. .11l i m e x x

x =??

?

??+∞

→ .) 1 (l i m 1

0e x x x =+→ 证 对 ,1+<≤n x n 有 ,1

111111n

x n +≤+<++

? ,11111111

+?

?

? ??+≤??? ??+

++n x

n

n x n

例6 ,1l i m x

x x k ??

?

??+∞→ 特别当 21 ,1=-=k k 等.

例7 .) 21 (lim 1

x

x x +→

例8 .)

sin 31 (lim csc 0

x

x x -→

例9 n

n n n ??

?

??-+∞

→2111lim

Ex [1]P 58 1——4.

§5 无穷小量与无穷大量 阶的比较(2时 )

一、无穷小量:

1. 定义. 记法.

2.无穷小的性质:

性质1 (无穷小的和差积) 性质2 (无穷小与有界量的积)

例1 ).53sin(1

lim 23

2

+++∞→n n n n n

3. 无穷小与极限的关系:

Th 1 =-?=→A x f A x f x x )( )(lim 0

. , ) 1 (0x x →

( 证 )

二、无穷小的阶: 设0x x →时 ). 1 ()( ), 1 ()( ==x g x f

1. 高阶(或低阶)无穷小: 2. 同阶无穷小: 3. 等价:

Th 2 ( 等价关系的传递性 ).

等价无穷小在极限计算中的应用: Th 3 ( 等价无穷小替换法则 ) .

几组常用等价无穷小: 设.0→x 以x 作为基本无穷小, 有等价关系:

当0→x 时,x sin ~x , tgx ~x , 1-x

a ~x , )1ln(

x +~x , x arcsin ~x ,

arctgx ~x , x cos 1-~2

2

x , 11-+n x ~n x , n x )1(+~nx .

再加上∞→n 时 (或 ∞→x 时)n 的(或x 的)有理分式(分子次数小于分母次数)的等价无

穷小.其中有些等价关系的证明以后陆续进行.

例3 求x arctgx

x 4sin lim

0→.

例4 .s i n s i n l i m

3

0x x

t g x x -→ 三. 无穷大量:

1. 定义:

例5 验证+∞=→2

01

lim

x x .

例6 验证∞=-→3

lim

3x x

x . 2. 性质:

性质1 同号无穷大的和是无穷大. 性质2 无穷大与无穷大的积是无穷大. 性质3 与无界量的关系.

无穷大的阶、等价关系以及应用, 可仿无穷小讨论, 有平行的结果. 3. 无穷小与无穷大的关系:

无穷大的倒数是无穷小, 非零无穷小的倒数是无穷大.

四、曲线的渐近线:

1. 定义:

2. 结论:

⑴若∞=→)(lim 0

x f x x ,则直线0x x =为曲线)(x f y =的垂直渐近线.

⑵若c x f x =∞

→)(lim ,则直线c y =为曲线)(x f y =的水平渐近线.

⑶若,)

(l i m

a x

x f x =∞

→b ax x f x =-∞→})([lim ,则直线b ax y +=为曲线

)(x f y =的斜渐近线.

注:0x x →可换为-

→0x x ,+

→0x x ;∞→x 可换为-∞→x ,-∞→x .

例7 求曲线3

2)(23

-+=x x x x f 的渐近线.

Ex [1]P66 1—6.

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

高等数学同济大学版课程讲解函数的极限

课 时 授 课 计 划 课次序号: 03 一、课 题:§1.3 函数的极限 二、课 型:新授课 三、目的要求:1.理解自变量各种变化趋势下函数极限的概念; 2.了解函数极限的性质. 四、教学重点:自变量各种变化趋势下函数极限的概念. 教学难点:函数极限的精确定义的理解与运用. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–3 1(2),2(3),3,6 八、授课记录: 九、授课效果 分析: 第三节 函数的极限 复习 1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞ =??>?>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系. 在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多. 一、x →∞时函数的极限 对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.

定义1 若?ε>0,?X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞ f (x )?A . 若?ε>0,?X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞ f (x )?A . 例1 证明lim x 0. 证 0 -,故?ε>00-<εε, 即x >21 ε.因此,?ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 lim x ?0. 例2 证明lim 100x x →-∞ =. 证 ?ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞ 10x ?0. 定义2 若?ε>0,?X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞ f (x )?A . 为方便起见,有时也用下列记号来表示上述极限: f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞). 注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞ ===或或,则称y A =为曲线()y f x =的水 平渐近线. 由定义1、定义2及绝对值性质可得下面的定理. 定理1 lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞ f (x )?A . 例3 证明2lim 1 x x x →∞--?1.

函数与极限练习题

题型 一.求下列函数的极限 二.求下列函数的定义域、值域 三.判断函数的连续性,以及求它的间断点的类型 内容 一.函数 1.函数的概念 2.函数的性质——有界性、单调性、周期性、奇偶性 3.复合函数 4.基本初等函数与初等函数 5.分段函数 二.极限 (一)数列的极限 1.数列极限的定义 2.收敛数列的基本性质 3.数列收敛的准则 (二)函数的极限 1.函数在无穷大处的极限 2.函数在有限点处的极限 3.函数极限的性质 4.极限的运算法则 (三)无穷小量与无穷大量 1.无穷小量 2.无穷大量 3.无穷小量的性质 4.无穷小量的比较 5.等价无穷小的替换原理 三.函数的连续性 x处连续的定义 1.函数在点0 2.函数的间断点 3.间断点的分类 4.连续函数的运算 5.闭区间上连续函数的性质 例题详解 题型I函数的概念与性质 题型II求函数的极限(重点讨论未定式的极限) 题型III求数列的极限 题型IV已知极限,求待定参数、函数、函数值 题型V无穷小的比较 题型VI判断函数的连续性与间断点类型 题型VII与闭区间上连续函数有关的命题证明

自测题一 一. 填空题 二. 选择题 三. 解答题 3月18日函数与极限练习题 一.填空题 1.若函数121)x (f x -??? ??=,则______)x (f lim x =+∞ → 2.若函数1 x 1 x )x (f 2--=,则______)x (f lim _1x =→ 3. 设23,,tan ,u y u v v x === 则复合函数为 ()y f x = = _________ 4. 设 cos 0()0 x x f x x x ≤??=? >?? ,则 (0)f = __________ 5.已知函数 2 ()1 ax b x f x x x +

(完整版)大一高数第一章函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

高等数学函数极限练习题

设 f ( x ) 2 x , 求 f ( x ) 的 定 义 域 及 值 域 。 1 x 设 f ( x) 对一切实数 x 1, x 2 成立 f ( x 1 x 2 ) f ( x 1 ) f ( x 2 ),且 f (0 ) 0, f (1) a , 求 f (0 )及 f ( n).(n 为正整数 ) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 f ( x) 表 示 将 x 之 值 保 留 二 位小数,小数第 3 位起以后所有数全部舍去,试用 表 示 f ( x) 。 I ( x) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 g ( x) 表 示 将 x 依 4 舍 5 入 法 则 保 留 2 位 小 数 , 试 用 I ( x) 表 示 g ( x) 。 在某零售报摊上每份报纸的进价为 0.25 元,而零售价为 0.40 元,并且如果报纸当天未售 出 不 能 退 给 报 社 ,只 好 亏 本 。若 每 天 进 报 纸 t 份 ,而 销 售 量 为 x 份 ,试 将 报 摊 的 利 润 y 表 示 为 x 的函数。 定义函数 I ( x)表示不超过 x 的最大整数叫做 x 的取整函数,试判定 ( x) x I ( x )的周期性。 判定函数 x x ln( 1 x x )的奇偶性。 f ( x ) ( e 1) 设 f ( x ) e x sin x , 问 在 0 , 上 f ( x ) 是 否 有 界 ? 函 数 y f ( x ) 的 图 形 是 图 中 所 示 的 折 线 O BA , 写 出 y f ( x) 的 表 达 式 。 x 2 , 0 x ; x , x ; 设 f ( x) 2 ( x) 0 4 求 f ( x ) 及f ( x ) . x x 4 x x , . , . 2 2 2 4 6 设 f ( x ) 1, x 0 ; ( x ) 2 x 1, 求 f ( x ) 及 f ( x) . 1 , x 0 . e x , x ; 0 , x 0 ; 设 f ( x ) 求 f ( x )的反函数 g ( x ) 及 f ( x ) . x x ( x) x 2, x 0 , . . 1 x ) , ( x ) x , x 0 ; 求 f ( x ) . 设 f ( x )( x x 2 , x 2 0 . 2 x , x 0 ; 求 f f ( x ) 设 f ( x ) x 0. . 2 , 0 , x ; x , x ; ( x ) 求 f ( x) ( x ). 设 f ( x ) x , x 0 . x , x . 1

函数与极限测试题及答案(一)

函数与极限测试题(一) 一、 填空题 1、若1ln 1 1ln x f x x +??= ?-??,则()f x =_____。 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 3、若0x →时,无穷小2 21ln 1x x -+与2sin a 等价,则常数a =_____。 4、设()()2 1lim 1 n n x f x nx →∞ -=+,则()f x 的间断点为x =_____。 二、 单选题 1、当0x →时,变量 2 11 sin x x 是( ) A 、无穷小 B 、无穷大 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 2、设函数()bx x f x a e =+在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) A 、0,0a b << B 、0,0a b >> C 、0,0a b ≥< D 、0,0a b ≤> 3、设()232x x f x =+-,则当0x →时( ) A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞ -=????, 则()lim x f x →∞ 为( ) A 、存在且等于零 B 、存在但不一定等于零 C 、一定不存在 D 、不一定存在

例:()()()11 ,,22 1 x x f x x g x x x x ?==+ =+ ++ 三、 求下列极限 1 、 lim x 2、()2 21212lim 1x x x x x -→?? ?+?? 四、 确定,a b 的值,使() 32 2ln 10 011ln 0 1ax x f x b x x x x x x x ?+<==??-+?>++?? 在(),-∞+∞内连续。 五、 指出函数()1 11x x x e e f x e e --= -的间断点及其类型。 六、 设1234,,,a a a a 为正常数,证明方程 31240123 a a a a x x x x +++=---有且仅有三个实根。 七、 设函数()(),f x g x 在[],a b 上连续,且满足()()()(),f a g a f b g b ≤≥,证明: 在[],a b 内至少存在一点ξ,使得()()f g ξξ=。 函数与极限测试题答案(一) 一、1、 11x x e -+; 2、 11, 2 2a b ++?? ???? ; 3、 4-; 4、0 ; 二、1—4、DCBD 三、1 、解:原式lim 3x ==;

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

高等数学1.3-函数的极限

第三节 函数的极限(一) 教学目的:(1)理解函数极限和左、右极限的概念; (2)理解无穷小概念,掌握其性质 教学重点:函数极限的概念,无穷小概念 教学难点:函数极限的概念的理解与应用 教学方法:讲授法 教学时数:2课时 本节我们将数列极限的概念推广到一元实值函数,然后研究函数极限的性质及其运算法则. 一、函数极限的概念 1.自变量x 趋于无穷大时函数的极限 1)+∞→x 时的极限: +∞→x 读作“x 趋于正无穷大”,表示x 无限增加,0x > . 例:对于x x f 1)(= ,当自变量+∞→x 时,x x f 1 )(=与常数0无限接近 . 复习数列极限的定义:数列{}n x 以a 为极限即a x n n =∞ →lim ? 0>?ε,N ?,N n >时,ε<-a x n . 令()n f x n =,则()?=∞ →a n f n lim 0>?ε,N ?,当N n >时,()ε<-a n f .将n 换成连续变量x ,将a 改记为A ,就可以得到x →+∞时,()A x f →的极限的定义及其数学上的精确描述 . 定义3.1:设函数)(x f 在),(+∞a 内有定义,,A ∈若0>?ε,0X ?>,当x X >时,有()ε<-A x f ,则称数A 为函数()x f 当x →+∞时的极限,记作()lim x f x A →+∞ =, 或()A x f →,(x →+∞) . 几何意义:对任意给定的0ε>,在轴上存在一点X ,使得函数的图象 {(,)|(),(,)}x y y f x x a =∈+∞在X 右边的部分位于平面带形),(),(εε+-?+∞A A X 内 . 2)x →-∞时的极限: x →-∞读作“x 趋于负无穷大”,表示x 无限增加,0x < . 定义:设函数)(x f 在),(a -∞内有定义,,A ∈若0>?ε,0X ?>,当x X <-时,有()ε<-A x f ,则称数A 为函数()x f 当x →-∞时的极限,记作()lim x f x A →-∞ =

函数与极限习题与答案

第一章 函数与极限 (A ) 一、填空题 1、设x x x f lg lg 2)(+-= ,其定义域为 。 2、设)1ln()(+=x x f ,其定义域为 。 3、设)3arcsin()(-=x x f ,其定义域为 。 4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。 5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。 6、43 2lim 23=-+-→x k x x x ,则k= 。 7、函数x x y sin = 有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 9、=++++++∞→)21(lim 222 n n n n n n n n 。 10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。 11、=++++∞→352352) 23)(1(lim x x x x x x 。 12、3) 2 1(lim -∞ →=+e n kn n ,则k= 。 13、函数2 31 22+--=x x x y 的间断点是 。 14、当+∞→x 时, x 1 是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x e y 1=在x=0处是第 类间断点。 17、设1 1 3 --= x x y ,则x=1为y 的 间断点。 18、已知33=?? ? ??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 20、曲线2sin 2 -+=x x x y 水平渐近线方程是 。 21、1 14)(2 2-+ -= x x x f 的连续区间为 。 22、设?? ?>≤+=0 ,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数 a= 。 二、计算题 1、求下列函数定义域 (1)2 11 x y -= ; (2)x y sin = ; (3)x e y 1= ; 2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2 == ; (2)2)(,)(x x g x x f = = ; (3)x x x g x f 22tan sec )(, 1)(-== ; 3、判定函数的奇偶性 (1))1(2 2 x x y -= ; (2)3 2 3x x y -= ;

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“ 00”“∞ ∞ ”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (3)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。

高等数学函数极限练习试题

设x x x f += 12)(,求)(x f 的定义域及值域。 ,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。 在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。 的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。)()(x I x x -=? 的奇偶性。 判定函数)1ln()1()(x x e x f x x -+?-=+ [ )设,问在,上是否有界?f x e x f x x ()sin ()=+∞0 函数的图形是图中所示的折线,写出的表达式。y f x OBA y f x ==()() ???≤≤-<≤=????≤≤+<≤=., ; ,.,;, 设64240)(42220)(2 x x x x x x x x x x f [][].及求)()(x f x f ?? [][]设,; ,. ,求及.f x x x x x f x f x ()()()()=-≤>???=-101021??? ???>-≤=????>≤-=. ,; ,., ;,设000)(00)(2 x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ? []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥???1 2002?? []设,; , .求.f x x x x f f x ()()=+<≥???2020 .求.,; ,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ?+? ??≥<+=????≥<=

函数与极限练习题

第一章 函数与极限 §1 函数 一、是非判断题 1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。 [ ] 2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有 B x f A ≤≤)( [ ] 3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。 [ ] 4、定义在(∞+∞-,)上的常函数是周期函数。 [ ] 5、任一周期函数必有最小正周期。 [ ] 6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。 [ ] 7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。 [ ] 8、f(x)=1+x+ 2 x 是初等函数。 [ ] 二.单项选择题 1、下面四个函数中,与y=|x|不同的是 (A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中 既是奇函数,又是单调增加的。 (A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是 (A )x 2log (B )x 2 (C )22log x (D )2 x 4、若)(x f 为奇函数,则 也为奇函数。 (A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D) )].([x f f - 三.下列函数是由那些简单初等函数复合而成。 1、 y=) 1arctan(+x e 2、 y=x x x ++ 3、 y=x ln ln ln

高数数学极限总结

函数极限总结 一.极限的产生 极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。 极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。 从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。[1] 二.极限知识点总结 1. 极限定义 函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式 时,对应的函数值 都满足不等式: 那么常数A 就叫做函数f(x)?当x →x 0时的极限,记作。[2] 单侧极限:?.左极限:或 ?.右极限:或 定理: 函数当时极限存在的充分必要条件是左、右极限各自存在且相 δ<<|x -x |00ε <-|)(|A x f A x f x x =→)(lim 0 A x f x x =- →)(lim )()(左→→x A x f A x f x x =+ →)(lim )()(右→→x A x f A x f x f A x f x x ==? =+-→)()()(lim 0 )(x f 0x x →

等 即。 2. 极限概念 函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式 时,对应的函数值f(x)都满足不 等式:|f(x)-A|<ε,那么常数A 就叫做函数f(x)当 x →x 。时的极限。 函数极限具有唯一性、局部有限性、局部保号性[2] 3. 存在准则 有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。 准则Ⅰ.如果数列,及满足以下条件: (1)从某项起,即,当时,有; (2);, 那么数列的极限存在,且 准则Ⅰ'如果(1)当(或)时, (2) ,, 那么存在,且等于。 夹逼定理:(1)当时,有??成立 (2) ?,那么,极限存在,且等于A 【准则Ⅰ,准则Ⅰ′合称夹逼定理】 )()()(lim 0 00x f x f x f x x →+-==0,,,x x x x x →-∞→+∞→∞→0x x →{}n x {}n y {}n z +∈?N n 00n n >n n n z x y ≤≤a y n x =∞→lim a z n x =∞ →lim {}n x a x n x =∞ →lim ),(0r x U x ο ∈M x >||)()()(x h x f x g ≤≤A x g x x x =∞→→)(lim ) (0 A x h x x x o =∞→→)(lim ) ()(lim ) (0 x f x x x ∞→→A ),(x 0r x U ο ?()0x f

高等数学函数与极限试的题目

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1)(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1 -,x ≠0,1,则f [)(1 x f ]= ( ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( ) A ) lim + →x )x 1 +1(x =1 B ) lim + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e 5.已知9)( lim =-+∞→x x a x a x ,则=a ( )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1( lim ( ) A.1; B.∞; C.2 -e ; D.2 e 7.极限:∞ →x lim 3 32x x +=( ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0-+→=( ) A.0; B.∞; C 2 1; D.2.

函数、极限与连续复习题参考答案Word版

函数、极限与连续 复习题 一.填空题: 1. 函数1 1ln +-=x x y 的奇偶性是奇函数. 2. 设1 2)11(-=-x x x f ,则=)(x f 1 1x -. 3. 函数x e y -=1的复合过程是,1u y e u x ==-. 4. 函数y =sin ,12y u u v x ===+. 5. 设)(x f 的定义域是[0,1] , 则函数y=)(ln x f 的定义域[1,]e 6. =∞→x x x sin lim 0 . 7. =-∞→n n n )1 1(lim 1e - 8. 5 432lim 42-+-∞→n n n n =0 9. 设43 2lim 23=-+-→x k x x x ,则k =___-3_. 10. 设b ax x x x f ++-+= 1 3 4)(2,0)(lim =∞→x f x ,则=a __-4_,=b __-4. 11. 设0→x 时,b ax 与x x sin tan -为等价无穷小,则=a __1 2 __,=b __3__. 12. 函数3 21 2 --=x x y 的间断点有x=-1,x=3 连续区间是(,1),(1,3),(3,)-∞--+∞. 二、选择题 1、ln(1) y x =+ A ) A 、(—1,+∞) B 、]1,1(- C 、(—1,1) D 、(1,+∞) 2、当0→x 时,下列变量为无穷小量的是( D ) A 、x 1sin B 、x 1 cos C 、x e 1 D 、) 1ln(2x +

3、A x f x x =→)(lim 0 (A 为常数),则)(x f 在0x 处( D ) A 、一定有定义 B 、一定无定义 C 、有定义且A x f =)(0 D 、不一定有定义 4、设???≥+<=0,20,)(2x a x x e x f x 当时;当在点0=x 连续,则a 的值等于(D ) A 、0 B 、1 C 、—1 D 、2 1 5、函数)(x f = 3 2 -x ,则x=3是函数)(x f 的(D ) A 、连续点 B 、可去间断点 C 、跳跃间断点 D 、无穷间断点 6、)(x f 在0x 处左、右极限存在是)(x f 在0x 处连续的( B ) A 、充分条件 B 、必要条件 C 、充要条件 D 、以上都不是 三.求下列极限: 1. )1(lim 2x x x x -++∞ → 解:)1(lim 2 x x x x -++∞ → =lim x lim x = lim x =1 2 2. 3 tan sin lim x x x x →- 解:30tan sin lim x x x x →-=32 00 sin (1cos )sin 11cos lim lim()cos cos x x x x x x x x x x x →→--= =20 1cos lim x x x →-=2 202lim x x x →=12 3. x x x x ?? ? ??+-∞→11lim 解:x x x x ??? ??+-∞→11lim =11lim 11x x x x →∞??- ? ? ? +? ?=1e e -=2e - 4. x x x x x 3sin 2sin lim 0-+→

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

相关主题
文本预览
相关文档 最新文档