当前位置:文档之家› 数学分析函数极限复习

数学分析函数极限复习

数学分析函数极限复习
数学分析函数极限复习

第三章 函数极限

§1 函数极限概念

1、按定义证明下列极限: (1);65

6lim

=+∞→x

x x (2)2)106(lim 22=+-→x x x ;

(3) ;115

lim 22=--∞→x x x (4) 04lim 22

=-→x x ;

(5) 0cos cos lim 0

x x x x =→

2、参照定义2正面陈述A x f x x ≠→)(lim 0

.

3、 证明: )(lim )(lim 00

h x f x f h x x +=→→.

4、 证明A x f x x =→)(lim 0

,则A x f x x =→)(lim 0

.但反之不真.

5、 证明定理3.1

定理3.1 A x f x x =→)(lim 0

的充分必要条件是)(lim )(lim 0

x f x f x x x x -+→→=A =.

6.研究下列函数在0=x 处的左右极限或极限

(1)x x x f =)(; (2)][)(x x f =; (3) ??

?

??<+=>=0,10,00

,2)(2

x x x x x f x

7.证明: )1

(lim )(lim 0

x

f x f x x +→∞

→=.

8.证明:对黎曼函数)(x R 有0)(lim 0

=→x R x x ,]1,0[0∈x (当0=x 或1时,考虑单侧极限)

§2 函数极限的性质

1、求下列极限:

(1))cos (sin 2lim 2

2

x x x x --→

π; (2) 121

lim 220---→x x x x ;

(3) 121lim 221---→x x x x ; (4) 3

2302)31()1(lim x x x x x +-+-→;

(5) 1

1

lim 1--→m n x x x (n 、m 为自然数);

(6) 2

321lim

4

--+→x x x ; (7) x

a

x a x -+→20lim ,(0>a );

(8) x

x x x cos lim

-∞→; (9) 4sin lim 2-∞→x x

x x ;

(10) 902070)

15()58()63(lim --+∞→x x x x 2.利用迫敛性求极限: (1) x

x x x cos lim

--∞→; (2) 4sin lim 2-+∞→x x

x x .

3.证明定理3.7

定理3.7 若极限)(lim 0

x f x x →与)(lim 0

x g x x →都存在,则g f ±,g f ?在0x x →时极限也存在,且

(Ⅰ) =±→)]()([lim 0

x g x f x x )(lim 0

x f x x →)(lim 0

x g x x →±;

(Ⅱ) =?→)]()([lim 0

x g x f x x )(lim 0

x f x x →)(lim 0

x g x x →?;

(Ⅲ)若0)(lim 0≠→x g x x ,则g f 在0x x →时极限存在,且有)

(lim )

(lim )()(lim 0

0x g x f x g x f x x x x x x →→→=

. 4.设n

n n n m

m m m b x b x b x b a x a x a x a x f ++++++++=----11101110)( ,00≠a ,00≠b ,n m ≤,

试求)(lim x f x ∞

→.

5.设0)(>x f ,证明:若A x f x x =→)(lim 0

,则n n

x x A x f =→)(lim

.

6.证明: )10(1lim 0

<<=→a a x

x .

7.设A x f x x =→)(lim 0

,B x g x x =→)(lim 0

,

(1) 问若在),(00

δx U 内有)()(x g x f <,是否有B A ,而存在),(00

δx U ,使得)()(x g x f >,),(00

δx U x ∈. 8.求下列极限(其中n 为自然数): (1) n x x x x

+-

→11

lim 0

; (2) n x x

x x ++→11lim 0;

(3) 1

lim 21--+++→x n

x x x n x ;

(4) x

x n

x 11lim

-+→; (5) ][1

lim x x x +∞→.

9.证明: )(lim )(lim 30

x f x f x x →→=.又问是否也有)(lim )(lim 2

x f x f x x →→=?

§3 函数极限存在的条件

1.叙述函数极限)(lim x f x +∞

→的归结原则,并用它证明x x cos lim +∞

→不存在.

2.设f 为定义在),[+∞a 上的递增函数,证明存在的充要条件是f 在),[+∞a 上有上界.

3. (1)叙述)(lim x f x -∞

→存在的柯西准则;

(2)正面陈述极限)(lim x f x -∞

→不存在的概念;并用它证明x x sin lim -∞

→不存在.

4.设f 在)(00x U 内有定义,证明:若对任何数列)(}{00

x U x n ?,且0lim x x n n =∞

→,极限

)(lim n n x f ∞

→都存在,则所有这些极限都相等.

5.设f 为)(00

x U 上的递增函数,证明)0(0-x f 和)0(0+x f 都存在, 且)(sup )0()

(000

x f x f x U x -∈=-,)(inf )0()

(000

x f x f x U x +∈=+

6.设)(x D 为狄利克雷函数,)1,0(0∈x ,证明)(lim 0

x D x x →不存在.

证: 由第一章§3知???=为无理数

当为有理数当x x x D ,0,1)(

取2

10=

ε,对任何0>δ,由有理数与实数的稠密性可知,在),(00

δx U 中必有有理数x '和无理数x '',即),(00

δx U x ∈',),(00

δx U x ∈''使得1)(='x D ,0)(=''x D , 于是有01)()(ε>=''-'x D x D , 从而由柯西准则知)(lim 0

x D x x →不存在.

7.证: 假设)(x f 不恒等于0,则存在),(0+∞-∞∈x ,使0)(0≠x f ,

又因f 为周期函数,不妨设周期为0>L ,记nL x a n +=0,则+∞→n a (∞→n ), 由作法知0)()(lim 0≠=∞

→x f a f n n (1)

又因0)(lim =+∞

→x f x ,由归结原则有0)(lim =∞

→n n a f (2)

(1) 与(2)矛盾,故0)(≡x f . 8.证明定理3.9.

§4 两个重要极限

1、求下列极限:

(1)x x x 2sin lim 0→; (2) 230)(sin sin lim x x x →; (3) 2

cos lim 2ππ-

x x

x ; (4) x tgx x 0lim

→; (5) 30sin lim x

x tgx x -→; (6) x arctgx x 0lim →; (7) x

x x 1

sin lim +∞→; (8) a x a x a x --→22sin sin lim ;

(9) 1

14sin lim

-+→x x

x ; (10) x x x cos 1cos 1lim 2

0--→.

2、 求下列极限:

(1)x

x x

-∞→-)21(lim ; (2) x x x 1

0)1(lim α+→ (α为给定实数);

(3) x

x x cot 0

)

tan 1(lim +→; (4) x

x x

x 1

0)11(

lim -+→; (5) 12)2323(

lim -+∞→-+x x x x ; (6) x x x

βα

)1(lim ++∞→ (α,β为给定实数).

3、 证明1]}2

cos 2cos 2cos [cos lim {lim 20=∞→→n n x x

x x x .

4、 利用归结原则计算下列极限:

(1)n n n n )111(lim 2++

→; (2) n

n n πsin lim ∞→.

§5 无穷小量与无穷大量

1. 证明下列各题:

(1))(22

x O x x =- (0→x ); (2) )(sin 2

3

x O x x = (+

→0x ); (3)

)1(11O x =-+ (0→x ); (4) )(1)1(x O nx x n ++=+ (0→x ) ,n 为正整数;

(5) )(223

2

3

x O x x =+ (∞→x ) ; (6)))(())(())((x g O x g O x g O =± (0x x →) (7) ))()(())(())((2121x g x g O x g O x g O =? (0x x →). 2. 运用定理3.12,求下列极限:

(1)x

x x x x cos 1

arctan

lim -∞→; (2) x x x cos 111lim 20--+→. 3. 证明定理3.13.

4. 求下列函数所表示曲线的渐进线:

(1)x y 1

=; (2)x y arctan =; (3)x

x x y 24323-+=.

5.试确定α的值,使下列函数与α

x , 当0→x 时为同阶无穷小量: (1)x x sin 22sin -; (2)

)1(11

x x

--+;

(3)x x sin 1tan 1--+; (4)5

3

2

43x x -.

6. 试确定α的值,使下列函数与α

x , 当∞→x 时为同阶的无穷大量:

(1)5

2

x x +; (2))sin 2(2x x x ++; (3))1()1)(1(2n

x x x +++ .

7.证明:若S 为无上界数集,则存在一递增数列S x n ?}{,使得+∞→n x (∞→n ). 8.证明:若f 为r x →时的无穷大量,而在)(r U 上0)(>≥K x g ,则fg 为r x →时的无穷大量.

9.设)(~)(x g x f (0x x →),证明: ))(()()(x f o x g x f =-或))(()()(x g o x g x f =-.

关于大学高等数学函数极限和连续

关于大学高等数学函数极 限和连续 Last revision on 21 December 2020

第一章 函数、极限和连续 § 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ? ? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D内严格单调增加( ); 若f(x1)>f(x2), 则称f(x)在D内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x∈(-∞,+∞) 周期:T——最小的正数 4.函数的有界性: |f(x)|≤M , x∈(a,b) ㈢基本初等函数 1.常数函数: y=c , (c为常数) 2.幂函数: y=x n , (n为实数) 3.指数函数: y=a x , (a>0、a≠1) 4.对数函数: y=log x ,(a>0、a≠1) a 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x∈X 2.初等函数:

《数学分析》中关于极限概念教学的一点探讨

《数学分析》中关于极限概念教学的一点探讨 作者:张彩霞 来源:《科技创新导报》2011年第12期 摘要:在初学数学分析时,共有二十八种极限概念,这些极限概念是数学分析的基础,学生对各种极限概念的理解程度直接影响到对这门课程学习的成败。教师在教学过程中要引导学生将各种极限概念的定性描述准确地转化为定量描述,并能深刻理解,逐渐灵活运用。 关键词:数学分析极限概念教学 中图分类号:G6 文献标识码:A 文章编号:1674-098X(2011)04(c)-0147-02 《数学分析》课程是大学数学系一门重要的基础课,对这门课程学习的好坏,直接影响到学生思维能力的形成及对后续课程的接受能力。学生从高中刚入大学,学习内容从原来的具体到抽象、从离散到连续、从有限到无限,使学生感到《数学分析》很难,特别是刚开始接触各种极限概念的定量描述,理解起来很吃力.而数学分析这门课程就其自身而言,有着理论上的严密性和前后的连贯性,极限概念是数学分析的基石,学生对各种极限概念的理解程度直接影响到对这门课程学习的成败。本人在教学过程中,深刻体会到关于极限概念教学的重要性。 在初学数学分析时,就有二十八种极限概念(包括正常极限和非正常极限),教师在教学过程中的任务是引导学生将这二十八种极限概念从定性描述准确地转化为定量描述。并使学生对各种极限概念的定量描述能深刻理解,逐渐灵活运用。 1 正常极限概念 1.1 数列极限概念 数列极限的概念是最开始要学习的极限概念,如果学生对这个概念能准确理解的话,对于理解接下来要学习的函数极限概念就容易多了,所以对数列极限概念的教学至关重要。 首先观察数列:: 特征:当无限增大时,无限接近于 此时称该数列收敛于0,或称0为该数列的极限。 “无限增大”和“无限接近”是对数列变化性态的一种形象描述,是定性的说明,而不是定量的描述,这在数学上无法进行严谨地论证。所以我们要定量地描述该数列的特征。

《数学分析》10第三章-函数极限

《数学分析》10第三章-函数极限

第三章 函数极限 引言 在《数学分析》中,所讨论的极限基本上分两 部分,第一部分是“数列的极限”,第二部分是“函数的极限”。二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例。 通过数列极限的学习。应有一种基本的观念:“极 限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”。例如,数列{}n a 这种变量即是研究当n →+∞时,{}n a 的变化趋势。 我们知道,从函数角度看,数列{}n a 可视为一种特殊的函数f ,其定义域为N +,值域是{}n a ,即 :() n f N R n a +→→; 或 (),n f n a n N +=∈或()n f n a =. 研究数列{}n a 的极限,即是研究当自变量n →+∞时, 函数()f n 变化趋势。 此处函数()f n 的自变量n 只能取正整数!因此自变 量的可能变化趋势只有一种,即n →+∞。但是,如果代之正整数变量n 而考虑一般的变量为x R ∈,那么情况又如何呢?具体地说,此时自变量x 可能的变化趋势是否了仅限于x →+∞一种呢? 为此,考虑下列函数:

1,0;()0,0.x f x x ≠?=?=? 类似于数列,可考虑自变量x →+∞时,()f x 的变化趋 势;除此而外,也可考虑自变量x →-∞时,()f x 的变化趋势;还可考虑自变量x →∞时,()f x 的变化趋势;还可考虑自变量x a →时,()f x 的变化趋势, L 由此可见,函数的极限较之数列的极限要复杂得 多,其根源在于自变量性质的变化。但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同。而在各类极限的性质、运算、证明方法上都类似于数列的极限。 下面,我们就依次讨论这些极限。 §1 函数极限的概念 一、x →+∞时函数的极限 1. 引言 设函数定义在[,)a +∞上,类似于数列情形,我们研 究当自变量x →+∞时,对应的函数值能否无限地接近于某个定数A。这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质。 例如 1(),f x x x =无限增大时,()f x 无限地接近于 0;(),g x arctgx x =无限增大时,()f x 无限地接近于2 π;(),h x x x =无限增大时,()f x 与任何数都不能无限地接近。正因为如此,所以才有必要考虑x →+∞时,()f x 的变化趋势。

数学分析中求极限的方法总结

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1: (1 (2(3)若B ≠ ((5)[] 0lim ()lim () n n n x x x x f x f x →→??==A ???? (n 为自然数) i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商. 例1。 求225 lim 3 x x x →+-的极限 解:由定理中的第三式可以知道 ()()22222 lim 55lim 3lim 3x x x x x x x →→→++=-- 22 2 2 2 lim lim5 lim lim3x x x x x x →→→→+= + 2259 23+ ==-- 例2. 求3 x →

33 22 x x →→ = 3 x→ = 1 4 = 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3。已知() 111 1223 1 n x n n =+++ ??-?, 解:观察 11 =1 122 - ? 111 = 2323 - ? 因此得到() 111 12231 n x n n =+++ ??-? 1111111 1 22 11 n n n =-+-+-+- -- 所以 1 lim lim11 n n n x n →∞→∞ ?? =-= ? ?? 2 利用导数的定义求极限 导数的定义:函数f(x) 如果 ()( ) 00 lim lim x x f x x f x y x x ?→?→ +?- ? = ?? 存在, 则此极限值就称函数f(x) () 'f x。 即

数学分析习作-数列极限与函数极限的异同

云南大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 姓名、学号: 任课教师: 时间: 2009-12-26 摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的 重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基 础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用 的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知 识;

在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数: a、数列的定义:数列是指按自然数编了号的一串数:x1,x2,x3,…,x n,…. 通常记作{x n},也可将其看作定义在自然数集N上的函数x n=N (, ), n n f∈故也称之为整标函数。 b、函数的定义:如果对某个范围X内的每一个实数x,可以按照确定的规律f, 得到Y内唯一一个实数y和这个x对应,我们就称f是X上的函数,它在x的数值(称为函数值)是y,记为) f y=。 (x (x f,即) 称x是自变量,y是因变量,又称X是函数的定义域,当x遍取X内的所有实数时,在f的作用下有意义,并且相应的函数值) f的全体所组成的范围叫作 (x

函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一) 数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 >n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβn n n n n n n n n n n 1 95) 423(310 531423222 222. 故,

高等数学函数极限练习题

设 f ( x ) 2 x , 求 f ( x ) 的 定 义 域 及 值 域 。 1 x 设 f ( x) 对一切实数 x 1, x 2 成立 f ( x 1 x 2 ) f ( x 1 ) f ( x 2 ),且 f (0 ) 0, f (1) a , 求 f (0 )及 f ( n).(n 为正整数 ) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 f ( x) 表 示 将 x 之 值 保 留 二 位小数,小数第 3 位起以后所有数全部舍去,试用 表 示 f ( x) 。 I ( x) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 g ( x) 表 示 将 x 依 4 舍 5 入 法 则 保 留 2 位 小 数 , 试 用 I ( x) 表 示 g ( x) 。 在某零售报摊上每份报纸的进价为 0.25 元,而零售价为 0.40 元,并且如果报纸当天未售 出 不 能 退 给 报 社 ,只 好 亏 本 。若 每 天 进 报 纸 t 份 ,而 销 售 量 为 x 份 ,试 将 报 摊 的 利 润 y 表 示 为 x 的函数。 定义函数 I ( x)表示不超过 x 的最大整数叫做 x 的取整函数,试判定 ( x) x I ( x )的周期性。 判定函数 x x ln( 1 x x )的奇偶性。 f ( x ) ( e 1) 设 f ( x ) e x sin x , 问 在 0 , 上 f ( x ) 是 否 有 界 ? 函 数 y f ( x ) 的 图 形 是 图 中 所 示 的 折 线 O BA , 写 出 y f ( x) 的 表 达 式 。 x 2 , 0 x ; x , x ; 设 f ( x) 2 ( x) 0 4 求 f ( x ) 及f ( x ) . x x 4 x x , . , . 2 2 2 4 6 设 f ( x ) 1, x 0 ; ( x ) 2 x 1, 求 f ( x ) 及 f ( x) . 1 , x 0 . e x , x ; 0 , x 0 ; 设 f ( x ) 求 f ( x )的反函数 g ( x ) 及 f ( x ) . x x ( x) x 2, x 0 , . . 1 x ) , ( x ) x , x 0 ; 求 f ( x ) . 设 f ( x )( x x 2 , x 2 0 . 2 x , x 0 ; 求 f f ( x ) 设 f ( x ) x 0. . 2 , 0 , x ; x , x ; ( x ) 求 f ( x) ( x ). 设 f ( x ) x , x 0 . x , x . 1

高等数学中极限问题的解法详析

数学分析中极限的求法 摘要:本文主要归纳了数学分析中求极限的十四种方法, 1:利用两个准则 求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。 关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中 值定理, 定积分, 泰勒展开式, 级数收敛的必要条件. 极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y =f(x)在0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。 1:利用两个准则求极限。 (1)夹逼准则:若一正整数 N,当n>N 时,有n x ≤n y ≤n z 且lim lim ,n n x x x z a →∞→∞==则 有 lim n x y a →∞ = . 利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{ } n y 和 { } n z ,使得n n n y x z ≤≤。 例[1] 222111 ....... 1 2 n x n n n n = + ++++ 求n x 的极限 解:因为n x 单调递减,所以存在最大项和最小项

数学分析习作-数列极限及函数极限的异同

XX大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 、学号: 任课教师: 时间:2009-12-26摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的

重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知识;在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数:

a 、数列的定义:数列是指按自然数编了号的一串数:x 1,x 2,x 3,…,x n ,…. 通常记作{x n },也可将其看作定义在自然数集N 上的函数x n =N n n f ∈),(, 故也称之为整标函数。 b 、函数的定义:如果对某个围X 的每一个实数x ,可以按照确定的规律f ,得到Y 唯 一一个实数y 和这个x 对应,我们就称f 是X 上的函数,它在x 的数值(称为函数值)是y ,记为)(x f ,即)(x f y =。 称x 是自变量,y 是因变量,又称X 是函数的定义域,当x 遍取X 的所有实数 时,在f 的作用下有意义,并且相应的函数值)(x f 的全体所组成的围叫作函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一)数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 > n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβ

高等数学1.3-函数的极限

第三节 函数的极限(一) 教学目的:(1)理解函数极限和左、右极限的概念; (2)理解无穷小概念,掌握其性质 教学重点:函数极限的概念,无穷小概念 教学难点:函数极限的概念的理解与应用 教学方法:讲授法 教学时数:2课时 本节我们将数列极限的概念推广到一元实值函数,然后研究函数极限的性质及其运算法则. 一、函数极限的概念 1.自变量x 趋于无穷大时函数的极限 1)+∞→x 时的极限: +∞→x 读作“x 趋于正无穷大”,表示x 无限增加,0x > . 例:对于x x f 1)(= ,当自变量+∞→x 时,x x f 1 )(=与常数0无限接近 . 复习数列极限的定义:数列{}n x 以a 为极限即a x n n =∞ →lim ? 0>?ε,N ?,N n >时,ε<-a x n . 令()n f x n =,则()?=∞ →a n f n lim 0>?ε,N ?,当N n >时,()ε<-a n f .将n 换成连续变量x ,将a 改记为A ,就可以得到x →+∞时,()A x f →的极限的定义及其数学上的精确描述 . 定义3.1:设函数)(x f 在),(+∞a 内有定义,,A ∈若0>?ε,0X ?>,当x X >时,有()ε<-A x f ,则称数A 为函数()x f 当x →+∞时的极限,记作()lim x f x A →+∞ =, 或()A x f →,(x →+∞) . 几何意义:对任意给定的0ε>,在轴上存在一点X ,使得函数的图象 {(,)|(),(,)}x y y f x x a =∈+∞在X 右边的部分位于平面带形),(),(εε+-?+∞A A X 内 . 2)x →-∞时的极限: x →-∞读作“x 趋于负无穷大”,表示x 无限增加,0x < . 定义:设函数)(x f 在),(a -∞内有定义,,A ∈若0>?ε,0X ?>,当x X <-时,有()ε<-A x f ,则称数A 为函数()x f 当x →-∞时的极限,记作()lim x f x A →-∞ =

数学分析中求极限的方法总结

数学分析中求极限的方 法总结 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

数学分析中求极限的方法总 结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5) [] 0lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 2 lim 3x x →-的极限 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11 =112 2- ? 111=2323-?

因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点0 x 的导数。 例4. 3 利用两个重要极限公式求极限 两个极限公式: (1 (2)1lim 1x x e x →∞ ?? += ??? 但我们经常使用的是它们的变形: (1,

数学分析之函数极限

第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些函数极限的存在性; 3.掌握两个重要极限 和 ,并能熟练运用; 4.理解无穷小(大)量及其阶的概念,会利用它们求某些函数的极限。 教学重(难)点: 本章的重点是函数极限的概念、性质及其计算;难点是海涅定理与柯西准则的应用。 教学时数:14学时 § 1 函数极限概念 (2学时) 教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。 教学要求:使学生逐步建立起函数极限的δε-定义的清晰概念。会应用函数极限的δε-定义证明函数的有关命题,并能运用δε-语言正确表述函数不以某实数为极限等相应陈述。 教学重点:函数极限的概念。 教学难点:函数极限的δε-定义及其应用。 一、 复习:数列极限的概念、性质等 二、 讲授新课: (一) 时函数的极限:

以时和为例引入. 的直观意义. 介绍符号: 的意义, 定义 ( 和 . ) 几何意义介绍邻域 其中为充分大的正数.然后用这些邻域语言介绍几何意义. 例1 验证 例2 验证 例3 验证 证…… 时函数的极限: (二) 由考虑时的极限引入. 定义函数极限的“”定义. 几何意义. 用定义验证函数极限的基本思路.

例4 验证 例5验证 例6 验证 证由= 为使需有 为使需有 于是, 倘限制 , 就有 例7 验证 例8 验证 ( 类似有 (三)单侧极限: 1.定义:单侧极限的定义及记法. 几何意义: 介绍半邻域

然后介绍等的几何意义. 例9 验证 证考虑使的 2.单侧极限与双侧极限的关系: Th 类似有: 例10 证明: 极限不存在. 例11 设函数 在点的某邻域内单调. 若存在, 则有 = §2 函数极限的性质(2学时) 教学目的:使学生掌握函数极限的基本性质。 教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。 教学重点:函数极限的性质及其计算。 教学难点:函数极限性质证明及其应用。 教学方法:讲练结合。 一、组织教学:

数学分析3.4两个重要的极限

第三章函数极限(下载后可解决看不到公式的问题) 4 两个重要的极限 一、证明:=1. 证:∵sinx

∴=e. 注:e的另一种形式:=e. 证:令a=,则当a→0时,→∞,∴==e. 例3:求. 解:==e2. 例4:求. 解:==. 例5:求. 解:<→e(n→∞),又当n>1时有 =≥→e(n→∞,即→0). 由迫敛性定理得:=e.

习题 1、求下列极限: (1);(2);(3);(4);(5);(6);(7);(8);(9);(10). 解:(1)==2; (2)==··=0; (3)== -1; (4)=·=1; (5)=== ====; (6)令arctan x=y,则x=tany,且x→0时,y→0, ∴===1; (7)==1; (8)==·2sin a =··2sin a= sin2a; (9)==8=8; (10)=== 2、求下列极限:

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

高等数学函数极限练习试题

设x x x f += 12)(,求)(x f 的定义域及值域。 ,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。 在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。 的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。)()(x I x x -=? 的奇偶性。 判定函数)1ln()1()(x x e x f x x -+?-=+ [ )设,问在,上是否有界?f x e x f x x ()sin ()=+∞0 函数的图形是图中所示的折线,写出的表达式。y f x OBA y f x ==()() ???≤≤-<≤=????≤≤+<≤=., ; ,.,;, 设64240)(42220)(2 x x x x x x x x x x f [][].及求)()(x f x f ?? [][]设,; ,. ,求及.f x x x x x f x f x ()()()()=-≤>???=-101021??? ???>-≤=????>≤-=. ,; ,., ;,设000)(00)(2 x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ? []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥???1 2002?? []设,; , .求.f x x x x f f x ()()=+<≥???2020 .求.,; ,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ?+? ??≥<+=????≥<=

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

高等数学函数与极限试的题目

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1)(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1 -,x ≠0,1,则f [)(1 x f ]= ( ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( ) A ) lim + →x )x 1 +1(x =1 B ) lim + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e 5.已知9)( lim =-+∞→x x a x a x ,则=a ( )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1( lim ( ) A.1; B.∞; C.2 -e ; D.2 e 7.极限:∞ →x lim 3 32x x +=( ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0-+→=( ) A.0; B.∞; C 2 1; D.2.

高数数学极限总结

函数极限总结 一.极限的产生 极限理论是研究关于极限的严格定义、基本性质和判别准则等问题的基础理论。 极限思想的萌芽可以追溯到古希腊时期和中国战国时期,但极限概念真正意义上的首次出现于沃利斯的《无穷算数》中,牛顿在其《自然哲学的数学原理》一书中明确使用了极限这个词并作了阐述。但迟至18世纪下半叶,达朗贝尔等人才认识到,把微积分建立在极限概念的基础之上,微积分才是完善的,柯西最先给出了极限的描述性定义,之后,魏尔斯特拉斯给出了极限的严格定义(ε-δ和ε-N 定义)。 从此,各种极限问题才有了切实可行的判别准则,使极限理论成为了微积分的工具和基础。[1] 二.极限知识点总结 1. 极限定义 函数极限:设函数f(x)在点的x 0某一去心邻域内有定义,如果存在常数A ,对于任意给定的正数ε(无论它多么小),总存在正数 ,使得当x 满足不等式 时,对应的函数值 都满足不等式: 那么常数A 就叫做函数f(x)?当x →x 0时的极限,记作。[2] 单侧极限:?.左极限:或 ?.右极限:或 定理: 函数当时极限存在的充分必要条件是左、右极限各自存在且相 δ<<|x -x |00ε <-|)(|A x f A x f x x =→)(lim 0 A x f x x =- →)(lim )()(左→→x A x f A x f x x =+ →)(lim )()(右→→x A x f A x f x f A x f x x ==? =+-→)()()(lim 0 )(x f 0x x →

等 即。 2. 极限概念 函数极限可以分成以的极限为例,f(x) 在点x 0以A 为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x 满足不等式 时,对应的函数值f(x)都满足不 等式:|f(x)-A|<ε,那么常数A 就叫做函数f(x)当 x →x 。时的极限。 函数极限具有唯一性、局部有限性、局部保号性[2] 3. 存在准则 有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。 准则Ⅰ.如果数列,及满足以下条件: (1)从某项起,即,当时,有; (2);, 那么数列的极限存在,且 准则Ⅰ'如果(1)当(或)时, (2) ,, 那么存在,且等于。 夹逼定理:(1)当时,有??成立 (2) ?,那么,极限存在,且等于A 【准则Ⅰ,准则Ⅰ′合称夹逼定理】 )()()(lim 0 00x f x f x f x x →+-==0,,,x x x x x →-∞→+∞→∞→0x x →{}n x {}n y {}n z +∈?N n 00n n >n n n z x y ≤≤a y n x =∞→lim a z n x =∞ →lim {}n x a x n x =∞ →lim ),(0r x U x ο ∈M x >||)()()(x h x f x g ≤≤A x g x x x =∞→→)(lim ) (0 A x h x x x o =∞→→)(lim ) ()(lim ) (0 x f x x x ∞→→A ),(x 0r x U ο ?()0x f

数学分析下——二元函数的极限课后习题

第二节二元函数的极限 1、试求下列极限(包括非正常极限): (1);(2); (3);(4); (5);(6)(x+y)sin; (7)x2+y2. 2、讨论下列函数在点(0,0)的重极限与累次极限: (1)f(x,y)=;(2)f(x,y)=(x+y)sinsin; (3)f(x,y)=;(4)f(x,y)= ; (5)f(x,y)=ysin;(6)f(x,y)=; (7)f(x,y)=. 。f(x,y)存在且等于A;2。y在b的某邻域内,有f(x,y)= 3、证明:若1 (y)则 f(x,y)=A. 4、试应用ε—δ定义证明 =0. 5、叙述并证明:二元函数极限的唯一性定理、局部有界性定理与局部保号性定理. 6、试写出下列类型极限的精确定义: (1) f(x,y)=A;(2)f(x,y)=A. 7、试求下列极限: (1);(2)(x2+y2)e-(x+y); (3)(1+)xsiny;(4). 8、试作一函数f(x,y)使当x+,y+时, (1)两个累次极限存在而重极限不存在; (2)两个累次极限不存在而重极限存在; (3)重极限与累次极限都不存在; (4)重极限与一个累次极限存在,另一个累次极限不存在. 9、证明定理16.5及其推论3. 10、设f(x,y)在点(x0,y0)的某邻域U。()上有定义,且满足: (i)在U。()上,对每个y≠y0,存在极限f(x,y)=ψ(y); (ii)在U。()上,关于x一致地存在极限f(x,y)=(x)(即对任意ε>0,存在δ>0,当0<|y-y0|<δ时,对所有的x,只要(x,y)∈U。(),都有|f(x,y)-(x)|<成立). 试证明 f(x,y)=f(x,y).

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

相关主题
文本预览
相关文档 最新文档