当前位置:文档之家› 数值分析第四章数值积分和数值微分习题集答案解析

数值分析第四章数值积分和数值微分习题集答案解析

数值分析第四章数值积分和数值微分习题集答案解析
数值分析第四章数值积分和数值微分习题集答案解析

第四章 数值积分与数值微分

1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:

101210121

12120

(1)()()(0)();

(2)()()(0)();

(3)()[(1)2()3()]/3;

(4)()[(0)()]/2[(0)()];

h

h

h

h h

f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-??

??

解:

求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1)

()()(0)()h

h

f x dx A f h A f A f h --≈-++?

令()1f x =,则

1012h A A A -=++

令()f x x =,则

110A h A h -=-+

令2

()f x x =,则

3

221123

h h A h A -=+ 从而解得

011431313A h A h A h -?=??

?

=??

?=??

令3

()f x x =,则

3()0h

h

h

h

f x dx x dx --==?

?

101()(0)()0A f h A f A f h --++=

令4

()f x x =,则

455

1012()5

2

()(0)()3

h

h

h

h

f x dx x dx h A f h A f A f h h ---==

-++=?

?

故此时,

101()()(0)()h

h

f x dx A f h A f A f h --≠-++?

101()()(0)()h h

f x dx A f h A f A f h --≈-++?

具有3次代数精度。 (2)若

21012()()(0)()h

h

f x dx A f h A f A f h --≈-++?

令()1f x =,则

1014h A A A -=++

令()f x x =,则

110A h A h -=-+

令2

()f x x =,则

3

2211163

h h A h A -=+ 从而解得

1143

8383A h A h A h -?=-??

?

=??

?=??

令3

()f x x =,则

22322()0h

h

h

h

f x dx x dx --==?

?

101()(0)()0A f h A f A f h --++=

令4

()f x x =,则

2245

2264()5

h

h

h h f x dx x dx h --==

??

510116

()(0)()3

A f h A f A f h h --++=

故此时,

21012()()(0)()h

h

f x dx A f h A f A f h --≠-++?

因此,

21012()()(0)()h h

f x dx A f h A f A f h --≈-++?

具有3次代数精度。 (3)若

1

121

()[(1)2()3()]/3f x dx f f x f x -≈-++?

令()1f x =,则

1

121

()2[(1)2()3()]/3f x dx f f x f x -==-++?

令()f x x =,则

120123x x =-++

令2

()f x x =,则

22

122123x x =++

从而解得

12

0.28990.5266x x =-??

=?或120.6899

0.1266x x =??=? 令3

()f x x =,则

1

1

31

1

()0f x dx x dx --==?

?

12[(1)2()3()]/30f f x f x -++≠

1

121

()[(1)2()3()]/3f x dx f f x f x -=-++?

不成立。

因此,原求积公式具有2次代数精度。 (4)若

20

()[(0)()]/2[(0)()]h

f x dx h f f h ah f f h ''≈++-?

令()1f x =,则

(),h

f x dx h =?

2[(0)()]/2[(0)()]h f f h ah f f h h ''++-=

令()f x x =,则

2

022

1

()2

1

[(0)()]/2[(0)()]2

h

h f x dx xdx h h f f h ah f f h h ==''++-=?

?

令2

()f x x =,则

23

0232

1

()3

1

[(0)()]/2[(0)()]22

h

h f x dx x dx h h f f h ah f f h h ah ==''++-=-?

?

故有

33

211232

112

h h ah a =-=

令3

()f x x =,则

3

400

2444

1()4

1111[(0)()]/2[(0)()]12244h

h f x dx x dx h h f f h h f f h h h h

==''++-=-=??

令4

()f x x =,则

4

500

2555

1()5

1111[(0)()]/2[(0)()]12236h

h f x dx x dx h h f f h h f f h h h h

==''++-=-=??

故此时,

2

1()[(0)()]/2[(0)()],12

h

f x dx h f f h h f f h ''≠++

-?

因此,

2

1()[(0)()]/2[(0)()]12

h

f x dx h f f h h f f h ''≈++

-?

具有3次代数精度。

2.分别用梯形公式和辛普森公式计算下列积分:

1

2

01

2

101

(1),8;4(1)

(2),10;

(3),4;

(4),6;

x x

dx n x e dx n x

n n ?-=+-===?

??

解:

2

1(1)8,0,1,,()84x

n a b h f x x =====

+ 复化梯形公式为

7

81

[()2()()]0.111402k k h

T f a f x f b ==++=∑

复化辛普森公式为

7781012

[()4()2()()]0.111576k k k k h

S f a f x f x f b +===+++=∑∑

1

2

1(1)

(2)10,0,1,,()10x e n a b h f x x

--====

= 复化梯形公式为

9

101

[()2()()] 1.391482k k h

T f a f x f b ==++=∑

复化辛普森公式为

99101012

[()4()2()()] 1.454716k k k k h

S f a f x f x f b +===+++=∑∑

(3)4,1,9,2,()n a b h f x =====

复化梯形公式为

3

41

[()2()()]17.227742k k h

T f a f x f b ==++=∑

复化辛普森公式为

33

41012

[()4()2()()]17.32222

6(4)6,0,,,()6

36

k k k k h

S f a f x f x f b n a b h f x π

π

+===+++====

=

=∑∑

复化梯形公式为

5

61

[()2()()] 1.035622k k h

T f a f x f b ==++=∑

复化辛普森公式为

5561012

[()4()2()()] 1.035776k k k k h

S f a f x f x f b +===+++=∑∑

3。直接验证柯特斯教材公式(2。4)具有5交代数精度。

证明:

柯特斯公式为

01234()[7()32()12()32()7()]90

b

a

b a

f x dx f x f x f x f x f x -=

++++?

令()1f x =,则

01234()90

[7()32()12()32()7()]90

b

a

b a f x dx b a

f x f x f x f x f x b a -=

-++++=-?

令()f x x =,则

22

22012341()()2

1

[7()32()12()32()7()]()902b

b a a

f x dx xdx b a b a f x f x f x f x f x b a ==--++++=-??

令2

()f x x =,则

23333012341()()3

1

[7()32()12()32()7()]()903b

b a a

f x dx x dx b a b a f x f x f x f x f x b a ==--++++=-??

令3

()f x x =,则

344

44012341()()4

1

[7()32()12()32()7()]()904b

b a a

f x dx x dx b a b a f x f x f x f x f x b a ==--++++=-??

令4

()f x x =,则

45555012341()()5

1

[7()32()12()32()7()]()905b

b a a

f x dx x dx b a b a f x f x f x f x f x b a ==--++++=-??

令5

()f x x =,则

56666012341()()6

1

[7()32()12()32()7()]()906b

b a a

f x dx x dx b a b a f x f x f x f x f x b a ==--++++=-??

令6

()f x x =,则

012340

()[7()32()12()32()7()]90

h

b a

f x dx f x f x f x f x f x -≠

++++?

因此,该柯特斯公式具有5次代数精度。 4。用辛普森公式求积分1

x e dx -?

并估计误差。

解:

辛普森公式为

[()4()()]62

b a a b

S f a f f b -+=

++ 此时,

0,1,(),x a b f x e -===

从而有

1

121

(14)0.632336

S e e --=++=

误差为

4(4)

04()()()1802

11

0.00035,(0,1)1802

b a b a R f f e ηη--=-

≤??=∈

5。推导下列三种矩形求积公式:

223()

()()()();2()

()()()();2()

()()()();

224b

a b

a b

a

f f x dx b a f a b a f f x dx b a f b b a a b f f x dx b a f b a ηηη'=-+

-'=---''+=-+-???

证明:

(1)()()()(),(,)f x f a f x a a b ηη'=+-∈

两边同时在[,]a b 上积分,得

()()()()()b

b

a

a

f x dx b a f a f x a dx η'=-+-?

?

2

()

()()()()2

(2)

()()()(),(,)

b

a

f f x dx b a f a b a f x f b f b x a b ηηη'=-+

-'=--∈?

两边同时在[,]a b 上积分,得

()()()()()b

b

a

a

f x dx b a f a f b x dx η'=---?

?

22

()

()()()()2

()(3)

()()()()(),(,)

22222

b

a

f f x dx b a f b b a a b a b a b f a b f x f f x x a b ηηη'=--

-''++++'=+-+-∈?

两连边同时在[,]a b 上积分,得

2

()()()(

)()()()22222

b

b b a

a a a

b a b a b f a b f x dx b a f f x dx x dx η''++++'=-+-+-??? 即

3()

()()()();224

b a

a b f f x dx b a f b a η''+=-+-?

6。若用复化梯形公式计算积分1

x I e dx =?

,问区间[0,1]应人多少等分才能使截断误差不超

51

102

-??若改用复化辛普森公式,要达到同样精度区间[0,1]应分多少等分? 解:

采用复化梯形公式时,余项为

2

()(),(,)12

n b a R f h f a b ηη-''=-

1

0x I e dx =?

故(),(),0, 1.x

x

f x e f x e a b ''====

221()()1212n e R f h f h η''∴=

≤ 若5

1()102n R f -≤?,则

256

10h e

-≤?

当对区间[0,1]进行等分时,

1,h n

=

故有

212.85n ≥

= 因此,将区间213等分时可以满足误差要求 采用复化辛普森公式时,余项为

4(4)

()()(),(,)1802

n b a h R f f a b ηη-=-

∈ 又

(),x f x e =

(4)4(4)4

(),

1()|()|28802880x n f x e e R f h f h

η∴=∴=-≤ 若51

()102

n R f -≤

?,则 451440

10h e

-≤

? 当对区间[0,1]进行等分时

1n h

=

故有

1

54

1440(10) 3.71n e

≥?=

因此,将区间8等分时可以满足误差要求。

7。如果()0f x ''>,证明用梯形公式计算积分()b

a I f x dx =?所得结果比准确值I 大,并说

明其几何意义。

解:采用梯形公式计算积分时,余项为

3()(),[,]12

T f R b a a b ηη''=--∈

()0f x ''>且b a >

0T R ∴<

1T R T =-

I T ∴<

即计算值比准确值大。

其几何意义为,()0f x ''>为下凸函数,梯形面积大于曲边梯形面积。 8。用龙贝格求积方法计算下列积分,使误差不超过5

10-

.

1

20

3

(2)sin (3).

x

e dx

x xdx π

-??

解:

1

(1)x

I e dx -=

因此

20

(2)sin I x xdx π

=?

因此

3

(3)I =?

因此

9。用2,3n =的高斯-勒让德公式计算积分

3

1

sin .x e xdx ?

解:

3

1

sin .x I e xdx =?

[1,3],x ∈令2t x =-,则[1,1]t ∈-

用2n =的高斯—勒让德公式计算积分

0.5555556[(0.7745967)(0.7745967)]0.8888889(0)

10.9484

I f f f ≈?-++?≈

用3n =的高斯—勒让德公式计算积分

0.3478548[(0.8611363)(0.8611363)]0.6521452[(0.3399810)(0.3399810)]10.95014

I f f f f ≈?-++?-+≈ 10 地球卫星轨道是一个椭圆,椭圆周长的计算公式是

,S a θ=

这是a 是椭圆的半径轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,

H 为远地点距离,R=6371(km )为地球半径,则

(2)/2,()/2.a R H h c H h =++=-

我国第一颗地球卫星近地点距离h=439(km),远地点距离H=2384(km )。试求卫星轨道的周长。 解:

6371,439,2384R h H ===

从而有。

(2)/27782.5

()/2972.54a R H h c H h S a θ

=++==-==

1.564646

48708()

I S km ≈≈

即人造卫星轨道的周长为48708km 11。证明等式 3

5

2

4

sin

3!5!n n

n

n

π

πππ=-

+

-

试依据sin()(3,6,12)n n n

π

=

的值,用外推算法求π的近似值。

若()sin

,f n n n

π

=

又35

11sin 3!5!

x x x x =-+-

∴此函数的泰勒展式为

353

5

2

4

()sin

11[()()]3!5!3!5!f n n n

n n n n

n n π

ππππππ==-+-

=-

+

-

()k n T π≈

当3n =时, sin 2.598076n n

π

= 当6n =时, sin

3n n

π

=

当12n =时, sin 3.105829n n

π

=

由外推法可得

故 3.14158π≈

12。用下列方法计算积分

3

1

dy

y

?

,并比较结果。 (1)龙贝格方法;

(2)三点及五点高斯公式;

(3)将积分区间分为四等分,用复化两点高斯公式。 解

3

1

dy I y

=?

(1)采用龙贝格方法可得

故有 1.098613I ≈ (2)采用高斯公式时

3

1

dy I y

=?

此时[1,3],y ∈

令,x y z =-则[1,1],x ∈-

1

11,2

1

(),

2

I dx x f x x -=+=+?

利用三点高斯公式,则

0.5555556[(0.7745967)(0.7745967)]0.8888889(0)

1.098039

I f f f =?-++?≈

利用五点高斯公式,则

0.2369239[(0.9061798)(0.9061798)]

0.4786287[(0.5384693)(0.5384693)]0.5688889(0)1.098609

I f f f f f ≈?-++?-++?≈ (3)采用复化两点高斯公式 将区间[1,3]四等分,得

12341.52 2.531

1.52

2.5I I I I I dy dy dy dy y y y

y =+++=+++?

??? 作变换5

4

x y +=

,则 1

1111,5

1

(),

5

(0.5773503)(0.5773503)0.4054054I dx x f x x I f f -=+=+≈-+≈?

作变换7

4

x y +=

,则 1

2121,71

(),

7

(0.5773503)(0.5773503)0.2876712I dx x f x x I f f -=+=+≈-+≈?

作变换9

4

x y +=

,则 1

3131,9

1

(),

9

(0.5773503)(0.5773503)0.2231405I dx x f x x I f f -=+=+≈-+≈?

作变换11

4

x y +=

,则 1

4141

,11

1

(),

11

(0.5773503)(0.5773503)0.1823204I dx x f x x I f f -=+=+≈-+≈?

因此,有

1.098538I ≈

13.用三点公式和积分公式求2

1

()(1)f x x =

+在 1.0,1.1x =,和1.2处的导数值,并估计误

差。()f x 的值由下表给出:

2

1

()(1)

f x x =

+ 由带余项的三点求导公式可知

2

00122

1022

20121()[3()4()()]()

231()[()()]()

261()[()4()3()]()

23

h f x f x f x f x f h h f x f x f x f h h f x f x f x f x f h ξξξ''''=-+-+''''=-+-''''=-++ 又

012()0.2500,()0.2268,()0.2066,f x f x f x ===

001210220121

()[3()4()()]0.24721

()[()()]0.21721

()[()4()3()]0.187

2f x f x f x f x h

f x f x f x h f x f x f x f x h

'∴≈-+-='≈

-+=-'=-+=- 又

2

1

()(1)

f x x =

+ 5

24

()(1)f x x -'''∴=

+

[1.0,1.2]x ∈

()0.75f ξ'''∴≤

故误差分别为

2

3

02

312

3

2()() 2.5103()() 1.25106()() 2.5103

h R x f h R x f h R x f ξξξ---'''=≤?'''=≤?'''=≤?

利用数值积分求导, 设()()x f x ?'=

1

1()()()k k

x k k x f x f x x dx ?++=+?

由梯形求积公式得

1

1()[()()]2

k k

x k k x h x dx x x ???++=+?

从而有

11()()[()()]2

k k k k h

f x f x x x ??++=++

011012212()()[()()]

2

()()[()()]

x x f x f x h

x x f x f x h

????+=-+=-

又1

1

11()()()k k x k k x f x f x x dx ?+-+-=+?

1

1

11()[()()]k k x k k x x dx h x x ???+--+=+?

从而有

1111()()[()()]k k k k f x f x h x x ??+--+=++

故02201

()()[()()]x x f x f x h

??+=- 即

01120

2()()0.464()()0.404()()0.434

x x x x x x ??????+=-??

+=-??+=-? 解方程组可得

012

()0.247

()0.217()0.187x x x ???=-??

=-??=-?

数值分析常微分方程的数值解法

《计算机数学基础》数值部分第五单元辅导 14 常微分方程的数值解法 一.重点内容 1. 欧拉公式: )心知1)a 儿+1 =儿 + hfg ,儿) m 1、 伙=0丄2,…川一 1) I 无=x Q +kh 局部截断误差是0(*)。 2. 改进欧拉公式: 预报一校正公式: 预报值 _v*+1 =儿+ hf (x k ,儿) - h - 校正值 y M = y k +-[f (x kt y k ) + /(x A+1, y M )] 即 儿+1 =儿+ £ "(忑'儿)+心+「儿+ hfg ,儿))] 或表成平均的形式: 儿=儿+ hfg ,儿) '儿=儿+"(无+】,儿) +K ) 改进欧拉法的局部截断误差是0(2) 3. 龙格一库塔法 二阶龙格一库塔法的局部截断误差是0(爪) 三阶龙格一库塔法的局部截断误差是0(护) 四阶龙格F 塔法公式:儿计=儿+ 2(匕+ 2心+ 2? + ?) 四阶龙格一库塔法的局部截断误差是0(爪)。 二实例 y' = — y — xv f2(0 < x < 0.6) 例1用欧拉法解初值问题{ ' ? -取步长/匸02计算过程保留 b (o )= 1 4位小数。 解/i=0.2. f (x )= —y —xy 2<,首先建立欧拉迭代格式 y*+i =儿+ hf g,y k ) = y k -hy k -hx k y ; =0.2 儿(4 - x k y k )(k = 0,1,2) K 2=f(x n +^h, yk+-hK\)t gg+舟人,>'n +y/?A3);

当k=0, xi=0.2 时,已知x()=0,y()=l,有 y(0?2)今i=0?2X l(4-0X 1)=0.8000 当k=\. M=0?4时,已知“=0?2」尸0?8,有 y(0?4)今2=0.2 X 0.8X(4-0.2X0.8)=0.614 4 当k=2, xs=0.6 时,已知x2=0.4,y2=0.6144,有 y(0?6)今3=0.2 X0.6144X (4-0.4 X 0.4613)=0.8000 「J, ,2 ?_ ZX 例2用欧拉预报一校正公式求解初值问题\y + v +V sinx=,取步长/?=0.2,计算 .y ⑴=1 y(0.2),y(0.4)的近似值,计算过程保留5位小数。 解步长力=0.2,此时/(x,y)=—y—fsiiu 欧拉预报一校正公式为: 预报值兀I = y k + hfg y k) - I J_ 校正值)3=儿+尹(忑,儿)+ fg,儿+1)] 有迭代格式] 预报值儿+] = y k 4-h(-y k -y; sin x k) =y k (0?8-0?2儿sin x k) < h 、—— 2 校止值y如]=儿 +尸[(一片一力sinxJ + LN+i-yl sin.v I+1)] ——?> =儿(°?9一0?1儿sin心)一0?1(儿+| +y;j sin心利) 、"M=0.別=1」)=1 时,Xj=1.2> 有 儿=yo(°?8-O?2yo sinx0) = 1 x (0.8-02x lsin 1) = 0.63171 y(1.2) ?= lx(0.9-0.1xlxsinl)-0.1(0.63171+0.631712sinl.2) = 0.71549 当 T xi=1.2, yi=0.71549 时,x2=1.4,有 y2 =儿(0.8-0?2儿sinXj) = 0.71549x(0.8-02x0.71549sinl.2) =0.47697 y(14) z y2 = 0.71549x(0.9-0.1x0.71549xsin 1.2)-0.1(0.47697+ 0.476972 sin 1.4) =0.52608 V = 8 — 3y 例3写出用四阶龙格一库塔法求解初值问题^ ‘的计算公式,取步长/匸0.2计 b(0) = 2 算y(0.4)的近似值。讣算过程保留4位小数。 解此处.心,刃=8 —3”四阶龙格一库塔法公式为 艰=儿 + % + 2? + 2勺 + ?) 1 h, y n+ y/?A3): 本例计算公式为: 0 2 呱严儿+三(32?+2?+心

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

数值分析第4章答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

最新应用数值分析第四版第一章课后作业答案

第一章 1、 在下列各对数中,x 是精确值 a 的近似值。 3 .14,7/100)4(143 .0,7/1)2(0031 .0,1000/)3(1 .3,)1(========x a x a x a x a ππ 试估计x 的绝对误差和相对误差。 解:(1)0132.00416 .01.3≈= ≈-= -=a e e x a e r π (2)0011.00143 .0143.07/1≈= ≈-=-=a e e x a e r (3)0127.000004 .00031.01000/≈= ≈-=-=a e e x a e r π (4)001.00143 .03.147/100≈= ≈-=-=a e e x a e r 2. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。 解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2 x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2 x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10 -4 x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5 由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σn i=1∣?f/?x i ∣δx i e r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1 x 2δx 3] =0.34468/88.269275 =0.0039049 e r (μ2)≦1/∣μ2∣[x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3 / x 1δx 4] =0.501937 3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。 解:设=()u f x , ()()()()() ()||||||||||()||()|| | |()||()||||r r r x e u df x e x df x e x e u u dx u dx u x df x x df x x e x x dx u dx u δ= ≈==≤ ()||10.2 (())| |()||ln ln ln r r r r df x x x x f x x x dx u x x x x δδδδ==??==

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

数值分析第四章数值积分与数值微分习题答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

应用数值分析(第四版)课后习题答案第9章

第九章习题解答 1.已知矩阵????? ???????=??????????=4114114114,30103212321A A 试用格希哥林圆盘确定A 的特征值的界。 解:,24)2(, 33)1(≤-≤-λλ 2.设T x x x x ),...,,(321=是矩阵A 属于特征值λ的特征向量,若i x x =∞, 试证明特征值的估计式∑≠=≤-n i j j ij ii a a 1λ. 解:,x Ax λ = ∞∞∞∞≤==x A x x Ax i λλ 由 i x x =∞ 得 i n in i ii i x x a x a x a λ=++++ 11 j n j i i ij i ii x a x a ∑≠==-1)(λ j n j i i ij j n j i i ij i ii x a x a x a ∑∑≠=≠=≤=-11λ ∑∑≠=≠=≤≤-n j i i ij i j n j i i ij ii a x x a a 11λ 3.用幂法求矩阵 ???? ??????=1634310232A 的强特征值和特征向量,迭代初值取T y )1,1,1()0(=。 解:y=[1,1,1]';z=y;d=0; A=[2,3,2;10,3,4;3,6,1]; for k=1:100 y=A*z; [c,i]=max(abs(y)); if y(i)<0,c=-c;end

z=y/c if abs(c-d)<0.0001,break; end d=c end 11.0000 =c ,0.7500) 1.0000 0.5000(z 10.9999 =c ,0.7500) 1.0000 0.5000(z 11.0003 =c ,0.7500) 1.0000 0.5000(z 10.9989=c ,0.7500) 1.0000 0.5000(z 11.0040 =c ,0.7498) 1.0000 0.5000(z 10.9859=c ,0.7506) 1.0000 0.5001(z 11.04981 =c ,0.7478) 1.0000 0.4995(z 10.8316 =c ,0.7574) 1.0000 0.5020(z 11.5839 =c ,) 0.7260 1.0000 0.4928 (z 9.4706 =c ,0.8261) 1.0000 0.5280(z 17 = c ,0.5882) 1.0000 0.4118(z 11T (11)10T (10)9T (9)8T (8)7T (7)6T (6)5T (5)4T (4)3T (3)2T (2)1T (1)=========== 强特征值为11,特征向量为T 0.7500) 1.0000 0.5000(。 4.用反幂法求矩阵???? ??????=111132126A 最接近6的特征值和特征向量,迭代初值取 T y )1,1,1()0(=。 解:y=[1,1,1]';z=y;d=0; A=[6,2,1;2,3,1;1,1,1]; for k=1:100 AA=A-6*eye(3); y=AA\z; [c,i]=max(abs(y)); if y(i)<0,c=-c;end z=y/c; if abs(c-d)<0.0001,break; end d=c end d=6+1/c

数值分析试题及答案

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111l x = C .() 00l x =1,()111 l x = D . () 00l x =1,()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得 分 评卷人 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间 内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 9和29 2. ()() 0101 f x f x x x -- 3. 1 8 4. ()()120 f f < 5. ()12 00.1 1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+???? =??L 得 分 评卷人 三、计算题(每题15分,共60分) 1. 已知函数 21 1y x = +的一组数据: 求分 段线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

数值分析第四版习题及答案

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

数值分析试题及答案

数值分析试题及答案 一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有()和()位有效数字. A.4和3 B.3和2 C.3和4 D.4和4 2. 已知求积公式,则=() A. B.C.D. 3. 通过点的拉格朗日插值基函数满足() A.=0,B.=0, C.=1,D.=1, 4. 设求方程的根的牛顿法收敛,则它具有()敛速。 A.超线性B.平方C.线性D.三次 5. 用列主元消元法解线性方程组作第一次消元后得到的第3个方程(). A.B. C.D. 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得分评卷 人 二、填空题(每小题3分,共15分) 1. 设, 则, . 2. 一阶均差 3. 已知时,科茨系数,那么 4. 因为方程在区间上满足,所以在区间内有根。 5. 取步长,用欧拉法解初值问题的计算公式.填空题答案

1. 9和 2. 3. 4. 5. 得分评卷 人 三、计算题(每题15分,共60分) 1. 已知函数的一组数据:求分段线性插值函数,并计算的近似值. 计算题1.答案 1. 解, , 所以分段线性插值函数为 2. 已知线性方程组 (1)写出雅可比迭代公式、高斯-塞德尔迭代公式; (2)对于初始值,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算(保留小数点后五位数字). 计算题2.答案 1.解原方程组同解变形为 雅可比迭代公式为 高斯-塞德尔迭代法公式 用雅可比迭代公式得 用高斯-塞德尔迭代公式得 3. 用牛顿法求方程在之间的近似根 (1)请指出为什么初值应取2? (2)请用牛顿法求出近似根,精确到0.0001. 计算题3.答案

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

数值分析第四版习题及答案

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****1 2 3 4 5 1.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234 ,,,x x x x 均为第3题所给 的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设0 28,Y =按递推公式 11 783100 n n Y Y -=( n=1,2,…) 计算到100Y .若取78327.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字78327.982). 8. 当N 充分大时,怎样求2 11N dx x +∞ +?? 9. 正方形的边长大约为100㎝,应怎样测量才能

使其面积误差不超过1㎝2 ? 10. 设212 S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1 101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 21)f =,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 63 22)70 2. (21)(322)--++ 13. 2 ()ln(1)f x x x =-,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 2 2 ln(1)ln(1)x x x x -=-+ 计算,求对数时误差有多大? 14. 试用消元法解方程组 {101012121010;2. x x x x +=+=假定只用 三位数计算,问结果是否可靠? 15. 已知三角形面积 1 sin ,2 s ab c = 其中c 为弧 度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证明面积的误差s ?满足 .s a b c s a b c ????≤++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

常微分方程的数值解

实验4 常微分方程的数值解 【实验目的】 1.掌握用MATLAB软件求微分方程初值问题数值解的方法; 2.通过实例用微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格-库塔方法的基本思想和计算公式,及稳定性等概念。 【实验内容】 题3 小型火箭初始重量为1400kg,其中包括1080kg燃料。火箭竖直向上发射时燃料燃烧率为18kg/s,由此产生32000N的推力,火箭引擎在燃料用尽时关闭。设火箭上升时空气阻力正比于速度的平方,比例系数为0.4kg/m,求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时的高度和加速度,并画出高度、速度、加速度随时间变化的图形。 模型及其求解 火箭在上升的过程可分为两个阶段,在全过程中假设重力加速度始终保持不变,g=9.8m/s2。 在第一个过程中,火箭通过燃烧燃料产生向上的推力,同时它还受到自身重力(包括自重和该时刻剩余燃料的重量)以及与速度平方成正比的空气阻力的作用,根据牛顿第二定律,三个力的合力产生加速度,方向竖直向上。因此有如下二式: a=dv/dt=(F-mg-0.4v2)/m=(32000-0.4v2)/(1400-18t)-9.8 dh/dt=v 又知初始时刻t=0,v=0,h=0。记x(1)=h,x(2)=v,根据MATLAB 可以求出0到60秒内火箭的速度、高度、加速度随时间的变化情况。程序如下: function [ dx ] = rocket( t,x ) a=[(32000-0.4*x(2)^2)/(1400-18*t)]-9.8; dx=[x(2);a]; end ts=0:1:60;

x0=[0,0]; [t,x]=ode45(@rocket,ts,x0); h=x(:,1); v=x(:,2); a=[(32000-0.4*(v.^2))./(1400-18*t)]-9.8; [t,h,v,a]; 数据如下: t h v a 0 0 0 13.06 1.00 6.57 13.19 13.30 2.00 26.44 26.58 1 3.45 3.00 59.76 40.06 13.50 4.00 106.57 53.54 13.43 5.00 16 6.79 66.89 13.26 6.00 240.27 80.02 12.99 7.00 326.72 92.83 12.61 8.00 425.79 105.22 12.15 9.00 536.99 117.11 11.62 10.00 659.80 128.43 11.02 11.00 793.63 139.14 10.38 12.00 937.85 149.18 9.71 13.00 1091.79 158.55 9.02 14.00 1254.71 167.23 8.33 15.00 1425.93 175.22 7.65 16.00 1604.83 182.55 6.99 17.00 1790.78 189.22 6.36 18.00 1983.13 195.27 5.76 19.00 2181.24 200.75 5.21 20.00 2384.47 205.70 4.69 21.00 2592.36 210.18 4.22 22.00 2804.52 214.19 3.79 23.00 3020.56 217.79 3.41 24.00 3240.08 221.01 3.07 25.00 3462.65 223.92 2.77 26.00 3687.88 226.56 2.50 27.00 3915.58 228.97 2.27

数值计算第四章课后习题答案

()()()()()()()()()收敛较慢 代入上式得:将解: 收敛速度次并分析该迭代公式的迭代的根求方程 取试用迭代公式∴≠<<*'*+++-='∴+*+*=*∴=+?+?? ? ??===++= =∴++= ==-++=++=++014.01022220||10 2202613381013202132020 132010212010220. 2.0 20102110220 4.1222 222212012123021x x x x x x x x x x x x x x x x x x x x x x x x k k k k k k k ?????? )))()()()[]()()[])49998.0cos 215.0cos 2 1,022,00cos 2 102 12,0210,2,0.cos 2 10sin 2 11,cos 2 113cos 2 12; 1.0cos 2 12.4120101==== ==->-=<-=-=>+='-===-+x x x x x x x f f x x x f x x f x x x f x x x x k k 则 取上有一个根在所以上在为单调递增函数故则令解: 位有效数字求出这些根,精确到用迭代公式分析该方程有几个根给定方程ππππ

500 .0105.0102.0||3412≈*?

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b );

9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为 ( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为 ( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。 15、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 0.4268 , 用辛卜生公式计算求得的近似值为 0.4309 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 16、 求解方程组???=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ? ????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭代格式的迭代矩阵的谱半径)(M ρ= 121 。

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

相关主题
文本预览
相关文档 最新文档