当前位置:文档之家› 模板列管式换热器课程设计

模板列管式换热器课程设计

模板列管式换热器课程设计
模板列管式换热器课程设计

——大学《化工原理》列管式换热器

课程设计说明书

学院:

班级:

学号:

姓名:

指导教师:

时间:年月日

目录

一、化工原理课程设计任务书 (2)

二、确定设计方案 (3)

1.选择换热器的类型

2.管程安排

三、确定物性数据 (4)

四、估算传热面积 (5)

1.热流量

2.平均传热温差

3.传热面积

4.冷却水用量

五、工艺结构尺寸 (6)

1.管径和管内流速

2.管程数和传热管数

3.传热温差校平均正及壳程数

4.传热管排列和分程方法

5.壳体内径

6.折流挡板 (7)

7.其他附件

8.接管

六、换热器核算 (8)

1.热流量核算

2.壁温计算 (10)

3.换热器内流体的流动阻力

七、结构设计 (13)

1.浮头管板及钩圈法兰结构设计

2.管箱法兰和管箱侧壳体法兰设计

3.管箱结构设计

4.固定端管板结构设计

5.外头盖法兰、外头盖侧法兰设计............14

6.外头盖结构设计

7.垫片选择

8.鞍座选用及安装位置确定

9.折流板布置

10.说明

八、强度设计计算 (15)

1.筒体壁厚计算

2.外头盖短节、封头厚度计算

3.管箱短节、封头厚度计算.................164.管箱短节开孔补强校核. (17)

5.壳体接管开孔补强校核

6.固定管板计算 (18)

7.浮头管板及钩圈.................19 8.无折边球封头计算 9.浮头法兰计算.. (20)

九、参考文献 (20)

一、化工原理课程设计任务书

某生产过程的流程如图3-20所示。反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。已知混合气体的流量为231801kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。

已知:

混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg =℃ 热导率10.0279w m λ=℃ 粘度51 1.510Pa s μ-=?

循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg =K 热导率10.624w m λ=K 粘度310.74210Pa s μ-=?

二、确定设计方案

1. 选择换热器的类型

两流体温的变化情况:热流体进口温度110℃ 出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。 2. 管程安排

从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循

环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。

三、确定物性数据

定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度

的平均值。故壳程混和气体的定性温度为

T=

2

60

110+ =85℃ 管程流体的定性温度为

t=

342

29

39=+℃

根据定性温度,分别查取壳程和管程流体的有关物性数据。对混合气体来说,

最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。

混和气体在85℃下的有关物性数据如下(来自生产中的实测值): 密度

31/90m kg =ρ

定压比热容 1p c =3.297kj/kg ?℃ 热导率 1λ=0.0279w/m ?℃

粘度 1

μ=1.5×10-5

Pa ?s

循环水在34℃ 下的物性数据:

密度 1ρ=994.3㎏/m 3 定压比热容

1p c =4.174kj/kg ?K

热导率

1λ=0.624w/m ?K

粘度 1

μ=0.742×10-3

Pa ?s

四、估算传热面积

1.热流量

Q 1=1

11t c m p ?

=231801×3.297×(110-60)=3.82×107kj/h =10614.554kw

2.平均传热温差

先按照纯逆流计算,得 m t ?=

K

3.4829

6039110ln

)

2960()39110(=-----

3.传热面积

由于壳程气体的压力较高,故可选取较大的K 值。假设K=320W/(㎡k)则估算的传热面积为

Ap=2176.6863

.4832010614554

m t K Q m =?=?

4.冷却水用量

m =i

pi t c Q ?1

=h kg s kg /2.915486/3.2541010174.410614554

3==??

五、工艺结构尺寸

1.管径和管内流速 选用Φ25×2.5较高级冷拔传热管(碳钢),取管内流速u 1=1.3m/s 。 2.管程数和传热管数 可依据传热管内径和流速确定单程传热管数 Ns=

6273

.102.0785.0)

3.9943600/(2.9154864

2

2

≈???=

u

d V

i π

按单程管计算,所需的传热管长度为 L=

m n d A s

o p

14627

025.014.376

.686≈??=

π

按单程管设计,传热管过长,宜采用多管程结构。根据本设计实际情况,采用非标设计,现取传热管长l=7m ,则该换热器的管程数为 Np=

27

14==l L 传热管总根数 Nt=627×2=1254

3.传热温差校平均正及壳程数 平均温差校正系数: R=

529

3960

110t t T -T 1221=--=-

P=

124.029

11029

39t T t t 1112=--=--

按单壳程,双管程结构,查【化学工业出版社《化工原理》(第三版)上册】:图5-19得:

96.0=?t ε

平均传热温差

46.448.30.96=?=?=??塑m t m t t εK

由于平均传热温差校正系数大于0.8,同时壳程流体流量较大,故取单壳程合适。

4.传热管排列和分程方法

采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。见【化学工业出版社《化工原理》(第三版)上册】:图6-13。 取管心距t=1.25d 0,则 t=1.25×25=31.25≈32㎜

隔板中心到离其最.近一排管中心距离: S=t/2+6=32/2+6=22㎜ 各程相邻管的管心距为44㎜。

管数的分程方法,每程各有传热管627根,其前后管程中隔板设置和介质的流通顺序按【化学工业出版社《化工原理》(第三版)上册】:图6-8选取。

5.壳体内径 采用多管程结构,进行壳体内径估算。取管板利用率η=0.75 ,则壳体内径 为:

D=1.05t

mm N T 137457.0/12543205.1/=?=η

按卷制壳体的进级档,可取D=1400mm

筒体直径校核计算:

壳体的内径i D 应等于或大于(在浮头式换热器中)管板的直径,所以管板直径 的计算可以决定壳体的内径,其表达式为:

e 21n t D c i +-=)(

管子按正三角形排列:3912541.1N 1.1n t c =?==

取e=1.20d =1.2?25=30mm

∴i D =32 ?(39-1)+2 ?30 =1276mm 按壳体直径标准系列尺寸进行圆整:

i D =1400mm

6.折流挡板 采用圆缺形折流挡板,去折流板圆缺高度为壳体内径的25%,则切去的圆缺高度为

h=0.25×1400=350m ,故可取h=350mm

取折流板间距B=0.3D ,则 B=0.3×1400=420mm ,可取B 为450mm 。 折流板数目1414.51450

7000

1N B ≈=-=-=

折流板间距传热管长

折流板圆缺面水平装配,见图:【化学工业出版社《化工原理》(第三版)上册】:图6-9。

7.其他附件

拉杆数量与直径选取,本换热器壳体内径为1400mm ,故其拉杆直径为Ф16拉杆数量8,其中长度5950mm 的六根,5500mm 的两根。 壳程入口处,应设置防冲挡板。 8.接管

壳程流体进出口接管:取接管内气体流速为u 1=10m/s ,则接管内径为

302.010

14.3)

903600/(23180144V

D 1=???=

=

πμ

圆整后可取管内径为300mm 。

管程流体进出口接管:取接管内液体流速

u 2=2.5m/s ,则接管内径为

361.05

.214.3)

3.9943600/(2.91548642=???=

D

圆整后去管内径为360mm

六、换热器核算

1. 热流量核算

(1)壳程表面传热系数 用克恩法计算,见式【化学工业出版社《化工原理》(第三版) 上册】:式(5-72a ):

14

.031

55

.00

1

0)(

Pr Re 36

.0w

e

d μμλα= 当量直径,依【化学工业出版社《化工原理》(第三版)上册】:式(5-73a )得

e d =m d d t o

o 02.0]423[

42

2=-ππ 壳程流通截面积:

1378.0)32

25

1(1400450)1(S =-?=-

=t d BD o o 壳程流体流速及其雷诺数分别为

s m u o /2.51378

.0)

903600/(231801=?=

624000105.190

2.502.0u d Re 5

0e =???=

=-1

μρ

o

普朗特数

773.10279

.0105.110297.3c Pr 53p -???==λμ

粘度校正

1)(

14

.0≈w

μμ

K m w o ?=???=23155

.0/7.935773.162400002

.00279.036.0α

(2)管内表面传热系数:

4.08.0Pr Re 023

.0i

i

i d α=

管程流体流通截面积:

1969.02

1254

02.0785.02=?

?=i S 管程流体流速:

s m u i /3.11969

.0)

3.9943600/(2.915486=?=

雷诺数: 34841

)10742.0/(3.9943.102.0Re 3≈???=- 普朗特数:

96.4624

.010742.010174.4Pr 3

3=???=

K /585896.43484102

.0624

.0023.024.08.0?=???

=m w i α

(3)污垢热阻和管壁热阻:

【化学工业出版社《化工原理》(第三版)上册】:表5-5取: 管外侧污垢热阻 w k m R o /0004.02?= 管内侧污垢热阻w k m R i /0006.02?=

管壁热阻按【化学工业出版社《化工原理》(第三版)上册】:图5-4查得碳钢在该条 件下的热导率为50w/(m ·K)。所以w k m R w /00005.050

0025

.02?== (4) 传热系数e K 有:

K

/4027.93510004.05.222500005.020250006.020*******

)1

(

12?≈?

?

? ??

++?+?+?=

++++=

m w R d d R d d R d d K o

o m o w i o i i i o e αα

(5)传热面积裕度: 计算传热面积Ac :

23

17.5463

.4840210554.10614m t K Q A m e c =??=?=

该换热器的实际传热面积为p

21.68912547025.014.3m lN d A T o p =???==π

该换热器的面积裕度为

%267

.5467

.5461.689=-=

-=

c

c

p A A A H

传热面积裕度合适,该换热器能够完成生产任务。

2.壁温计算

因为管壁很薄,而且壁热阻很小,故管壁温度可按式n

c

n

m

c w

w t T t αααα1

1

++

=

计算。由于该

换热器用循环水冷却,冬季操作时,循环水的进口温度将会降低。为确保可靠,取循环冷却水进口温度为15℃,出口温度为39℃计算传热管壁温。另外,由于传热管内侧污垢热阻较大,会使传热管壁温升高,降低了壳体和传热管壁温之差。但在操作初期,污垢热阻较小,壳体和传热管间壁温差可能较大。计算中,应该按最不利的操作条件考虑,因此,取两侧污垢热阻为零计算传热管壁温。于是有:

n

c

n

m

c w

w t T t αααα1

1

++

=

式中液体的平均温度m t 和气体的平均温度分别计算为

=m t 0.4×39+0.6×15=24.6℃ =m T (110+60)/2=85℃ ==i c αα5858w/㎡·K ==o h αα935.7w/㎡·K

传热管平均壁温

3.32=w t ℃

壳体壁温,可近似取为壳程流体的平均温度,即T=85℃。壳体壁温和传热管壁温之差为 7.523.3285=-=?t ℃。

该温差较大,故需要设温度补偿装置。由于换热器壳程压力较大,因此,需选用浮头式换热器较为适宜。

3.换热器内流体的流动阻力 (1)管程流体阻力

s p s r i t F N N p p p )(?+?=?

1=s N , 2=Np , 2

2

u d l p i i

i ρλ=? 由Re=34841,传热管对粗糙度0.01,查莫狄图:【化学工业出版社《化工原理》(第三版)上册】:图1-27得04.0=i λ,流速

i u =1.3m/s,

3/3.994m kg =ρ, 所以:

Pa p i 57.1176223

.9943.102.0704.02=???

=? Pa u p r 55.25202

3.13.994322

2

=??==?ρζ

Pa p .4428495.12)5.525207.511762(1=??+=?

管程流体阻力在允许范围之内。

(2)壳程阻力: 按式计算

s s i o s N F p p p )(?+?=? , 1=s N , 1=s F

流体流经管束的阻力

2

)

1(2

o B TC o o u N N Ff p ρ+=?

F=0.5

2419.05880005228

.0=?=-o f

3912541.11.15

.05

.0=?==T

TC N N

14=B N s m /.25u 0=

=?o p 0.5×0.2419×39×(14+1)×2

.25902

?=86095.6Pa

流体流过折流板缺口的阻力

2

)25.3(2

o

B i u D B N p ρ-=? , B=0.45m , D=1.4m 486722

.2590)4.145.025.3(142

=???-?=?i p Pa

总阻力

=?s p 86095.6+48672=1.35×510Pa

由于该换热器壳程流体的操作压力较高,所以壳程流体的阻力也比较适宜。

(3)换热器主要结构尺寸和计算结果见下表: 参数 管程 壳程 流率

915486.2 231801 进/出口温度/℃ 29/39 110/60 压力/MPa

0.4 6.9 物性

定性温度/℃ 34 85 密度/(kg/m 3)

994.3 90 定压比热容/[kj/(kg ?K )] 4.174 3.297 粘度/(Pa ?s ) 0.742×3

10- 1.5×5

10- 热导率(W/m ?K ) 0.624 0.0279 普朗特数

4.96 1.773 设备结构参数

形式 浮头式 壳程数 1 壳体内径/㎜ 1400 台数 1 管径/㎜ Φ25×2.5 管心距/㎜ 32 管长/㎜ 7000 管子排列 正三角形排列 管数目/根 1254 折流板数/个 14 传热面积/㎡ 689.1 折流板间距/㎜ 450 管程数

2 材质

碳钢

主要计算结果 管程 壳程 流速/(m/s )

1.3 5.2 表面传热系数/[W/(㎡?K )] 5858 935.7 污垢热阻/(㎡?K/W ) 0.0006 0.0004 阻力/ MPa 0.04285

0.135 热流量/KW 10615 传热温差/K

48.3 传热系数/[W/(㎡?K )] 400 裕度/% 26%

七、结构设计

1、浮头管板及钩圈法兰结构设计:

由于换热器的内径已确定,采用标准内径决、定浮头管板外径及各结构尺寸(参照《化工单元过程及设备课程设计》(化学工业出版社出版):第四章第一节及GB151)。结构尺寸为:

浮头管板外径:mm 1390521400b 2D D 1i 0=?-=-=

浮头管板外径与壳体内径间隙:取mm 5b 1=(见《化工单元过程及设备课程设计》(化学工业出版社出版):表4-16);

垫片宽度:按《化工单元过程及设备课程设计》(化学工业出版社出版):表4-16: 取 mm 16b n = 浮头管板密封面宽度:

.5mm 175.1b b n 2=+= 浮头法兰和钩圈的内直径:

mm 135816521400b b 2D D n 1i fi =+?-=+-=)()( 浮头法兰和钩圈的外直径:

1480mm 80400180D D i 0f =+=+= 外头盖内径:

1500mm 1004001100D D i =+=+= 螺栓中心圆直径:

mm 14352/14801390/2D D D f00b =+=+=)()(

其余尺寸见《化工单元过程及设备课程设计》(化学工业出版社出版):图4-50。

2、管箱法兰和管箱侧壳体法兰设计:

依工艺条件:管侧压力和壳侧压力中的高值,以及设计温度和公称直径Φ1400,按JB4703-92长颈对焊法标准选取。并确定各结构尺寸,见《化工单元过程及设备课程设计》(化学工业出版社出版):图4-50(a )所示。

3、管箱结构设计:

选用B 型封头管箱,因换热器直径较大,且为二管程,其管箱最小长度可不按流道

面积计算,只考虑相邻焊缝间距离计算:

mm 1297503503771002320h h d C 2h L 21g f "gmin =+++?+=++++≥ 取管箱长为1300mm ,管道分程隔板厚度取14mm ,管箱结构如《化工单元过程及设备课程设计》(化学工业出版社出版):图4-50(a )所示。

4、固定端管板结构设计:

依据选定的管箱法兰,管箱侧法兰的结构尺寸,确定固定端管板最大外径为:D=1506mm ;结构如《化工单元过程及设备课程设计》(化学工业出版社出版):图4-50(b )所示。

5、外头盖法兰、外头盖侧法兰设计:

依工艺条件,壳侧压力、温度及公称直径mm 1500D N =;按JB4703-93长颈法兰 标准选取并确定尺寸。 6、外头盖结构设计:

外头盖结构如《化工单元过程及设备课程设计》(化学工业出版社出版):图4-51所示。轴向尺寸由浮动管板、钩圈法兰及钩圈强度计算确定厚度后决定,见《化工单元过程及设备课程设计》(化学工业出版社出版):图4-51。

7、垫片选择:

a.管箱垫片:

根据管程操作条件(循环水压力a 0.4Mp ,温度34C 。

)选石棉橡胶垫。结构尺寸如《化工单元过程及设备课程设计》(化学工业出版社出版):图4-39(b )所示:

1400mm.d 1508mm;D ==

b.外头盖垫片:

根据壳程操作条件(混合气体,压力a 6.9Mp ,温度85C 。

,选缠绕式垫片, 垫片:mm 1500mm 1609?(JB4705-92) 缠绕式垫片。 c.浮头垫片:

根据管壳程压差,混合气体温度确定垫片为金属包石棉垫,以浮动管 板结构确定垫片结构尺寸为Φ1390mm mm 1358Φ?;厚度为3mm;JB4706-92金属 包垫片。

8、鞍座选用及安装位置确定:

鞍座选用JB/T4712-92鞍座BI1400-F/S ; 安装尺寸如《化工单元过程及设备课程设计》(化学工业出版社出版):图4-44所示 其中:mm 40206700.60.6L 0L 6700L B =?===, 取:mm 1350L L 4000mm L C '

C B =≈=,

9、折流板布置:

折流板尺寸:

外径:mm 1392814008D D N =-=-=;厚度取8mm

前端折流板距管板的距离至少为850mm ;结构调整为900mm ;见《化工单元过程 及设备课程设计》(化学工业出版社出版):图4-50(c ) 后端折流板距浮动管板的距离至少为950mm ;

实际折流板间距B=450mm ,计算折流板数为12块。 10、说明:

在设计中由于给定压力等数及公称直径超出JB4730-92,长颈对焊法兰标准范围,对壳体及外头盖法兰无法直接选取标准值,只能进行非标设计强度计算。

八、强度设计计算

1、筒体壁厚计算:由工艺设计给定设计温度85C 。

,设计压力等于工作压力为6.9M a p ,

选低合金结构钢板16MnR 卷制,查得材料85C 。

时许用应力[]a t

Mp 163=σ;《过程设备设

计》(第二版)化学工业出版社。

取焊缝系数φ=0.85,腐蚀裕度2C =1mm ;对16MnR 钢板的负偏差1C =0

根据《过程设备设计》(第二版)化学工业出版社:公式(4-13)内压圆筒计算厚度公式:

δ =

[]c

t

i

c P 2D P -φσ 从而: 计算厚度:δ=

5.735.9

65.8016321400

.96≈-???mm

设计厚度:5.73615.735C 2d =+=+=δδmm

名义厚度:mm 5.736C 1d n =+=δδ 圆整取mm 38n =δ 有效厚度:mm 37C C 21n e =--=δδ 水压试验压力:[][]a

t

c

T Mp 25.681.965.21P 5.21P =??==δδ

所选材料的屈服应力a s Mp 325=σ 水式实验应力校核:a e e i T t .5Mp 16737

237140025.682D P =?+?=+=

)()(δδσ

a s a Mp 25.62483255.80.90.90.5Mp 167=??=<φσ水压强度满足

气密试验压力:a c T .9Mp 6P P ==

2、外头盖短节、封头厚度计算:

外头盖内径Φ=1500mm ,其余参数同筒体:

短节计算壁厚:

S=[]c

t

i

c P 2D P -φσ=mm 3.38.965.8016321500.96≈-??? 短节设计壁厚:

9.3mm 318.33C S S 2d =+=+= 短节名义厚度:

39.3mm C S S 1d n =+= 圆整取n S =40mm 有效厚度:

9mm 3C C S S 21n e =--= 压力试验应力校核:

a e e i T t .2Mp 17039

239150025.682D P =?+?=+=

)()(δδσ 压力试验满足试验要求。

外头盖封头选用标准椭圆封头: 封头计算壁厚: S=[]c

t

i

c P 5.02D P -φσ=.822mm 37.96.505.8016321500.96≈?-??? 封头名义厚度:

38.822mm 137.822C C S S 21n =+=++= 取名义厚度与短节等厚: 40mm S n = 3、管箱短节、封头厚度计算:

由工艺设计结构设计参数为:设计温度为34C 。

,设计压力为0.4M a p ,选用16MnR 钢板,材料许用应力[]a t

Mp 170=σ,屈服强度a s Mp 345=σ,取焊缝系数φ=0.85,腐蚀裕

度2C =2mm

计算厚度: S=[]c t

i

c P 2D P -φσ= 1.94mm .4

05.80170214000.4≈-??? 设计厚度:

3.94mm 2

4.91C S S 2d =+=+= 名义厚度:

3.94mm C S S 1d n =+= 结合考虑开孔补强及结构需要取8mm S n = 有效厚度:

6mm 2-8C C S S 21n e ==--= 压力试验强度在这种情况下一定满足。 管箱封头取用厚度与短节相同,取8mm S n =

4、 管箱短节开孔补强校核

开孔补强采用等面积补强法,接管尺寸为9377?Φ,考虑实际情况选20号热轧碳素钢管[]a t

Mp 130=σ,9377?Φ,2C =1mm

接管计算壁厚: []8.60.4

05.801302377

.40P 2D P S c t

i c t =+???=+=φσmm 接管有效壁厚:

6.65mm 0.159-1-9C C S S 21nt et =?=--= 开孔直径:

.7mm 3635.32292377C 2d d i =?+?-=+= 接管有效补强高度:

B=2d=2?363.7=727.4mm 接管外侧有效补强高度:

.2mm 579.7363dS h nt 1=?== 需补强面积:A=d ?S=363.7?1.94=705.62

mm 可以作为补强的面积:

2e 1.6mm 14764.916.7363.4727S )-(S d -B A =-?-==)()()( 2r et 12.3mm 522170/1308.605.66.2572f S t -S 2h A =?-??==)()( 2

21.6mm 705A .91998.3522.61476A A =>=+=+ 该接管补强的强度足够,不需另设补强结构。 5、壳体接管开孔补强校核:

开孔校核采用等面积补强法。选取20号热轧碳素钢管12325?Φ 钢管许用应力:[]a t

Mp 137=σ, 2C =1mm

接管计算壁厚:

[]mm 8.976.911372325

6.9P 2D P S c

t

i c t =+???=+=φσ 接管有效壁厚:

9.2mm 0.1512-1-12C C S S 21nt et =?=--= 开孔直径:

06.6mm 35.101212122325C 2d d i =?+?+?-=+=)( 接管有效补强厚度:

B=2d=2?306.6=613.2mm 接管外侧有效补强高度:

60.7mm 1206.63dS h nt 1=?== 需要补强面积:

A=d ?δ=306.6?35.75=10960.952

mm 可以作为补强的面积为:

2

e 1383.25mm 5.7353706.63613.2)-(d -B A =-?-==)()()(δδ 2r et 12119.4mm 170/1378.97.2960.72

f S

t -S 2h A =?-??==)()( 尚需另加补强的面积为:

2

21410458.3mm 119.4-383.25-10960.95A -A -A A ==> 补强圈厚度: .3mm 36325

2.61

3.3

10458d B A S 04k -=-=

实际补强圈与筒体等厚:mm 38S k = ; 则另行补强面积: 20K 4.6m m

10951325.261338)d -(B S A =-?==)( 2

2

42110960.95m m A mm 5.211454.610951.41195.2383A A A =>=++=++ 同时计算焊缝面积3A 后,该开孔补强的强度的足够。 6、固定管板计算:

固定管板厚度设计采用BS 法。假设管板厚度b=100mm 。 总换热管数量 n=1254; 一根管壁金属横截面积为:

2222

i 20.6mm 17620254

d d 4

a =-?=-=)()

(π

π

开孔温度削弱系数(双程):.50=μ

两管板间换热管有效长度(除掉两管板厚)L 取6850mm 计算系数K : 5.814100

6850.50.6176125410014002.31Lb na b D 2

.31K i 2=?????=?=μ K=3.855

接管板筒支考虑,依K 值查《化工单元过程及设备课程设计》化学工业出版社:图4-45, 图4-46,图4-47得: 2.8G -0.65,G ,9.2G 321=== 管板最大应力:

a 2t s a t Mp 4.5707.605.60.40.961.4633.201G P P P 1=???

???-?--?=??

????--=

)()()(λβσ 或a 3t s a t .2Mp 10107.60.82.40.961.4633.201G P P P 1-=?????

??--?=??????--=

)()(λβσ 筒体内径截面积: 222i mm 153860014004

D 4

A =?=

=

π

π

管板上管孔所占的总截面积: 2220mm 8.615555254

1254d 4

n

C =?=

?=π

π 系数.601538600.8

6155551538600A C -A ≈-==λ 系数.240.8

6155551538600176.6

1254C -A a n ≈-?=?=

β 壳程压力:

a s .9Mp 6P = 管程压力:

a l 0.4Mp P = 当量压差:

a l s a Mp 404.64.201.40.961P -P P =+?-=+=)()(β 管板采用16Mn 锻:[]a r Mp 150=σ 换热管采用10号碳系钢:[]a t Mp 112=σ 管板管子程度校核:

[]a a rmax Mp 225150.51.51.6Mp 219=?=<=σσ

模拟电子技术课程设计报告模板

模拟电子技术课程设计报告 设计课题: 数字电子钟的设计 姓名: 学院: 专业: 电子信息工程 班级: 学号: 指导教师:

目录 1.设计的任务与要求 (1) 2.方案论证与选择 (1) 3.单元电路的设计和元器件的选择 (5) 3.1 六进制电路的设计 (6) 3.2 十进制计数电路的设计 (6) 3.3 六十进制计数电路的设计 (6) 3.4双六十进制计数电路的设计 (7) 3.5时间计数电路的设计 (8) 3.6 校正电路的设计 (8) 3.7 时钟电路的设计 (8) 3.8 整点报时电路的设计 (9) 3.9 主要元器件的选择 (10) 4.系统电路总图及原理 (10) 5.经验体会 (10) 参考文献 (11) 附录A:系统电路原理图 (12) 附录B:元器件清单 (13)

数字电子钟的设计 1. 设计的任务与要求 数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。 因此,我们此次设计数字钟就是为了了解数字钟的原理,从而学会制作数字钟。而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。且由于数字钟包括组合逻辑电路和时叙电路。通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法。 1.1设计指标 1. 时间以12小时为一个周期; 2. 显示时、分、秒; 3. 具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间; 4. 计时过程具有报时功能,当时间到达整点前10秒进行蜂鸣报时; 5. 为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。1.2 设计要求 1. 画出电路原理图(或仿真电路图); 2. 元器件及参数选择; 3. 编写设计报告写出设计的全过程,附上有关资料和图纸,有心得体会。 2. 方案论证与选择 2.1 数字钟的系统方案 数字钟实际上是一个对标准频率(1H Z)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1H Z时间信号必须做到准确稳定。通常使用石英晶体振荡器电路构成数字钟。

机械原理课程设计,详细.

目录 一、设计题目 (2) 1、牛头刨床的机构运动简图 (2) 2、工作原理 (2) 二、原始数据 (3) 三、机构的设计与分析 (4) 1、齿轮机构的设计 (4) 2、凸轮机构的设计 (10) 3、导杆机构的设计 (16) 四、设计过程中用到的方法和原理 (26) 1、设计过程中用到的方法 (26) 2、设计过程中用到的原理 (26) 五、参考文献 (27) 六、小结 (28)

一、设计题目 ——牛头刨床传动机构 1、牛头刨床的机构运动简图 2、工作原理 牛头刨床是对工件进行平面切削加工的一种通用机床,其传动部分由电动机经 带传动和齿轮传动z 0—z 1 、z 1 、—z 2 ,带动曲柄2作等角速回转。刨床工作时,由导 杆机构2、3、4、5、6带动刨刀作往复运动,刨头右行时,刨刀进行切削,称为工 作行程;刨头左行时,刨刀不进行切削,称为空回行程,刨刀每切削完一次,利用 空回行程的时间,固结在曲柄O 2 轴上的凸轮7通过四杆机构8、9、10与棘轮11和棘爪12带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。

二、原始数据 设计数据分别见表1、表2、表3. 表1 齿轮机构设计数据 设计内容齿轮机构设计 符号n01d01 d02 z0 z1 z1’m01 m1’2n2 单位r/min mm mm mm mm r/min 方案Ⅰ1440 100 300 20 40 10 3.5 8 60 方案Ⅱ1440 100 300 16 40 13 4 10 64 方案Ⅲ1440 100 300 19 50 15 3.5 8 72 表2 凸轮机构设计数据 设计内容凸轮机构设计 符号L O2O4 L O4D φ[α]δ02 δ0 δ01δ0/ r0 r r 摆杆运动规 律单位mm mm °°°°°°mm mm 方案Ⅰ150 130 18 45 205 75 10 70 85 15 等加速等减 速 方案Ⅱ165 150 15 45 210 70 10 70 95 20 余弦加速度方案Ⅲ160 140 18 45 215 75 0 70 90 18 正弦加速度方案Ⅳ155 135 20 45 205 70 10 75 90 20 五次多项式 表3 导杆机构设计数据 设计内容导杆机构尺度综合和运动分析 符号K n2L O2A H L BC 单位r/min mm 方案Ⅰ 1.46 60 110 320 0.25L O3B 方案Ⅱ 1.39 64 90 290 0.3L O3B 方案Ⅲ 1.42 72 115 410 0.36L O3B 表4 机构位置分配表 位置号位置 组 号 学生号 A B C D 1 1 3 6 8/ 10 2 5 8 10 7/ 1/ 4 7 8 10 1 5 7/ 9 12 2 1/ 4 7 8 11 1 3 6 8/ 11 2 5 7/ 9 11 1/ 3 6 8/ 11 3 2 5 7/ 9 12 1/ 4 7 9 12 1 3 6 8/ 12 2 4 7 8 10

露天采矿课程设计计算说明书

1. 总论 1.1 课程设计概述 1.1.1 课程设计题目 露天矿开采境界设计 1.1.2 设计初始条件 1. 最终台阶高10m,最终台阶坡面角65°,露天矿采矿场最小底宽16m,最终边帮角51°,经济合理剥采比6m3/ m3。 2. 开拓运输道路采用Ⅲ级矿山公路,道路路基宽度8m。 1.1.3 要求完成的主要任务 1. 设计任务:确定露天矿开采境界深度,底部位置及周界,确定露天采场最终边帮结构,并绘制开采境界平面图,露天矿开拓运输道路定线,绘制露天矿开采终了平面图,绘制露天矿开采境界横纵面图,编写课程设计计算说明书。 2. 设计成果:课程设计计算说明书一份,相似形开采境界设计横断面图(4#图纸3张),开采境界深度设计计算横断面图、纵断面图(4#图纸3张,3#图纸1张),露天矿开采境界平面图(3#图纸一张),露天矿开采终了平面图(3#图纸一张),露天矿开采境界断面图(4#图纸3张),露天矿开采境界纵断面图(3#图纸一张) 1.2 设计依据和技术经济原则 1.2.1 设计依据 ⑴课程设计任务书 ⑵矿床地质资料 a. 地质地形(平面)图1张(3#图纸) b. 地质横断面图3张(4#图纸) 1.2.2 设计技术经济原则 ⑴露天矿开采境界按境界剥采比不大于经济合理剥采比的准则设计 ⑵露天矿采用公路运输开拓,开拓系统路线按Ⅲ级矿用运输公路设计 1.3 设计方案和设计内容简述

设计方案:矿床拟用露天开采,绘定其1:1000的地址剖面图三张及相应矿区地形图一张,设台阶高度为10m,从+900往上、下划分,露天采场最小底宽16m,采用汽车运输,路基宽8m,最小转弯半径15m,连接平台40m,限制坡度10%,最终的台阶坡面角65°,稳定的最终帮坡角小于等于51°,经济合理剥采比6m3/ m3 设计内容: 1. 用横坡面面积比法计算各水平境界剥采比,绘成曲线,按n

列管式换热器课程设计

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

《电子设计基础》课程设计报告模板

课程设计报告册格式(本页不打印) 一、设计任务(四号、黑体,不加粗) 例如:十字路口交通灯控制系统设计(正文全部为宋体、小四,下同) 二、设计要求 教师下达的设计基本要求…… 三、设计内容 1.设计思想(宋体、小四、加粗) 对题目的理解,计划采用的实现方法 2.设计说明 对设计方案的简单综述,建议增加方案对比内容; 3.系统方案或者电路结构框图 包含对各个单元电路的详细分析; 保留详细的参数计算、卡诺图、状态转换图等设计内容; 4.设计方案 一个模块电路结构对应一个仿真波形和一段文字说明; 仿真及分析时,请捕捉关键点的波形数据,以确保设计结果具有良好的说服力; 5.电路原理总图 A4纸整张打印,打印出图纸边框 绘制原理图时,应注意加入电源、信号输入与输出端口; 芯片内部具有多个相同功能单元时,注意充分利用; 元器件在电路原理图中的布局应规范、紧凑; 6.PCB分层打印图 按照相同比例分别打印出顶层、底层、丝印层,并尽可能打印在同一张A4纸中; 在保证布通率的前提下,尽量选择较大的线宽、安全间距; 四、设计总结 个人真实的总结体会,不低于100字。 五、参考资料 包括网站、网页的资料;从网站上下载资料过多将被视为抄袭,一定要强调自己的设计思路,创新理念。 注: ——课程设计论文用A4纸打印,文中的计量单位、制图、制表、公式、缩略词和符号应遵循国家的有关规定。 ——实验报告采用A4纸双面打印,实验报告的内容全部手写,所有的打印图请牢固粘贴在实验报告上,不要使用QQ截图等低像素的截图工具。 ——封面与任务书双面打印在同一张A4纸;

1、设计题目 数字钟 2、设计内容和要求: 数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用。 设计要求采用中小规模集成器件完成具有以下技术指标的数字钟: (1)显示时、分、秒; (2)24小时制计数; (3)具有校时功能,可以对小时和分单独校时,对分校时的时候,停止分向小时进位。校时时钟源可以手动输入或借用电路中的时钟; (4)具有正点报时功能; (5)要求计时准确、稳定。 3、设计目的 (1)进一步熟悉各种进制计数器的功能及使用; (2)掌握译码器显示电路的应用; (3)熟悉集成芯片的内部结构及应用; (4)掌握数字电子钟的组成与工作原理; (5)提升对实际电路的设计和调试能力。 4、设计原理 数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路,一般由秒信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路等单元组成。秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,在精度要求不高的时候,可选用555定时器构成的振荡器加分频器来实现,但精度要求高的电路中多采用晶体振荡器电路加分频器实现,在本设计中要求精度高,所以选用的是后者。将标准秒脉冲信号送入“秒计数器”,该计数器采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。“分计数器”也采用60进制计数器,每累计60分,发出一个“时脉冲”信号,该信号将被送到“时计数器”。“时计数器”可采用12进制也可采用24进制计数器,本实验采用24进制。最终完成一天的计数过程。译码显示电路将“时、分、秒”计数器的输出状态经七段显示译码器译码,通过六位LED 显示器显示出来。整点报时电路是根据计时系统的输出状态产生一个脉冲信号,去触发音频发生器实现报时。校时电路是对“时、分”显示数字进行校正和调整。其数字电子钟系统框图如图1所示。

机械原理课程设计参考答辩题

. 机械原理课程设计答辩参考选题 1.机构选型? 2.何谓何谓机构尺度综合? 3.平面连杆机构的主要性能和特点是什么? 4.何谓机构运动循环图? 5.机构运动循环图有哪几种类型? 6.在机构组合中什么是串联式组合? 7.在机构组合中什么是并联式组合? 8.在机构组合中什么是反馈式组合? 9.平面机构的构件常见的运动形式有哪几种? 10.举例说明有哪些机构可以实现将转动变成直线移动。 11.举例说明有哪些机构可以实现将转动变成摆动。 12.举例说明有哪些机构能满足机构的急回运动特性? 13.对于外凸凸轮,为了保证有正常的实际轮廓,其滚子半径选取有什么要求? 14.要求一对外啮合直齿圆柱齿轮传动的中心距略

小于标准中心距,并保持无侧隙啮合,此时应采用什么传动? 15.在凸轮机构中,从动件按等加速、等减速运动规律运动时,有何冲击? .. . 16.蜗杆的标准参数在何处,蜗轮的标准参数在何处? 17.平面四杆机构共有几个瞬心,其中有几个绝对瞬心、几个相对瞬心? 18.在平面机构中,每个高副引入几个约束、每个低副引入几个约束?; 19.当两构件组成转动副时,其瞬心位于何处?当构件组成移动副时,其瞬心位于何处? 20.机械效率可以表达为什么值的比值? 21.标准渐开线斜齿圆柱齿轮传动的正确啮合条件是什么? 22.标准渐开线直齿圆柱齿轮的基本参数是哪几个? 23.从机械效率的观点看,机械的自锁条件是什么?

24.试叙机构与运动链的区别? 25.试计算所设计机构的自由度。 26.试说明所设计机构的工作原理。 27.四杆机构同样可以将旋转运动的输入变为直线运动的输出,为什么有的摇摆式输送机要采用6杆机构? 28.机械原理课程设计的任务一般可分为几个部分? 29.机械原理课程设计的方法原则上可分为几类? 30.机械运动方案设计主要包括哪些内容? 31.执行机构按运动方式及功能可分为几类? .. . 32.做匀速转动的机构常用的有哪几种? 33.做非匀速转动的机构常用的有哪几种? 34.分析凸轮机构在本设计中所起的作用。 35.做往复移动的机构常用的有哪几种? 36.平面连杆机构的主要性能和特点是什么? 37.凸轮机构的主要性能和特点是什么? 38齿轮机构的主要性能和特点是什么? 39.分析影响行程速比系数K值大小的几何尺寸。

开采课程设计实例

(如果确实搜集不到资料,可参考这个课程设计,但必须按自己地学号计算,完全照抄不及格)(只有封面可以打印,按这个格式,填上班级、后再打印,其它必须手写) 山西煤炭职工联合大学 课程设计 (说明书) 题目:号煤层十三采区设计水平15二矿390 专业班级:2010(业余) 学生姓名: 指导教师:张世登 二○一一年十二月三十日 目录

第一章矿井简况与采区地质特征2 第一节矿井简况2 第二节采区地质特征5 第二章采区储量、生产能力及服务年限7 第一节采区储量7 第二节采区生产能力及服务年限7 第三章采煤方法及采区巷道布置9 第一节采煤方法地选择9 第二节采区巷道布置9 第四章回采工艺设计13 第一节回采工艺过程13 第二节循环工作组织15 参考文献18 致谢19 第一章矿井简况与采区地质特征 第一节矿井简况 一、井田位置与境界 二矿井田位于阳泉矿区东南部,东距阳泉市约5km,其地理坐标为东经113°25′17″~113°33′07″,北纬37°46′44″~37°52′19″. 井田东部为大阳泉井田,西部为西上庄井田,南部与五矿井田相邻,北

部以石太铁路为界,隔桃河与三矿、四矿相望,井田走向长约8km,倾向长约7.8km,2. 62.4186km面积为二、矿井生产能力与服务年限 矿井设计按年工作日按300d计算,每天净提升时间14h,确定二矿设计生产能力为4.35Mt/a. 2005年山西省煤炭工业局以晋煤规发[2005]256号文下发《关于2005年省属煤炭集团公司及地方国有煤炭企业部分生产矿井生产能力核定地批复》,批准国阳二矿地核定能力为7.2Mt/a. 根据2005年底储量估算结果:保有地质储量821.54 Mt,期末可采储量473.91 Mt.按设计生产能力4.35Mt/a,可采储量473.684Mt,取储量备用系数1.4,矿井服务年限为78年.按核定生产能力7.2Mt/a,储量备用系数采用1.4,矿井服务年限为47a. 三、矿井开拓部署 在井田地北部建立工业广场,采用主斜井-副立井-石门大巷开拓方式.现分别为:,个14使用主要井筒. 主斜井(2个):东、西主斜井分别装备钢绳芯胶带提升机、钢丝绳牵引胶带输送机,担负矿井主提升任务; 副立井(2个):装备落地式多绳磨擦轮提升机,担负矿井辅助提升任务;材料斜井(1个):任液压支架等大型材料地提升任务; 专用进风井(4个):桑掌进风井、南山进风井、龙门进风井、1#进风井; 回风井5个:南山回风立井、桑掌回风立井、大南沟回风井(由一号

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

课程设计报告【模板】

模拟电子技术课程设计报告设计题目:直流稳压电源设计 专业电子信息科学与技术 班级电信092 学号 200916022230 学生姓名夏惜 指导教师王瑞 设计时间2010-2011学年上学期 教师评分 2010年月日

昆明理工大学津桥学院模拟电子技术课程设计 目录 1.概述 (2) 1.1直流稳压电源设计目的 (2) 1.2课程设计的组成部分 (2) 2.直流稳压电源设计的内容 (4) 2.1变压电路设计 (4) 2.2整流电路设计 (4) 2.3滤波电路设计 (8) 2.4稳压电路设计 (9) 2.5总电路设计 (10) 3.总结 (12) 3.1所遇到的问题,你是怎样解决这些问题的12 3.3体会收获及建议 (12) 3.4参考资料(书、论文、网络资料) (13) 4.教师评语 (13) 5.成绩 (13)

昆明理工大学津桥学院模拟电子技术课程设计 1.概述 电源是各种电子、电器设备工作的动力,是自动化不可或缺的组成部分,直流稳压电源是应用极为广泛的一种电源。直流稳压电源是常用的电子设备,它能保证在电网电压波动或负载发生变化时,输出稳定的电压。一个低纹波、高精度的稳压源在仪器仪表、工业控制及测量领域中有着重要的实际应用价值。 直流稳压电源通常由变压器、整流电路、滤波电路、稳压控制电路所组成,具有体积小,重量轻,性能稳定可等优点,电压从零起连续可调,可串联或关联使用,直流输出纹波小,稳定度高,稳压稳流自动转换、限流式过短路保护和自动恢复功能,是大专院校、工业企业、科研单位及电子维修人员理想的直流稳压电源。适用于电子仪器设备、电器维修、实验室、电解电镀、测试、测量设备、工厂电器设备配套使用。几乎所有的电子设备都需要有稳压的电压供给,才能使其处于良好的工作状态。家用电器中的电视机、音响、电脑尤其是这样。电网电压时高时低,电子设备本身耗供电造成不稳定因家。解决这个不稳定因素的办法是在电子设备的前端进行稳压。 直流稳压电源广泛应用于国防、科研、大专院校、实验室、工矿企业、电解、电镀、充电设备等的直流供电。 1.1直流稳压电源设计目的 (1)、学习直流稳压电源的设计方法; (2)、研究直流稳压电源的设计方案; (3)、掌握直流稳压电源的稳压系数和内阻测试方法。 1.2课程设计的组成部分 1.2.1 设计原理

机械原理课程设计

机械原理课程设计说明书 设计题目: 指导老师:哈丽毕努 设计者:马忠福 所属院系:新疆大学机械工程学院专业:机械工程及自动化 班级:机械 10-7 班 完成日期: 2014年7月 新疆大学 《机械原理课程设计》任务书

班级: 机械姓名: 马忠福 课程设计题目: 冲压式蜂窝煤成型机 课程设计完成内容: 设计说明书一份(主要包括:运动方案设计、方案的决策与尺度综合、必要的机构运动分析和相关的机构运动简图) 发题日期: 2014 年 6 月 15 日 完成日期: 2014 年 7 月 25 日 指导教师: 哈利比努

目录 一、蜂窝煤的功能和设计要求 (1) 二、工作原理和工艺动作分解 (2) 三、根据工艺动作顺序和协调要求拟定运动循环图 (2) 四、执行机构的选型 (3) 五、机械运动方案的选定和评价 (4) 六、机械传动系统的传动比和变速机构 (5) 七、画出机械运动方案简图 (5) 八、对机械传动系统和执行机构进行尺寸计算 (6) 1、带传动计算: (6) 2、齿轮传动计算 (6) 3、曲柄滑块机构计算 (6) 4、槽轮机构计算 (7) 5、扫屑凸轮计算 (7) 九、机械方案运动简图 (8) 十、参考文献 (9)

一、蜂窝煤的功能和设计要求 冲压式蜂窝煤成型机是我国城镇峰窝煤(通常又称煤饼)生产厂的主要生产设备,这种设备由于具有结构合理、质量可靠、成型性能好、经久而用、维修方便等优点而被广泛采用。 冲压式蜂窝煤成型机的功能是将粉煤加入转盘的模简内,经冲头冲压成峰窝煤。为了实现蜂窝煤冲压成型,冲压式蜂窝煤成型机必须完成五个动作: (1)粉煤加料; (2)冲头将蜂窝煤压制成型; (3)清除冲头和出煤盘的积屑的扫屑运动; (4)将在模简内的冲压后的蜂窝煤脱模; (5)将冲压成型的蜂窝煤输送。 图1.1冲头、脱模盘、扫屑刷、模筒转盘位置示意图 冲压式蜂窝煤成型机的设计要求和参数有: (1)蜂窝煤成型机的生产能力:30次/min; (2)驱动电机:Y180L-8,功率N=111KW;转速n=710r/min; (3)机械运动方案应力求简单; (4)图1.1表示冲头、脱模盘、扫屑刷、模筒转盘的相互位置情况。实际上冲头和脱模盘都与上下移动的滑梁连成一体,当滑梁下冲时将粉煤冲压成蜂窝煤,脱模盘将以压成的蜂窝煤脱模。在滑梁上升过程中扫屑刷将冲头和脱模盘刷除粘着粉煤,模筒转盘上均布了模筒,转盘的间歇机构使加料的模筒进入冲压位置、成型的模筒进入脱模位置、空模筒进入加料位置。 (5)为了改善蜂窝煤冲压成型的质量,希望冲压机构在冲压后有一保压时间。 (6)由于冲头压力较大,希望冲压机构具有增力功能,以增大有效作用,减小原动机的功率。

综合电子系统课程设计报告模板

衡阳师范学院 物理与电子信息科学系 《综合电子系统》 课程设计报告 一号黑体,居中 简易电子称的设计 小二号粗黑体,居中 班级2011级电信1班 组长 成员三号宋体,加粗 指导教师 提交日期2014年6月10 日 《综合电子系统课程设计》成绩评定表 课程设计题目:简易电子秤

第一部分设计任务 1.1 设计题目及要求 (1) 1.2 备选方案设计与比较 (2) 1.2.1 方案一 (3) 第二部分系统硬件平台的设计 2.1 总体设计方案说明 (7) 2.2单片机最小系统 (9) 2.2.1S T C89C52单片机 (10) 2.2.2时钟电路 (11) 2.2.3复位电路 (12) 2.3功能模块二(参照2.2) (13) 2.3.1模块电路及参数计算 (14)

2.3.2工作原理和功能说明 (15) 2.3.3器件说明(含结构图、管脚图、功能表等) (16) 2.4功能模块三(实际名 (17) 2.4.1模块电路及参数计算 (18) 2.4.2工作原理和功能说明 (19) 2.4.3器件说明(含结构图、管脚图、功能表等) (20) 第三部分系统软件的设计与实现 3.1主程序流程图 (21) 3.2子程序一(实际名) (22) 3.3子程序二(实际名) (23) 3.4子程序三(实际名) (24) 3.4电路仿真(实际名) (24) 3.4.1仿真软件简介 (25) 3.4.2仿真电路图 (26) 3.4.3仿真结果(附图) (27) 第四部分安装调试与性能测量 4.1电路安装 (28) (推荐附整机数码照片) 4.2系统软、硬件调试 (29) 6.2.1调试步骤及测量数据 (30) 6.2.2故障分析及处理 (31) 4.3整机性能指标测量(附数据、波形等) (32) 课程设计总结 (33) 参考文献 报告正文的排版: 1. 纸张大小及版心:统一用A4纸(21×29.7)打印,边距设为:上 2.54cm,下2.54cm,左2.2cm,右2.2cm。行距为固定值20磅。 2. 第一级标题用三号粗黑体,(段落设置)段前1行,段后1行, 3. 第二级标题用小三黑体,靠左上下空一行 4. 第三级标题用四号黑体,靠左本身不空行 5. 正文小四号字体,行距为固定值20磅 6. 图题及图中文字用5号宋体 7. 参考文献标题用三号粗黑体,居中上下空一行,参考文献正文为五号宋体

机械原理课程设计说明书

机械原理课程设计说明书设计题目:压床机构设计 自动化院(系)机械制造专业 班级机制0901 学号20092811022 设计者罗昭硕 指导老师赵燕 完成日期2011 年1 月4日

一、压床机构设计要求 1 .压床机构简介及设计数据 1.1压床机构简介 图9—6所示为压床机构简图。其中,六杆机构ABCDEF为其主体机构,电动机经联轴器带动减速器的三对齿轮z1-z2、z3-z4、z5-z6将转速降低,然后带动曲柄1转动,六杆机构使滑块5克服阻力Fr而运动。为了减小主轴的速度波动,在曲轴A上装有飞轮,在曲柄轴的另一端装有供润滑连杆机构各运动副用的油泵凸轮。 1.2设计数据

1.1机构的设计及运动分折 已知:中心距x1、x2、y, 构件3的上下极限角,滑块的冲程H,比值CE /CD、EF/DE,各构件质心S的位置,曲柄转速n1。 要求:设计连杆机构, 作机构运动简图、机构1~2个位置的速度多边形和加速度多边形、滑块的运动线图。以上内容与后面的动态静力分析一起画在l号图纸上。 1.2机构的动态静力分析 已知:各构件的重量G及其对质心轴的转动惯量Js(曲柄1和连杆4的重力和转动惯量(略去不计),阻力线图(图9—7)以及连杆机构设计和运动分析中所得的结果。 要求:确定机构一个位置的各运动副中的反作用力及加于曲柄上的平衡力矩。作图部分亦画在运动分析的图样上。 1.3飞轮设计 已知:机器运转的速度不均匀系数δ.由两态静力分析中所得的平衡力矩Mb;驱动力矩Ma为常数,飞轮安装在曲柄轴A上。 要求:确定飞轮转动惯量J。以上内容作在2号图纸上。 1.4凸轮机构构设计 已知:从动件冲 程H,许用压力角 [α ].推程角δ。,远 休止角δ?,回程角δ', 从动件的运动规律见 表9-5,凸轮与曲柄共 轴。 要求:按[α]确定 凸轮机构的基本尺 寸.求出理论廓 线外凸曲线的最小曲 率半径ρ。选取滚子 半径r,绘制凸轮实际 廓线。以上内容作在 2号图纸上 压床机构设计 二、连杆机构的设计及运动分析

采矿课程设计中国矿业大学

《采矿学》课程设计说明书 学院: 班级: 姓名: 学号: 指导教师: 中国矿业大学 2013年6月

目录 第一章采区巷道布置---------------------------------------------------- 1 第一节采区储量与服务年限 ------------------------------------------- 1 第二节采区内的再划分 ------------------------------------------------- 6 第三节确定采区巷道布置及生产系统 ------------------------------- 8 第四节采区中部车场线路设计 ---------------------------------------12 第二章采煤工艺设计 ----------------------------------------------------21 第一节采煤工艺方式的确定 ------------------------------------------21 第二节工作面合理长度的验证 ---------------------------------------31 第三节采煤工作面循环作业图表的编制 ---------------------------33

第一章采区巷道布置 第一节采区储量与服务年限 ?设计条件和思路: 1、采区生产能力选120万t/a 2、计算采区工业储量,设计可采储量 3、该采区走向长度3600m,倾斜长度1100m 一、工业储量的计算 该采区走向长度3600m,倾斜长度1100m 井田工业储量的计算 γ? S Z L ? ? =M g 式中 Z——矿井工业储量,万t; g L——采区走向长度,m; S——采区倾斜长度,m; M——煤层厚度,m; γ——煤的容重,t/ m3;取值为1.30 该井田包含两层中厚煤层,由于该煤层稳定,地质条件简单,因此取Z g=Z d 上煤层工业储量:Z g=3600×1100×3.5×1.30=1801.8万t 下煤层工业储量:Z g=3960000×2.5×1.30=1287万t 则矿井工业储量为:Z g=1801.8+1287=3088.8万t

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

课程设计报告模板

《软件工程》课程设计报告 课程设计题目: 电子科技大学中山学院计算机学院班级: 组长: 其他成员: 指导教师: 实验地点: 完成起止日期:1-16

目录 一、系统可行性研究报告....................................... 错误!未定义书签。 1.引言................................................... 错误!未定义书签。 2 现行系统调查............................................ 错误!未定义书签。 3 新系统概述.............................................. 错误!未定义书签。 4 可行性综合评述.......................................... 错误!未定义书签。 5.方案选择............................................... 错误!未定义书签。 6.项目进度计划(Software Project Schedule).............. 错误!未定义书签。 二、需求规格说明书............................................ 错误!未定义书签。 1、用例模型(用例图)..................................... 错误!未定义书签。 2、用例文档描述........................................... 错误!未定义书签。 3、用例实现(时序图+类图)................................ 错误!未定义书签。 三、设计规格说明书............................................ 错误!未定义书签。 四、测试设计.................................................. 错误!未定义书签。 1、测试范围............................................... 错误!未定义书签。 2、测试覆盖设计........................................... 错误!未定义书签。 3、测试用例............................................... 错误!未定义书签。 五、工作总结.................................................. 错误!未定义书签。 1、本人在项目实现中的分工................................. 错误!未定义书签。 2、个人遇到的困难与获得的主要成果......................... 错误!未定义书签。 3、课程设计完成结果分析与个人小结......................... 错误!未定义书签。 六、附录...................................................... 错误!未定义书签。 1、软件配置............................................... 错误!未定义书签。 2、个人完成的程序模块..................................... 错误!未定义书签。 3、文档清单............................................... 错误!未定义书签。

南京理工大学机械原理课程设计

机械原理 课程设计说明书 设计题目:牛头刨床 设计日期:20011年07 月09 日 目录 1.设计题目 (3)

2. 牛头刨床机构简介 (3) 3.机构简介与设计数据 (4) 4. 设计内容 (5) 5. 体会心得 (15) 6. 参考资料 (16) 附图1:导杆机构的运动分析与动态静力分析 附图2:摆动从计动件凸轮机构的设计 附图3:牛头刨床飞轮转动惯量的确定 1设计题目:牛头刨床 1.)为了提高工作效率,在空回程时刨刀快速退回,即要有急会运动,行程速比系数在1.4左右。 2.)为了提高刨刀的使用寿命和工件的表面加工质量,在工作行程时,刨刀要速度平稳,切削阶段刨刀应近似匀速运动。 3.)曲柄转速在60r/min,刨刀的行程H在300mm左右为好,切削阻力约为7000N,其变化规律如图所示。

2、牛头刨床机构简介 牛头刨床是一种用于平面切削加工的机床,如图4-1。电动机经皮带和齿轮传动,带动曲柄2和固结在其上的凸轮8。刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。刨头右行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量,刨头左行时,刨刀不切削,称空回行程,此时要求速度较高,以提高生产率。为此刨床采用有急回作用的导杆机构。刨刀每切削完一次,利用空回行程的时间,凸轮8通过四杆机构1-9-10-11与棘轮带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。刨头在工作行程中,受到很大的切削阻力(在切削的前后各有一段约5H的空刀距离,见图4-1,b),而空回行程中则没有切削阻力。因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减小电动机容量。 3、机构简介与设计数据 3.1.机构简介 牛头刨床是一种用于平面切削加工的机床。电动机经皮带和齿轮传动,带动曲柄2和固 结在其上的凸轮8。刨床工作时,由导杆机构2-3-4-5-6带动刨头6和刨刀7作往复运动。

14采矿矿井通风与安全课程设计报告书

1.1设计依据 1.1.1矿井概况 矿井位于平原地区,井田长7200米,双翼开采,每翼长3600米。设计年产量60万吨,矿井第一水平服务年限为23年。矿井采用竖井主要石门开拓,在煤层底板开围岩平巷,已拟定采用两翼对角式通风,两区中央上部边界开回风井,每个采区共有上层工作面2个,下层工作面2个,工作日产量均为500吨,全矿同时有4个工作面生产即能满足要求。备用工作面2个。井下同时工作的最多人数为380人。该矿为单一煤层,煤层厚4m,倾角25°,低瓦斯矿井,相对瓦斯涌出量为3.06m3 /t,煤尘有爆炸危险性。 1.1.2井巷尺寸及支护情况 井巷尺寸及支护情况表 2.1矿井及采区通风系统 2.1.1矿井通风系统的基本要求

一般情况下矿井通风系统,都要符合投产较快、出煤较多、安全可靠、技术经济标合理等总原则。具体地说要适应以下基本要求: 1)每个矿井,特别是地震区、多雷区的矿井至少要有两个通地面的安全出口,个出口之间距离不得小于30m; 2)进风井口,要有利于防洪,不受粉尘、污风炼焦气体矸石燃烧气体等有毒气体的侵入; 3)采用多台分区主扇通风时,为了保持联合运转的稳定性,总进风道的断面不宜过小,尽可能减少公共风路的风阻;各分区主扇的回风流中央主扇和每一翼的主扇的回风流都必须严格隔开; 4)所有矿井都要采用机械通风主扇和分区扇必须安装在地面; 5)北方矿井,井口要有供暖设备; 6)总回风巷不得作为主要人行道; 7)工业广场不允许受扇风机噪音的干扰; 8)装有皮带机的井筒不允许兼作回风井; 9)装有箕斗的井筒不允许兼作进风井; 10)可以独立通风的矿井,采区尽可能独立通风; 11)通风系统要为防瓦斯、火、水、尘及降温创造条件;通风系统要有利于深水平延伸或后期通风系统的发展变化; 12)要注意降低通风费用。 2.1.2矿井通风类型的确定 一般情况下,矿井主要有五种通风类型(图中主扇工作方法暂且按抽出式):中央并列式(图2—1)、中央分列式(图2—2)、两翼对角式(图2—3)、分区对角式(图2—4)和混合式通风。

列管式换热器课程设计

化工原理课程设计说明书列管式换热器的选用和设计

目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数 5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢

1化工原理课程设计任务书 欲用自来水将2.3万吨/年的异丁烯从300℃冷却至90℃,冷水进、出口温度分别为25℃和90℃。若要求换热器的管程和壳程压强降不大于100kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水异丁烯 密度 996 12 比热 4.08 130 导热系数 0.668 0.037 粘度 0.37×10^-3 13×10^-3 2.概述与设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。

相关主题
文本预览
相关文档 最新文档