当前位置:文档之家› 列管式换热器的设计

列管式换热器的设计

列管式换热器的设计
列管式换热器的设计

化工原理课程设计

学院: 化学化工学院

班级:

姓名学号:

指导教师:

目录

§一.列管式换热器

1.1.列管式换热器简介

1.2设计任务

1.3.列管式换热器设计内容

1.4.操作条件

1.5.主要设备结构图

§二.概述及设计要求

2.1.换热器概述

2.2.设计要求

§三.设计条件及主要物理参数

3.1. 初选换热器的类型

3.2. 确定物性参数

3.3.计算热流量及平均温差

3.4 壳程结构与相关计算公式

3.5 管程安排(流动空间的选择)及流速确定 3.6计算传热系数k

3.7计算传热面积

§四.工艺设计计算

§五.换热器核算

§六.设计结果汇总

§七.设计评述

§八.工艺流程图

§九.主要符号说明

§十.参考资料

§一 .列管式换热器

1.1. 列管式换热器简介

列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。

其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。

列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。

1.2设计任务

1.任务

处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行)

设备形式:列管式换热器

2.操作条件

(1)煤油:入口温度150℃,出口温度50℃

(2)冷却介质:循环水,入口温度20℃,出口温度30℃

(3)允许压强降:不大于一个大气压。

备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。

1.3.列管式换热器设计内容

1.3.1、确定设计方案

(1)选择换热器的类型;(2)流程安排

1.3.2、确定物性参数

(1)定性温度;(2)定性温度下的物性参数

1.3.3、估算传热面积

(1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量

1.3.4、工艺结构尺寸

(1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)传热管排列和分程方法;(5)壳体内径;(6)折流板;(7)其它附件;(8)接管1.3.5、换热器核算

(1)传热能力核算;(2)壁温核算;(3)换热器内流体的流动阻力

1.4.操作条件

某厂用井水冷却从反应器出来的循环使用的有机液。欲将6000kg/h的植物油从140℃冷却到40℃,井水进、出口温度分别为20℃和40℃。若要求换热器的管程和壳程压强降均不大于35kPa,试选择合适型号的列管式换热器。定性温度下有机液的物性参数列于附表中。

附表

项目密度,

kg/m3

比热,

KJ/(k g·℃)

粘度,P a·s热导率,

kJ/(m·℃)

植物

950 2.261 0.7420.172

1.5.主要设备结构图(示例)

根据设计结果,可选择其它形式的列管换热器。

1-挡板 2-补偿圈 3-放气嘴

固定管板式换热器的示意图

§二.概述及设计要求

2.1.换热器概述

换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。

在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。

换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,

(1)固定管板式换热器

这类换热器如图1-1所示。固定管办事换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;

由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。

(2) U型管换热器

U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。此外,其造价比管定管板式高10%左右。

(3)浮头式换热器

浮头式换热器的结构如下图1-3所示。其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。其缺点是结构较复杂,用材量大,造价高;浮头盖与浮动管板间若密封不严,易发生泄漏,造成两种介质的混合。

(4)填料函式换热器

填料函式换热器的结构如图1-4所示。其特点是管板只有一端与壳体固定连接,另一端采用填料函密封。管束可以自由伸缩,不会产生因壳壁与管壁温差而引起的温差应力。填料函式换热器的优点是结构较浮头式换热器简单,制造方便,耗材少,造价也比浮头式的低;管束可以从壳体内抽出,管内管间均能进行清洗,维修方便。其缺点是填料函乃严不高,壳程介质可能通过填料函外楼,对于易燃、易爆、有度和贵重的介质不适用。

2.2.设计要求

完善的换热器在设计和选型时应满足以下各项基本要求:

(1)合理地实现所规定的工艺条件:可以从:①增大传热系数②提高平均温差③妥善布置传热面等三个方面具体着手。

(2)安全可靠

换热器是压力容器,在进行强度、刚度、温差应力以及疲劳寿命计算时,应遵循我国《钢制石油化工压力容器设计规定》和《钢制管壳式换热器设计规定》等有关规定与标准。(3)有利于安装操作与维修

直立设备的安装费往往低于水平或倾斜的设备。设备与部件应便于运输与拆卸,在厂房移动时不会受到楼梯、梁、柱的妨碍,根据需要可添置气、液排放口,检查孔与敷设保温层。

(4)经济合理

评价换热器的最终指标是:在一定时间内(通常1年内的)固定费用(设备的购置费、安装费等)与操作费(动力费、清洗费、维修费)等的总和为最小。在设计或选型时,如果有几种换热器都能完成生产任务的需要,这一标准就尤为重要了。

§ 三.设计条件及主要物理参数

3.1.初选换热器的类型

两流体的温度变化情况如下:

(1)植物油:入口温度140℃,出口温度40℃;

(2)冷却介质:井水,入口温度20℃,出口温度40℃;

该换热器用循环冷却井水进行冷却,由于

=+-+=-2

20

40240140m m t T 60℃>50℃,所需换热器的管壁温度和壳体温度之差

较大,故从安全、方便、经济考虑可以采用带有补偿圈的管板式换热器。

3.2.确定物性参数

定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。

壳程流体(植物油)的定性温度为:T= (140+40)/2=90℃ 管程流体(水)的定性温度为:t=(40+20)/2=30℃ 在定性温度下,分别查取管程和壳程流体(冷却水和植物油)的物性参数,见下表3-1:

3.3.计算热流量及平均温差 3.3.1.热流量

以热介质植物油为计算标准算它所需要被提走的热量: Q=m s1c p1(T 1-T 2)=6000x2.261x(140-40)=1356.6kJ/h=376.83kw 3.3.2.平均传热温差

计算两流体的平均传热温差 暂时按单壳程、多管程计算。 逆流时,我们有

植物油:140℃→40℃ 井 水: 40℃←20℃

从而,

69.4920

100ln 20

100'=-=

?m t

而此时,我们有:

00.520

100

20404014017.012020

20140204012212112==--=--=

==--=--=t t T T R T T t t P

式中:

21,T T ——热流体(植物油)的进出口温度,单位℃; 21t t ,——冷流体(井水)的进出口温度,单位℃;

R 2+1R-1

ln

1-PR

1-P ln

2-P(1+R-

2-P(1+R+R 2+1R 2+1)

)

ψ=

87

.0)1551(16.02)1551(16.02ln 516.0116

.01ln 1515222=+++?-+-+?-?---+=

ψ>0.8符合要求

则平均温差:△tm='m t ?×ψ=0.87x49.69=43.23℃

3.3.3.冷却水用量

由以上的计算结果以及已知条件,很容易算得冷却水用量:

Qc=

)

(12t t C Q

pc -=1356600/[4.174x(40-20)]=16250.60㎏/h

3.4壳程结构与相关计算公式

介质流经传热管外面的通道部分称为壳程。 壳程内的结构,主要由折流板、支承板、纵向隔板、旁路挡板及缓冲板等元件组成。由于各种换热器的工艺性能、使用的场合不同,壳程内对各种元件的设置形式亦不同,以此来满足设计的要求。各元件在壳程的设置,按其不同的作用可分为两类:一类是为了壳侧介质对传热管最有效的流动,来提高换热设备的传热效果而设置的各种挡板,如折流板、纵向挡板。旁路挡板等;另一类是为了管束的安装及保护列管而设置的支承板、管束的导轨以及缓冲板等。

壳体是一个圆筒形的容器,壳壁上焊有接管,供壳程流体进人和排出之用。直径小于400mm 的壳体通常用钢管制成,大于400mrn 的可用钢板卷焊而成。壳体材料根据工作温度选择,有防腐要求时,大多考虑使用复合金属板。 介质在壳程的流动方式有多种型式,单壳程型式应用最为普遍。如壳侧传热膜系数远小于管侧,则可用纵向挡板分隔成双壳程型式。用两个换热器串联也可得到同样的效果。为降低壳程压降,可采用分流或错流等型式。 壳体内径D 取决于传热管数N 、排列方式和管心距t 。计算式如下: 单管程

D =t (n c -1)+(2~3)d 0 式中 t ——管心距,mm ;

d

——换热管外径,mm;

n

——横过管束中心线的管数,该值与管子排列方式有关。

c

正三角形排列:

正方形排列:

多管程

式中N——排列管子数目;

η——管板利用率。

正角形排列:2管程η=0.7~0.85

>4管程η=0.6~0.8

正方形排列:2管程η=0.55~0.7

>4管程η=0.45~0.65

壳体内径D的计算值最终应圆整到标准值。

在壳程管束中,一般都装有横向折流板,用以引导流体横向流过管束,增加流体速度,以增强传热;同时起支撑管束、防止管束振动和管子弯曲的作用。折流板的型式有圆缺型、环盘型和孔流型等。

圆缺形折流板又称弓形折流板,是常用的折流板,有水平圆缺和垂直圆缺两种。切缺率(切掉圆弧的高度与壳内径之比)通常为20%~50%。垂直圆缺用于水平冷凝器、水平再沸器和含有悬浮固体粒子流体用的水平热交换器等。垂直圆缺时,不凝气不能在折流板顶部积存,而在冷凝器中,排水也不能在折流板底部积存。弓形折流板有单弓形和双弓形,双弓形折流板多用于大直径的换热器中。

折流板的间隔,在允许的压力损失范围内希望尽可能小。一般推荐折流板间隔最小值为壳内径的1/5或者不小于50 mm,最大值决定于支持管所必要的最大间隔。

壳程流体进出口的设计直接影响换热器的传热效率和换热管的寿命。当加热蒸汽或高速流体流入壳程时,对换热管会造成很大的冲刷,所以常将壳程接管在入口处加以扩大,即将接管做成喇叭形,以起缓冲的作用;或者在换热器进口处设置挡板。

3.5 管程安排(流动空间的选择)及流速确定

已知两流体允许压强降均不大于35kPa;两流体分别为植物油和水。与植物油相比,水的对流传热系数一般较大。由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,考虑到散热降温方面的因素,应使循环自来水走管程,而使植物油走壳程。

流体种类流速/(m/s)

管程壳程

冷却水1~3.5 0.5~1.5

一般液体(黏度不高) 0.5~3.0 0.2~1.5

低黏油0.8~1.8 0.4~1.0

高黏油0.5~1.5 0.3~0.8

由上表,初步选用Φ25×2.5的碳钢管,则管内径di=25-2.5×2=20mm 管内流速取u i =1.2m/s,从管内体积流量为:

i V =n(π/4)×0.022×1×3600=16250.60/995.7=16.32m 3/h 解得n=15 参照列管换热器中K 值的大致范围,根据两流体的具体情况,初步选定总传

热系数K=330W/m 2

?℃

传热面积:A=L d n ?π=376.83×103/(330×43.23)=26.41㎡

可以求得单程管长L=26.41/(15×3.14×0.025)=22.38m 若选用6m 长的管,需要4管程,则一台换热器的总管数为4×15=60根.查化学工业出版社第三版?化工原理?附录十九,可以初步确定换热器的主要参数见下

3.4.1.对表中的数据进行核算:

①每程的管数n1 =n/Np=76÷4=19,管程流通面积si =(π/4) ×0.022×19=0.005966㎡与表中的数据0.0060㎡很相符。

= ②传热面积 A=πd0 Ln=3.14×0.025×6×76=35.79㎡稍大于表中35.2㎡,这是 由于管长的一部分需用于在管板上固定管子,应以表中的值为准。

③由于换热管是组合式排列,除在分程板两侧采用正方形排列外,大部分地方采用的是正三角形排列,故中心排管数可以按照正三角形排列的形式计算: 中心排管数 nc ≈1.1n =1.1×76≈11

3.6传热系数K

根据冷热流体的性质及温度,在(GB151-99P140-141)选取污垢热阻:

污垢热阻:R si =0.00058m 2℃/W R so =0.00017 m 2℃/W 管壁的导热系数: λ=45 m 2℃/W 管壁厚度: b=0.0025

内外平均厚度: d m =0.0225

在下面的公式中,代入以上数据,可得

o

so i o i o si i i o R d bd d d R d d K αλα1

1

++++=

39

.4401

00017.00225.045025.00025.002.0025.000058.002.074.3681025.01+

+??+?+?

=280.43W/m 2℃

3.7 传热面积S

973473.6488.4946555.7419.79m Q S m K t =

==??折''

=2

08.3123

.4343.280376830m =

§四.工艺设计计算

4.1.管径和管内流速

选用Φ25×2.5的碳钢管,管长6m,速取ui=0.76m/s

4.2.管程数和传热管数

根据传热管的内径和流速,可以确定单程传热系数:

n s =

1976.002.0785.0)

995.73600/(16250.604

2

2=???=i

i u d V π 按单程计算,所需传热管的长度是:

m n d S L s o 61.2220

025.014.32

.35=??==

π 若按单程管计算,传热管过长,宜采用多管程结构,取传热管长l=6m ,则该传热管程数为:

46

61

.22≈==l L N p

则传热管的总根数为: N=N p ×n s =4×19=76(根)

4.3.平均传热温差校正及壳程数

由前面的计算已求得,按单壳程、多管程计算,逆流时: 'm t ?==-----20

4040140ln

)2040()40140(49.69℃

而此时,我们有:

P=

17.02014020401112=--=--t T t t R=520

4040

1401221=--=--t t T T 由()R P ,ψψ=函数公式可得:t ?ψ=0.87﹥0.8,所以,修正后的传热温度差为:

m t ?= 'm t ?t ?ψ=49.69×0.87=43.23℃

于是,校正后的平均传热温差是43.23℃,壳程数为单程,管程数为4。

4.4.换热管选型汇总

根据以上的计算可以得到如下的计算结果表4-1:

DN,mm 400

管程数 4

壳程数 1

管子规格25*2.5

管子根数60

中心排管数9

管程流通面积,m20.005966

换热面积,m226.41

换热管长度,mm 6000

通过查表,可以发现下面的结构尺寸的换热器和所需的比较接近,故而选择该种换热器:

DN,mm 400

管程数 4

壳程数 1

管子规格25*2.5

管子根数76

中心排管数11

管程流通面积,m20.0060

换热面积,m235.2

换热管长度,mm 6000

4.5.换热管

4.5.1.换热管的规格及尺寸偏差

管子在管板上的排列方式最常用的为图4-1所示的(a)、(b)、(c)、(d)四种,即正三角形排列(排列角为30°)、同心圆排列、正方形排列(排列角为90°)、转角正方形排列(排列角为45°)。当管程为多程时,则需采取组合排列,图1-10为二管程时管小组合排列的方式之一。

图4.1.管子在管板上的排列方式和组合排列示意图

采用组合排列法,即每程均按正三角形排列,隔板两侧采用正方形排列。 换热管外径d 换热管中心距t 分程隔板槽两侧相邻管的中

心距

25 32 44

4.5.3横过管束中心线的管数

n c =114.107619.119.1≈==N

4.6.壳体内径

采用多管程结构,取管板利用率55.0=η,则壳体内径为 mm N t D 92.39455.0763205.105.1=?==η

按卷制壳体的进级档可取mm D 400=

4.7.折流板

折流板间距系列为:100mm ,150mm ,200mm ,300mm ,450mm ,600mm ,800mm ,1000mm 。

折流板厚度与壳体直径和折流板间距有关,见表4-4所列数据。

壳体公称内径

/mm

相邻两折流板间距/mm

≤300 300~450 450~600 600~750 >750

支承板允许不支承的最大间距可参考表4-5(右)所列数据。

表4-5支承板厚度以及支承板允许不支承的最大间距

经选择,我们采用弓形折流板,取弓形折流圆缺高度为壳体内径的25%,则切去的圆缺高度为:

h=100mm

取折流板间距B=0.7D ,则: B=0.5×400=200mm 可取B=200mm

因而查表可得:折流板厚度为5mm ,支承板厚度为8mm ,支承板允许不支承最大间距为1800mm 。

折流板数N B 291200

6000

=-=

折流板圆缺面水平装配。

4.8.接管

4.8.1.壳程流体进出口时接管

取接管内植物油流速为u=0.1m/s 则接管内径为:

d=

m u V 047.00

.114.3)

9503600/(600044=???=π 所以,取标准管的内径为50mm 。

4.8.2.管程流体进出口时的接管

取接管内循环水流速u=1.5m/s ,则接管内径: d=

m 062.05

.114.3)

7.9953600/(16250.604=???

取标准管径为60mm 。

4.9.壁厚的确定、封头

4.9.1.壁厚

查GB151-99P21表8得圆筒厚度为:8 mm

查JB/T4737-95,椭圆形封头与圆筒厚度相等,即8mm

4.9.2.椭圆形封头 示意图如下:

公称直径DN/mm 曲面高度1h /mm 直边高度 2h /mm 碳钢厚度 Δ/mm

内表面积 A/2m 容积 V/2m 质量

M/kg 400

150

25

8

0.4374

0.0353

27.47

4.10.管板

管板除了与管子和壳体等连接外,还是换热器中的一个重要的受压器件。 4.10.1.管板结构尺寸

公称直径

D

1D 3D 4D

b c d 螺栓孔数

400 530 490 498 545 36 10 23 28 考虑到腐蚀裕量,以及有足够的厚度能防止接头的松脱、泄露和引起振动等原因,建议最小厚度应大于20mm 。

换热器管子外径

d

/mm ≤25 32 38 57

管板厚度/mm

30d /4

22 25 32

换热管的外径为25mm ,因而管板厚度取为30d /4=18.75,取上述的最小厚度20mm 。

§五.换热器核算

5.1热量核算

5.1.1壳程对流传热系数

对圆缺形的折流板,可采用克恩公式: 000.36e e d u a d μρλμμλμ=0.14

p w

c ()()()

计算壳程当量直径,由正三角形排列可得:

42e d π

π=

200

-d )4d =025.014.3)

025.0785.0032.023(422??-=0.020m

壳程流通截面积: S o =??

? ??-?=032.0025.010.40.2)t d -BD(1o =0.0182

m

壳程流体流速为:

0000014001000

0.53/243600624.890.0489v m q q u m s A A ρ?=

===??? =018

.0)9503600/(6000?=0.097m/s

雷诺准数为: Re o =

78.3104000742

.0950

097.0025.0=??=

o

o

o o u d μρ

普兰特准数为: Pr o =

75.9172

.0000742

.02261=?=

o

o c λμ

Nu=0.360.551/3Re Pr μμ0.14w ()。物料被冷却,粘度校正μμ0.14

w

()

取1, 将数值代入上式:

Nu=3

1

55.075.978.310436.0??=64.01

???

?

??=o o o o d Nu λα=025.0172.001.64÷?=440.39W/m 2

5.1.2管程对流传热系数 管道流通面积:

S i =0.785×0.0224

76

=0.005966m 2

管程流体流速:

u i =s m /76.0005966

.0)

7.9953600/(16250.60=?

雷诺准数为

Re i =68.188********

.07.99576.002.0=??

普兰特准数为:

Pr i =

41.5618.0000801

.04174=? 4.08.041.568.1889402

.0618.0023.0???=i α =3681.74W/m 2

5.1.3传热系数K

根据冷热流体的性质及温度,在(GB151-99P140-141)选取污垢热阻:

污垢热阻:R si =0.00058m 2℃/W R so =0.00017 m 2℃/W 管壁的导热系数: λ=45 m 2℃/W 管壁厚度: b=0.0025

内外平均厚度: d m =0.0225

在下面的公式中,代入以上数据,可得

o

so i o i o si i i o R d bd d d R d d K αλα1

1

++++=

=

39.4401

00017.00225.045025.00025.002.0025.000058.002.074.3681025.01

+

+??+?+?

=280.43W/m 2

所以,K 的裕度为:h=66

.302.43

08266.023-=7.34%

5.1.4传热面积S 由K 计算传热面积S '

973473.6488.4946555.7419.79m Q S m K t =

==??折''

=2

8.2823

.4366.302376830m = 该换热器的实际传热面积为:

S p =)(c o n N L d -π=()()c n N d l d --o π =3.14×0.025×(6-0.06)×(76-11)

=30.3m 2

则该换热器的面积裕度为:

H=S

S Sp -=

=-3.308

.283.30 4.95% 5.2.壁温核算

由于换热管内侧污垢热阻较大,会使传热管内侧污垢热阻较大,会使传热管

壁温升高,减低了传热管和壳体的壁温之差。但在操作初期,污垢热阻较小,壳体和传热管间壁温差可能较大。计算中应按最不利的操作条件考虑,因此,取两侧污垢热阻为零计算传热管壁温。

h

c h

m c m 11t αααα++=

T t w

式中液体的平均温度m t 和m T 为:

302

20

40221=+=+=

t t t m (℃) 90240140221=+=+=T T T m (℃)

3681.74==i c ααW/m 2℃

440.39==o ααh W/m 2℃

传热管平均壁温:18.3639

.440174.3681139

.4403074.368190=++=

w t ℃ 壳体壁温可近似取为壳程流体的平均温度,即T=90℃

壳体壁温和传热管壁温之差为:82.5318.3690=-=?t ℃

由于换热器壳程流体的温差不大,壳程压力不高,因此,选用固定管板式换热器较为适宜。

5.3. 壳程和管程的压力降的计算

因为壳程和管程都有压力降的要求,所以要对壳程和管程的压力降分别进行核算。

5.3.1管程压力降

管程压力降的计算公式为:

p s N N p p pi )(21?-?=∑

Re i =18894.68(前面已求),为湍流。

取绝对粗糙度005.020

1

.0d ,1.0i ==

=ξξ mm 查,关联图,可得摩擦因数035.0:e =-λλR

a 67.8622

76

.07.99532

u

3

p a

36.3019276.07.99502.06035.0u 2d l p 2

2

222

1i P P =?

?==?=???==?∴ρρλ

另外,式子中: 壳程数N s =1 管程数N p =4

代入公式中,有:

p s N N p p pi )(21?-?=∑=(3019.36+862.67)×1×4=15528.12Pa<35kpa

5.3.2壳程压力降

由于壳程流体的流动状况比较地复杂,所以计算壳程流体压力降的表达式有很多,计算结果也相差很大。下面以埃索法计算壳程压力降:

壳程压力降埃索法公式为:

s

s

P F N ?=

??∑1

2

(P +P )'

' 1p ?——流体横过管束的压力降,Pa ;

2p ?——流体通过折流挡板缺口的压力降,Pa ;

Fs ——壳程压力降的垢层校正系数,无因次,对于液体取1.15,对于气体取1.0;

Ns ——壳程数;

而2

0.2281

000.55Re 232

c c P Ff N F f N ρ-?====0B u (N +1)

,其中,,'

=0.86,n c =11,

N B =29,u o =0.097m/s 。

F ——管子排列方法对压力降的校正系数,对正三角形排列,F=0.5,对正方形斜转45o 排列,F=0.4,正方形排列,F=0.3;

f o ——壳程流体的摩擦系数,当Re ﹥500时,228.0)(Re 5-=o fo n c ——横过管束中心线的管子数,对正三角形排列 N B ——折流挡板数 代入数值得:

'1p ?=0.5×0.86×11×30×950×2

097.02

=634.19Pa 而2

02B u p N ρ?=2h (3.5-)D 2

'

,其中h=0.2m ,d=0.4m ,N B =29, D ——壳径,m

h ——折流挡板间距,m d o ——换热器外径,m

u o ——按壳程流通截面积S 计算的流速,而S=h (D-n c d o )=0.0252m

故s m u 7.0950

025.036006000

=??=

o

代入数值得: 202B u p N ρ?=2h (3.5-)D 2'

=29×(3.5-0.42.02?)×2

07.09502

? =168.74Pa

对于液体s F =1.15,于是我们有:

s

s

P F N ?=

??∑1

2

(P +P )'

'=1.15×1×(634.19+168.74)=923.37Pa<35kpa

经过以上的核算,管程压力降和壳程压力降都符合要求。

§六.设计结果汇总

换热器主要结构尺寸和计算结果表

列管式换热器课程设计作业

化工原理课程设计说明书 列管式换热器的选用和设计 苏州科技学院 班级应化0921 姓名朱子屹 指导教师杨兰 2011-6-30 目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数

5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢 1化工原理课程设计任务书 欲用井水将6000kg/h的煤油从140℃冷却至40℃,冷水进、出口温度分别为30℃和40℃。若要求换热器的管程和壳程压强降不大于30kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水煤油 密度 994 825 比热 4.08 2.22 导热系数 0.626 0.14 粘度 0.725×10^-3 0.715×10^-3 2.概述和设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目和管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体

列管式换热器课程设计报告书

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

化工原理设计:列管式换热器设计

化工原理课程设计 设计题目:列管式换热器的设计班级:09化工 设计者:陈跃 学号:20907051006 设计时间:2012年5月20 指导老师:崔秀云

目录 概述 1.1.换热器设计任务书 .................................................................... - 7 - 1.2换热器的结构形式 .................................................................. - 10 - 2.蛇管式换热器 ........................................................................... - 11 - 3.套管式换热器 ........................................................................... - 11 - 1.3换热器材质的选择 .................................................................. - 11 - 1.4管板式换热器的优点 .............................................................. - 13 - 1.5列管式换热器的结构 .............................................................. - 14 - 1.6管板式换热器的类型及工作原理............................................ - 16 - 1.7确定设计方案.......................................................................... - 17 - 2.1设计参数................................................................................. - 18 - 2.2计算总传热系数...................................................................... - 19 - 2.3工艺结构尺寸.......................................................................... - 19 - 2.4换热器核算 ............................................................................. - 21 - 2.4.1.换热器内流体的流动阻力 (21) 2.4.2.热流量核算 (22)

列管式换热器的设计计算

列管式换热器的设计计算 晨怡热管2008-9-49:49:33 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1)不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3)压强高的流体宜走管内,以免壳体受压。 (4)饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5)被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6)需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2.流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。 此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3.流体两端温度的确定 若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。两者是相互矛盾的。一般来说,设计时可采取冷却水两端温差为5~10℃。缺水地区选用较大的温度差,水源丰富地区选用较小的温度差。 4.管子的规格和排列方法 选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。易结垢、粘度较大的液体宜采用较大的管径。我国目前试用的列管式换热器系列标准中仅有 φ25×2.5mm及φ19×mm两种规格的管子。 管长的选择是以清洗方便及合理使用管材为原则。长管不便于清洗,且易弯曲。一般出厂的标准钢管长为6m,则合理的换热器管长应为1.5、2、3或6m。系列标准中也采用这四种管长。此外,管长和壳径应相适应,一般取L/D为4~6(对直径小的换热器可大些)。 如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,如第

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

列管式换热器设计

酒泉职业技术学院 毕业设计(论文) 2013 级石油化工生产技术专业 题目:列管式换热器设计 毕业时间: 2015年7月 学生姓名:陈泽功刘升衡李侠虎 指导教师:王钰 班级: 13级石化(3)班 2015 年 4月20日 酒泉职业技术学院 2013 届各专业 毕业论文(设计)成绩评定表

答辩小 组评价 意见及 评分 成绩:签字(盖章)年月日 教学系 毕业实 践环节 指导小 组意见 签字(盖章)年月日 学院毕 业实践 环节指 导委员 会审核 意见 签字(盖章)年月日 一、列管式换热器计任务书 某生产过程中,需用循环冷却水将有机料液从102℃冷却至40℃。已知有机料液的流量为2.23×104 kg/h,循环冷却水入口温度为30℃,出口温度为40℃,并要求管程压降与壳程压降均不大于60kPa,试设计一台列管换热器,完成该生产任务。 已知: 有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度 定压比热容℃ 热导率℃

粘度 循环水在35℃下的物性数据: 密度 定压比热容K 热导率K 粘度 二、确定设计方案 (1)选择换热器的类型 (2)两流体温的变化情况: 热流体进口温度102℃出口温度40℃;冷流体进口温度30℃,出口温度为40℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。 (3)管程安排 从两物流的操作压力看,应使有机料液走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。 三、确定物性数据 定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为 T= =71℃ 管程流体的定性温度为 t=℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。对有机料液来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度

列管式换热器课程设计

(封面) XXXXXXX学院 列管式换热器课程设计报告 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日 目录

1、设计题目(任务书) (2) 2、流程示意图 (3) 3、流程及方案的说明和论证 (3) 4、换热器的设计计算及说明 (4) 5、主体设备结构图 (10) 6、设计结果概要表 (11) 7、设计评价及讨论 (12) 8、参考文献 (12) 附图:主体设备结构图和花版设计图 一.任务书

(一)设计题目: 列管式冷却器设计 (二)设计任务: 将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度 (三)设计条件: 1.处理能力:G=学号最后2位×300t物料/d; 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30C;加热器用热水或水蒸气为热源,条件自选; 3.允许压降:不大于105Pa; 4.传热面积安全系数5~15% 5.每年按330天计,每天24小时连续运行。 (四)设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5.选择合宜的列管换热器并运行核算; 6.用Autocad绘制列管式冷却器的结构(3号图纸)、花板布置图(3号图纸); 7.编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) (五)设计进度安排: 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码。专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码。 二.流程示意图

列管式换热器课程设计

化工原理课程设计说明书列管式换热器的选用和设计

目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数 5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢

1化工原理课程设计任务书 欲用自来水将2.3万吨/年的异丁烯从300℃冷却至90℃,冷水进、出口温度分别为25℃和90℃。若要求换热器的管程和壳程压强降不大于100kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水异丁烯 密度 996 12 比热 4.08 130 导热系数 0.668 0.037 粘度 0.37×10^-3 13×10^-3 2.概述与设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

列管式换热器设计(水蒸气加热水)要点

食品工程原理课程设计 设计题目:列管式换热器的设计 班级:食品卓越111班 设计者:张萌 学号:5603110006 设计时间:2013年5月13日~5月17日指导老师:刘蓉

目录 概述 1.1.换热器设计任务书 ......................................................................... - 7 - 1.2换热器的结构形式 ....................................................................... - 10 - 2.蛇管式换热器 ................................................................................. - 11 - 3.套管式换热器 ................................................................................. - 11 - 1.3换热器材质的选择 ....................................................................... - 11 - 1.4管板式换热器的优点 ................................................................... - 13 - 1.5列管式换热器的结构 ................................................................... - 14 - 1.6管板式换热器的类型及工作原理 ............................................... - 16 - 1.7确定设计方案 ............................................................................... - 17 - 2.1设计参数........................................................................................ - 18 - 2.2计算总传热系数 ........................................................................... - 19 - 2.3工艺结构尺寸 ............................................................................... - 20 - 2.4换热器核算.................................................................................... - 21 - 2.4.1.换热器内流体的流动阻力 (21) 2.4.2.热流量核算 (22)

换热器计算步骤..

第2章工艺计算 2.1设计原始数据 2.2管壳式换热器传热设计基本步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量。 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍 l (9)选取管长 N (10)计算管数 T (11)校核管流速,确定管程数 D和壳程挡板形式及数量等 (12)画出排管图,确定壳径 i (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

2.3 确定物性数据 2.3.1定性温度 由《饱和水蒸气表》可知,蒸汽和水在p=7.22MPa、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变。 对于壳程不存在相变,其定性温度可取流体进出口温度的平均值。其壳程混合气体的平均温度为: t=420295 357.5 2 + =℃(2-1) 管程流体的定性温度: T=310330 320 2 + =℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。 2.3.2 物性参数 管程水在320℃下的有关物性数据如下:【参考物性数据无机表1.10.1】 表2—2 壳程蒸气在357.5下的物性数据[1]:【锅炉手册饱和水蒸气表】 表2—3

列管式换热器 (化工原理课程设计)

化工原理课程设计 题目:列管式换热器设计 班级: 姓名: 学号: 指导教师: 2015 年-2016 年学年第1 学期

目录 设计任务书3 前言4 一.工艺说明及流程示意图5 1. 工艺流程5 酒精的工艺流程5 冷却流程图5 白酒加工工艺流程5 冷却流程5 2. 工艺说明6 流体流入空间的选择6 出口温度的确定(含算法程序)6 流速的选择7 计算平均温差8 二.流程及方案的论证与确定8 1. 设计方案的论证8 2. 确定设计方案及流程 8 选择物料8 确定两流体的进出口温度9 确定流程9 换热器类型的选择 9 三.设计计算及说明9 1. 流体物性的确定9 水的物性9 无水乙醇的物性9 2. 初步确定换热器的类型和尺寸9 计算两流体的平均温度差9 计算热负荷和冷却水流量10 传热面积10 选择管子尺寸11 计算管子数和管长,对管子进行排列,确定壳体直径11根据管长和壳体直径的比值,确定管程数12 3. 核算压强降12 管程压强降12 壳程压强降12 4. 核算总传热面积14 管程对流传热系数α014 壳程对流传热系数αi14 污垢热阻15

总传热系数K’15 传热面积安全系数 15 壁温的计算15 4. 7 偏转角的计算 (15) 四.设计结果概要表16 五.对设计的评价及问题的讨论17 1.对设计的评价 (17) 2.问题的讨论 (17) 六.参考文献18 七.致谢 八.附录:固定管板式换热器的结构图、花板布置图 设计任务书 设计题目:列管式换热器设计。 设计任务:将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力G = 学生学号最后2位数×300 t 物料 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30℃;加热器用热水或水蒸汽为热源,条件自选。

列管式换热器设计课程设计说明

化工原理课程设计说明书列管式换热器设计 专业:过程装备与控制工程 学院:机电工程学院

化工原理课程设计任务书 某生产过程的流程如图3-20所示。反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。已知混合气体的流量为220301kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。 已知: 混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg =g ℃ 热导率10.0279w m λ=g ℃ 粘度51 1.510Pa s μ-=?g 循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg =g K 热导率10.624w m λ=g K 粘度310.74210Pa s μ-=?g

目录 1、确定设计方案 ............................................................................................. - 4 - 1.1选择换热器的类型 (4) 1.2流程安排 (4) 2、确定物性数据............................................................................................. - 4 - 3、估算传热面积............................................................................................. - 5 - 3.1热流量 (5) 3.2平均传热温差 (5) 3.3传热面积 (5) 3.4冷却水用量 (5) 4、工艺结构尺寸............................................................................................. - 5 - 4.1管径和管内流速 (5) 4.2管程数和传热管数 (5) 4.3传热温差校平均正及壳程数 (6) 4.4传热管排列和分程方法 (6) 4.5壳体内径 (6) 4.6折流挡板 (7) 4.7其他附件 (7) 4.8接管 (7) 5、换热器核算 ................................................................................................ - 8 - 5.1热流量核算 (8) 5.1.1壳程表面传热系数.......................................................................................... - 8 -5.1.2管内表面传热系数.......................................................................................... - 8 -5.1.3污垢热阻和管壁热阻...................................................................................... - 9 -5.1.4传热系数.......................................................................................................... - 9 -5.1.5传热面积裕度.................................................................................................. - 9 -5.2壁温计算. (9) 5.3换热器内流体的流动阻力 (10) 5.3.1管程流体阻力................................................................................................ - 10 -5.3.2壳程阻力........................................................................................................ - 11 - 5.3.3换热器主要结构尺寸和计算结果................................................................ - 11 - 6、结构设计 .................................................................................................. - 12 - 6.1浮头管板及钩圈法兰结构设计 (12) 6.2管箱法兰和管箱侧壳体法兰设计 (13) 6.3管箱结构设计 (13) 6.4固定端管板结构设计 (14) 6.5外头盖法兰、外头盖侧法兰设计 (14) 6.6外头盖结构设计 (14) 6.7垫片选择 (14)

列管式换热器结构设计毕业设计论文

列管式换热器结构设计毕业设计论文 第一章换热器概述 过程设备在生产技术领域中的应用十分广泛,是在化工、炼油、轻工、交通、食品、制药、冶金、纺织、城建、海洋工程等传统部门所必需的关键设备,而换热设备则是广泛使用的一种通用的过程设备。在化工厂中,换热设备的投资约占总投资的10%~20%;在炼油厂,约占总投资的35%~40%。 1.1 换热器的应用 在工业生产中,换热器的主要作用是将能量由温度较高的流体传递给温度较低的流体,是流体温度达到工艺流程规定的指标,以满足工艺流程上的需要。此外,换热器也是回收余热、废热特别是低位热能的有效装置。例如,高炉炉气(约1500℃)的余热,通过余热锅炉可生产压力蒸汽,作为供汽、供热等的辅助能源,从而提高热能的总利用率,降低燃料消耗,提高工业生产经济效益。 随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计、制造、结构改进及传热极力的研究十分活跃,一些新型高效换热器相继面世。 1.2 换热器的主要分类 在工业生产中,由于用途、工作条件和物料特性的不同,出现了不同形式和结构的换热器。 1.2.1 换热器的分类及特点 按照传热方式的不同,换热器可分为三类: 1.直接接触式换热器 又称混合式换热器,它是利用冷、热流体直接接触与混合的作用进行热量的交换。这类换热器的结构简单、价格便宜,常做成塔状,但仅适用于工艺上允许两

种流体混合的场合。 2.蓄热式换热器 在这类换热器中,热量传递是通过格子砖或填料等蓄热体来完成的。首先让热流体通过,把热量积蓄在蓄热体中,然后再让冷流体通过,把热量带走。由于两种流体交变转换输入,因此不可避免地存在着一小部分流体相互掺和的现象,造成流体的“污染”。 蓄热式换热器结构紧凑、价格便宜,单位体积传热面比较大,故较适合用于气--气热交换的场合。 3.间壁式换热器 这是工业中最为广泛使用的一类换热器。冷、热流体被一固体壁面隔开,通过壁面进行传热。按照传热面的形状与结构特点它又可分为: (1)管式换热器:如套管式、螺旋管式、管壳式、热管式等; (2)板面式换热器:如板式、螺旋板式、板壳式等; (3)扩展表面式换热器:如板翅式、管翅式、强化的传热管等。 1.2.2 管壳式换热器的分类及特点 由于设计题目是浮头式换热器的设计,而浮头式又属于管壳式换热器,故特此介绍管壳式换热器的主要类型以及结构特点。 管壳式换热器是目前用得最为广泛的一种换热器,主要是由壳体、传热管束、管板、折流板和管箱等部件组成,其具体结构如下图所示。壳体多为圆筒形,内部放置了由许多管子组成的管束,管子的两端固定在管板上,管子的轴线与壳体的轴线平行。进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。为了增加壳程流体的速度以改善传热,在壳体内安装了折流板。折流板可以提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。 流体每通过管束一次称为一个管程;每通过壳体一次就称为一个壳程,而图1-2-1所示为最简单的单壳程单管程换热器。为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分为若干组。这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程;同样。为提高管外流速,也可以在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。多管程与多壳程可以配合使用。

相关主题
文本预览
相关文档 最新文档