当前位置:文档之家› 鼻腔给药的研究进展

鼻腔给药的研究进展

鼻腔给药的研究进展
鼻腔给药的研究进展

鼻腔给药研究进展

余婷药学一班 2010071118

【摘要】鼻腔给药由来已久,随着药物制剂新技术和新辅料的发展,其不仅可治疗鼻腔局部疾病,而且可通过鼻腔给药发挥全身作用。鼻腔给药因能避免胃肠道降解和肝脏首过效应,具有生物利用度高、起效快、患者顺应性好等特点,为肽类和蛋白质类药物提供了一条非注射的有效给药途径。而且研究发现,通过鼻腔给药可增加药物在脑组织中的分布,可用于治疗中枢神经系统疾病。近年来,鼻黏膜给药制剂的研究呈迅速上升趋势。但对于大分子药物而言,药物的经鼻吸收量很小,不能满足临床需求。本文就鼻腔给药的研究进展进行综述,对影响鼻粘膜吸收的因素进行探讨,介绍鼻粘膜给药的一些新剂型。【关键词】鼻粘膜给药;鼻腔生理;脂质体;吸收促进剂鼻粘膜给药(intranasal administration)不仅用于鼻腔局部疾病的治疗,也是全身疾病治疗的新型给药途径之一。鼻粘膜给药的药物吸收式药物透过鼻粘膜向循环系统的转运过程,与鼻腔粘膜的解剖、生理以及药物本身的剂型因素和理化性质等有关。目前已有甾体激素类、多肽类和疫苗类等药物的鼻粘膜吸收制剂上市或进入临床研究,如胰岛素鼻用制剂[1]。

一、鼻腔的生理结构及给药特点

1.鼻腔的解剖生理

鼻是呼吸道直接与外界相通的器官,由外鼻、鼻腔和鼻旁窦三部分组成。鼻中隔将鼻腔分为结构相同的左右部分。鼻腔从鼻前庭开始

到鼻咽管,长度为12-14cm。鼻腔中有呈皱褶状的上、中、下鼻甲,其表面积为150-200cm2。鼻腔的空气通道呈弯曲状,气流一旦进入即受到阻挡而改变方向。外界伴随空气进入鼻腔的粒子大部分沉积在鼻前庭前部,难以直接通过鼻腔到达气管[2]。

鼻腔可以分为三个功能区域:①鼻前庭区,位于鼻孔的开口处,表面覆盖复层的鳞状上皮,其上生长的鼻毛可以阻挡来自气流中的大颗粒;②呼吸区,表面覆盖假复层柱状上皮细胞,位于鼻腔的后三分之二部位;③嗅觉区,位于鼻腔的最上部。其中嗅觉区大约10cm2,是将药物经鼻传递至脑部的主要部位。该区黏膜主要由支持细胞构成,其间分布着嗅细胞,嗅细胞的中枢突形成无髓的嗅神经纤维,集合成一些神经束后,向上穿行在黏膜下层,交叉成嗅丝,穿过筛孔,与大脑的嗅球相连[3]。鼻粘膜表面有众多纤毛,以每分钟1000次左右的速度向后摆动,对鼻粘膜表面物质的清楚速率为3-25mm/min,平均为6mm/min,这对清除鼻腔内异物、保持鼻腔清洁具有重要意义,同时也对鼻腔给药时药物在鼻腔内的保留时间有很大影响,鼻上皮细胞下有许多大而多孔的毛细血管和丰富的淋巴网,加之鼻粘膜表面积相对较大,这就使其成为较理想的黏膜给药途径。有些药物通过鼻腔给药后可能通过嗅区转运,绕过血脑屏障直接进入脑内[4]。

2.鼻腔粘膜

鼻腔的内表面为黏膜,由上皮和固有层构成。根据结构和功能的不同,鼻粘膜可分为前庭部、呼吸区和嗅觉区黏膜。呼吸区占鼻粘膜的大部分,因血管丰富呈粉红色。黏膜表面被覆盖假复层纤毛柱状上

皮,含有较多杯状细胞,基底膜较厚。上皮细胞纤毛的摆动,可把黏着的细菌或异物向咽部推进,然后经口腔咳出。鼻腔黏液中含有约95%的水、2%的黏蛋白、1%的盐和1%的其他蛋白质,如白蛋白、免疫球蛋白、溶菌酶以及乳铁传递蛋白等,以及<1%的脂质。黏液的黏弹性主要归功于黏蛋白。黏蛋白由多肽主链和寡聚糖链连接组成。鼻腔黏液中的肽酶和蛋白水解酶是影响多肽蛋白质类药物鼻腔吸收的因素之一[5]。Kristian P Doyle等[6]发现,通过鼻腔给药,骨桥蛋白多肽类物质在中风治疗中有神经保护作用。

3.鼻腔给药的优点

3.1 使用方便,患者顺应性好,特别适合婴幼儿与某些特殊病症

鼻腔给药制剂携带与使用均较为方便,不必考虑饭前饭后的给药时间间隔。婴幼儿患病时往往不能配合治疗,因此,即使病症适合,但大部分常规剂型不方便使用,而鼻腔给药以其使用方便的优势易于被婴幼儿接受[7]。

3.2 吸收迅速

鼻腔黏膜上有众多的细微绒毛,可大大增加药物吸收的有效表面积,上皮下有丰富的毛细血管,故药物吸收迅速;而鼻咽部丰富的淋巴管对一些药物的吸收也起着重要作用[8]。

3.3 吸收充分,副作用小

药物吸收后直接进入体循环,不经门静脉,无肝脏首过效应,特别是对在胃肠液与胃肠壁中易代谢的或首过效应较大的药物确是有效的给药途径,而鼻腔黏膜对药物代谢极微弱[9]。

3.4 鼻腔给药可能是一种向脑输送药物的新途径

鼻腔、鼻窦与颅脑关系极为密切,不仅鼻颅之间存在潜在的细微通道,而且12对脑神经中有3对(三叉神经的眼支及上颌支,嗅神经和面神经分支)分布于鼻腔黏膜。因此,药物经鼻后可刺激鼻内神经,使其产生反射性调节,调节脑部和内脏功能,从而对脑部和全身起到治疗作用。鼻黏膜可吸收被动扩散和主动转运的药物及亲脂性和亲水性药物或分子量小于1000的药物,若加入适当吸收促进剂,分子量大于6 000 的药物也能被较好地吸收。胃肠道难以吸收的水溶性大的极性药物,通过鼻黏膜会有很好的吸收[10]。

艾片经静脉和鼻腔给药的小鼠组织分布研究表明,小鼠静脉给予艾片后迅速分布到各组织器官,之后在组织器官迅速消除,随着时间的延长,药物在各组织器官中的浓度逐渐降低,在体内没有蓄积。鼻腔给药吸收分布较快,在给药1min即能在各个组织中检测出龙脑。比较AUC的大小可以发现,鼻腔给药和静脉给药的AUC大小顺序分布几乎一致,都是在心、脑、肾中分布较多,在肺、脾、肝中分布较少;而鼻腔给药的相对靶向系数均在50% ~ 70%,相对脑靶向性最大,为68.37%,脑靶向效率也最大,为26.07%[11]。

Clovis O. Da Fonseca等[12-13]对晚期复发性胶质母细胞瘤进行给药方式研究,结果表明鼻腔给药单贴紫苏醇,能成功治疗晚期复发性胶质母细胞瘤。Guoliang Zhang等[14]睾丸酮对大鼠鼻腔给药,能增加其运动、探索等行为。

二、影响鼻粘膜吸收的因素

1.生理因素

(1)吸收途径:鼻粘膜吸收途径包括经细胞的脂质通道和细胞间的水性孔道。以脂质途径为主,脂溶性药物易吸收,生物利用度一般可接近静脉注射。许多亲水性药物或离子型药物从鼻粘膜吸收比其他部位黏膜好,因为鼻粘膜上水性孔道分布较丰富。药物经鼻粘膜吸收的机制为主动转运或被动扩散[15]。

(2)鼻腔pH:鼻腔的pH是影响药物吸收的因素之一。成人鼻腔分泌物的正常pH为5.5-6.5,婴幼儿为5.0-6.0。由于鼻腔黏液较少,每天仅分泌1.5-2.0mL,缓冲能力差,鼻用制剂的pH对药物的解离度和吸收有较大影响,通常在pH4.5-7.5间选择一个最佳值以提高药物的吸收[15]。

(3)鼻腔血液循环:鼻粘膜极薄,黏膜内毛细血管丰富,药物吸收后直接进入体循环,可避免肝脏的首过效应及药物在胃肠道中的降解。有些口服首过效应很强的药物,如尼莫地平纳米乳鼻粘膜给药生物利用度与静脉给药相当[16]。鼻腔的血液循环和分泌机制对外界影响或病理状况均很敏感。

(4)纤毛运动:鼻粘膜纤毛清除作用可能缩短药物在鼻腔吸收部位滞留时间,影响药物的生物利用度。有些药物鼻腔吸收良好,生物利用度与静脉注射相当,但可能对鼻粘膜纤毛具有严重毒性,可不可逆地抑制纤毛运动。

对人参皂苷Rg1鼻腔给药的可行性研究中,研究人员采用“在体蟾蜍上腭法”考察人参皂苷Rg1对纤毛的毒性;采用HPLC法考察人参

皂苷Rg1对大鼠鼻腔酶和pH的稳定性;采用“大鼠在体鼻腔循环灌流法”考察人参皂苷Rg1鼻腔黏膜吸收的特点。试验结果证明: 2%的人参皂苷Rg1溶液无纤毛毒性,因此人参皂苷Rg1鼻腔给药是安全的。人参皂苷Rg1对鼻腔的酶和pH稳定,可以通过鼻腔给药。人参皂苷Rg1的相对分子质量为800,小于1000。因此从理论上来说,可以通过鼻腔黏膜吸收。实验数据也证明了人参皂苷Rg1可以通过鼻腔吸收。在250~1000 mg/L,随浓度增加,药物的吸收速率有先升高后降低的趋势。但总体吸收的速度较慢,说明鼻腔对药物的吸收还是较少,提示在处方筛选时要考虑加入吸收促进剂。人参皂苷Rg1对纤毛运动无影响、对鼻腔的酶和pH稳定,且其水溶液的pH在生理可以接受的范围内、通过鼻腔有一定的吸收[17]。

2.剂型因素

鼻粘膜给药常采用溶液剂、混悬剂、凝胶剂、气雾剂、喷雾剂以及吸入剂等,发挥局部或全身治疗作用。近年来生物粘附性微球和凝胶剂取得一定进展。鼻腔气雾剂、喷雾剂、和吸入剂在鼻腔中的弥散度和分布面积较广泛,药物吸收快,生物利用度高,疗效一般优于同种药物的其他剂型。溶液剂在鼻腔中扩散速度较快,分布面积较大,药效也较好。混悬剂的作用与其粒子大小及其在鼻腔吸收部位中保留的位置和时间有关。凝胶剂和生物粘附性微球因黏性较大,能降低鼻腔纤毛的清除作用,延长与鼻粘膜接触时间,可改善药物的吸收[18]。

三、鼻腔给药新剂型

1.脂质体

在鼻腔给药制剂中,脂质体已经研究较多。由于其主要成分为磷脂和胆固醇,它们包裹药物表面形成“保护膜”,这样就决定了脂质体能够更好地与机体细胞组织相容,使其生物依从性良好;并且药物不能直接接触黏膜,不被蛋白酶分解,从而减少了其对机体的不良反应[19]。

在卡巴拉汀脂质体的制备及其大鼠鼻腔给药的药代动力学研究中,研究者制备了卡巴拉汀脂质体, 研究其在大鼠鼻腔给药的药代动力学。采用硫酸铵梯度法制备包载卡巴拉汀的脂质体, 考察粒径、zeta电位和包封率, 测定脂质体在磷酸盐缓冲液中的释放;大鼠鼻腔给予卡巴拉汀脂质体,以安替比林为内标, 采用高效液相色谱?串联质谱法 (HPLC/MS) 测定血浆中卡巴拉汀的浓度, 运用DAS 2.0软

件拟合药代动力学参数。经筛选制备的脂质体包封率为(33.41 ± 6.58) %,平均粒径在154~236 nm, zeta电位 (?10.47 ± 2.41) mV。脂质体的体外释放符合一级动力学方程。大鼠鼻腔给药后, C max,

T max 和AUC0?∞分别为(1.50 ± 0.15) mg/L, 15 min 和(89.06 ± 8.30) mg·L?1·min。可见卡巴拉汀制备成脂质体经大鼠鼻腔给药后, 吸收迅速、血药浓度可以达到一定水平[20]。

研究人员对大鼠鼻腔给以载有柔性脂质体的氢溴酸加兰他敏后,对乙酰胆碱酯酶抑制剂的药代动力学参数做了研究,发现,制备成脂质体给药,有良好的效能[21]。

2.吸收促进剂

大多数多肽蛋白质类药物鼻粘膜吸收的生物利用度较差,可通过

一些吸收促进剂来增加其对鼻粘膜的穿透作用。良好的鼻粘膜吸收促进剂应该对鼻粘膜刺激小,促进吸收作用强,对鼻纤毛功能影响小,无毒副作用。近年来对鼻腔吸收促进剂研究较多,主要有胆酸盐、表面活性剂、螯合剂、脂肪酸、蛋白酶抑制剂等。

环糊精及其衍生物是常用的吸收促进剂。药物与环糊精形成包合物,可减少药物与酶的接触,抑制药物降解,提高药物在鼻腔环境的稳定性。与其它常用表面活性剂类促透剂相比,环糊精类对鼻黏膜局部刺激性较小,浓度小于10%时对鼻黏膜通透性的影响具有可逆性,有较高的安全性和耐受性。当鼻腔给予药物- 环糊精包合物时,药物可透过鼻黏膜吸收,环糊精则被纤毛清除,较少吸收,作为鼻腔给药赋形剂,具有广阔的应用前景[22]。

3.鼻腔疫苗

鼻腔疫苗作为注射以外的免疫途径是近年来鼻腔给药研究的一个新方向。目前绝大部分的免疫采取的都是注射途径,显然患者的依从性低,尤其对于儿童。而且,耐药性菌株产生的周期不断缩短,新近禽流感(H7N9)等疫情的连续爆发,这些都不仅迫切要求疫苗的有效性和安全性,尤其还要求其能够实现迅速普及性免疫。由此,科研工作者们开始积极开发新型的更理想的免疫途径。研究发现,鼻腔黏膜免疫不仅能够诱导局部黏膜免疫应答,而且也能诱导系统免疫应答,尤其能更有效地预防那些经鼻黏膜感染的疾病。其免疫效果与皮下注射免疫相近,比口服免疫更有效、更强烈。同时,鼻腔黏膜免疫给药方便,较之注射用疫苗不会给病人带来痛苦,改善了患者的依从

性,适合大范围人群免疫而无注射针头引起交叉感染之虞并降低治疗费用。需要指出的是,鼻腔疫苗的免疫效果很大程度上取决于抗原的剂型[23]。

四、结语

近年来,鼻腔给药的研究发展迅速。在基础理论的深入研究,高分子聚合物的合理创新应用,新的给药装置的完善下,相信在不久的将来我国将有更多的鼻黏膜给药的新产品投放市场,从而最终实现鼻腔给药制剂市场利益最大化,从而更好地服务于人类健康。

【参考文献】

[1] 任晓辉,陈新梅.胰岛素黏膜给药研究进展.中国医院用药评价与分析,2013,13(1):87-89.

[2] 杨莉,高颖昌,赵志刚.鼻腔给药的研究进展.中国药学杂志,2006,41(22):1685-1688.

[3] 王鹏,肖学凤. 经鼻脑靶向递药系统的研究进展. 现代药物与临床,2013,28(1):96-100.

[4]王东兴,高永良,恽榴红. 脑靶向性鼻腔给药的研究进展.中国新药杂志,2005,14(2):135-140.

[5]朱红霞.经鼻腔给药靶向中枢神经系统的研究进展.中国医药指南,2012,10(23):105-106.

[6] Kristian P Doyle, Tao Yang, Nikola S Lessov,et al. Nasal administration of osteopontin peptide mimetics confers neuroprotection in stroke. Journal of Cerebral Blood Flow & Metabolism,2008,28(26): 1235–1248.

[7] 张翔,郝伟,宁斌,等. 中药鼻腔给药制剂的研究进展.山东大学耳鼻喉眼学报,2005,19(6):412-413.

[8] 金方,谢保源,施丽西.用于全身治疗的鼻腔给药系统.中国医药工业杂志,1998,29( 3):137-141.

[9] 石森林,徐莲英.脑部疾病的鼻腔给药研究.中药新药与临床药理,2004,15(2):145-148.

[10] 程巧鸳,朱文静.鼻腔给药的生物利用度研究进展.国外医学药

学分册,2004,31(3):168-172.

[11] 赵静宜,杜守颖,陆洋,等.艾片经静脉和鼻腔给药的小鼠组织分布研究.中国中药杂志,2013,38(7):1071-1074.

[12] Clovis O.Da Fonseca,Julio Thome Silva,Igor Rodrigo Lins,et al. Correlation of tumor topography and peritumoral edema of recurrent malignant gliomas with therapeutic response to intranasal administration of perillyl alcohol. Invest New Drugs,2009,13(27): 557–564

[13] Clovis O. Da Fonseca, Raphael M. Teixeira,Ricardo Ramina,et al. Case of Advanced Recurrent Glioblastoma Successfully Treated with Monoterpene Perillyl Alcohol by Intranasal Administration.Journal of Cancer Therapy, 2011,3(2): 16-21.

[14] Guoliang Zhang ,Geming Shi ,Huibing Tan,et al. Intranasal administration of testosterone increased immobile-sniffing, exploratory behavior, motor behavior and grooming behavior in rats. Hormones and Behavior,2011,59(4):477-483.

[15] 徐攀,杜守颖,黎迎,等.经鼻脑靶向给药系统研究进展.现代药物与临床,2013,28(2):247-251.

[16] 徐雄波,潘育方,黄志军,等.鼻腔给药尼莫地平纳米乳的制备及脑组织靶向性初步评价. 中国药学杂志,2012,47(8):594-598. [17] 陈新梅.人参皂苷Rg1 鼻腔给药的可行性研究.中国中药杂

志,2010,35(2):229-231.

[18] 王东兴,高永良.鼻腔给药新剂型研究进展.中国新药杂志,2001,11(8):589-592.

[19] 李玲,马海忠,廖明琪,等.鼻腔给药系统类型及临床应用进展. 中国药房,2013,24(17):1615-1617.

[20] 仰浈臻,王占璋,吴凯,等.卡巴拉汀脂质体的制备及其大鼠鼻腔给药的药代动力学.药学学报,2011,46(7):859?863.

[21]Weize Li,Yongqiang Zhou,Ning Zhao,et al.Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. environmental toxicology and pharmacology ,2012,34(2):271-279.

[22] 周园,刘玉玲.环糊精在鼻腔给药系统中的应用.中国医药工业杂志,2005,36(8):501-504.

[23] 梅丹,毛世瑞.鼻黏膜给药制剂的最新研究进展.中国药剂学杂志,2008,6(2):63-71.

中药鼻腔给药研究新进展

中药鼻腔给药研究进展 陈文文1,黄勤挽1,郝柳妮2,吴纯洁1 1成都中医药大学,四川成都(611731) 2四川维奥制药有限公司,四川成都(611130) E-mail:eiva1252@https://www.doczj.com/doc/ef15968980.html, 摘要:鼻腔给药是目前药剂工作者研究得较多的一种给药方式,尤其是中药鼻腔给药的基础研究还有待加强,本文对近五年中药鼻腔给药的研究现况进行了综述,为中药鼻用制剂的研究提供思路和有益参考。 关键词:中药,鼻腔给药,研究进展 鼻腔给药是指药物在鼻腔内使用,通过刺激鼻黏膜发挥局部或全身性治疗作用,从而达到防病治病的一种外治方法。鼻腔给药作种为一传统的给药方式由来已久,在耳鼻喉科应用极为广泛,一般用来治疗各种鼻腔和鼻窦疾病,也可作为辅助用药用于与鼻病有关的邻近器官疾患,在人类防病治病的过程当中发挥了重要的作用。而现代研究更发现,鼻腔给药具有给药方便,患者顺应性好;避免肝脏首过效应,提高药物的生物利用度;吸收迅速,起效快,具有全身作用;可绕过血脑屏障,增加药物向脑内递释等优点[1~3],因此,鼻腔给药方式,尤其是它的全身作用越来越引起人们的重视,近年来中药制剂在鼻腔给药方向的研究也越来越丰富。2006年在我国杭州也召开了“第二届国际药物经肺部和鼻腔递送学术讨论会”,会议提供了鼻腔及肺部给药研究方面的最新的实用的信息。本文将对近五年来中药鼻腔给药研究的报道做一综述,为今后鼻腔给药及中药制剂的发展提供一些借鉴。 1.鼻腔给药的中医药理论依据 中医药理论认为,人体是一个相互联系的整体,功能上相互为用,病机上相互影响。《素问·金匮真言论》曰:“西方赤色,入通于肺,开窍于鼻”;《素问·五脏别论》曰:“五气入鼻,藏于心肺,心肺有病,而鼻为之不利也。”《疮疡全书》云:“鼻在面中,为一生之血运,而鼻孔为肺之窍,其气上通于脑,下行于肺”。另外鼻窍通过督脉和足太阳膀胱经与脑直接相通,如《灵枢》所述:“十二经脉,三百六十五络,其气血皆上出于面而走空窍,……其宗气上出于鼻而为臭”。因此,鼻腔给药不仅可以直接治疗鼻部的病变,通过相关脏器的传递和经络的传导调整作用,还可治疗全身病证。我国现存最早的医书典籍《黄帝内经》就已记载鼻腔给药的方法,曰:“以草刺鼻,嚏而已。”《灵枢·杂病第二十六》首次明确地论述了应用鼻腔给药来治疗全身性疾病。汉代张仲景《伤寒杂病论》中采用“薤捣汁,灌鼻中”,可开窍回苏用于急救,治疗昏厥、猝死;晋代葛洪《肘后备急方》中载有皂角、葱白、薤汁、韭汁、雄黄等药物或吹或塞或灌鼻内的用法,如“瓜蒂赤豆散”吹鼻治疗急性黄疸的记载;其后《圣济总录》有“龙脑双丸”用青葱筒子灌鼻治疗疗急风口噤,用鬼箭羽、鲮鲤甲研粉搐鼻治疗疟疾的记载;《本草纲目》有用巴豆油纸拈,燃烟熏鼻,治疗中风痰厥、气厥、中毒等病证的记载。清代吴师机在《理瀹骈文》中总结了历代鼻腔给药的经验,书中理、法、方、药俱备,形成了比较完整的鼻药疗法理论体系,谓之“纳鼻而传十二经”[4]。随后《外治医说》、《万病验方大全》等医著,亦详细地记载了鼻药疗法的临床应用。

鼻黏膜给药系统国内外探究进展

目前注射给药系统中存在的问题 由注射引起的炎症和交叉感染>600,000/年(美 国) 增加HIV的感染几率(4.1-8.3/100 transports) 对环境的要求 不便于流动患者的治疗 喷射给药系统(Jet injection systems) “Needleless”给药途径: , 直肠, 透皮等

鼻黏膜给药的特点(1) 鼻粘膜面积大,粘膜下血管非常丰富,动脉、 静脉和毛细血管交织成网状,药液可迅速吸 收自血管进入体循环,吸收速度和肌肉注射 相似; 药物经鼻黏膜吸收后直接进入体循环,可免 受胃肠道中酶的破坏和肝脏对药物的首过效 应;提高生物利用度; 胃肠道中容易破坏的药物,极性大而胃肠道 难于吸收的药物,鼻粘膜都能很好的吸收; 分子量大的多肽类、蛋白类药物,也能在吸 收促进剂的存在下较好地吸收; 提高患者的顺应性,用药方便,适合自身给 药; 可实现疫苗免疫 鼻黏膜给药体系的应用

(A) 100 l, (B) 70 μl, (C) 50 μl, (D) 20 μl. A B (A)给药50 μl后马上杀死.(B) 给药50 μl,2h后杀死

单剂量干粉鼻腔用药装置 https://www.doczj.com/doc/ef15968980.html,/parenterals/routes/nasal_spray_bottle.jpg 液体给药装置 粉末给药装置 鼻黏膜给药雾化装置(MAD) 增加药物鼻黏膜吸收的途径 personnel to delivery nasal medications as an Broad 30-micron spray

无毒; 生物可降解; 具有生物黏附性; Mao et al. Int J Pharm, 2004, 272(1-2), 37-43.

鼻腔给药的研究进展

鼻腔给药研究进展 余婷药学一班 18 【摘要】鼻腔给药由来已久,随着药物制剂新技术和新辅料的发展,其不仅可治疗鼻腔局部疾病,而且可通过鼻腔给药发挥全身作用。鼻腔给药因能避免胃肠道降解和肝脏首过效应,具有生物利用度高、起效快、患者顺应性好等特点,为肽类和蛋白质类药物提供了一条非注射的有效给药途径。而且研究发现,通过鼻腔给药可增加药物在脑组织中的分布,可用于治疗中枢神经系统疾病。近年来,鼻黏膜给药制剂的研究呈迅速上升趋势。但对于大分子药物而言,药物的经鼻吸收量很小,不能满足临床需求。本文就鼻腔给药的研究进展进行综述,对影响鼻粘膜吸收的因素进行探讨,介绍鼻粘膜给药的一些新剂型。 【关键词】鼻粘膜给药;鼻腔生理;脂质体;吸收促进剂 鼻粘膜给药(intranasal administration)不仅用于鼻腔局部疾病的治疗,也是全身疾病治疗的新型给药途径之一。鼻粘膜给药的药物吸收式药物透过鼻粘膜向循环系统的转运过程,与鼻腔粘膜的解剖、生理以及药物本身的剂型因素和理化性质等有关。目前已有甾体激素类、多肽类和疫苗类等药物的鼻粘膜吸收制剂上市或进入临床研究,如胰岛素鼻用制剂 [1]。 一、鼻腔的生理结构及给药特点 1.鼻腔的解剖生理 鼻是呼吸道直接与外界相通的器官,由外鼻、鼻腔和鼻旁窦三部分组成。鼻中隔将鼻腔分为结构相同的左右部分。鼻腔从鼻前庭开始到鼻咽管,

长度为12-14cm。鼻腔中有呈皱褶状的上、中、下鼻甲,其表面积为 150-200cm2。鼻腔的空气通道呈弯曲状,气流一旦进入即受到阻挡而改变方向。外界伴随空气进入鼻腔的粒子大部分沉积在鼻前庭前部,难以直接通过鼻腔到达气管[2]。 鼻腔可以分为三个功能区域:①鼻前庭区,位于鼻孔的开口处,表面覆盖复层的鳞状上皮,其上生长的鼻毛可以阻挡来自气流中的大颗粒;②呼吸区,表面覆盖假复层柱状上皮细胞,位于鼻腔的后三分之二部位;③嗅觉区,位于鼻腔的最上部。其中嗅觉区大约10cm2,是将药物经鼻传递至脑部的主要部位。该区黏膜主要由支持细胞构成,其间分布着嗅细胞,嗅细胞的中枢突形成无髓的嗅神经纤维,集合成一些神经束后,向上穿行在黏膜下层,交叉成嗅丝,穿过筛孔,与大脑的嗅球相连[3]。鼻粘膜表面有众多纤毛,以每分钟1000次左右的速度向后摆动,对鼻粘膜表面物质的清楚速率为3-25mm/min,平均为6mm/min,这对清除鼻腔内异物、保持鼻腔清洁具有重要意义,同时也对鼻腔给药时药物在鼻腔内的保留时间有很大影响,鼻上皮细胞下有许多大而多孔的毛细血管和丰富的淋巴网,加之鼻粘膜表面积相对较大,这就使其成为较理想的黏膜给药途径。有些药物通过鼻腔给药后可能通过嗅区转运,绕过血脑屏障直接进入脑内[4]。 2.鼻腔粘膜 鼻腔的内表面为黏膜,由上皮和固有层构成。根据结构和功能的不同,鼻粘膜可分为前庭部、呼吸区和嗅觉区黏膜。呼吸区占鼻粘膜的大部分,因血管丰富呈粉红色。黏膜表面被覆盖假复层纤毛柱状上皮,含有较多杯状细胞,基底膜较厚。上皮细胞纤毛的摆动,可把黏着的细菌或异物向咽

新型给药系统研究发展现状与趋势

新型给药系统研究发展现状与趋势 口腔给药技术有望在偏头疼、关节炎、口腔疼痛治疗方面大有作为。加拿大Biovail公司正在开发一系列基于微丸技术的药物,以增加药物吸收和改善药物气味,并对这些药物进一步包衣制成控释、速释或缓释制剂。美国Nobex Corporation公司,其主要研究蛋白质、多肽和小分子药物的口腔给药,现有11个产品处于开发阶段。美国Emisphere公司正在开发载体辅助给药系统,即通过载体分子运送蛋白质通过生物膜。英国Provalis公司已经成功开发胰岛素口服活性制剂。美国Watson公司正在开发可输送大分子药物的口含片。 吸入给药系统研究热点集中在改进推进剂和胰岛素治疗两方面。将药物输送到气道取决于微粒的大小、吸入量以及推进剂。氯氟化碳(CFCs)逐渐被淘汰,促使人们去开发更新的、对环境更有利的技术。Medic-Aid公司开发的产品采用适应性气溶胶输送技术,既可通过电子检测患者的呼吸特征而精确地喷入药物,又能记录给药日期、剂量和设备使用的时间,增加了给药剂量的准确性。德国Boehringer Ingelheim公司的Respimat薄膜吸入器使用两个高速率液体喷气装置,喷药时两者能相汇于一点。Aradigm公司正在研发呼吸激活AERx喷雾器。英国史克-比切姆公司正在开展通过AERx系统输送吗啡以镇痛的试验。而诺和诺德公司正在开展通过该项技术输送胰岛素的研究。此外,美国Dura公司正在开发一种无需推进剂即可使药物直接进入肺部的干粉气雾剂。肺部吸入系统一般为小剂量的粉雾剂。胰岛素吸入治疗是开发热点。美国吸入治疗系统公司和辉瑞公司合作开发的胰岛素肺吸入剂已进入2期临床研究。研究结果表明,这一产品可有效控制1型糖尿病患者的血糖。诺和诺德公司也在研究胰岛素吸入治疗。 此外,吸入治疗系统公司还和Biogen公司应用前者的吸入释药技术合作开发用于治疗多发性硬化症的干扰素β-la。该药以前是经肌注方式给药。 鼻腔给药是相对较新的给药方式,其研发进展很快 致力于开发新型鼻腔给药制剂的科学家认为,鼻腔有良好的血液供应,较大的黏膜面积,经鼻腔给药有起效快,易被患者接受等优点。据美国专门从事鼻腔给药研究的CharanBehl博士介绍,鼻腔给药制剂有可能在镇痛、治疗勃起障碍和疫苗方面展现更多的发展前景。目前美国只有27个鼻腔给药产品,其中17个产品是局部作用产品,10个产品是全身作用产品,而全身作用产品都是类固醇药物制剂。据统计,这27个产品所具有的市值超过15亿美元。近年来,该公司成功开发了布托啡诺酒石酸盐的鼻腔制剂。在研产品有用于镇痛的鼻喷吗啡。据称这种制剂比口服制剂起效快且副作用更小。 鼻腔给药系统还将为偏头痛的治疗带来新的希望。据估计,全球有37%的偏头痛患者未接受处方药治疗,而传统的处方药导致近40%的患者出现副作用。英国葛兰素-威康公司的鼻腔给药产品舒马曲坦已有良好的效果。而斯坦福头痛研究中心也正在考虑开发这类鼻腔制剂。 在治疗勃起障碍方面,鼻喷制剂有望大显身手。起效快是该类药物的最大优势。对于不能在消化道被很好地吸收的药物来讲,鼻腔给药是很好的替代技术。美国West制药公司正在研制多肽激素-leuprolide的鼻腔给药制剂。 此外,West公司还在研发鼻腔给药的流感疫苗。法国Biovector Therapeutics公司是该领

鼻腔给药系统吸收促进剂的种类

鼻腔给药系统吸收促进剂的应用概况 任吉霞 解放军第八十九医院药剂科山东潍坊261021 鼻腔给药系统(nasal drug delivery system, NDDS)是药物经鼻黏膜上皮细胞吸收进入循环系统起全身作用的一类制剂。具有生物利用度高、起效快、使用方便等特点,特别是可为肽类和蛋白质类药物提供一条非注射的有效给药途径而成为制剂领域研究的一个热点。吸收促进剂通过改变鼻黏膜结构,提高通透性,促进大分子药物较好的吸收。研究较多的吸收促进剂有以下几种。 1环糊精及衍生物环糊精(CD)及其衍生物对多肽、蛋白质类、激素、胰岛素、促肾上腺皮质激素类似物等进行包合,促进其鼻腔吸收,提高生物利用度。其中以二甲基-β-环糊精作用最强。Chavanpatil等[1]采用大鼠在体灌流技术考察吸收促进剂对阿昔洛韦鼻腔吸收的促进作用,结果表明吸收促进剂使阿昔洛韦的吸收量增加。 2磷脂及衍生物作为体内磷脂的代谢产物,以其高效低毒而成为促吸收剂的研究热点之一。现与CD合用和其结构改造减低毒性正被深入研究。常用的模型药物有胰岛素、生长激素、降钙素、加压素及大分子抗原等。Chand ler等[2]研究了不同的溶血磷脂对胰岛素吸收及鼻黏膜组织学的影响,结果表明胰岛素能通过鼻腔给药达到治疗浓度而不出现毒性反应。 3胆酸及衍生物包括牛黄胆酸盐、葡糖胆酸盐、脱氧胆酸钠、脱氧牛黄胆酸钠等。甘氨胆酸钠作为吸收促进剂时,多肽药物在家兔鼻腔中的生物利用度有显著增加[3]。但胆酸盐类对鼻黏膜有一定不良反应,所以张一奕等[4]采用混合胶团法,联合运用亚油酸、单油酸甘油酯等制成促吸收剂,不仅促吸收效果比单用胆酸好,而且大大减轻了对鼻纤毛的毒性。 4氨基酸及其衍生物 Dahlback等[5]把聚L精氨酸和L赖氨酸作为复合物促进右旋糖苷鼻腔吸收,显示出很好的促吸收效果,且其促吸收效果与其分子量密切相关;N atsume等[6]从众多阳离子化合物中筛选出的聚L精氨酸100效果最好,是个很有潜力的吸收促进剂。 5氮酮(azone) 它是一种新型吸收促进剂,能扩大生物膜细胞之间的空隙,被广泛应用于各种生物膜的促透吸收。其对亲水性药物的作用强于亲脂性药物。有研究显示氮酮类的促透效果和浓度相关,在一定浓度时有促透峰值[7]。氮酮与丙二醇、油酸等促透剂合用常产生更佳的促透效果。 6梭链孢酸衍生物包括二氢褐霉酸钠(STDHF)、二氢甾酸霉素钠等种类。用STDHF作渗透促进剂,它与胰岛素比例为5:1时,促进吸收作用最强,药物吸收重现性好。STDHF纤毛毒性随浓度增大而增加,浓度>3%时纤毛抑制作用即时显现。 7壳聚糖具有生物黏附性和多种生物活性,能有效的增强亲水性药物通过鼻腔的吸收[8]。Sinswat等[9]比较了游离胺壳聚糖(CSJ)及谷氨酸盐壳聚糖(C

鼻腔给药的研究进展

鼻腔给药研究进展 余婷药学一班 2010071118 【摘要】鼻腔给药由来已久,随着药物制剂新技术和新辅料的发展,其不仅可治疗鼻腔局部疾病,而且可通过鼻腔给药发挥全身作用。鼻腔给药因能避免胃肠道降解和肝脏首过效应,具有生物利用度高、起效快、患者顺应性好等特点,为肽类和蛋白质类药物提供了一条非注射的有效给药途径。而且研究发现,通过鼻腔给药可增加药物在脑组织中的分布,可用于治疗中枢神经系统疾病。近年来,鼻黏膜给药制剂的研究呈迅速上升趋势。但对于大分子药物而言,药物的经鼻吸收量很小,不能满足临床需求。本文就鼻腔给药的研究进展进行综述,对影响鼻粘膜吸收的因素进行探讨,介绍鼻粘膜给药的一些新剂型。【关键词】鼻粘膜给药;鼻腔生理;脂质体;吸收促进剂鼻粘膜给药(intranasal administration)不仅用于鼻腔局部疾病的治疗,也是全身疾病治疗的新型给药途径之一。鼻粘膜给药的药物吸收式药物透过鼻粘膜向循环系统的转运过程,与鼻腔粘膜的解剖、生理以及药物本身的剂型因素和理化性质等有关。目前已有甾体激素类、多肽类和疫苗类等药物的鼻粘膜吸收制剂上市或进入临床研究,如胰岛素鼻用制剂[1]。 一、鼻腔的生理结构及给药特点 1.鼻腔的解剖生理 鼻是呼吸道直接与外界相通的器官,由外鼻、鼻腔和鼻旁窦三部分组成。鼻中隔将鼻腔分为结构相同的左右部分。鼻腔从鼻前庭开始

到鼻咽管,长度为12-14cm。鼻腔中有呈皱褶状的上、中、下鼻甲,其表面积为150-200cm2。鼻腔的空气通道呈弯曲状,气流一旦进入即受到阻挡而改变方向。外界伴随空气进入鼻腔的粒子大部分沉积在鼻前庭前部,难以直接通过鼻腔到达气管[2]。 鼻腔可以分为三个功能区域:①鼻前庭区,位于鼻孔的开口处,表面覆盖复层的鳞状上皮,其上生长的鼻毛可以阻挡来自气流中的大颗粒;②呼吸区,表面覆盖假复层柱状上皮细胞,位于鼻腔的后三分之二部位;③嗅觉区,位于鼻腔的最上部。其中嗅觉区大约10cm2,是将药物经鼻传递至脑部的主要部位。该区黏膜主要由支持细胞构成,其间分布着嗅细胞,嗅细胞的中枢突形成无髓的嗅神经纤维,集合成一些神经束后,向上穿行在黏膜下层,交叉成嗅丝,穿过筛孔,与大脑的嗅球相连[3]。鼻粘膜表面有众多纤毛,以每分钟1000次左右的速度向后摆动,对鼻粘膜表面物质的清楚速率为3-25mm/min,平均为6mm/min,这对清除鼻腔内异物、保持鼻腔清洁具有重要意义,同时也对鼻腔给药时药物在鼻腔内的保留时间有很大影响,鼻上皮细胞下有许多大而多孔的毛细血管和丰富的淋巴网,加之鼻粘膜表面积相对较大,这就使其成为较理想的黏膜给药途径。有些药物通过鼻腔给药后可能通过嗅区转运,绕过血脑屏障直接进入脑内[4]。 2.鼻腔粘膜 鼻腔的内表面为黏膜,由上皮和固有层构成。根据结构和功能的不同,鼻粘膜可分为前庭部、呼吸区和嗅觉区黏膜。呼吸区占鼻粘膜的大部分,因血管丰富呈粉红色。黏膜表面被覆盖假复层纤毛柱状上

靶向给药系统

靶向给药系统 摘要: 靶向给药系统也被称作靶向治疗药物。本文主要针对靶向给药系统进行阐述。主要介绍靶向给药系统的优势与原理、各种靶向给药系统的类型等。 关键词:靶向给药系统,剂型,靶向给药 正文:靶向给药系统( targeting drug delivery system,TDDS)又叫做靶向治疗制剂。通过局部给药或者通过血液循环选择性的将药物运送到靶细胞,靶组织,靶器官而发挥治疗作用。这样可以提高药物的作用部位的选择性,从而提高治疗效果降低药物的毒副作用。靶向给药系统的概念由Ehrlich在1906年提出。Florence在1993年创办了有关于靶向制剂的专业学术期刊“Journal of Drug Targeting”[1]。 在普通的药物治疗中,药物不仅仅在病变部位发生治疗作用,而且还与正常的组织器官产生相互作用,而产生毒副作用。因此为了提高药物的治疗效果需要提高药物的病变靶区的药物浓度。其主要优点有[2]:1将药物靶向的运送到靶组织提高了药物的疗效。靶向制剂主要利用了病变部位的独特性质,采用了特殊的载体将药物传递到病变的组织、器官、细胞,从而减少药物的非靶向部位的分布,因而提高了药物的作用的效果。2降低了药物对正常的细胞的毒性。靶向制剂可以减少正常组织的分布,减少具有毒性作用的药物对正常细胞的毒性作

用。3减少剂量,增加药物的生物利用度。4改善药物的分散性。5提高药物在体内的 作用时间,改善药物在体内半衰期短等缺陷等。 靶向给药系统的原理 (1)按靶向性机理可以分为生物物理靶向制剂、生物化学靶向制剂、生物免疫靶向制 剂和双重、多重靶向制剂等几类。 (2)按靶向源动力[3,4]可以分为主动靶向制剂(TDDS主动寻找靶区)、被动靶向制剂(TDDS被动地被选择摄取到靶区)、前体靶向药物。 主动靶向制剂是利用经过特殊修饰的药物载体把药物定向的运送的病变区而发挥靶向治疗的作用。主要有:受体介导的靶向给药系统,抗体介导的靶向给药系统等。受体介导的靶向给药系统是指利用体内某些器官和组织中的一些特殊的受体,能选择性地识别具特异性的配体来实现主动靶向给药。将药物以共价键连接到配体上,将药物输送到靶部位。抗体介导的靶向给药系统是利用抗体与抗原的特异性结合的原理而将将药物导向特定的靶部位。 被动靶向制剂是指将微粒给药系统作为药物载体将药物被动的输送到病变部位的给药系统[。微粒给药系统包括脂质体、纳米粒微球、微囊等药物载体。微粒给药系统实现被动靶向的原理在于:体内的网状内皮系统如肺、脾、肝和骨髓等组织中分布着大量的吞噬细胞,吞噬细胞可以将一定大小的微粒作为异物而吞噬摄取,其中较大的微粒由于不能滤过毛细血管床,而被机械截留于目标病变部位。如7-30 m的微粒可被动靶向肺部位,而小于50 nm的微粒

鼻腔给药的正确使用方法探讨

鼻腔给药的正确使用方法探讨 【摘要】向鼻腔里给药是治疗鼻炎、鼻窦炎等疾病的主要方法之一。使用外用气雾剂、鼻喷剂、鼻滴剂时应注意采用正确的方法,也只有采用正确的用药方法,才能保证药物准确到达病变部位,发挥应有的治疗作用,否则就可能会影响到治疗的效果。 【关键词】鼻腔给药正确使用方法注意问题探讨 正确使用药物对药物的疗效来讲至关重要,气雾剂、滴鼻剂和喷鼻剂等属特殊药物剂型,其使用方式更应引起足够的注意 1 外用气雾剂、鼻喷剂或鼻滴剂不能盲目使用 鼻炎患者切勿盲目使用外用气雾剂、鼻喷剂或鼻滴剂,目前治疗鼻鼻窦炎和过敏性鼻炎,能够推荐长期使用的只有鼻用激素和鼻用抗组胺药物。那种不把成分写清楚的药比三无产品更可怕,不要用,因为你不知道那个“等”都代表了什么东西。中成药常用的伎俩就是把添加的西药成分给“等”掉。 鼻炎患者切勿盲目使用鼻滴剂,现在的中成药很多都添加了西药成分,含有麻黄素,或奈甲唑啉,这是血管收缩剂,当然能缩小肥大的鼻甲,缓解鼻阻和流涕。但由于反跳和耐受,超过一周的使用会造成药物性鼻炎。所以对于市面上各种的滴鼻剂,打着中药或先进的科学技术的幌子其实绝大多数都含有麻黄素,或奈甲唑啉,这些药物明确规定:①适用于急性期缓解症状;②长期使用不超过一周;③通常会带有副作用,导致病情反弹,鼻粘膜肥厚产生药物性鼻炎,最终只能通过手术才能根治。

2 外用气雾剂、鼻喷剂或鼻滴剂的正确使用方法 正确使用药物对药物发挥疗效有着重要的作用,尤其是气雾剂、 滴鼻剂与喷鼻剂等一些特殊剂型的药物更要注意使用方式。 2.1 气雾剂的正确使用方法:气雾剂正确的使用方法是:使用前尽量将痰咳出,充分摇匀药液,按说明书上的建议手持气雾剂,将接口端放入双唇间,头稍后倾,缓缓呼气,尽量让肺部气体排尽;在深吸气开始的同时按压气雾器顶部,使其喷药,随吸气将药粒深深吸入,吸完后尽可能屏住呼吸10-15秒,随后再用鼻子呼气,切记最后要用温水清洗口腔。 另外,要正确掌握气雾剂的使用剂量,不要盲目加大剂量或缩短喷雾间隔时间。各种气雾剂都有一定的耐受性,即长期反复应用后,效果会越来越差。为避免耐受性,最好同时交叉使用两种气雾剂。 2.2 喷鼻剂的正确使用方法:使用喷鼻剂时,头不要后仰,使头稍向前倾地坐着,将药瓶的喷嘴插入鼻子,但要尽量避免接触鼻黏膜,塞住另一鼻孔并闭上嘴,按压喷雾器的同时吸气。在抽出喷雾器之前,要始终按压喷雾器,以防鼻中的黏液和细菌进入药瓶中。在移去喷鼻剂喷头,将头尽力前倾。这个过程中需注意的是:在喷药后应轻轻地用鼻吸气2~3次。几秒钟后坐直,药液将流到咽部,同时用嘴呼吸,若需要,则换另一鼻孔重复前过程。最后用冷开水 冲洗喷头。 2.2 鼻滴剂的正确使用方法:鼻滴剂是常见的治疗方式之一。

鼻腔给药的研究进展

鼻腔给药研究进展 余婷药学一班2010071118 【摘要】鼻腔给药由来已久,随着药物制剂新技术和新辅料的发展,其不仅可治疗鼻腔局部疾病,而且可通过鼻腔给药发挥全身作用。鼻腔给药因能避免胃肠道降解和肝脏首过效应,具有生物利用度高、起效快、患者顺应性好等特点,为肽类和蛋白质类药物提供了一条非注射的有效给药途径。而且研究发现,通过鼻腔给药可增加药物在脑组织中的分布,可用于治疗中枢神经系统疾病。近年来,鼻黏膜给药制剂的研究呈迅速上升趋势。但对于大分子药物而言,药物的经鼻吸收量很小,不能满足临床需求。本文就鼻腔给药的研究进展进行综述,对影响鼻粘膜吸收的因素进行探讨,介绍鼻粘膜给药的一些新剂型。【关键词】鼻粘膜给药;鼻腔生理;脂质体;吸收促进剂鼻粘膜给药(intranasal administration)不仅用于鼻腔局部疾病的治疗,也是全身疾病治疗的新型给药途径之一。鼻粘膜给药的药物吸收式药物透过鼻粘膜向循环系统的转运过程,与鼻腔粘膜的解剖、生理以及药物本身的剂型因素和理化性质等有关。目前已有甾体激素类、多肽类和疫苗类等药物的鼻粘膜吸收制剂上市或进入临床研究,如胰岛素鼻用制剂[1]。 一、鼻腔的生理结构及给药特点 1.鼻腔的解剖生理 鼻是呼吸道直接与外界相通的器官,由外鼻、鼻腔和鼻旁窦三部分组成。鼻中隔将鼻腔分为结构相同的左右部分。鼻腔从鼻前庭开始

到鼻咽管,长度为12-14cm。鼻腔中有呈皱褶状的上、中、下鼻甲,其表面积为150-200cm2。鼻腔的空气通道呈弯曲状,气流一旦进入即受到阻挡而改变方向。外界伴随空气进入鼻腔的粒子大部分沉积在鼻前庭前部,难以直接通过鼻腔到达气管[2]。 鼻腔可以分为三个功能区域:①鼻前庭区,位于鼻孔的开口处,表面覆盖复层的鳞状上皮,其上生长的鼻毛可以阻挡来自气流中的大颗粒;②呼吸区,表面覆盖假复层柱状上皮细胞,位于鼻腔的后三分之二部位;③嗅觉区,位于鼻腔的最上部。其中嗅觉区大约10cm2,是将药物经鼻传递至脑部的主要部位。该区黏膜主要由支持细胞构成,其间分布着嗅细胞,嗅细胞的中枢突形成无髓的嗅神经纤维,集合成一些神经束后,向上穿行在黏膜下层,交叉成嗅丝,穿过筛孔,与大脑的嗅球相连[3]。鼻粘膜表面有众多纤毛,以每分钟1000次左右的速度向后摆动,对鼻粘膜表面物质的清楚速率为3-25mm/min,平均为6mm/min,这对清除鼻腔内异物、保持鼻腔清洁具有重要意义,同时也对鼻腔给药时药物在鼻腔内的保留时间有很大影响,鼻上皮细胞下有许多大而多孔的毛细血管和丰富的淋巴网,加之鼻粘膜表面积相对较大,这就使其成为较理想的黏膜给药途径。有些药物通过鼻腔给药后可能通过嗅区转运,绕过血脑屏障直接进入脑内[4]。 2.鼻腔粘膜 鼻腔的内表面为黏膜,由上皮和固有层构成。根据结构和功能的不同,鼻粘膜可分为前庭部、呼吸区和嗅觉区黏膜。呼吸区占鼻粘膜的大部分,因血管丰富呈粉红色。黏膜表面被覆盖假复层纤毛柱状上

靶向给药系统

靶向给药系统诞生于20世纪70年代,是一种新的制剂技术和工艺,是指药物通过局部或全身血液循环而浓集定位于靶组织,靶器官,靶细胞的给药系统。靶向给药系统也是一种药物载体系统,具有将药物选择性的传输并释放于靶组织.靶器官或者靶细胞,使靶区药物浓度增大,降低其他非靶部位浓度以减少毒副作用的特性[ 1 ]。靶向制剂最初只指向狭义的抗癌制剂,随着研究的深入,研究领域的拓宽,从给药途径,靶向专一性及特效型方面都有突破性进展,靶向制剂发展成为一切具有靶向性的制剂[ 2 ]。 1靶向给药系统的分类 靶向给药系统最初的定义是狭窄的,专指具有抗癌作用的一些制剂,随着新工艺设备的使用,优秀载体物质和辅料的诞生及应用,靶向给药系统发展迅猛。传统的药物分类方式已经不能明晰的分别这些药物制剂的种类,现将靶向给药系统的分类简述如下(表1)。 表1靶向给药系统的分类 2靶向给药系统的设计理论 靶向给药系统与其他的制剂类型相比最突出的特点是具有靶向性。该系统的靶向机制可以分为生物物理靶向、生物化学靶向、生物免疫靶向及双重、多重靶向。根据这些靶向理论可以设计出基于不同机制的靶向给药系统[ 2 ]。 211生物物理学特性设计靶向给药系统生物物理靶向是根据机体的组织生理学特性对不同大小微粒的滞留性不同,选择性地聚集于肝、脾、肺、淋巴部位释放药物而发挥疗效。Brused等[3]通过实验证实未经修饰的100~200 nm的微粒系统进入血液循环后很快被网状内皮系统(RES)巨噬细胞从血液中清除,最终达到肝Kupfer细胞溶酶体中,而50~100 nm纳米粒系统能进入肝实质细胞中; < 50 nm微粒则能透过肝脏内皮细胞或者通过淋巴传递到脾脏或者骨髓。7~30μm微粒可以被肺机械滤阻而摄取; > 10 nm微粒可以阻滞于毛细血管床,达到肝脏,脏和荷瘤器官中。基于这种原理,可以将药物制成不同大小的纳米粒子实现对于不同器官组织的生物物理靶向,或者将药物包裹于可生物降解的生物相容性高分子纳米粒子中, 以实现缓释与生物物理靶向。 212生物化学靶向理论设计靶向给药系统生物化学靶向是根据药物微粒或者药物载体微粒表面电荷、表面疏水性质和表面吸附大分子的不同,可以达到不同的器官以实现靶向性而设计。根据药物微粒表面吸附大分子的不同可以达到不同器官,以实现主动靶向给药。Pino等[ 4 ]研究表明,内皮血窦腔面富含糖残基,用外源凝集素试验证明含有甘露糖、半乳糖、N2乙酰葡萄糖胺N2乙酰半乳糖胺残基, 而内皮外膜无上述糖残基,因此利用糖残基与血红蛋白,免疫球蛋白特异结合的特性实现骨髓的主动靶向给药。根据药物微粒表面电荷的不同也可以实现靶向给药。De2 Byuyn等[5]证明内皮细胞血窦面存在唾液酸及一对神经氨酸

相关主题
文本预览
相关文档 最新文档