当前位置:文档之家› 聚光型太阳能电池

聚光型太阳能电池

聚光型太阳能电池
聚光型太阳能电池

聚光型太陽能電池

[聚光型太陽能電池(Concentrator Photovoltaic)]+[高聚光鏡面菲涅爾透鏡(Fresnel Lenes)]+[太陽光追蹤器(Sun Tracker)]的組合

其太陽能能量轉換效率可達31%~40.7%,雖然轉換效率高但是由於向陽時間長,過去用於太空產業,現在搭配太陽光追蹤器可用於發電產業,比較不適合用於一般家庭,聚光型太陽能電池主要材料是[砷化鎵](GaAs),也就是三五族(III-V)材料,一般矽晶材料只能夠吸收太陽光譜中400~1,100nm波長之能量,而聚光型不同於矽晶圓太陽能技術,透過多接面化合物半導體可吸收較寬廣之太陽光譜能量,目前以發展出三接面InGaP/GaAs/Ge的聚光型太陽電池可大幅提高轉換效率,三接面聚光型太陽電池可吸收300~1900nm波長之能量相對其轉換效率可大幅提升,而且聚光型太陽能電池的耐熱性比一般晶圓型太陽能電池又來的高。

核研所聚光型太陽能發電系統

聚光型太陽能模組

聚光型太陽能電池

能量轉換率比較:

薄膜型太陽能(7%~12%)、晶圓型太陽能(12%~20%)、傳統核能電廠(30%)、火力發電(36.8%)、聚光型太陽能(31%~40.7%)、新式核能電廠(42~57%)

聚光型太陽能電池可通過使用透鏡將光聚集到狹小的面積上來提高發電效率。不過因聚光引起的溫度上升會損傷太陽能電池單元及發電系統,因此往往必須要抑制聚光率才可以。聚光型太陽電池假如使用聚光倍率為1000倍的透鏡時,單位模組的太陽能電池單元的成本可降至結晶矽類電池單元的1/10左右,而所需的面積僅矽晶圓的1/2.5,另外聚光型太陽能電池必須要在位於透鏡焦點附近時才能發揮功能,因此為使模組總是朝向太陽的方位,必須搭配使用太陽追蹤系統,此設計雖然可以提高轉換效率,但卻存在透鏡、聚光發熱釋放槽以及太陽光追蹤系統的重量及體積較大..等問題,因此不適於裝在日式住宅的屋頂使用。

聚光型太陽能電池的菲涅爾透鏡聚光率範圍:

500~1600倍聚光型太陽能模組示意圖

追日聚光型太陽能電池太陽能

高倍聚光太阳能电站项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.doczj.com/doc/ee17611735.html, 高级工程师:高建

关于编制高倍聚光太阳能电站项目可行性 研究报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国高倍聚光太阳能电站产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (12) 2.5高倍聚光太阳能电站项目发展概况 (12)

航天器太阳电池阵的研究进展 摘要:太阳电池阵是在轨航天器主要的电源系统。太阳电池阵由连入一定电路的太阳电池纵横排列而成,利用阳光直接发电而无化学过程。在太阳电池阵的发展历程中,其构型不断演变,变得日趋先进与完善。如今太阳电池阵的设计更多的融入发散思维与创新思维,在向新的台阶跨进,以满足更为复杂的航天任务。在本文中,我们将对太阳电池阵的发展历程进行回顾,并了解其发展现状以及展望未来的前景。 关键词:航天器、电池阵、结构、材料、功率大、质量小、发展过程 1.引言 太阳电池阵简称太阳阵(Solar Array),是航天器上的太阳能电池组成的阵列,由多个带盖片的单体太阳电池按供电要求以串、并联方式组成。①它有着功率大、寿命长、质量小、构造简单、可靠等一系列优点,在宇宙空间中,它能吸收太阳的辐射能并将其转化为电能,为在轨航天器提供动力源。1957年前苏联发射的第一颗人造地球卫星开启了人类的空间探索时代。随着各种航天器的发射运行,太阳电池阵作为航天器的电源不断更新以适应日益严苛的工作条件。20世纪60年代以来,随着载人飞船、空间站以及深空探测计划的进一步实施,对航天器太阳电池阵提出了更高的要求。②如今人类对于宇宙空间的探索不断加深,航天器太阳电池阵所承担的任务也不断加剧,功能方面的不断细致化以及电力方面不断提高的需要等都在促使着航天器太阳电池阵不断地创新与进步。 2 航天器太阳电池阵的发展过程 第一种实用性的太阳电池是1954年研制成功的。然而由于这类早起点吃的价格较高,效率较低,加之顾客对许多新产品通常持有的怀疑态度,因此阻碍了它们的广泛应用。20世纪60年代,日本、法国、苏联等国家通过不同的方法使太阳阵的功能及效益得到改善得以使之投入应用之中。而太阳阵在航空器上的应用则是从人类探索宇宙后不久即开始了。1957年10月4日,苏联把第一颗人造卫星送入地球轨道,意味着空间时代的开始,但是这颗卫星和苏联之后发射的第二颗人造卫星一样都只是使用化学电池作为能源。1958年,苏联第一次将太阳阵用在了卫星上,但是其效率很低,6年多的时间里,该太阳能系统提供的功率不到一瓦。③ 自从1957年以来,太阳阵的尺寸在不断增大,而且越来越复杂。1958 年3 月,美国的Vanguard1星上首次安装了太阳电池板进行飞行实验④。那时的太阳电池阵是体装式,即把太阳能电池直接铺设或安装在航天器本体表面的某些位置上。对于这类太阳电池阵,支承太阳电池的结构(基板)往往就是卫星的外壳结构,或者是固定在外壳表面上的结构。体装式太阳阵分为多面体型与圆柱体型。⑤体装式的太阳阵较好的实现了航天器在空间对于太阳能的收集,很大程度解决了能源的供给问题,使卫星寿命明显延长,但是发电效率较低的问题却仍然没能很好解决,只能供给功率较小的小型卫星。为了解决这一问题,出现了展开式太阳电池阵。太阳桨(solar paddle)是展开式太阳电池阵的初级形式,往往以单块基板与卫星本体相连。但是不久之后,卫星设计提出了大功率太阳电池阵的要求,它们所提供的功率比太阳浆提供的更大,一种方法是采用定向式或半定向式太阳板(图1),另一种方法是在较大直径的飞行器上采用圆柱形或其他形状的本体安装式太阳电池阵(图2)。

聚光太阳能发电 ?聚光太阳能发电(CONcentrating Solar Power)简称CSP是采用反射镜把太阳光反射并聚集到接收器,该接收器能够聚集太阳能并将其转换为热能,利用这种热能生产的热蒸汽,推动涡轮发动机,从而驱动发电机发电,满足电力需求。太阳能到电能的高效率转换特性,使CSP技术成为具有吸引力的可再生能源项目。 目录 ?聚光太阳能发电的几种主要形式 ?聚光太阳能发电的基本原理 ?聚光太阳能发电系统的组成 ?聚光太阳能发电的发展现状 ?聚光太阳能发电的发展优势 聚光太阳能发电的几种主要形式 ?一、线性聚光系统 线性聚光太阳能发电采用线聚焦技术,线性聚光器包括抛物面槽式系统和线性菲涅耳反射系统2种,利用很大的反射镜来捕获太阳的能量,并把太阳光反射和对焦集中到焦线上,在这条焦线上安装有线性管状集热器,集热器吸收聚焦后的太阳辐射能,把吸热管内的流体

加热,然后产生过热蒸汽,驱动涡轮发电机产生电力。线性集中聚光器系统通常由按南北向平行排列的大量聚光器组成,这样保证最大限度地聚集太阳能。 1.抛物面槽式系统 目前,在美国太阳能热发电领域中占主导地位的是抛物面槽式线性聚光系统,槽式太阳能发电系统由太阳能聚光器,以及吸热配件或接收器和跟踪机构组成。其中太阳能聚光器由许多弯曲的反射镜组合装配而成,安装在支架上。吸热管或接收器管沿着每个抛物形反射镜的焦线固定安装,用以吸收太阳辐射能,传热工质(不管是传热流体还是水/蒸汽)都要从太阳能集热管中流过,从而产生过热蒸汽,直接输送到涡轮机用以发电。 2.线性菲涅尔反射器系统 第二种线性聚光技术是线性菲涅尔反射器系统,该系统由反射镜。聚光器和跟踪机构组成。把平坦的或略有弯曲的反射镜安装配置在跟踪器上,在反射镜上方的空间安装吸热管,反射镜把阳光反射到吸热管。有时在聚光器的顶部加装小型抛物面反射镜,以加强阳光的聚焦。 二、碟式引擎系统 与其他聚光太阳能发电技术相比,碟式引擎系统产生的电力功率相对较少,通常在3~25万kW的范围内,很适合分布式应用,如果将多个这样分布安装的单元碟式。引擎系统整合成一簇,可以实现集中向电网供电,不但能缓解电力能源需求,还可以提高整个电网的运行安全性。整个发电系统安装在一个双轴跟踪支撑机构上,实现定日

江西科技师范大学 毕业论文 题目(中文):聚光条件下太阳能电池性能的理论研究(外文):Study of the power characteristic of solar cells in concentration 院(系):xxxxxxxxxxxxxx 专业:xxxxxxxxxxxxxx 学生姓名:xxx 学号:xx xx 指导教师:x x 2016年4月20 日

目录 1.概述........................................................................................................................ - 1 - 2.聚光型太阳能材料及技术.................................................................................... - 1 - 2.1聚光用的太阳能电池原材料...................................................................... - 2 - 2.2产品构成与关键技术.................................................................................. - 2 - 3.聚光条件下太阳能电池发电的理论分析............................................................ - 3 - 3.1非聚光条件下的太阳能电池发电.............................................................. - 3 - 3.2聚光条件下的太阳能电池发电.................................................................. - 5 - 3.3聚光倍数与电池输出功率关系.................................................................. - 6 - 3.3.1 传热分析........................................................................................... - 6 - 3.3.2 聚光倍数与电池输出功率关系....................................................... - 7 - 3.3.3 计算实例......................................................................................... - 10 - 3.4聚光降低光伏发电成本............................................................................ - 11 - 3.4.1 聚光提高电池片转换效率............................................................. - 11 - 3.4.2 聚光减少昂贵的电池片消耗......................................................... - 11 - 4.总结与展望.......................................................................................................... - 12 - 结束语..................................................................................................................... - 14 - 参考文献................................................................................................................. - 15 -

高倍聚光的Ⅲ-Ⅴ太阳电池发电成本分析 Xinghun1201 2009年6月22日星期一 决定CPV发电成本的主要因素是:(1)产量规模;(2)聚光倍数;(3)电池效率 目前和今后,发展类似LEDs制造方法制造多结化合物太阳电池,可以使得多结化合物太阳电池的成本大大降低,具有竞争力的CPV市场需要使用1000倍或更高倍聚光的Ⅲ-Ⅴ太阳电池,因为市场上Si太阳电池已经做到几百倍太阳聚光,虽然效率只有25%。用更高倍聚光来抵消Ⅲ-Ⅴ太阳电池生产成本。 另一个建议使用1000倍聚光的原因来源于CPV实际产业化实验成本分析,以西班牙NFLATCOM 项目为例,2000年完成的第一阶段实验,接近与完全聚光PV模块原型制造过程。使用RXI光学聚光器1000倍聚光,使用GaAs单结电池(25%);使用高效率高倍聚光系统实现了商业光伏系统安装(10MWp)成本为2.8欧元/Wp,另外,如果加上其他不过预期的成本估算为4.8欧元/Wp,由此可见,需要使用1000倍聚光来抵消Ⅲ-Ⅴ太阳电池生产成本。 CPV在产业化实验的第二阶段,取得明显进展,实现了商业光伏系统成本为2.5欧元/Wp,据估算,工作在1000倍聚光,效率为30%的多结化合物太阳电池,光伏系统成本为2.5欧元/Wp,而对于工作在400倍聚光,效率为38%的多结化合物太阳电池,光伏系统成本为3.0欧元/Wp,对于工作在250倍聚光,效率为40%的多结化合物太阳电池,光伏系统成本为3.8欧元/Wp,对于工作在1000倍聚光,效率为26%的多结化合物太阳电池,光伏系统成本为2.8欧元/Wp,下图给出不同聚光条件和不同电池效率的光伏发电成本。 附图1:CPV系统发电成本与产量规模(上曲线10MWp,下曲线1GWp)、聚光倍数、电池效率的关系。(单位:欧元/Wp)

高倍聚光光伏(HCPV)电池作为第三代太阳能发电技术正逐渐成 为太阳能领域的新焦点 经过30多年的发展,高倍聚光光伏(HCPV)电池作为第三代太阳能发电技术正逐渐成为太阳能领域的新焦点,引起了行业内企业的追逐。在日光照射较好的几个欧美国家,已通过了优惠的上网电价法,随着具有40%转换效率的Ⅲ-V 族半导体多结太阳能电池的普及和成本下降,高倍聚光光伏电池市场进入快速增长期。与前两代电池相比,HCPV采用多结的砷化镓电池,具有宽光谱吸收、高转换效率、良好的温度特性、低耗能的制造过程等优点,使它能在高倍聚焦的高温环境下仍保持较高的光电转换效率。高倍聚光光伏系统技术门槛较高且行业跨度大,涵盖半导体材料及工艺制造、半导体封装、光学设计制造、自动化控制、机械设计制造、金属加工等领域。HCPV行业的产品包括了多结电池片外延材料、光电转换芯片、光接收器组件、聚光器、光伏模组、双轴跟踪器等。 电池芯片采用多结技术大幅提高光电转换效率 与硅基材料相比,基于III-V族半导体多结太阳能电池具有最高的光电转换效率,大致要比硅太阳能电池高50%左右。III-V族半导体具有比硅高得多的耐高温特性,在高照度下仍具有高的光电转换效率,因此可以采用高倍聚光技术,这意味着产生同样多的电能只需要很少的太阳电池芯片。多结技术一个独特的方面就是材料——可选择不同的材料进行组合使它们的吸收光谱和太阳光光谱接 近一致,相对晶硅,这是巨大的优势。后者的转换效率已近极限(25%),而多结器件理论上的转换效率可达68%。目前最多使用的是由锗、砷化镓、镓铟磷3种不同的半导体材料形成3个p-n结,在这种多结太阳能电池中,不但这3种材料的晶格常数基本匹配,而且每一种半导体材料具有不同的禁带宽度,分别吸收不同波段的太阳光光谱,从而可以对太阳光进行全谱线吸收。 HCPV芯片的生产过程如下,首先利用MOCVD技术在4英寸锗衬底上外延砷化镓和铟镓磷形成3结电池片的材料,然后在外延片上利用光刻、PECVD、蒸镀等技术,制备减反膜以及主要成份为银的金属电极,再经划片清洗等工艺,生产出HCPV芯片。HCPV芯片的主要生产商有美国的Spectrolab、Emcore,德国的Azurspace,加拿大Cyrium,中国台湾Arima、Epistar等。衬底剥离的芯片和量子点技术是目前HCPV芯片领域的新热点。 接收器要安全可靠稳定地应用于系统 聚光太阳能电池芯片被封装到光接收器中,接收器封装对太阳能电池进行保护,对会聚光均匀化,同时起到散热的作用。接收器组件还包括旁路二极管和引线端子。芯片的主要焊接工艺有回流焊和共晶焊,二者最主要的区别在于前者使用助焊剂焊接,在焊接后需要清洗去除残留助焊剂,而共晶焊使用无助焊剂的焊片焊接。为了将电从芯片导出,需要进行金带键合将芯片和外围电路连接起来。接收器组件的检验指标主要包括空洞率和电性能测试,空洞率是检验焊接良好与否的标准。电性能方面,5.5mm×5.5mm接收器组件在500倍太阳光下的光电 转换率高达38.5%以上。在实际使用中,还需要将接收器组件与二次光学器件、散热器封装在一起,组成完整的接收器。二次光学器件可以降低对跟踪器高精准度的要求,并使通过涅尔透镜聚焦后的光斑更加均匀地照射到电池芯片上。 二次光学元件通常是光学玻璃棱镜或中空的倒金字塔金属反射器。为了最大限度地利用太阳能资源,节省芯片材料以降低成本,可以提高电池的聚光倍数,

聚光太阳能热发电技术 中国科学院电工研究所: 王志峰杜凤丽 1.发电原理和技术分类 聚光太阳能热发电(以下简称太阳能热发电)是通过光-热-功的转化过程实现发电的一种太阳能发电技术形式。发电原理为:反射镜将太阳光反射聚集到吸热部件上,产生高温蒸汽或空气,然后利用常规的发电循环实现发电。 根据聚光方式的不同,太阳能热发电技术主要点聚焦和线聚焦系统。点聚焦系统是将太阳光聚集到中央吸热器上,包括塔式和碟式;而线聚焦系统则把太阳光聚集到线性的集热管上,包括槽式和菲涅耳式。 塔式 碟式 槽式 菲涅耳式 各种聚光热发电技术的技术性能如下表所示:

表1 各种太阳能热发电技术性能 注:(d) =示范,(p) = 预计,ST 蒸汽轮机,CC 联合循环,SE斯特林机,GT 燃气轮机 各种太阳能热发电技术投入商业化应用的时间不同,因此技术的成熟程度也不尽相同。其中,槽式技术由于最早(1984年)投入商业化应用,电站运行经验相对丰富,因此是目前已建和在建装机容量中占比最多的技术类型。塔式电站虽然数量上没有槽式电站多,但是由于运行温度高、系统效率高,有后来居上之势。菲涅耳式也有小规模的示范电站,目前正在西班牙进行规模化电站建设(30MW)。碟式斯特林技术虽然系统效率最高,然而由于技术开发难度大,只是在今年年初才有首座1.5MW的电站投入运行。

2.优点 可再生能源发电面临的主要挑战之一是如何把能量储存起来,实现电力的可调节性。太阳能热发电的一个显著特点是其输出电力稳定,电力具有可调节性,可以满足尖峰、中间或基础负荷电力市场需求。太阳能热发电站可以设计蓄热系统,在云遮或日落后,蓄存的热能可以被释放出来,使汽轮机持续运行,从而保证输出电力的稳定性,并增加全负荷运行时数。此外,太阳能热发电站也可以和传统的蒸汽或联合循环电站整合(混合发电)。化石燃料辅助太阳能电站的循环,在提高汽轮机的最佳利用状态和电力输出可靠性方面都具有优势。 太阳能和光伏电力输出曲线

摘要 近年来,多晶硅原材料的紧缺,已制约了单晶硅或多晶硅的硅级电池的规模生产。由于高昂的上游原料的成本导致光伏发电成本居高不下,与传统的电力价差悬殊是光伏并网发电市场尚不能全面启动的主要因素之一。高倍聚光电池及系统的规模应用,将在缓解太阳能电池对硅原料的依赖和降低成本方面有很大的改进和创新。 关键词:硅级电池高倍聚光电池低成本新型技术

绪言 (4) 一.聚光型太阳能材料及技术 (5) 1.1聚光用的太阳能电池原材料 (5) 1.2产品构成与关键技术 (5) 二.产品与技术发展模式 (5) 三.产品核心优势 (6) 3.1 光电转换效率高 (6) 3.2 单位面积输出功率高 (7) 3.3 市场应用现状 (7) 四.未来太阳能电池市场前景展望 (7) 4.1 聚光电池应用前景 (8) 五.行业重点技术和公司关注 (9) 参考文献13

聚光电池是降低太阳电池利用总成本的一种措施,通过聚光器使较大面积的阳光聚在一个较小的范围内,形成“焦斑”或“焦带”,并将太阳电池置于“焦斑”或“焦带”上,以增加光强克服太阳辐射能流密度低的缺陷,从而获得更多的电能输出。通常聚光器的倍率大于几十,其结构可采用反射式或透镜式。聚光器的跟踪一般用光电自动跟踪,散热方式可以是气冷或水冷,有的与热水器结合,既获得电能,又得到热水。用于聚光太阳电池的单体,与普通太阳电池略有不同,因需耐高倍率的太阳辐射,特别是在较高温度下的光电转换性能要得到保证,故在半导体材料选择、电池结构和栅线设计等方面都比较特殊。最理想的材料是砷化镓,其次是单晶硅材料。在电池结构方面,普通太阳电池多用平面结构,而聚光太阳电池常采用垂直结构,以减少串联电阻的影响。同时,聚光电池的栅线也较密,典型的聚光电池的栅线约占电池面积的1O%,以适应大电流密度需要。

聚光太阳能发电的几种主要形式 一、线性聚光系统 线性聚光太阳能发电采用线聚焦技术,线性聚光器包括抛物面槽式系统和线性菲涅耳反射系统2种,利用很大的反射镜来捕获太阳的能量,并把太阳光反射和对焦集中到焦线上,在这条焦线上安装有线性管状集热器,集热器吸收聚焦后的太阳辐射能,把吸热管内的流体加热,然后产生过热蒸汽,驱动涡轮发电机产生电力。线性集中聚光器系统通常由按南北向平行排列的大量聚光器组成,这样保证最大限度地聚集太阳能。 1.抛物面槽式系统 目前,在美国太阳能热发电领域中占主导地位的是抛物面槽式线性聚光系统,槽式太阳能发电系统由太阳能聚光器,以及吸热配件或接收器和跟踪机构组成。 其中太阳能聚光器由许多弯曲的反射镜组合装配而成,安装在支架上。吸热管或接收器管沿着每个抛物形反射镜的焦线固定安装,用以吸收太阳辐射能,传热工质(不管是传热流体还是水/蒸汽)都要从太阳能集热管中流过,从而产生过热蒸汽,直接输送到涡轮机用以发电。 2.线性菲涅尔反射器系统 第二种线性聚光技术是线性菲涅尔反射器系统,该系统由反射镜。聚光器和跟踪机构组成。把平坦的或略有弯曲的反射镜安装配置在跟踪器上,在反射镜上方的空间安装吸热管,反射镜把阳光反射到吸热管。有时在聚光器的顶部加装小型抛物面反射镜,以加强阳光的聚焦。 二、碟式引擎系统 与其他聚光太阳能发电技术相比,碟式引擎系统产生的电力功率相对较少,通常在3~25万kW的范围内,很适合分布式应用,如果将多个这样分布安装的

单元碟式。引擎系统整合成一簇,可以实现集中向电网供电,不但能缓解电力能源需求,还可以提高整个电网的运行安全性。整个发电系统安装在一个双轴跟踪支撑机构上,实现定日跟踪,连续发电,发电效率高达30%,在相同的运行温度下,发电效率明显高于槽式和塔式,是所有太阳能热发电系统中效率最高的。 缺点是碟式太阳能热发电系统的单元发电容量较小。 三、塔式系统 塔式太阳能热发电系统主要由日光反射镜子系统。接收器组成,见图。其中日光反射镜子系统由大量大型。平坦的太阳跟踪反射镜构成,对太阳进行实时跟踪,把太阳光聚焦到塔顶的接收器。在接收器中对传热流体进行加热,产生高温过热蒸汽,过热蒸汽推动常规涡轮发电机组发电。一些电力塔利用水。蒸汽作为传热流体。由于其卓越的传热和能量存储能力,在其他先进的设计中,对其进行了熔融硝酸盐试验。具有商业规模的工厂可以生产200MW的电力造价十分昂贵,建设电站的投资很高 聚光太阳能发电的基本原理 ?聚光太阳能发电使用抛物镜将光线聚集到充有合成油的吸热管上,再将加热到约400摄氏度的合成油输送到热交换器里,将热量通过此加热循环水,将水加热,产生水蒸气,推动涡轮转动使发电机运转,以此来发电。 聚光太阳能发电与太阳能电池不同,太阳能电池使用太阳电池板将太阳能直接变成电能,可以在阴天操作,CSP一般只能够在阳光充足、天气晴朗的地方进行。 聚光太阳能发电系统的组成 ?聚光太阳能发电系统由聚光太阳能接收器,聚光镜,阳跟踪机构组成.聚光太阳能接收器包括聚光太阳能电池,旁路二极管和散热系统等.聚光太阳能电池是将

聚光太阳能发电?聚光太阳能发电(CONcentrating Solar Power)简称CSP是采用反射镜把太阳光反射并聚集到接收器,该接收器能够聚集太阳能并将其转换为热能,利用这种热能生产的热蒸汽,推动涡轮发动机,从而驱动发电机发电,满足电力需求。太阳能到电能的高效率转换特性,使CSP技术成为具有吸引力的可再生能源项目。 目录 ?聚光太阳能发电的几种主要形式 ?聚光太阳能发电的基本原理 ?聚光太阳能发电系统的组成 ?聚光太阳能发电的发展现状 ?聚光太阳能发电的发展优势 聚光太阳能发电的几种主要形式 ?一、线性聚光系统 线性聚光太阳能发电采用线聚焦技术,线性聚光器包括抛物面槽式系统和线性菲涅耳反射系统2种,利用很大的反射镜来捕获太阳的能量,并把太阳光反射和对焦集中到焦线上,在这条焦线上安装有线性管状集热器,集热器吸收聚焦后的太阳辐射能,把吸热管内的流体加热,然后产生过热蒸汽,驱动涡轮发电机产生电力。线性集中聚光器系统通常由按南北向平行排列的大量聚光器组成,这样保证最大限度地聚集太阳能。 1.抛物面槽式系统 目前,在美国太阳能热发电领域中占主导地位的是抛物面槽式线性聚光系统,槽式太阳能发电系统由太阳能聚光器,以及吸热配件或接收器和跟踪机构组成。其中太阳能聚光器由许多弯曲的反射镜组合装配而成,安装在支架上。吸热管或接收

器管沿着每个抛物形反射镜的焦线固定安装,用以吸收太阳辐射能,传热工质(不管是传热流体还是水/蒸汽)都要从太阳能集热管中流过,从而产生过热蒸汽,直接输送到涡轮机用以发电。 2.线性菲涅尔反射器系统 第二种线性聚光技术是线性菲涅尔反射器系统,该系统由反射镜。聚光器和跟踪机构组成。把平坦的或略有弯曲的反射镜安装配置在跟踪器上,在反射镜上方的空间安装吸热管,反射镜把阳光反射到吸热管。有时在聚光器的顶部加装小型抛物面反射镜,以加强阳光的聚焦。 二、碟式引擎系统 与其他聚光太阳能发电技术相比,碟式引擎系统产生的电力功率相对较少,通常在3~25万kW的范围内,很适合分布式应用,如果将多个这样分布安装的单元碟式。引擎系统整合成一簇,可以实现集中向电网供电,不但能缓解电力能源需求,还可以提高整个电网的运行安全性。整个发电系统安装在一个双轴跟踪支撑机构上,实现定日跟踪,连续发电,发电效率高达30%,在相同的运行温度下,发电效率明显高于槽式和塔式,是所有太阳能热发电系统中效率最高的。缺点是碟式太阳能热发电系统的单元发电容量较小。 三、塔式系统 塔式太阳能热发电系统主要由日光反射镜子系统。接收器组成,见图。其中日光反射镜子系统由大量大型。平坦的太阳跟踪反射镜构成,对太阳进行实时跟踪,把太阳光聚焦到塔顶的接收器。在接收器中对传热流体进行加热,产生高温过热蒸汽,过热蒸汽推动常规涡轮发电机组发电。一些电力塔利用水。蒸汽作为传热流体。由于其卓越的传热和能量存储能力,在其他先进的设计中,对其进行了熔融硝酸盐试验。具有商业规模的工厂可以生产200MW的电力造价十分昂贵,建设电站的投资很高

第29卷 第12期2008年12月 半 导 体 学 报 J OU RNAL O F S EM ICOND U C TO RS Vol.29 No.12 Dec.,2008 3国家高技术研究发展计划(批准号:2006AA 05Z 410),国家基础研究发展规划计划前期研究专项(批准号:2007CB 216405),云南省自然科学基金重点资 助项目(批准号:2007C 0016Z ,2005E 0031M )及教育部出国留学回国人员基金资助项目 通信作者.Email :l mdocyn @p https://www.doczj.com/doc/ee17611735.html, 2008206214收到,2008207215定稿Ζ2008中国电子学会 槽式聚光太阳能系统太阳电池阵列3 徐永锋1 李 明1,2, 王六玲1 何建华1 张兴华1 王云峰1 项 明1 (1云南师范大学物理与电子信息学院,昆明 650092) (2云南师范大学太阳能研究所,昆明 650092) 摘要:基于槽式聚光太阳能系统分别对单晶硅电池阵列、多晶硅电池阵列、空间太阳电池阵列和砷化镓电池阵列进行测试 实验.结果表明,聚光后,前3种电池阵列的I 2V 曲线都趋于直线,输出功率急剧减少,系统效率下降较快.而砷化镓电池阵列有较好的I 2V 曲线,其效率由聚光前的23166%增加到26150%,理论聚光比为16192时,输出功率放大1112倍,聚光光伏系统中可采用砷化镓电池阵列以提高效率.砷化镓电池阵列P m 、F F 和η的温度系数分别为-0112W/K 、-0110%/K 和-0121%/K ,为避免温度的影响须采用强制冷却方式保证电池效率,同时对外供热.研究表明,10片单晶硅电池串联阵列最佳工作时的理论聚光比为4123;16片空间太阳电池串联阵列最佳工作时的理论聚光比为8146.研究工作对提高槽式聚光系统效率和大规模利用聚光光伏发电提供了依据. 关键词:聚光太阳能系统;输出功率;填充因子;温度系数EEACC :8230G ;8250;8420中图分类号:TN 304 文献标识码:A 文章编号:025324177(2008)1222421206 1 引言 目前,开发利用太阳能已成为世界各国可持续发展的主要战略决策,但是,太阳能量的分散性却成为利用太阳能的主要障碍[1].采用聚光方法,几倍乃至几百倍地提高太阳能辐射功率密度,以提高单位面积太阳电池的输出功率,降低光伏发电成本,具有较好的应用前景[2].国际上,20世纪70年代末至80年代初,美国M I T 的Hendire 及美国B r ow n 大学的Russell 教授最先涉及光伏与光热的研究[3,4];1995年挪威学者对PV/ T 系统进行了实验研究[5,6] ;而希腊学者于2002年对 PV/T 系统进行了实验研究[7,8] ,较为详细地报道了用水或用空气作为太阳电池板冷却工质时,系统的供电与供热特性;澳大利亚国立大学可再生能源研究中心采用80个槽式抛物面跟踪太阳反射镜系统,聚22倍光作用于太阳电池板,此时电池的效率达到22%以上,在同等功率输出条件下,采用槽式抛物面聚光太阳能光伏发电的成本仅为非聚光平板太阳能光伏发电成本的60%,该大学在2004年对槽式聚光系统在热电联供方面做了较系统的研究[9].目前国内只是对单片常规电池进行实验和模拟计算研究,并没有相关的实验研究.因此本文基于槽式聚光太阳能系统,汇集高密度太阳能对单晶硅电池阵列、多晶硅电池阵列、空间太阳电池阵列、砷化镓电池阵列进行实验研究,根据太阳电池阵列的特性曲线分析电池性能,找出影响电池阵列输出特性的因素,并分析了不同光照情况下的I 2V 曲线. 为保证电池效率及防止电池温度过高,采用冷却方法,控制冷却流体的流速来调节电池的温度,同时得到热能.研究工作对槽式聚光太阳能系统进一步优化提供依据. 2 实验 槽式聚光太阳能系统集热装置如图1所示,采用结构简单、跟踪方便、应用最广泛的槽式抛物面反射聚光器,集热器内腔体为纯铝型材,内腔体与外腔体之间用保温层隔开,太阳电池由导热绝缘胶贴在集热器下表面.太阳光由镜面反射汇集在电池上,成倍增加单位面积电池的输出功率,通过背面圆形管道中的水强制冷却电池温度,热水流出导管后被存储起来对外供热.在聚光条件下,太阳电池阵列输出电功率,同时得到热能,系统可实现热电联供 . 图1 槽式聚光太阳能系统集热装置图 Fig.1 Diagra m of collect or of t he t rough conce nt rating solar e negy syste m

中国首座高倍聚光光伏电站投入运营 source:中国工控网 中国首座商业化运营的并网高倍聚光光伏电站近日正式启动,该电站由上海聚恒太阳能有限公司在哈尔滨工业大学(威海)校园内建设。据悉,国家金太阳认证中心-国家计量科学院鉴衡认证中心也在此挂牌"金太阳高倍聚光光伏示范电站"。 该光伏列阵由48个聚光光伏组件组成, 不同于大家熟悉的通常呈蓝色或黑色的晶体硅平板太阳能电池板,聚光光伏组件是由透明的平板玻璃光学系统和太阳能电池组成的 被称之为第三代光伏技术的高倍聚光光伏发电技术使用高效率的多结三五族太阳能电池,光电转换效率已达41%,理论上可达70%。多结三五族太阳能电池也被称为砷化镓电池,是目前光电转换效率最高,达到晶体硅技术的两倍,同时也是效率增长潜力最大的太阳能电池。由于其价格非常昂贵,最早使用在太空领域为卫星和空间站提供能源,地面使用难以普及。但由于这种电池的转化效率可随着聚光倍数的增加而提高,因此利用低成本的聚光光学系统和此电池结合在一起,就能以低廉的成本获得高效率的发电系统。由于聚光太阳能电池转化效率高,一方面可以降低光伏发电成本,同时也可以大幅减少光伏电站的建设用地;因此,它也是最有希望在大型光伏电站中使用,将发电成本降低到可以和煤电成本相竞争的光伏技术。 由于高倍聚光光伏发电技术在国内才起步,在太阳能光伏几种技术中,参与的企业和影响力还很小。而在欧美聚光光伏已逐步成为主流技术,尤其是2010年以来,高倍聚光光伏已获得数个10MW及以上级别的光伏电站项目,此前,美国加州曾批准建造1GW聚光型太阳能电站。哈工大太阳能研究所的成立,利用哈工大在航 空航天技术领域的优势,及威海光照资源好、地处经济发达区域的特点,将聚光光伏技术的综合应用作为重点,优先开展聚光发电、聚光海水淡化等课题研究,促进高倍聚光光伏技术在中国的快速发展。 在哈尔滨工业大学威海校区建设的峰值功率11KW高倍聚光光伏电站(576倍聚光),是国内第一个按照商业化系统建设且并网发电、投入运营的高倍聚光光伏电站, 也是目前已报道的国内转换效率最高的并网光伏电站(直流效率25%)。据哈工大威海校区马校长透露,接下来会在威海建设1MW的聚光光伏电站,并在此基础上进行聚光太阳能海水淡化等能源综合利用。年内聚恒太阳能会在北京、内蒙古、新疆、吉林、四川、广东等地建设类似规模的聚光光伏试点电站,为在国内各类地区建设大规模聚光光伏电站做储备。

太阳能光电工程学院 《太阳能电池及其应用》 课程设计报告书 题目:聚光型太阳能电池技术及现状 姓名: 设计成绩: 指导教师: 摘要 本文概述了目前全球能源现状,以及聚光型太阳能电池的市场背景,表明了太阳能发电的重要性和前景,详细介绍了聚光型太阳能电池的技术、现状以及与普通太阳能电池的区别,并对普通太阳能电池与聚光型太阳能电池发电所需发电成本进行比较。详细介绍了塔式、槽式、碟式太阳能发电的原理及优缺点。

指出电池冷却技术的必要性和冷却技术。同时指出聚光型太阳能电池发展面临的困难和解决措施,以及今后的发展方向。通过改造电池制造工艺、提高转换效率、聚焦技术的应用等手段,可以有效降低光伏发电成本,也是国内外本领域研究的热点。其中采用聚焦技术是一个有效地方法。对常规太阳能电池进行聚光,使太阳电池工作在几倍乃至几百倍的光强条件下,一定程度上克服了太阳能量的分散性,可以提高单位面积太阳电池的输出功率,大大降低光伏发电成本,具有很好应用前景。 关键词:聚光型太阳能电池技术措施 目录 绪言 (2) 1.聚光型太阳能原理及技术 (3)

1.1聚光型太阳能电池的原理 (3) 1.2聚光型太阳能电池的关键技术 (4) 1.3塔式太阳能发电技术 (5) 1.4槽式太阳能发电 (6) 1.5碟式太阳能发电 (7) 1.6电池的冷却技术 (7) 2.产品的的核心优势 (10) 2.1光电转换效率高 (10) 2.2单位面积输出功率高 (10) 3.现状与展望 (10) 3.1我国聚光型太阳能电池的现状 (10) 3.2展望 (11) 参考文献 (12) 绪言 随着经济的发展,社会的进步,人们对能源提出了越来越高的要求,由于全球气候变迁、空气污染问题以及资源的日趋短缺之故,传统的燃料能源正在一天天减少,与此同时全球还有约20亿人得不到正常的能源供应。寻找新能源成

砷化镓太阳能光伏电池发展现状分析 作者:佚名日期:2009年09月07日来源:不详【字体:大中小】我要投稿近年来,基于硅材料的太阳能电池价格起伏不定,光伏产业巨大的泡沫由于经济危机而破裂,对产业的健康发展产生了较大影响。聚光型太阳电池可以减小对原料在量上的依赖程度,进而对降低光伏系统建造成本和产业多元化发展起到积极作用。较之薄膜电池和普通晶体硅电池,聚光型太阳电池的光电转化率较高,因此受到研究者的高度重视一、砷化镓电池基本介绍近年来,太阳能光伏发电在全球取得长足发展。常用光伏电池一般为多晶硅和单晶硅电池,然而由于原材料多晶硅的供应能力有限,加上国际炒家的炒作,导致国际市场上多晶硅价格一路攀升,最近一年来,由于受经济危机影响,价格有所下跌,但这种震荡的现状给光伏产业的健康发展带来困难。目前,技术上解决这一困难的途径有两条:一是采用薄膜太阳电池,二是采用聚光太 一、砷化镓电池基本介绍 近年来,基于硅材料的太阳能电池价格起伏不定,光伏产业巨大的泡沫由于经济危机而破裂,对产业的健康发展产生了较大影响。聚光型太阳电池可以减小对原料在量上的依赖程度,进而对降低光伏系统建造成本和产业多元化发展起到积极作用。较之薄膜电池和普通晶体硅电池,聚光型太阳电池的光电转化率较高,因此受到研究者的高度重视[1]。 聚光太阳电池是用凸透镜或抛物面镜把太阳光聚焦到几倍、几十倍,或几百倍甚至上千倍,然后投射到太阳电池上。这时太阳电池可能产生出相应倍数的电功率。它们具有转化率高,电池占地面积小和耗材少的优点。高倍聚光电池具有代表性的是砷化镓(GaAs)太阳电池。 二、砷化镓电池与硅光电池的比较[3] 1、光电转化率: 砷化镓的禁带较硅为宽,使得它的光谱响应性和空间太阳光谱匹配能力较硅好。目前,硅电池的理论效率大概为23%,而单结的砷化镓电池理论效率达到27%,而多结的砷化镓电池理论效率更超过50%。 2、耐温性 常规上,砷化镓电池的耐温性要好于硅电池,有实验数据表明,砷化镓电池在250℃的条件下仍可以正常工作,但是硅电池在200℃就已经无法正常运行。

国内外太阳能高倍聚光光伏发电技术的比较 日前,美国Semprius公司宣布制成全球效率最高的太阳能高倍聚光光伏发电(CPV)模组,该模组采用的是微小三结砷化镓芯片,芯片制程采用基板复用技术,1100倍聚光比,无专门散热系统,效率达到33.9%,批量生产的价格折合到太阳能高倍聚光光伏发电后的上网电价会低于0.1美元/度。Semprius公司还特意声明他们的技术没有拿到政府的任何补贴,他们的产品可以竞争过中国制造的廉价太阳能电池板,该公司在今年6月开始量产(详见21世纪新能源网2012年2月8号的报道“Semprius宣布制成世界上最高效率太阳能电池板33.9%”)。这是即常州旭王新能源有限公司宣称在今年2月23号推出平价上网太阳能高倍聚光光伏电站后(详见21世纪新能源网2012年元月26号的报道“与火力发电同价的新型高倍聚光太阳能光伏电站”)又一家采用CPV技术生产光伏电站今年可以达到平价上网电价的公司。对此,我们专门资询了常州旭王新能源有限公司的总经理jimzhu先生,他说:“Semprius公司的太阳能高倍聚光电池模组达到33.9%的效率说明该公司(CPV)芯片技术水平很高并且和光学系统配合的很好(国内公司目前的水平最多做到31%,而批量生产的水平更是只有25-28%),我们可以通过报道来分析国内和国外在太阳能高倍聚光光伏发电模组技术上的差距。 1.Semprius公司采用了芯片基板复用技术,此项技术可以将太阳能砷化镓芯片的制造成本降低约20%,而我们国内的芯片生产厂目前还不具备此技术; 2.美国半导体太阳能砷化镓芯片的量产效率目前都在40%以上,而国内大概做到38%; 3.Semprius公司在芯片和光学玻璃的配合上,除了面积比例和图形相对应外,该公司可能还采用了半导体芯片设计工艺和光学系统特性的配合技术。我们国内公司大都仅采用买现成芯片再配光学系统的设计方法,甚至很多公司都不知道还有芯片工艺和不同光学系统特性的配合技术,因此无从谈起应用了; 4.在太阳能高倍聚光光伏模组芯片应用技术中,国际上存在向大芯片或小芯片两个方向发展的技术路线。采用小芯片的特点是模组薄重量轻,无需专门的散热系统,电站系统用料较少,在生产中可以采用现成的LED和半导体封装设备,做到全自动大规模生产,无需专门新的生产设备。但是小芯片对集成电路的生产工艺要求高一些,同时,由于切割线密集,芯片面积会有些损失,Semprius公司依仗其芯片技术的优势,采用的是小芯片模组方案。国内公司由于在半导体芯片上的技术和认识上的差距问题,大多选用朝大芯片大系统方向发展; 5.国外光学系统采用的材料可能好,设计技术成熟,而量产价格确比国内低很多 综上所述,太阳能高倍聚光光伏发电技术国内与国外比较最主要的差距在化合物半导体砷化镓芯片生产技术上,高效率的芯片再加上成熟的光学系统以及采用微小芯片聚光系统省材料的特点,使得国内和国外在太阳能高倍聚光光伏电站系统上相对应的材料成本相差在20-30%左右。” 谈及Semprius公司和常州旭王新能源有限公司比较时,jimzhu先生说:“Semprius公司和常州旭王新能源有限公司是两家很有特点的公司,Semprius公司的专长在CPV系统太阳能砷化镓芯片上,而常州旭王新能源有限公司则是国内唯一拥有CPV系统大芯片玻璃双反射光学技术和小芯片玻璃菲涅尔光学技术的公司,虽然芯片在CPV系统中占了约20%的比重,而光学只占了约13%的比重,但此两项无疑都属于CPV系统的核心技术,而常州旭王新能源有限公司更是难得的采用全玻璃光学技术以保证系统寿命。常州旭王新能源有限公司在CPV系统中,从芯片开发.芯片封装.散热方案.模组结构.支架系统.跟踪机构等都拥有自己的专有技术,在CPV系统的大芯片和小芯片方向上都有自己完整的低成本解决方案。同时, 公司初期已考虑到在CPV系统芯片技术进步过程中存在发电效率提升的问题,并有相对应的解决方法。常州旭王新能源有限公司是去年成立的完全个人合股的小公司,公司至今为止没有得到过政府的任何资助和扶持。Semprius公司的目标是能够竞争过中国制造的廉价太阳能电池板,而常州旭王新能源有限公司的目标是替代传统能源,两家公司都是以年产100兆瓦作为达标的规模。”jimzhu先生说:“公司设立时谈及我们目标,没人能相信,现在终于有了同样的公司出来讲话,我们相信还有公司没讲话。我们希望通过我们的努力,在CPV领域上不要输国外太多。同时希望那些准备大力投资火电的人,能够认真审视一下自己的方案,2015年太阳能光伏或光热发电技术将会达到替代传统能源的水平,自己不要因后期污染环境和浪费

聚光太阳能光伏发电系统商业计划书 XX(总经理) 2008.07

目录 一、经营概述-------------------------------------------------------------------------------------(2) 二、机构计划-------------------------------------------------------------------------------------(4) 2.1公司概况-------------------------------------------------------------------------------(4) 2.2公司法律体制-------------------------------------------------------------------------(5) 2.3产品和服务----------------------------------------------------------------------------(5) 2.4管理团队-------------------------------------------------------------------------------(6) 2.5管理体系建设-------------------------------------------------------------------------(8) 2.6会计制度-------------------------------------------------------------------------------(8) 2.7保险和安全措施----------------------------------------------------------------------(9) 三、营销计划-------------------------------------------------------------------------------------(10) 3.1市场简介-------------------------------------------------------------------------------(10) 3.2太阳能电池技术简介----------------------------------------------------------------(11) 3.3风险和竞争分析----------------------------------------------------------------------(13) 3.4主要核心技术-------------------------------------------------------------------------(13) 3.5发展历程-------------------------------------------------------------------------------(15) 3.6战略规划-------------------------------------------------------------------------------(17) 3.7生产和销售----------------------------------------------------------------------------(19) 四、财务分析-------------------------------------------------------------------------------------(21) 4.1财务需求概述-------------------------------------------------------------------------(21) 4.2财务预测分析和假设----------------------------------------------------------------(21) 4.32007-2010年,年财务预测表------------------------------------------------------(22) 4.42007-2010年,月财务预测表------------------------------------------------------(22) 4.52007-2010年,财务分析表---------------------------------------------------------(22) 五、证明文件--------------------------------------------------------------------------------------(23) 5.1营业执照复印件-----------------------------------------------------------------------(23) 5.2董事会决议文件-----------------------------------------------------------------------(23) 5.3管理团队个人简历--------------------------------------------------------------------(23) 5.4工厂租约复印件-----------------------------------------------------------------------(23) 5.5产品第三方鉴定报告-----------------------------------------------------------------(23) 5.6与ARISE Technologies Corporation . 合作意向书------------------------------(23) 5.7与Soleid Energy Inc. 合作意向书--------------------------------------------------(23) 5.8与Eco-Stream Inc. 合作意向书-----------------------------------------------------(23) 5.9与江苏顺风光电有限公司合作意向书---------------------------------------------(23) 5.10与精钻机床有限公司合作意向书-----------------------------------------------------(23) 经营概述

相关主题
文本预览
相关文档 最新文档