当前位置:文档之家› 聚光光伏电池及系统的研究现状

聚光光伏电池及系统的研究现状

聚光光伏电池及系统的研究现状
聚光光伏电池及系统的研究现状

用于太阳能光伏发电的高倍聚光系统

第32卷第3期2011年5月 应 用 光 学 Journal of Applied Optics Vol 132No.3M ay 2011 文章编号:1002-2082(2011)03-0389-06 用于太阳能光伏发电的高倍聚光系统 张 平1,2 ,洪剑麟1 ,夏 念1 ,金小伟 1 (1.杭州永莹光电有限公司,浙江杭州310051;2.华中科技大学,湖北武汉430074) 摘 要:研究了基于三结型(InGaP/InGaAs/Ge)高效太阳能电池的太阳能光伏发电的高倍聚光系统。该系统采用高次非球面光学玻璃卡塞格林系统,运用Zem ax 和Tr acepro 光学设计软件完成200~500倍太阳能聚光系统的设计,同时设计了单片型高倍太阳能聚能光学组件,用热压成型方法研制了太阳能聚能透镜(副镜)。采用16个性能相同的聚光光学组件和相同数量的三结型太阳能电池组成高倍聚光型太阳能光伏组件,极大地提高了聚光比,为太阳能光伏发电的高倍聚光器设计提供参考和依据。 关键词:太阳能;高倍聚光器;热压成型;非球面透镜;光伏发电 中图分类号:T N29;T H 706 文献标志码:A Solar photovoltaic power generation with high -concentration -ratio system ZH ANG Ping 1,2,H ONG Jian -lin 1,XIA Nian 1,JIN Xiao -w ei 1 (1.Hang zhou Y ongy ing O pt ic &Electr onic Co.,L td.,H ang zho u 310051,China;2.Huazho ng U niver sity of Science and T echnolog y,W uhan 430074,China) Abstract:Based on three -junctio n (InGaP/InGaAs/Ge)high efficient solar cell,the PV conver -sion of a hig h pow er optical system w as achiev ed,which used hig h -order precision aspheric Cassegrain sy stem.Tw o so lar PV systems of 200-500times co ncentratio n -ratio w ere o btained w ith Zemax and Tracepro.One o f them w as a monolithic system w ith solar condenser compo -nent.Seco ndary m ir ror o f high pow er solar PV sy stem w as m anufactured using ho t -pr ess for ming.16sets of optical concentration elem ents co mbined w ith three -junction (InGaP/In -GaAs/Ge)hig h efficient solar cells of the same volumes w ere used to form a com plete unit of a hig h pow er solar condenser PV system.T he solar concentration ratio is greatly increased,w hich pr ovides a g ood refer ence for the desig n of solar PV pow er generation and high -conver -g ence -ratio facilities. Key words:solar energ y;high -pow er condenser;hot -press forming;aspheric lens;photovoltaic pow er generation 收稿日期:2010-10-16; 修回日期:2010-11-16 基金项目:浙江省重大科技专项(优先主题)研究与产业化项目(2008C11038)。作者简介:张平(1946-),女,浙江杭州人,教授、技术顾问,主要从事光电工程、光电光学系统设计和非球面光学应用研究工作。E -mail pzhang8@https://www.doczj.com/doc/384115397.html, 引言 光伏发电经历了第一代晶硅电池(17%左右的转换效率)和第二代薄膜电池,第三代高效H CPV 系统发电。CPV 采用多结的III -V 族化合物电池,具有全光谱、高转换效率(可达36%左右 的转换效率)等优点,采用廉价的聚光型光伏系统可减少给定功率所需的太阳能电池面积。 为了大幅度降低太阳能光伏发电成本,我们致力于太阳能光伏发电高倍聚光系统及采用热压成型方法研制500倍聚光太阳能聚能透镜(副镜),

浅析燃料电池研究进展及应用

浅析燃料电池研究进展及应用 摘要: 燃料电池是一种高效、环境友好的发电装置,能将外界提供的燃料和氧化剂的化学能直接转化为电能。本文介绍了原电池的工作原理、特点和分类,并详细阐述了原电池的研究进展和应用。 关键词: 燃料电池工作原理应用 随着全世界对能源的需求日益增加以及人类对环境质量的关注,采用清洁、高效的能源利用方式、积极开发新能源已经是势在必行。燃料电池是一种电化学的发电装置,等温的按电化学方式,直接将化学能转化为电能而不必经过热机过程,因而能量转化效率高,且无噪音,无污染,正在成为理想的能源利用方式。 1. 燃料电池的工作原理 燃料电池是一种能量转化装置,它是按电化学原理,即原电池工作原理,等温的把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应,其工作原理如图1所示。燃料电池主要由四部分组成,即阳极、阴极、电解质和外部电路。燃料气和氧化气分别由燃料电池的阳极(负极)和阴极(正极)通入。燃料气在阳极(负极)上放出电子,电子经外电路传导到阴极(正极)并与氧化气结合生成离子。离子在电场作用下,通过电解质迁移到阳极上,与燃料气反应,构成回路,产生电流。同时,由于本身的电化学反应以及电池的内阻,燃料电池还会产生一定的热量。电池的阴、阳两极除传导电子外,也作为氧化还原反应的催化剂。当燃料为碳氢化合物时,阳极要求有更高的催化活性。阴、阳两极通常为多孔结构,以便于反应气体的通入和产物排出。电解质起传递离子和分离燃料气与氧化气的作用。为阻挡两种气体混合导致电池内短路,电解质通常为致密结构。 图1燃料电池工作原理示意图 2燃料电池的分类 目前各国开发的燃料电池种类多,应用范围广泛,分类方法也多种多样。燃料电池有不同的分类方法,本文主要介绍按电解质种类分类中的两种燃料电池。(氢燃料电池和直接甲醇燃料电池) 3燃料电池的优点 燃料电池是一种直接将燃料的化学能转化为电能的装置。从理论上来讲,只要连续供给燃料,燃料电池便能连续发电,被誉为“绿色”发电站。燃料电池的优点: (1)发电效率高。理论上, 它的发电效率可达到85% ~90% ,但由于工作时各种极化的限制,目前燃料电池的能量转化效率约为40% ~60%。(2)环境污染小。

燃料电池质子交换膜研究现状和发展趋势

膜材料科学与技术 令狐采学 课程作业 燃料电池质子交换膜研究现状和发展趋势 任课教师:陈鹏鹏老师 姓名:鲜开诚 学号:C61114012 专业:新能源材料与器件 燃料电池质子交换膜研究现状和发展趋势 鲜开诚 (安徽大学化学化工学院合肥 230601) 摘要质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell, PEMFC)作为新一代能源技术被广泛应用。离子交换膜作为燃料电池的核心元件,同时起到分隔燃料和氧化剂,传导质子的双重作用。本文简介了燃料电池质子交换膜及其工作原理;介绍了现有的几种质子交换膜的结构与性能及最新研究状况;展望了质子交换膜的发展趋势。 关键词:质子交换膜;燃料电池;聚合物 Advances and Development Trends in Proton Exchange Membranes for Fuel Cells Xian Kai-cheng

(Department of Chemistry and Chemical Engineering, Anhui University,Hefei 230601,Anhui Province,China) Abstract Proton Exchange Membrane Fuel Cell (PEMFC), is being widely used as a new generation of energy technology.Ion exchange membrane,as a core component of PEMFC,is of the ability of separating fuels and oxidizing agent as well as conducting protons.In this paper, proton exchange membrane and its operating principle are introduced;the structure and performance of kinds of proton exchange membrane as well as their recent study are reviewed; outlook of the development trend ofproton exchange membranes are provided. Key words proton exchange membrane; fuel cell; polymer 1燃料电池质子交换膜及其工作原理 燃料电池是一种将燃料和氧化剂的化学能通过电化学反应方式直接转换成电能的高效电装置,其能量转换率高,是一种环境友好的新型能源。 燃料电池的种类很多,质子交换膜燃料电池是其中的一种,其最大的优点在于它能在室温附近工作,而且电池启动快,能量转换率高,它不仅可以替代普通的二次电池,而且可以作为汽车的动力源,从而大大减少环境污染。质子交换膜在燃料电池中所

燃料电池发展现状研究报告进展资料

应用电化学论文作业 题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展

1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly,MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。

高倍聚光光伏电池作为第三代太阳能发电技术

高倍聚光光伏(HCPV)电池作为第三代太阳能发电技术正逐渐成 为太阳能领域的新焦点 经过30多年的发展,高倍聚光光伏(HCPV)电池作为第三代太阳能发电技术正逐渐成为太阳能领域的新焦点,引起了行业内企业的追逐。在日光照射较好的几个欧美国家,已通过了优惠的上网电价法,随着具有40%转换效率的Ⅲ-V 族半导体多结太阳能电池的普及和成本下降,高倍聚光光伏电池市场进入快速增长期。与前两代电池相比,HCPV采用多结的砷化镓电池,具有宽光谱吸收、高转换效率、良好的温度特性、低耗能的制造过程等优点,使它能在高倍聚焦的高温环境下仍保持较高的光电转换效率。高倍聚光光伏系统技术门槛较高且行业跨度大,涵盖半导体材料及工艺制造、半导体封装、光学设计制造、自动化控制、机械设计制造、金属加工等领域。HCPV行业的产品包括了多结电池片外延材料、光电转换芯片、光接收器组件、聚光器、光伏模组、双轴跟踪器等。 电池芯片采用多结技术大幅提高光电转换效率 与硅基材料相比,基于III-V族半导体多结太阳能电池具有最高的光电转换效率,大致要比硅太阳能电池高50%左右。III-V族半导体具有比硅高得多的耐高温特性,在高照度下仍具有高的光电转换效率,因此可以采用高倍聚光技术,这意味着产生同样多的电能只需要很少的太阳电池芯片。多结技术一个独特的方面就是材料——可选择不同的材料进行组合使它们的吸收光谱和太阳光光谱接 近一致,相对晶硅,这是巨大的优势。后者的转换效率已近极限(25%),而多结器件理论上的转换效率可达68%。目前最多使用的是由锗、砷化镓、镓铟磷3种不同的半导体材料形成3个p-n结,在这种多结太阳能电池中,不但这3种材料的晶格常数基本匹配,而且每一种半导体材料具有不同的禁带宽度,分别吸收不同波段的太阳光光谱,从而可以对太阳光进行全谱线吸收。 HCPV芯片的生产过程如下,首先利用MOCVD技术在4英寸锗衬底上外延砷化镓和铟镓磷形成3结电池片的材料,然后在外延片上利用光刻、PECVD、蒸镀等技术,制备减反膜以及主要成份为银的金属电极,再经划片清洗等工艺,生产出HCPV芯片。HCPV芯片的主要生产商有美国的Spectrolab、Emcore,德国的Azurspace,加拿大Cyrium,中国台湾Arima、Epistar等。衬底剥离的芯片和量子点技术是目前HCPV芯片领域的新热点。 接收器要安全可靠稳定地应用于系统 聚光太阳能电池芯片被封装到光接收器中,接收器封装对太阳能电池进行保护,对会聚光均匀化,同时起到散热的作用。接收器组件还包括旁路二极管和引线端子。芯片的主要焊接工艺有回流焊和共晶焊,二者最主要的区别在于前者使用助焊剂焊接,在焊接后需要清洗去除残留助焊剂,而共晶焊使用无助焊剂的焊片焊接。为了将电从芯片导出,需要进行金带键合将芯片和外围电路连接起来。接收器组件的检验指标主要包括空洞率和电性能测试,空洞率是检验焊接良好与否的标准。电性能方面,5.5mm×5.5mm接收器组件在500倍太阳光下的光电 转换率高达38.5%以上。在实际使用中,还需要将接收器组件与二次光学器件、散热器封装在一起,组成完整的接收器。二次光学器件可以降低对跟踪器高精准度的要求,并使通过涅尔透镜聚焦后的光斑更加均匀地照射到电池芯片上。 二次光学元件通常是光学玻璃棱镜或中空的倒金字塔金属反射器。为了最大限度地利用太阳能资源,节省芯片材料以降低成本,可以提高电池的聚光倍数,

燃料电池客车发展情况与技术发展趋势

燃料电池客车发展情况及技术发展趋势一、燃料电池汽车政策分析 《关于2016-2020年新能源汽车推广应用财政支持政策方的通知》(财建(2015)134号)中明确:“2017-2020年,除燃料电池汽车外,其他车型补助标准适当退坡”,明确了国家对燃料电池汽车产业发展的支持态度。而《“十三五”国家战略性新兴产业发展规划》中提出,要系统推进燃料电池汽车研发与产业化,到2020年,实现燃料电池汽车批量生产和规模化示应用。 在财政补贴层面,国家也给予了大力支持,包括整车补贴、加氢站补贴、免征购置税以及运营补贴等。其中,整车补贴额度从20万到50万每辆不等,一个加氢站则补贴400万元,运营补贴中,燃料电池客车补贴为6万元/辆/年。 二、氢燃料电池产业链概述 氢燃料电池汽车产业链包括制氢、储氢、运氢、加氢、应用(燃料电池汽车/有轨电车)等环节。 氢气制造一般是通过将化石原料、化工原料、工业尾气、可再生能源以及水等经过处理来获取,每种获取途径其成本和环保属性都不同。中国目前主要通过工业尾气处理以及电解水来制氢。长河认为,对于燃料电池来说,现在配套基础设施还有待进一步完善,需要政府以及行业机构以及专家尽快推进立法和相应的技术标准予以规。

长河表示,制氢的方法和方案比较多,而目前燃料电池汽车使用最大瓶颈和最大的障碍是缺乏加氢站。据其统计,截止到2013年底,全球加氢站只有228座,对于我国来说,我国真正投入商业化、用于燃料电池的加氢站只有两座,仅仅限于国比较大的城市,就是和,处于示运营阶段,与国外说的氢高速公路,也就是一条高速公路有多个加氢站相比,差距比较大。 在整个氢燃料电池产业链中,氢燃料电池发动机处于绝对的核心地位,氢燃料经过发动机转化为电能应用到终端。长河表示,目前制约中国燃料电池汽车发展的瓶颈,就是氢燃料电池发动机。虽然国有不少高校和相应科研机构以及企业,在就燃料电池发动机技术展开相应研究和示性运营应用,但是氢燃料电池发动机核心技术,这两年通过评估,能够达到产业化或者达到工业化应用的,核心技术仍然掌握在国外企业手中。

燃料电池发展现状与应用前景

燃料电池发展现状与应用前景 摘要: 介绍了各种类型燃料电池( 碱性燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池、磷酸燃料电池及质子交换膜燃料电池) 的技术进展、电池性能及其特点。其中着重介绍了当今国际上应用较广泛、技术较为成熟的磷酸燃料电池和质子交换膜燃料电池。对燃料电池的应用前景进行探讨, 并对我国的燃料电池研究提出了一些建议。 关键词: 燃料电池; 磷酸燃料电池; 质子交换膜燃料电池 燃料电池有多种类型, 按使用的电解质不同来分类, 主要有碱性燃料电池(AFC) 、熔融碳酸盐燃料电池(MCFC) 、固体氧化物燃料电池( SOFC) 、磷酸燃料电池( PAFC) 及质子交换膜燃料电池( PEMFC) 等。 1 各种燃料电池发展状况 1. 1 碱性燃料电池(AFC) 20 世纪50 年代起美国就开始对碱性燃料电池进行研究, 并在60 年代中期成功地用于Apollo 登月飞行。AFC 的优点在于除贵金属外, 银、镍以及一些金属氧化物都可以作电极催化剂, 它的阴极性能也比酸性体系要好, 而且电池的结构材料也较便宜。缺点在于对CO2 和N2 十分敏感, 故不适用于地面。在国外, 将AFC 用于潜艇及汽车的尝试已不再继续, 目前AFC 主要用作短期飞船和航天飞机的电源。 中科院长春应用化学研究所1958 年就开始研究培根型燃料电池。60 年代初开展碱性石棉膜型燃料电池的研究, 1968 年承担航天用碱性石棉膜型燃料电池的研制。中科院大连化学物理研究所在60 年代初也开始研究碱性石棉膜型燃料电池。70年代初承担了航天用碱性石棉膜型燃料电池的研制, 研制成两种类型的电池。80 年代初, 研制了潜艇用20kW的大功率碱性石棉模型燃料电池样机。 1. 2 熔融碳酸盐燃料电池( MCFC) MCFC 的电解质由Li2CO3 和K2CO3 组成, 工作温度在650 e 左右, 阴极、阳极电化学反应快, 无需贵金属催化剂。由于在较高温度工作, 可以对天然气、煤炭气化燃料进行内部重整, 直接加以利用。不需要复杂昂贵的外重整设备。另外, 燃料转换效率高, 余热利用效率也较高。但MCFC 在高温下长期工作时电解质损失造成的电池失效、隔板腐蚀对电池寿命的影响, 以及镍电极缓慢溶解所造成的性能下降都是有待解决的课题。 由美国能源研究公司(ERC) 建造, 使用内部重整的2MWMCFC 装置已经安装在加利福尼亚并入电网运行了720h, 供电1710MWh, 1997 年3 月停运,为建造和运行这类电站提供了宝贵经验。日本熔融碳酸盐研究协会在日本月光计划和新日光计划的支持下, 一个1000kW系统正在组装以评价此技术。 长春应用化学研究所于90 年代初开始研究MCFC, 在LiAlO2 微粉的制备方法和利用金属间化合物作MCFC 的阳极材料等方面取得了很大的进展。大连化学物理所从1993 年起在中科院资助下开始研制, 自制LiAlO2 微粉制造的MCFC 单体电池性能已达国际80 年代初的水平。 1. 3 固体氧化物燃料电池( SOFC) SOFC 工作温度高达1000 e , 反应速度快, 不需要贵重金属做催化剂, 不存在电解质腐蚀金属问题。碳氢化合物燃料可自动在燃料电池内部重整, 并迅速地在电极上被氧化, 燃料中杂质对电池的性能、寿命影响均很小。其燃料转换效率高, 高温余热可很好利用, 从而提高燃料的总利用效率。SOFC 可以与燃气轮机相结合, 即用燃料电池的动力代替燃气轮机的燃烧段, 总效率可望达到60%~ 70% 。SOFC 的主要问题是固体氧化物电解质所用的陶瓷材料脆性大, 目前仍很难制造出大面积的固体电解质膜, 这严重制约了建造大功率SOFC。另外, SOFC 还存在诸如电流密度小、电压降高、制造工艺复杂、成膜设备昂贵等问题。

聚光光伏综述

文献综述 太阳能是一种洁净的自然再生能源,取之不尽,用之不竭。而且太阳能是所有国家和个人都能够得以分享的能源。为能经济有效的利用这一能源,人们从科学技术上着手研究太阳能的收集、转换、储存以及输送,已经并正在取得显著进展,这无疑对人类的文明具有重大意义。太阳能在转换过程中效率较低,10~20%可转变为电能,其余能量以散热的形式损失掉了,这就限制了太阳能的广泛应用,因此必须根据各地不同的气候和不同的需要来提高太阳能利用的转换效率,改善现有技术,减少装置成本。太阳能在未来能源结构中将占有主要地位,除了被动式的用于室内采光,建筑供暖和生活热水,主动式太阳能利用技术可以把太阳能转化其他形式的能源而获得更广阔的应用前景。太阳能的利用基本方式主要分为光热利用,光化学利用,光生物利用以及太阳能发电等。 对太阳能的利用主要是太阳能发电,对太阳能的利用主要是太阳能发电,在太阳能发电系统中,技术最复杂的组成部分应属太阳能电池。可以说,太阳能电池是太阳能发电系统的核心,其开发、生产直接影响到太阳能发电的普及和发展。早在1839年,法国科学家贝克雷尔(Becqurel)就发现,光照能使半导体材料的不同部位之间产生电位差。这种现象后来被称为“光生伏打效应”,简称“光伏效应”。1954年,美国科学家恰宾和皮尔松在美国贝尔实验室首次制成了实用的单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术。 硅是最理想的太阳能电池材料,这是太阳能电池以硅材料为主的主要原因。在所有太阳电池中单晶硅太阳能电池是最常用的,技术也最为成熟光电转化效率较高的可达23.3%。但由于单晶硅材料价格及相应的繁琐工艺影响,单晶硅成本价格居高不下,大幅降低成本非常困难,无法实现太阳能发电的大规模普及。 采用聚光方法和光电/光热(Photovoltaic/Thermal,PV/T)综合转换,降低已经大规模生产的常规太阳电池光伏转换的成本,提高太阳电池的利用效率和经济性的可能性。用廉价的菲涅尔透镜聚光提高电池表面太阳辐射强度,从而达到提高单位电池面积输出功率,降低电池发电成本。这实际上是相当于用廉价的聚光器代替昂贵的半导体材料,使系统成本中的一部分从电池成本转移到聚光元件成本中去,因此降低了系统光伏转换的成本。另一方面通过冷却电池来降低电池工作温度,使电池能够在高效率下工作,同时得到一定量的余热回收,使太阳能

燃料电池的发展现状及研究进展

应用电化学 论文作业 题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 姓名郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展

1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly,MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与内燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。 图1 PEMFC 基本原理 燃料电池从发明至今已经经历了100 多年的历程。于能源与环境已成为人

聚光太阳能发电

聚光太阳能发电?聚光太阳能发电(CONcentrating Solar Power)简称CSP是采用反射镜把太阳光反射并聚集到接收器,该接收器能够聚集太阳能并将其转换为热能,利用这种热能生产的热蒸汽,推动涡轮发动机,从而驱动发电机发电,满足电力需求。太阳能到电能的高效率转换特性,使CSP技术成为具有吸引力的可再生能源项目。 目录 ?聚光太阳能发电的几种主要形式 ?聚光太阳能发电的基本原理 ?聚光太阳能发电系统的组成 ?聚光太阳能发电的发展现状 ?聚光太阳能发电的发展优势 聚光太阳能发电的几种主要形式 ?一、线性聚光系统 线性聚光太阳能发电采用线聚焦技术,线性聚光器包括抛物面槽式系统和线性菲涅耳反射系统2种,利用很大的反射镜来捕获太阳的能量,并把太阳光反射和对焦集中到焦线上,在这条焦线上安装有线性管状集热器,集热器吸收聚焦后的太阳辐射能,把吸热管内的流体加热,然后产生过热蒸汽,驱动涡轮发电机产生电力。线性集中聚光器系统通常由按南北向平行排列的大量聚光器组成,这样保证最大限度地聚集太阳能。 1.抛物面槽式系统 目前,在美国太阳能热发电领域中占主导地位的是抛物面槽式线性聚光系统,槽式太阳能发电系统由太阳能聚光器,以及吸热配件或接收器和跟踪机构组成。其中太阳能聚光器由许多弯曲的反射镜组合装配而成,安装在支架上。吸热管或接收

器管沿着每个抛物形反射镜的焦线固定安装,用以吸收太阳辐射能,传热工质(不管是传热流体还是水/蒸汽)都要从太阳能集热管中流过,从而产生过热蒸汽,直接输送到涡轮机用以发电。 2.线性菲涅尔反射器系统 第二种线性聚光技术是线性菲涅尔反射器系统,该系统由反射镜。聚光器和跟踪机构组成。把平坦的或略有弯曲的反射镜安装配置在跟踪器上,在反射镜上方的空间安装吸热管,反射镜把阳光反射到吸热管。有时在聚光器的顶部加装小型抛物面反射镜,以加强阳光的聚焦。 二、碟式引擎系统 与其他聚光太阳能发电技术相比,碟式引擎系统产生的电力功率相对较少,通常在3~25万kW的范围内,很适合分布式应用,如果将多个这样分布安装的单元碟式。引擎系统整合成一簇,可以实现集中向电网供电,不但能缓解电力能源需求,还可以提高整个电网的运行安全性。整个发电系统安装在一个双轴跟踪支撑机构上,实现定日跟踪,连续发电,发电效率高达30%,在相同的运行温度下,发电效率明显高于槽式和塔式,是所有太阳能热发电系统中效率最高的。缺点是碟式太阳能热发电系统的单元发电容量较小。 三、塔式系统 塔式太阳能热发电系统主要由日光反射镜子系统。接收器组成,见图。其中日光反射镜子系统由大量大型。平坦的太阳跟踪反射镜构成,对太阳进行实时跟踪,把太阳光聚焦到塔顶的接收器。在接收器中对传热流体进行加热,产生高温过热蒸汽,过热蒸汽推动常规涡轮发电机组发电。一些电力塔利用水。蒸汽作为传热流体。由于其卓越的传热和能量存储能力,在其他先进的设计中,对其进行了熔融硝酸盐试验。具有商业规模的工厂可以生产200MW的电力造价十分昂贵,建设电站的投资很高

燃料电池研究现状与未来发展

燃料电池研究现状与未来发展香山科学会议第59次学术讨论会于1996年8月24~27日举行。会议主题是“燃料电池研究现状与未来发展”。会议执行主席路甬祥与王佛松院士主持了会议。42位来自中国科学院、全国高校及公司等25个单位的燃料电池及相关学科的专家学者共同研讨燃料电池的发展现状和未来走向,以及发展我国燃料电池技术大计。 会议综述报告及中心议题讨论内容主要包括3部分:(1)燃料电池的总体评价;(2)目前处于研究开发阶段的3种类型燃料电池的评价;(3)我国发展此技术应采取的战略与策略。 一、燃料电池的技术评价 燃料电池(Fuel cell缩写FC)是将气体燃料的化学能直接转化为电能的电化学连续发电装置。电池电化学基本反应:H2十l/202=H20和CO十1/202=C02。自150余年前被发明以来,现已发展了6种形式。它们分别为碱性(AFC)、磷酸(PAFC)、熔融酸盐(MCFC)、固体氧化物(SOFC)、聚合物离子膜(PEMFC或SPFC)及生物燃料电池(BEFC)。 概括而言,燃料电池具有以下优点:(1)能量转换效率高达45—60%。而火电和核电为30一40%;(2)有害气体SO x、NO x及噪音排放很低;CO2排放因能量转换效率高而大幅度降低;元机械振动;(3)燃料适用范围广,凡能

转化为H2和CO燃料均可使用;(4)积木性强;规模及安装地点灵活;规模小(数十千瓦级)影响能量转换效率不明显。 现PAFC在发达国家已商业化;AFC在60年代末即用于航天器。其它方面的应用不如PEMFC更具优势;BEFC尚处于实验室的探索性基础研究阶段。目前各国的燃料电池的研究开发重点主要集中在MCFC、SOFC和PEMFC上。 1.MCFC运行温度650℃,燃料适用范围广,电催化剂为非贵金属,余热可为燃气轮机所利用,适用于固定式发电电站。在各国对燃料电池的经费投入中,MCFC所占比例最大。现国外(美、日、西欧)已有100kW级发电系统的运行,预计美国2000年实现商业化,日本计划2005年实现商业化。目前MCFC研究需要解决的关键技术问题有:(1)阴极(NiO)溶解,这是影响电池寿命的主要因素;(2)阳极蠕变;(3)熔盐电质对电池双极板的腐蚀;(4)电解液流失。 2.SOFC作为运行温度最高的燃料电池(800—l000℃),功率密度高,采用全固体结构,无腐蚀性液体,燃料适用范围广,天然气可不经重整直接使用。其尾气温度高达900℃,可为燃气轮机和蒸汽轮机所用,发电效率可达70%,如加上余热利用其燃料利用率可达90%,可用于大中小型电站,作为运载工具的驱动电源也有应用前景。目前SOFC研究十分活跃,电池模块的制备规模在美、日、德三国已达20一30kW。2000一2010年间可实现商业化。目

聚光光伏(CPV)

聚光光伏 聚光光伏(CPV)是指将汇聚后的太阳光通过高转化效率的光伏电池直接转换为电能的技术,CPV是聚光太阳能发电技术中最典型的代表。使用晶硅电池和薄膜电池进行光电转换,分别是第一、第二代太阳能利用技术,均已得到了广泛应用。利用光学元件将太阳光汇聚后再进行利用发电的聚光太阳能技术,被认为是太阳能发电未来发展趋势的第三代技术。 使用晶硅电池和薄膜电池进行光电转换,分别是第一、第二代太阳能利用技术,均已得到了广泛应用。利用光学元件将太阳光汇聚后再进行利用发电的聚光太阳能技术,被认为是太阳能发电未来发展趋势的第三代技术。 技术展望 有别与传统硅晶型以及薄膜型,聚光型太阳光电(HCPV)的技术最显着的优点在于它的高光电转换效率。这种太阳电池芯片在聚焦太阳光500倍左右时它的光电转换效能介于36-40%之间,光电模组的效能在22-28%之间。整个系统的效能在18-20%之间。以年度发电量而言,在相同的条件下,系统(结合双轴追日技术)约是传统硅晶型的1.2-1.4倍左右,此点是HCPV技术的竞争优势。HCPV技术最适合应用于大型电厂,特别是在阳光日照充足、干燥、低湿度的地区。 目前HCPV 的核心技术-三结化合物电池和高倍聚光技术的开发和制造已经突破了国外企业的封锁,目前在国内实现大规模量产的企业有国内上市企业三安光电旗下的日芯光伏,他们已经能够实现1000倍聚光和40%以上的光电转换效率。 日芯光伏科技有限公司参与了我国《聚光型光伏模块和模组设计鉴定和定型》认证技术规范制定工作,为通过本次认证,日芯光伏科技有限公司经过了申请、送样、型式试验、工厂检查、合格评定、发证等认证环节,也为我国今后聚光光伏组件的质量认证工作积累了宝贵经验。 系统效率比较能量转化效率 薄膜型太阳能 7%~9% 晶硅型太阳能 14%~17% 第一代核能电厂 30% 火力发电 36.8% 聚光光伏(CPV) 27%~30% 聚光光热 (CSP) 13%~19%

燃料电池的发展现状及研究进展

应用电化学 论文作业题目燃料电池的发展现状及研究进展学院化学与化学工程学院 专业班级制药134班 姓名郭莹莹

摘要 燃料电池是一种清洁高效的能源利用方式,它是一种能够持续将化学能转化为电能的能量转换装置。发展燃料电池对于改善环境和实现能源可持续发展有重要意义。本文介绍了燃料电池的工作原理、分类及燃料电池的优点,详细阐述了燃料电池现在的发展现状和未来研究前景的展望。 关键词:燃料电池转换装置应用发展 1 燃料电池的工作原理及分类 燃料电池( Fuel Cell,FC) 是把燃料中的化学能通过电化学反应直接转换为电能的发电装置。按电解质分类,燃料电池一般包括质子交换膜燃料电池( Proton Exchange Membrane Fuel Cell,PEM-FC) 、磷酸燃料电池( Phosphoric Acid Fuel Cell,PAFC) 、碱性燃料电池( Alkaline Fuel Cell,AFC) 、固体氧化物燃料电池 ( Solid Oxide Fuel Cell,SOFC) 及熔融碳酸盐燃料电池( Molten CarbonateFuel Cell,MCFC) 等。以质子交换膜燃料电池为例,主要部件包括: 膜电极组件( Membrane Elec-trode Assembly, MEA) 、双极板及密封元件等。膜电极组件是电化学反应的核心部件,由阴阳极多孔气体扩散电极和电解质隔膜组成。电解质隔膜两侧分别发生氢氧化反应与氧还原反应,电子通过外电路作功,反应产物为水。额定工作条件下,一节单电池工作电压仅为0.7 V 左右。为了满足一定应用背景的功率需求,燃料电池通常由数百个单电池串联形成燃料电池堆或模块。因此,与其它化学电源一样,燃料电池的均一性非常重要。燃料电池发电原理与原电池类似( 见图1) ,但与原电池和二次 电池比较,需要具备一相对复杂的系统,通常包括燃料供应、氧化剂供应、水热管理及电控等子系统,其工作方式与内燃机类似。理论上只要外部不断供给燃料与氧化剂,燃料电池就可以续发电。 图1 PEMFC 基本原理 燃料电池从发明至今已经经历了 100 多年的历程。于能源与环境已成为人类社会赖以生存的重点问题。近20 年以来,燃料电池这种高效、洁净的能量 转化装置得到了各国政府、开发商及研究机构的普遍重视。燃料电池在交通运输、便携式电源、分散电站、航空及水下潜器等民用与军用领域展现出广阔的应用前景。目前,燃料电池汽车、电站及便携式电源等均处于示范阶段,在商

聚光太阳能光伏组件的特性研究_陈涛

櫗櫗櫗櫗櫗櫗櫗櫗櫗櫗櫗櫗櫗櫗櫗櫗櫗櫗櫗櫗毉 毉 毉 毉 物理技术研究 聚光太阳能光伏组件的特性研究* 陈 涛 马明乐 宋春龙 陈 坚 陈东生① (上海电力学院数理学院 上海 200090 )(收稿日期:2013-04-28 )摘要:将菲涅耳透镜应用于太阳能光伏组件的实验研究.结果显示,菲涅耳聚光透镜能大大提升太阳能的转 换效率. 关键词:菲涅耳透镜 光伏组件 转换效率 1 引言 聚光太阳能电池是降低太阳能电池系统整体造价的一种措施.聚光太阳能电池是通过聚光器使较大面积的阳光会聚在一个较小的范围内,加大光强,克服太阳辐射能流密度低的缺陷,提高光电转换效率,因此,可以用较小面积的太阳能电池获得较高的电能输出.国际上大力开展聚光太阳能电池的研究.目前,日本夏普公司研制的3结GaAs聚光电池效率达到了39.2%(200倍聚光)和38.9%(400倍聚光).最近,更有世界最高效率40.7%的3结 InGaP/GaAs/Ge聚光电池面世[1] . 目前太阳能聚光方式有碟式反射、抛物槽式反射、菲涅耳透镜式等.其中菲涅耳透镜具有结构简单,重量轻便,球差小,焦距短的特点,由菲涅耳透镜构成的模块具有结构紧凑、效率高、成本低廉等优点,并且能够将太阳能电池密封成模块,在聚光的过程中同时保护太阳能 电池[2] . 2 实验原理 菲涅耳透镜(Fresnel lens),又名螺纹透镜,多是由聚烯烃材料注压而成的薄片,也有玻璃制作的.镜片表面一面为光面,另一面刻录了由小到大的同心圆,它的纹理是根据光的干涉及扰射以及相对灵敏度和接收角度要求来设计的.菲涅耳透镜的原理 基于菲涅耳波带片,菲涅耳波带片具有类似透镜的作用,它可以使入射光汇聚起来,产生极大的光 强[3] . 利用菲涅耳透镜将大面积分散的能量汇聚到极小面积,产生局部的高能量.在传统的平板光伏发电系统中,太阳能电池片的成本会占到系统总成本的50%~55%. 如果引入聚光技术,将太阳光聚焦到面积很小的太阳能电池片上,那么,就可以大幅度地降低昂贵的太阳能电池片的用量,从而明显降低光伏发电的成本,其原理如图1所示 . 图1 聚光电池原理图 以FF是常量, 有近似效率公式[4] η= IscVoc FFPin (1 )又因为 Voc= kTqlnIsc I0 (2 )所以η=IsckTqlnIscI0FFPin (3 )— 89—①*上海市大学生科研创新项目资助, 项目编号:201310256039;国家大学生科研创新基金资助,项目编号:201310256040作者简介:陈涛(1991- ),男,在读本科生,应用物理专业.指导教师:陈东生(1978- ) ,男,博士,副教授,主要研究方向为薄膜太阳能电池,综合性、设计性实验的开发等.

燃料电池电动汽车发展现状与前景

燃料电池电动汽车发展现状与前景 随着社会的进步和人员移动性增强,全球汽车需求 量快速增长,迄今世界上的汽车保有量达到创纪录的10 亿 辆以上且还在不断大幅增长,使得基于传统的内燃机 Internal Combustion Engine ,ICE )汽车的轻量化与节能减排等技术进步难以降低汽车燃料的消耗和减少污染物的排放。2020 年之前温室气体(Greenhouse Gas ,GHG) 排放在1990 年水平基础上下降20% 的任务日益艰巨。如果再不采取有效措施,公路交通运输车辆的GHG 温室气体排放将会持续不断增长。通过研讨纯电动汽车( Battery Electric Vehicle ,BEV )、混合动力汽车(Hybrid Electric Vehicle HEV )、或燃料电池电动汽车( Fuel Cell Vehicles ,FCVs ; Fuel Cell Electric Vehicles ,FCEVs )等多种类型的电动汽车( Electric Vehicle ,EV )技术[3-5]有望明确实现节能减排 的理想途径。自1966 年通用汽车推出了世界上第1 款燃料电池电动汽车GMC Electrovan ,尤其是本田在1999 年推出了世界上第1 台商用的燃料电池电动汽车FCX-V4 以来,世界上EV 电动汽车型号不断丰富和租赁销售量明显增长,太、北美和欧洲成长为全球EV 电动汽车重要的新车研发制造和租赁销售市场,2014 年全世界的EV 电动汽车销售量达到34.6 万辆以上,年增长率达到86% 。

燃料电池是一种高效、清洁的电化学发电装置,近年来 得到国内外高度重视,成为最被看好的可用于替代汽油和柴 油等传统的 ICE 内燃机发动机技术的先进新能源汽车技术。 日本政府希望其到 2020 年的 FCVs 燃料电池汽车销量达到 500 万辆,再通过 10 年的研发推广实现全面普及 FCVs 燃 料电池汽车。 美国政府在 2003 年投入 12 亿美元大力推进氢 技术和燃料电池技术,其中重要项目之一就是美国能源部 Department of Energy , DOE )在北加州、南加州、密歇 展的氢技术和基础实施验证与示范综合工程,吸引了 Hyundai-Kia/Chevron 、 DaimlerChrysler/BP 、 Ford/BP 和 GM/Shell 等多家汽车制造 /能源供应商参与。 美国能源部大力推进氢经济和燃料电池技术,尤其是商 业化推广应用方面取得显著进展,比如目前高容量和低容量 燃料电池制造成本分别为 55 美元 /kW 和 280 美元 /kW[6] , 汽车燃料电池 2014 年的制造成本自 2006 年下降 50% 并自 2008 年以来进一步下降 30% 以上(基于高容量电池制造) 这必将带动创造工作岗位、投资机会和可持续、安全的能源 供应。为了在 2020 年前争取把欧盟建立成一个具有全球领 先水平的燃料电池 (Fuel Cell ,FC )系统和氢能源 (Hydrogen Energy ,HE ) 经济的巨大市场,欧盟高度重视燃料电池技术 和氢能源技术并把之视作能源领域的战略高新技术大力推 根州东南部、大西洋区中部和佛罗里达州中部等 5 个区域开 f It 步

聚光光伏发电系统的技术难点分析(20210212095808)

聚光光伏发电系统的技术难点分析 因为太阳能的密度低!太阳照射到地面上的平均光强为1千瓦/平米:单晶硅的转化率可以达到23%,多晶可以达到16%,薄膜只能可以达到8眼转换效率最高的碎化稼电池片能到35$以上,但是用揶化稼制造的太阳能发电系统整体转换效率只有25%左右。 所以为了降低太阳能发电系统的价格,增加太阳光强是一个好的解决办法,要想增大光强需要用凸透镜或者菲尼尔透镜或者反光板把光汇聚起来:这样就能大大降低硅与碎化镣的使用量,从而降低太阳能发电系统的价格;这就是CPV(聚光光伏发电系统)的由来。 CPV系统的技术难点 CPV太阳能发电系统原理比较简单,为什么到现在全世界也没有几家公司做岀特别稳立且便宜的发电系统呢!在CPV领域原则上讲聚光倍数越髙造价就越便宜但是使用聚光的方式就会出现以下问题。 1、让单晶硅承受较高倍聚光 虽然砌化稼可以承受1000倍的光强,但是现在呻化稼价格昂贵,并且碑化繚中的碎是剧毒物质,不可能大幅度的降低制造成本,另外在以环保为主题的国际环境下也不可能大量使用,最后只能是单晶硅;但是单晶硅一般只能承受3到5倍的光强,在CPV领域3 到5倍的聚光几乎不怎么能降低成本,要想大幅度降低成本必须达到10左右。为了达到10 倍的聚光必须用特制的单晶硅。 2、散热: 普通的硅led/'' target二''_blank'' >光电池板在夏日中午时温度能到75度以上,普通的硅电池板在两倍太阳光强下时间一长就会起泡,任5倍太阳光强下10分钟就会就会起泡,在10倍太阳光强下5分钟就会起泡,起泡后太阳能电池片就会被氧化,在很短的时间内就会大幅降低效率,另外起泡后由于受热不均匀,常常有电池片炸裂的,这样系统就完全不可用。 如果太阳能电池板使用铝或者铜制的散热片进行自然散热,需要大量的散热片,造价特别贵,贵到比硅光片还要贵;如果使用强制风冷,就要使用大量的电能,得不偿失, 并且风扇的寿命与可靠性不高,要想达到高可靠性必须有错误检査与冗余设置,这样就会成几倍增加造价,如果在夏天的中午风扇坏了,整个硅光电池板有可能被彻底烧坏。如果使用水冷除了

相关主题
文本预览
相关文档 最新文档