当前位置:文档之家› 植物抗旱机理及相关基因研究进展_徐云刚

植物抗旱机理及相关基因研究进展_徐云刚

植物抗旱机理及相关基因研究进展_徐云刚
植物抗旱机理及相关基因研究进展_徐云刚

植物抗旱基因工程的研究进展1

来稿日期:20080831 基金项目:邯郸学院硕士博士启动基金(S2006002) 作者简介:葛水莲(19802),女,河北保定人,邯郸学院生物科学系教师,硕士. 植物抗旱基因工程的研究进展 葛水莲1,薛晶晶1,陈建中2 (11邯郸学院生物科学系,河北邯郸056005;21邯郸市植物研究所,河北邯郸056005) 摘要:就植物的抗旱基因包括渗透调节,保护酶体系,抗旱基因及遗传特性等方面对植物抗旱机理的研究进行了综述.研究植物的抗旱性基因,有助于了解植物的抗旱机制,为中国节水抗旱农业的研究提供一些新的思路和新的手段. 关键词:抗旱机理;水分胁迫;基因工程中图分类号:S 33214 文献标识码:A 文章编号:167321492(2008)0620028204 干旱已是世界性的问题,世界干旱,半干旱地区已占陆地面积的三分之一以上,干旱对植物的影响在诸多自然逆境因素中占首位.显然,对植物抗旱机理的研究显得尤为重要.在长期的进化过程中,高等植物通过一系列生理变化来响应环境的水分胁迫.这些变化体现在渗透调节,保护酶体系,抗旱基因与遗传特性等方面.随着现代分子生物学与生物技术的发展,植物如何通过细胞感受逆境信号、传导逆境刺激、激活一系列分子途径并调控相关基因表达和生理反应以适应逆境,已成为科学家研究的热点[1].本文对上述几方面的研究进行了综述,旨在总结植物抗旱的新机制,以利于我们更好的进行抗旱工作. 1 渗透调节中脯氨酸的调节 111 植物体内脯氨酸的合成 脯氨酸是一种小分子的渗透物质,是水溶性最大的氨基酸,许多植物受到盐渍时积累高水平的脯氨酸.植物的脯氨酸合成、累积及代谢是一个受非生物胁迫细胞内脯氨酸浓度调控的生理生化过程[2].脯氨酸积累可能是植物受到胁迫的一种信号.遭受胁迫的植物细胞内大量积累脯氨酸,已证明植物体内存在2条脯氨酸合成途径,根据起始氨基酸命名为Glu 途径和Orn 途径[3].胁迫导致水分亏缺时植物体内脯氨酸积累主要依靠Glu 途径,谷氨酸途径发生在胞质中,但脯氨酸降解为吡咯琳252羧酸(P5C )却发生在线粒体中,由脯氨酸脱氢 酶(ProD H )催化,这种代谢的区室化分布避免 了物质的无效循环.在正常情况下,脯氨酸作为一种反馈调节物质抑制了P5CS 的基因表达而诱导了ProD H 的基因表达.在胁迫条件下,P5CS 基因的表达活性超强,而ProD H 基因的表达活性却受到抑制.植物体内另一条脯氨酸合成途径为Orn 途径.鸟氨酸是在鸟氨酸6-氨基转移酶(62OA T )的作用下,生成谷氨酸半醛(GSA ),后通过Glu 途径生成脯氨酸[4]. 两条途径因植物和生长时期不同而各自起着重要的作用.从整体来说,在个体发育的早期阶段,异养型营养占优势,Orn -Pro 途径在脯氨酸合成中起重要作用,而谷氨酸作为脯氨酸合成的起始底物显然存在于个体发育的整个阶段,具体来说脯氨酸合成过程究竟是哪条途径居于主导地位有待研究.Roo sens [5]等研究表明,在盐胁迫和正常条件下,幼小植株的62OA T 活性和mRNA 都稍微高于较老植株,且该基因的表达与盐胁迫和脯氨酸产物密切相关.在拟南芥幼小植株中,游离脯氨酸含量、62OA T 活性以及62OA TmRNA 都受到盐胁迫处理而增加,这些结果表明对于拟南芥植物来说,在渗透胁迫过程中鸟氨酸途径和谷氨酸途径一样在脯氨酸的累积中发挥着重要的作用.另一方面4周龄的拟南芥植物虽然游离氨基酸的水平在盐胁迫条件下有所增加,但62OA T mRNA 的表达却没有检测到,相反P5CS mRNA 表达却达到较高水平.因此对于成年植株来说,游离脯氨酸的增加似乎只 ? 82?第24卷第6期2008年12月 (自然科学版)Journal of Hebei North University (Natural Science Edition ) Vol 124No 16 Dec.2008

提升植物抗旱性

提高植物抗旱性的有效途径 【摘要】:干旱、盐碱和低温(冷害)是强烈限制作物产量的3大非生物因素,其中干旱造成的损失最大,其损失量超过其他逆境造成损失的总和。干旱对植物生长和繁殖、农业生产和社会生活有着极其重要的影响,其对世界作物产量的影响,在诸多自然逆境中占首位,其危害程度相当于其他自然灾害之和。因此,干旱是制约植物生长发育的主要逆境因素,研究植物的抗旱性对农业生产实践及稳定荒漠生态具有极其重要的作用。另外,抗干旱植物对抵御风沙等自然灾害、稳定干旱区环境,亦起着不容忽视的作用。 【关键词】:植物水分抗旱性干旱诱导蛋白渗透调节物质干旱胁迫水分胁迫 【引言】:作为生态系统的一分子,植物无时尤刻小在同环境进行着物质、信息和能量的交流。环境中与植物相关的因子多种多样,且处于动态变化之中,植物对每一个因子都有一定的耐受限度,一旦环境因子的变化超越r这一耐受限度,就形成了逆境。因此,植 物的生长过程中,逆境足不可避免的。植物在长期的进化过程中,形成了相应的保护机制:从感受环境条件的变化到调整体内代谢,直至发生有遗传性的改变,将抗性传递给后代。研究逆境对植物造成的伤害以及植物对此的反应,是认识植物与环境关系的一条重要途径,也为人类控制植物的生艮条件提供了可能性。 【正文】: 在植物生理学发展史上,植物水分与抗旱性当属最早开展的研究领域之一,一直备受关注。特别是近年来由于世界范围的干旱缺水日趋严重,加之分子生物学思想和方法的不断渗入,致使该领域的研究工作进入一个充满活力的新时期,但从旱区农业发展和改善环境的需求看,植物水分与抗旱的研究前路仍然很广阔。

一.逆境对植物的影响 1.逆境引起的膜伤害 1.1影响膜透性及结构 细胞膜作为联系植物细胞与外界的介质,它的组成、性质与细胞所处的环境息息相关,而外界环境对植物的胁迫危害,首先在膜系中有所表现。干旱、低温、冻害等几种胁迫,无论是直接危害或是间接危害,都首先引起膜透性的改变。至于膜上酶蛋白的变化以及脂类的组成也可随着胁迫的深化而有所改变,目前,这方面研究最深入的是低温引起膜脂相变的假说。1970年,Lyoll8和Raison提出,低温敏感植物的膜脂相变可能由于膜脂肪酸的不饱和程度较低,或饱和膜脂较多,低温下,膜脂以液晶相向凝胶相转变,造成细胞膜膜相分离,从而引起细胞生理活动的紊乱。在此之后,大最试验证明,膜脂的组分和结构与抗冷力密切相关。 1.2 发生膜脂过氧化作用 逆境对膜的伤害,还表现在膜脂过氧化上。20世纪60年代末,Fridovic提 出生物自由基伤害假说,植物在逆境条件下,细胞内产生过量自由基,这些自由基能引发膜脂过氧化作用,造成膜系统的伤害。主要反应是,活性氧促使膜脂中不饱和脂肪酸过氧化产生MDA。后者能与酶蛋自发生链式反应聚合,使膜系统变性晗。有多位研究者报道,当植物受到低温或高温等逆境的胁迫时,其细胞内自由基清除剂含量下降,而MDA含量上升;另一方面,热锻炼、冷锻练或外源激素处理提高植物的抗逆性也表现在彤汀的活性提高,膜稳定性增强。 1.3 影响离子载体功能的实现 在细胞膜上存在着一些离子载体或通道,当外界刺激作用于细胞时,除了膜结构变化影响内部代谢紊乱外,膜上的离子载体首先接受了环境变化的信号,并通过刺激一信

基因敲除技术研究进展

兰州交通大学化学与生物工程学院综合能力训练Ⅰ——文献综述 题目:基因敲除技术研究进展 作者:王振宇 学号:201207744 指导教师:谢放 完成日期:2014-7-16

基因敲除技术研究进展 摘要基因敲除是自20世纪80年代末以来发展起来的一种新型分子生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。在总结已有研究成果的基础上,本文对基因敲除技术的概况、原理方法应用以及近年来基因敲除技术的研究进展作一个简单的综述。 关键词基因敲除 RNA i生物模型基因置换基因打靶同源重组1. 基因敲除技术简介 基因敲除(Gene knockout)是指一种遗传工程技术,针对某个序列已知但功能未知的序列,改变生物的遗传基因,令特定的基因功能丧失作用,从而使部分功能被屏障,并可进一步对生物体造成影响,进而推测出该基因的生物学功能。 它克服了随机整合的盲目性和偶然性,是一种理想的修饰、改造生物遗传物质的方法。基因敲除借助分子生物学、细胞生物学和动物胚胎学的方法,通过胚胎干细胞这一特殊的中间环节将小鼠的正常功能基因的编码区破坏,使特定基因失活,以研究该基因的功能;或者通过外源基因来替换宿主基因组中相应部分,以便测定它们是否具有相同的功能,或将正常基因引入宿主基因组中置换突变基因以达到靶向基因治疗的目的。基因敲除是揭示基因功能最直接的手段之一。通常意义上的基因敲除主要是应用DNA同源重组原理,用设计的同源片段替代靶基因片段(即基因打靶),从而达到基因敲除的目的。随着基因敲除技术的发展,除了基因打靶技术外,近年来新的原理和技术也逐渐被应用,比较成功的有RNA干扰技术,同样也可以达到基因敲除的目的。简单的说基因敲除是指将目标基因从基因组中删除。基因敲除技术主要应用于动物模型的建立,而最成熟的实验动物是小鼠,对于大型哺乳动物的基因敲除模型还处于探索阶段。这项技术的诞生可以说是分子生物学技术上继转基因技术后的又一革命。尤其是条件性、诱导性基因打靶系统的建立,使得对基因靶位时间和空间上的操作更加明确、效果更加精确、

六种植物抗旱性的研究

六种植物抗旱性的研究 王超 (山东农业大学园艺科学与工程学院泰安271018) 摘要:黄刺玫、牡丹、芍药、马兰、沙拐枣、蜀葵都是抗旱性比较强的植物,本文主要从六种植物的形态特征、根冠比、叶片解剖构造、叶片保水能力、水分饱和亏五个方面研究了其抗旱机理,其结论是叶片的形态特征和构造减少了叶片水分散失、提高了水分利用效率,叶片保水能力强,根冠比比值较大,当受到干旱胁迫时,6种苗木水分饱和亏缺大至都呈上升趋势。 关键词:抗旱性;黄刺玫;牡丹;芍药;马兰;沙拐枣;蜀葵 Reach about drought resisting of Six kinds plant Wang-chao (College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018) Abstract:Rosa xanthina , peony , peony , Ma Lan , sand honey raisin tree , hollyhock all are the comparatively strong nature plant fighting a drought, the main body of a book the aspect dissecting structure , the blade mainly from form characteristic , root cap of six kinds plant ratio, the blade guaranteeing five water abilities , saturated get a beating of moisture content has studied it's the mechanism fighting a drought , whose conclusion has been that blade's form characteristic and structure have decreased by blade moisture content dissipating , have improved the moisture content utilization ratio , the blade guarantor water ability has been strong , root cap ratio has been bigger, Should arid coerce time, moisture content saturation is 6 kinds nursery stock short assuming an uptrend greatly extremely。 Key word: Drought resistance; Rosa xanthina; Peony ; Ma Lan; Calligonum mongolicum; Hollyhock 1 引言 植物的地理分布,生长发育以及产量形成等均受到环境的制约。干旱是对植物生长影响最大的环境因素之一。世界上干旱半干旱区遍及50多个国家和地区,其总面积约占陆地总面积的三分之一,且有逐年增加的趋势。在我国华北、西北、内蒙古和青藏高原绝大部分地区属于干旱半干旱地区,约占全国土地总面积的45﹪。由于全球荒漠化

植物抗旱研究进展

植物抗旱性研究进展 摘要:本文主要总结了一些与植物抗旱相关的因素,比如叶片结构、小分子代谢物、激素以及抗旱相关的基因等,探讨植物抗旱研究的进展、存在问题及发展趋势。 关键词:抗旱叶片小分子代谢物植物激素抗旱基因 Abstract:This article mainly talks about the factors of drought-resistant, such as leaf structure, small molecule metabolites, phytohormone, and other drought-related genes and exploring the progress of the study, existing problems and developing trends. Key words: drought-resistant leaf small molecule metabolites phytohormone drought-related genes 干旱是一个长期存在的世界性难题,全球干旱半干旱地区约占陆地面积的35%,遍及世界60多个国家和地区。我国是一个干旱和半干旱面积很大的国家,干旱半干旱的面积约占国土面积的52. 5%,其中干旱地区占30.8%,半干旱地区占21.7%。而干旱胁迫造成农作物减产,给农业生产带来极大的经济损失。因而对植物抗旱性的研究就显得尤为重要。 1. 植物叶片与抗旱性 植物吸收的水分主要是通过叶片蒸腾作用散失到体外,因此叶片的结构以及生理特征对植物的抗旱有着重要的作用。不同的植物筛选出的抗旱性评价指标不尽相同,通常认为,叶片的角质层越厚,表皮层越发达,栅栏组织越厚且排列紧密,气孔密度大,栅栏组织/海绵组织厚度比值较大,叶片组织结构紧密,上表皮细胞较小者抗旱性较强[1][2]。肖冰雪等[3]对牧草叶片解剖结构与抗旱性关系研究中表明,“阿坝”硬秆仲彬草、“阿坝”垂穗披碱草旱生结构特点明显:角质层厚、气孔下陷、维管束导管发达,具有较强的抗旱能力。刘红茹等[4]对延安城区10种阔叶园林植物叶片结构及其抗旱性研究中表明10种植物叶片均具备抵抗干旱环境的解剖结构,表皮、角质层、栅栏组织、叶脉、维管束等较为发达,气孔主要分布在下表皮。另外,叶片的一些其它结构也与抗旱相关,比如泡状细胞在植物缺水时,发生萎蔫,叶片内卷成筒状以减少水分蒸腾作用[5],发达的叶脉促进植物吸水率从而有利于植物贮藏水分[6]。

最新植物抗旱性生理生化机制的研究进展

植物抗旱性生理生化机制的研究进展 李宏富 (宁夏大学生命科学学院,宁夏银川,750021) 摘要:本文通过对植物的干旱类型、旱害机理、抗旱类型和特征以及在干旱逆境条件下的生理、生化上的变化进行总结,并对其研究前景进行了展望,以期为选育植物抗逆品种的研究提供参考,旨在促进植物抗旱机理方面的研究工作。 关键词:抗旱生理生化机制研究进展 Research Progress on Physiological and Biochemical Mechanism of Plant Drought Resistance LI Hong-fu (College of Life Science, Ningxia University, Yinchuan, Ningxia, 750021) Abstract: The type and mechanism of plant drought, the type and characteristics drought resistance and the changes of stress conditions on plant physiological and biochemical function were summarized. The research prospect was prospected, in order to provide some reference for breeding anti-adversity varieties, and advance the research on mechanism of plant drought resistance. Key Words: Drought resistance; Physiological and biochemical mechanism; Research progress 干旱、低温、高温、盐渍等不良环境是影响植物生长的重要因子,其作用于植物会引起植物体内一系列生理、生化和分子生物学上的变化,主要包括生物膜结构与组成的改变,许多特异性蛋白、糖、渗透调节物质(甜菜碱和脯氨酸等)的

植物抗旱机理研究进展

植物抗旱机理研究进展 水资源短缺以及土壤盐渍化是目前制约农业生产的一个全球性问题,全球约有20%的耕地受到盐害威胁,43%的耕地为干旱、半干旱地区。干旱与盐害严重影响植物的生长发育,造成作物减产,并使生态环境日益恶化。在我国,仅2001年华北、西北和东北地区的466.7万hm2稻的种植面积就因为缺水而减少了53.3万hm2。在自然条件下,由于环境胁迫而严重影响了作物生长发育,其遗传潜力难以发挥,干旱、盐渍不仅影响了作物的产量,而且限制了植物的广泛分布,因此,提高作物的抗旱、耐盐能力已经成为现代植物研究工作中急需解决的关键问题之一。现将植物特殊生理结构功能综述如下。 1植物形态结构特征对其耐旱机制的影响 1.1根系 植物根系是植物直接吸收水分的重要器官,它对植物的耐旱功能具有至关重要的作用。纵深发达的根系系统可使植物充分吸收利用贮存在土壤中的水分,使植物度过干旱期。对高粱的根系解剖学研究发现,高粱根系吸水每天以3.4 cm的稳定速率下伸,直到开花后约10 d,在有限水分条件下,吸水的多少由根系深度决定,深层吸水差是由于根长不够所致。此外,根水势能也能反映根系的吸收功能。根水势低,吸水能力强。据报道,高粱根水势一般为-1.22~1.52 Mbar,而玉米仅为-1.01~1.11 Mbar,高粱的吸水能力约是玉米的2倍(Cnyxau,1974),对干旱的耐受能力也强于玉米。一般认为抗旱性强的植物,根水势低,利于水分吸收。 1.2叶片 作为同化和蒸腾器官的叶片,在长期干旱胁迫下,叶片的形态结构会发生变化,其形态结构的改变与植物的耐旱性有着密切的关系。主要表现在:叶片表皮外壁有发达的角质层,角质层是一种类质膜,其主要功能是减少水分向大气散失,是植物水分蒸发的屏障。厚的角质层可提高植物的能量反射与降低蒸腾,从而增强植物的抗旱性;具有表皮毛,可以保护植物避免强光照射,减少蒸腾;具有大的栅栏组织/海绵组织比和小的表面积/体积比,发达的

转基因动物技术应用研究进展汇总

转基因动物技术应用研究进展 摘要:本文主要对动物转基因技术发展状况作了概述,重点是近年发展的提高转基因效率的非定点整合转基因方法, 如睾丸转基因法和卵巢转基因法; 提高转基因精确性的定点整合转基因的基因打靶法作了介绍。然后对转基因技术的应用作了论述,最后对转基因技术的发展前景作了展望。 关键字:动物转基因技术;应用;展望 Progress on Techniques for Producing Transgenic Animals And their Application Abstract: This review describes the recently developed animal gene transfer techniques, including gene transfer into the testis and ovary for easily making non-site specific methods; gene targeting in embryonic stem cells, somatic cells and primordial germ cells for site specific methods.The application and prospect of transgenic technology was also discussed. Key words: animal gene transfer technique; application;prospect 动物转基因技术是将外源基因移入动物细胞并整合到基因组中, 从而使其得以表达。自Palmiter等[1] (1982)把大鼠生长激素基因导入小鼠受精卵获得超级巨鼠以来,世界各国科学家对转基因技术应用于动物生产的研究产生了极大的兴趣,并相继在兔、羊、猪、牛、鸡、鱼等动物上获得转基因成功。转基因动物研究是近年来生命科学中最热门、发展最快的领域之一,其应用已广泛渗透于分子生物学、发育生物学、免疫学、制药及畜牧育种等各个研究领域中。这项技术正在对动物生产产生一场新的革命,在提高生长速度、生产性能,改善产品品质、抗病育种、基因治疗等方面取得了可喜的进展,显示出诱人的应用前景。 1 转基因动物技术 1.1 显微注射法 这一方法是发展最早,目前应用最广泛和最为有效的制作转基因动物的方法,创始人是Jaenisch和Mintz等,Gorden等[2]和最先通过此法获得转基因动物。其基本原理是:通过显微操作仪将外源基因直接用注射器注入受精卵,利用受精卵繁殖过程中DNA的复制过程,将外源基因整合到DNA中,发育成转基因动物。 1.2 逆转录病毒载体导入法 将目的基因重组到逆转录病毒载体上,制成高滴度的病毒颗粒,人为感染着床前后的胚胎,

植物功能基因组学概述

植物功能基因组学概述 XXX* (XXXXX) 摘要:植物功能基因组学是从整体水平研究基因的功能及表达规律的科学。对植物功能基因组学的研究将助于我们对基因功能的理解和对植物性状的定性改造和利用。本文简要介绍了植物功能基因组学的概念、研究内容和研究方法。 关键词:植物;功能基因组学;ESTs;SAGE Summarize of Plant Functional Genomics XXX (XXXXX) Abstract:Plant functional genomics studies provide a novel approach to the identification of genome-wide gene expression. It is currently being widely focused on the gene expression by transcript profiling and takes us rapidly forward in our understanding of plant biological traits. In this review, comprehensive of concepts, research contents and methodologies regarding plant functional genomics and transcript profiling are described. Key words: Plant; functional genomics; ESTs; SAGE 1 植物功能基因组学 基因组学(Genomics)是20世纪最后10年研究最活跃的领域之一。基因组学是指对所有基因的结构和功能进行分析的一门学科, 1986年由美国科学家Thomas Roderick提出, 兴起于20世纪90年代[1]。基因组学研究分为结构基因组学( structural genomics) 和功能基因组学( functional genomics)。结构基因组学代表基因组分析的早期阶段, 以建立生物体高分辨率遗传、物理和转录图谱为主, 以研究基因序列为目标。功能基因组学(Functional genomics)的研究又被称为后基因组学(Post genomics)研究,它是利用结构基因组学提供的信息和产物,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向对多个基因或蛋白质同时进行系统研究。 植物功能基因组学是植物后基因时代研究的核心内容,它强调发展和应用整体的(基因 组水平或系统水平)实验方法分析基因组序列信息、阐明基因功能,其特点是采用高通量的实验方法结合大规模的数据统计计算方法进行研究。基本策略是从研究单一基因或蛋白质上升到从系统角度研究所有基因或蛋白质。在植物功能基因组学的研究中,拟南芥和水稻是两种最常用的模式植物。目前, 功能基因组学在水稻、拟南芥等模式植物中取得了较快进展, 主要原因在于这两种植物已完成全基因组测序工作[2], 获得了结构基因组数据, 且遗传背景清楚, 易于开展分子生物学研究, 已率先步入后基因组时代。 2 植物功能基因组学研究内容 2、1基因组多样性研究[1] *联系人Tel:XXXXX;E-mail:XXXXX

植物抗旱性处理方式

植物抗旱性干早处理方法 干旱是世界范围内普遍存在的问题,全球约三分之一的土地面积处于干早和半干旱地区,因此,国内外学者在植物对干早胁迫响应方面进行了大量的研究。根据试验内容和对试验进度控制的需求,干旱处理方法大致分为以下几种:(l)‘盆栽法通过人为控制盆栽植物的土壤含水量,以达到模拟植物所处的干旱环境。草坪护栏根据控制水分的方式的不同,又分为控水法和缓慢干旱法。①控水法,即控制土壤含水量,使植物处于几种水分胁迫梯度下,以监测、对比不同水分胁迫梯度植物的生长和生理活动情况,从而分析植物对不同水分梯度的响应情况;②缓慢干旱法,根据植物的生长发育阶段,人为控制土壤含水量每日的脱水量和速率,经一定时间达到干旱程度,从而根据时段进行观测植物对干旱环境的响应。目前盆栽方法的优点是试验进程较容易控制,结果可靠,但由于室内外环境差异,势必与田间植物生长存在差异.东莞护栏。 (2)大气干早处理法研究外界干旱气候环境对植物产生的影响中,空气湿度是造成干早环境的主要因子,此方法主要通过使植物生长在能控制空气湿度的干旱室中,或给作物叶面喷施化学干燥剂等方法模拟干早环境,经过设置不同时间的处理,形成不同程度的干旱环境,从而分析植物对外界空气湿度变化的响应情况。此方法的优点是制造干旱环境较为精确,但需要的资金也相对较多,难以大面积、大批量进行试验,同时依旧存在与田间自然环境条件存在差异的问题.(3)高渗溶液处理法使用不同浓度的高渗溶液如聚乙二醇、甘露醇、蔗糖、生理盐水等,对植株进行处理,形成植物生理干早,从而进行测定相应的生理指标。目前此方法存在争议较大。 (4)田间试验鉴定法此方法是指在田间进行栽植和测定指标试验,根据控水方式的不同分为两类,一类是将供试种在不同地区的试验地上栽种,以自然降水造成干旱胁迫,直接按照植物产量或生长状况来评价植物种的抗旱性;另一类是将供试种直接种于一个地区的田间试验地,以人工灌水来控制土壤含水量,形成有差异的水分环境,使植物生长受到影响,以此来评价植物种的抗旱性。这种方法主要以产量指标来评价植物的抗旱性。 此方法较简便易行,即能反映出植物在真实地田间干旱环境下的生长情况,又有产量指标,结果较有说服力,但受环境的影响较大,尤其是降水,年际间变幅较大,使每年鉴定的结果难以重复。 (5)分子生物学方法分子生物学法是近年来主要研究的方法,结果精确,其主要特点是不需要经过干早胁迫,直接找出标记指示植物抗旱的基因,或与抗旱性状相近的基因,用基因追踪技术(如限制性片段长度多态性盯LP),对抗旱基因进行定位和标记,通过基因鉴别来反映植物抗旱性。但此方法目前尚处于研究阶段,成本较高

干旱胁迫及植物抗旱性的研究进展

新疆农业大学 专业文献综述 题目: 干旱胁迫及植物抗旱性的研究进展 姓名: 库热·巴吐尔 学院: 林学与园艺学院 专业: 园艺(特色经济林) 班级: 041班 学号: 043231142 指导教师: 海利力·库尔班职称: 教授 2008年12月19日

干旱胁迫及植物抗旱性的研究进展 摘要:干旱(水分亏缺)是我国北方沙漠化地区植物生长季的主要环境胁迫因子。本文从植物干旱的种类,植物对水分胁迫的生理反应,抗旱机理,植物水分胁迫的研究方法等几个方面,探讨植物抗旱研究的进展,存在问题及发展趋势,和干旱和高温在生理水平对植物光合作用影响机制的最新研究进展进行了综述,并对以后的相关研究进行了一些分析。 关键词:干旱胁迫;植物抗旱性,干旱机制 干早(Drought)是限制植物生长发育,基因表达和产量的重要因子[1-4],是气象与环境质量的指标,是指在无灌溉条件下,长期无雨或少雨,气温高,湿度小,土壤水分不能满足农作物的需要,使作物的正常生长受到抑制,甚至枯死,造成减产或无收的一种自然现象,一般分为大气干旱和土壤干早[5-6]。全球干旱半干旱地区约占陆地面积的35%遍及世界60多个国家和地区。我国是一个干旱和半干旱面积很大的国家,干旱半干旱的面积约占国土面积的52.5%,其中干旱地区占30.8%,半干旱地区占21.7%[7]。植物的抗旱性是指植物在大气或土壤干旱条件下生存和形成产量的能力,抗旱性鉴定就是按植物抗旱能力大小进行鉴定,评价的过程[8-10]。前人对于植物抗旱性的研究作了大量的工作,并在许多方面取得了突破性进展,为干旱半干旱地区的农林业生产提供了理论基础。但这些研究都具有一定的局限性,主要表现为现有研究结果多数是针对植物某个或几个方面进行研究,如某些生理或生化指标,而这些研究指标只在某一时间范围内起有限的作用,用这些具有时间限制的少数几个指标来阐明植物抗旱的途径,方式和机理,或进行耐旱性评价都难以反映植物的真实情况,甚至会使某些最关键的问题被忽略。因此,本文对植物干旱胁迫及抗旱性方面的一些研究成果及存在的问题进行了探讨。 1 干旱胁迫 干旱是一个长期存在的世界性难题,中国水的问题始终是个大问题,水的安全供给问题引起了世界各国的关注。中国的干旱缺水问题目前已引起党中央,国务院和全社会的关注,中国的水危机不是危言耸听,而是既成事实。干旱缺水将成为我国农业和经济社会可持续发展的首要制约因素。 1.1 干旱胁迫的类型及特点 干旱形成有两种主要原因,并形成两类干旱。一是土壤干旱。由于连年干旱,雨量过少,每年降雨量约在200~300mm,地下水位又较低,土壤中水分根本不能满足植物生长,如无灌溉,作物将受干旱之害。二是大气干旱。植物的水分亏缺是由于蒸腾失水超过吸水而产生的,即使在土壤水分充足的情况下,晴天的中午也常常产生干旱。气温高,强烈的太阳辐射显著促进蒸腾;由于土壤干燥,地温低,根的机能低下,使吸水受到抑制。都能使植物产生水分亏缺,特别是二者同时产

基因打靶综述

基因打靶技术 【摘要】基因打靶技术是建立在同源重组技术之上,可对基因组进行定位修饰的实验方法。本文简述了基因敲除技术的基本原理、打靶策略、筛选机制,在动植物和微生物中常用的基因敲除方法以及基因打靶的应用。 基因敲除技术是研究功能基因作用的重要方法, 是后基因组时代的重要研究内容。 。 【关键词】基因打靶;同源重组;打靶策略;筛选机制 一.前言 发展历史: 基因敲除(gene knockout)又称基因打靶(Gene targeting) 是自20 世纪80 年代末以来发展起来的一种新型分子生物学技术,。早在80年代初,人们就开始研究在哺乳动物基因组中,存在使外源DNA与现存同源序列同源重组 的可能性。1985年, Smithies及其同事的研究使之得到确证。同期的相关研究证明了鼠多能 干细胞系具有诱发小鼠产生种系组织的能力,甚至在长期培养后仍存在,导入这些细胞器系的突变可以传给后代。其传统概念是指同源重组敲除技术即利用DNA 转化技术,将构建的打靶载体导入靶细胞后,通过载体DNA 序列与靶细胞内染色体上同源DNA 序列间的重组,将载体DNA 定点整合入靶细胞基因组上某一确定的位点,或 与靶细胞基因组上某一确定片段置换,从而达到基因敲除的目的[5]。随着基因敲除技术的发展,除了同源重组外,新的原理和技术也逐渐被应用,比较成功 的有基因的插入突变和RNAi,它们同样可以达到基因敲除的目的。所以,基因敲除的基本原理是通过一定的途径使机体特定的基因失活或缺失的一种分子生 物学技术。 二.主题 1基因打靶的基本原理 绝大多数的基因打靶策略都是基于同源重组( homologous recombination)的机制。同 源重组是指发生在非姐妹染色单体( sister chromatin)之间或同一染色体上含有同源序 列的DNA分子之间或分子之内的重新组合,普遍存在于噬菌体、细菌和真核生物中。

最新六种植物抗旱性的研究

六种植物抗旱性的研 究

六种植物抗旱性的研究 王超 (山东农业大学园艺科学与工程学院泰安 271018) 摘要:黄刺玫、牡丹、芍药、马兰、沙拐枣、蜀葵都是抗旱性比较强的植物,本文主要从六种 植物的形态特征、根冠比、叶片解剖构造、叶片保水能力、水分饱和亏五个方面研究了其抗旱机 理,其结论是叶片的形态特征和构造减少了叶片水分散失、提高了水分利用效率,叶片保水能力 强,根冠比比值较大,当受到干旱胁迫时,6种苗木水分饱和亏缺大至都呈上升趋势。 关键词:抗旱性;黄刺玫;牡丹;芍药;马兰;沙拐枣;蜀葵 Reach about drought resisting of Six kinds plant Wang-chao (College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018) Abstract: Rosa xanthina , peony , peony , Ma Lan , sand honey raisin tree , hollyhock all are the comparatively strong nature plant fighting a drought, the main body of a book the aspect dissecting structure , the blade mainly from form characteristic , root cap of six kinds plant ratio, the blade guaranteeing five water abilities , saturated get a beating of moisture content has studied it's the mechanism fighting a drought , whose conclusion has been that blade's form characteristic and structure have decreased by blade moisture content dissipating , have improved the moisture content utilization ratio , the blade guarantor water ability has been strong , root cap ratio has been bigger, Should arid coerce time, moisture content saturation is 6 kinds nursery stock short assuming an uptrend greatly extremely。 Key word: Drought resistance; Rosa xanthina; Peony ; Ma Lan; Calligonum mongolicum; Hollyhock 1 引言 仅供学习与交流,如有侵权请联系网站删除谢谢13

植物抗旱抗旱机理及其相关基因研究进展

植物抗旱机理及其相关基因研究进展 摘要:提高植物的抗旱能力已经成为现代植物研究工作中的关键问题之一。近年来,随着分子生物学的应用与发展,该领域的研究也已引起国内外学者广泛的兴趣和重视,在抗旱机理研究及相关基因克隆及表达调控方面已取得可喜进展。本文综述了植物对于干旱胁迫在细胞水平、生理生化水平以及基因表达调控水平上的响应,重点介绍了基于细胞信号转导和基因调控的抗旱基因工程以及渗透保护物质积累的抗旱基因工程的新进展,最后对通过基因工程改善植物抗旱性所存在的问题进行了探讨,并对其前景进行了展望。 关键词:抗旱机理;渗透调节;信号转导;基因调控;渗透保护物积累。Progress of the Research on Plant Drought-resistant Mechanism and Related Genes Abstract: In recent years,with the application and development of molecular biology,the research in the drought-resistant mechanism and the relevant gene cloning and expression regulation have aroused wide interest and attentionamong domestic and foreign scholars,which has made gratifying progress. In this article, the plant responses to drought stress at cell, physiological and biochem ical levels as well as geneexp ressed and regulated levels, and mainly introduced the latest advances of drought stress tolerance engineering of plantbased on signal transduction, gene regulation and accumulation of osmotic adjustments1were summarized. In addition, the problem s of improving drought stress tolerance of plant through gene engineering were discussed, and the outlook was alsoanalyzed in paper1 Key words: Drought-resistant mechanism; Osmotic regulation; signal transduction; gene regulation; accumulation of os-motic adjustments 干旱已是世界性的问题,世界干旱,半干旱地区已占陆地面积的三分之一以上,干旱对植物的影响在诸多自然逆境因素中占首位。显然,对植物抗旱机理的研究显得尤为重要。在长期的进化过程中,高等植物通过一系列生理变化来响应环境的水分胁迫。这些变化体现在渗透调节,保护酶体系,抗旱基因与遗传特性等方面. 随着现代分子生物学与生物技术的发展, 植物如何通过细胞感受逆境信号、传导逆境刺激、激活一系列分子途径并调控相关基因表达和生理反应以适应逆境,已成为科学家[1]研究的热点。本文对上述几方面的研究进行了综述,旨在总结植物抗旱的新机制,以利于我们更好的进行抗旱工作。 1 植物对干旱生理生化上的响应 干旱胁迫的环境下,通常会造成植物在生理、生化代谢途径上的改变,在细胞水平上主要表现为:细胞膨胀的消失,细胞膜流动性的改变,细胞内可溶物浓度的变化,以及蛋白和蛋白,蛋白和脂类间的相互作用[2]。植物也能通过自身的调节和适应来避免体内水分的丧失。例如,光合作用效率降低[3],细胞内有

植物抗旱性研究进展

zhi wu bao hu 随着我国城镇化进程的不断加快, 城市水资源日益紧缺,这是一个全球性问题,节水理念受到世界各地、 社会各界的广泛关注。植物的抗旱性研究进展直接关系到水资源的利用与植物栽培方式,是农业生产的重要依据之一。 1植物抗旱的概念和类型 植物体内水分的匮乏,造成植物体内细胞活性和组织结构的损坏而出现水分亏缺的现象,而水分过度亏缺的现象称为干旱(Drought )。植物对干旱环境的适应和抗御能力叫抗旱性(Drought Resistance ),Levitt 是最早对植物耐旱机制进行研 究的学者,他将植物分为避旱型、 御旱型和耐旱型[1]。避旱性植物主要通过缩短生活史来躲避重度干旱[2];御旱性植物利 用自身的形态结构和代谢功能来维持良好的水分内环境, 或用庞大的根系来维持正常吸水;耐旱性植物在干旱时可以通 过休眠使自身处于风干状态,但原生质未凝固, 且具有很强的吸水能力,此类植物在干旱胁迫得到缓解时能够恢复正常生 长。在对植物抗旱性的研究过程中, 有学者根据相对含水量比适量供水时饱和含水量低的程度,将干旱胁迫程度分为轻度胁迫、中度胁迫以及重度胁迫[3]。 2干旱对植物的影响 2.1干旱对植物形态的影响 植物在遭受干旱胁迫时,宏观变化主要体现在植物的叶片及根的生长上,干旱程度严重时植株会被迫停止生长。叶片作为植物进行光合作用的主要器官,对外界环境变化较为敏感,在干旱胁迫下,植物叶片的形态和生理方面主要表现为减少水分的 损失和提高水分利用效率[4]。抗旱能力强的植物, 其叶片中栅栏组织占比偏高,海绵组织占比偏低。因为这样的形态指标对干旱环 境的适应性较强[5]。严美玲[6]等在研究花生受到干旱胁迫时, 发现花生茎叶在干旱胁迫过程中生长严重受抑,另有研究表明,植物 对水分最敏感的部分是叶片和茎[7]。冯黎[8] 在对北京部分景天的 抗旱研究中植株叶片失绿、变软、枯黄、萎蔫,株高、 冠幅的生长都受到了抑制。赵慧[9] 在研究小麦的抗旱性时发现抗旱性 强的小麦随着干旱胁迫的加剧根茎变大,皮层增厚, 有很强的贮水能力。郭晋梅[10]在研究羊草的抗旱性时发现在轻度胁迫时植物的根冠比呈上升趋势,表明羊草为了抵御外界的干旱而增加了根部的比重。 2.2干旱对植物生理指标的影响 2.2.1干旱对光合生理的影响叶绿素是植物进行光合作用的细胞器,具有吸收、传递和转化光能的功能。叶绿素的含量影响着植物进行光合作用[11]。李博[12]认为5种玉簪的叶绿素含量都随着干旱胁迫的加重而下降。在干旱胁迫时不同植物叶绿素含量下降的幅度不同,抗旱性强的植物降低幅度小,而叶 绿素含量降低幅度较大的植物抗旱性较弱[13~15]。植物获取有 机物的途径是进行光合作用,所以光合能力的强弱对植物光合作用具有重要的意义。植物进行光合作用过程中吸取光能,将CO 2和H 2O 合成有机物并释放出O 2[16]。事实上植物在进行光合作时会受到很多内外因素影响[17],其中水分对光合作用的影响是间接的。在植物受到干旱胁迫时,叶片上气孔关闭,植物吸收CO 2含量减少,导致光合作用缓慢[18]。任迎虹[19]对不同品种的桑树进行干旱胁迫,结果表明桑树在干旱胁迫过程中叶片的净光合速率会下降。 2.2.2干旱对植物细胞膜系统与膜脂过氧化的影响细胞膜对维持细胞的微环境和正常代谢起着重要作用。在干旱胁迫下植物细胞膜透性的损伤程度可以通过电导率值来体现[20]。芦建国[21]等在对17种地被植物进行抗旱性研究中表明,干旱胁 迫造成植物材料的相对电导率升高,膜透性升高,叶片相对电 导率与植物的抗旱性呈负相关,植物相对电导率上升幅度越 小,植物的抗旱性越强。丙二醛(MDA )是植物体内膜脂过氧 化反应的最终分解产物,当植物在衰老或者逆境胁迫时,可诱 发植物组织或器官膜脂质发生过氧化反应,使植物体内丙二醛含量发生变化。周伟伟等[22]在研究干旱胁迫对景天属植物 生理生化特性的影响中发现,在干旱胁迫下,除垂盆草以外其 他植物的丙二醛含量均大幅度增加, 而垂盆草增加幅度较小,因此抵抗力较强。 2.2.3干旱对植物抗氧化酶活性的影响植物体内的自由基可以正常代谢,保证体内良好的代谢平衡[23]。而在干旱胁迫下, 这种代谢平衡被打破,在植物组织中积累了大量活性氧,导致 细胞膜结构和功能受到一定损伤,而增加了细胞膜透性,电解质外渗,而细胞中有抗氧化酶,以超氧化物歧化酶(SOD )、 过氧化物酶(POD )、过氧化氢酶(CAT )和抗坏血酸过氧化物酶 (APX )为代表的酶类在活性氧的清除过程中起重要作用, 植物在干旱胁迫过程中通过积累抗氧化酶来抵制活性氧带来的伤害[24]。 2.2.4干旱对植物渗透调节物质的影响植物通过可溶性糖、脯氨酸等渗透调节物质从外界吸水来抵御干旱胁迫。陈敏[25] 在对胡杨、柽柳和芦苇3种植物在进行干旱胁迫时, 可溶性糖积累增加提高了植物的抗旱性。吉增宝[26] 等认为刺槐幼苗的 可溶性糖累积与干旱程度、时间有关,也与刺槐的生长季节有 关,植物体内可溶性糖含量的增加是受到干旱胁迫加剧的影响,可溶性糖含量与抗旱性呈正相关,即增加幅度越大抗旱性 越强。J.Ibarra Caballero [27] 等认为脯氨酸含量的增加是逆境胁迫造成的伤害,并不属于植物对逆环境的适应机制。2.3植物的水分利用效率 摘要:本文针对植物抗旱的概念、类型及干旱对植物生理指标的影响等进行了概述,初步分析了植物的水分利用效率,为今后的抗旱植物筛选、应用及生产管理等相关研究提供参考。 关键词:植物;抗旱性;干旱胁迫; 研究进展项目基金:吉林省大学生创新训练项目(No.2017505);吉林省教育厅“十三五”科学技术项目(No.JJKH20180668KJ )中图分类号:S688 文献标识码:A DOI 编号:10.14025/https://www.doczj.com/doc/ee1465346.html,ki.jlny.2019.02.034 陈丽飞*,刘越,李雪萌,李雪滢,赵文斌,徐志瑞,巫宏伟,吴彦霏 (吉林农业大学, 吉林长春130118)植物抗旱性研究进展

相关主题
文本预览
相关文档 最新文档